]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/slub_def.h
Merge branch 'reiserfs/kill-bkl' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
02af61bb 13#include <linux/kmemtrace.h>
e4f7c0b4 14#include <linux/kmemleak.h>
81819f0f 15
8ff12cfc
CL
16enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
65c3376a 34 ORDER_FALLBACK, /* Number of times fallback was necessary */
8ff12cfc
CL
35 NR_SLUB_STAT_ITEMS };
36
dfb4f096 37struct kmem_cache_cpu {
da89b79e
CL
38 void **freelist; /* Pointer to first free per cpu object */
39 struct page *page; /* The slab from which we are allocating */
40 int node; /* The node of the page (or -1 for debug) */
41 unsigned int offset; /* Freepointer offset (in word units) */
42 unsigned int objsize; /* Size of an object (from kmem_cache) */
8ff12cfc
CL
43#ifdef CONFIG_SLUB_STATS
44 unsigned stat[NR_SLUB_STAT_ITEMS];
45#endif
4c93c355 46};
dfb4f096 47
81819f0f
CL
48struct kmem_cache_node {
49 spinlock_t list_lock; /* Protect partial list and nr_partial */
50 unsigned long nr_partial;
81819f0f 51 struct list_head partial;
0c710013 52#ifdef CONFIG_SLUB_DEBUG
0f389ec6 53 atomic_long_t nr_slabs;
205ab99d 54 atomic_long_t total_objects;
643b1138 55 struct list_head full;
0c710013 56#endif
81819f0f
CL
57};
58
834f3d11
CL
59/*
60 * Word size structure that can be atomically updated or read and that
61 * contains both the order and the number of objects that a slab of the
62 * given order would contain.
63 */
64struct kmem_cache_order_objects {
65 unsigned long x;
66};
67
81819f0f
CL
68/*
69 * Slab cache management.
70 */
71struct kmem_cache {
72 /* Used for retriving partial slabs etc */
73 unsigned long flags;
74 int size; /* The size of an object including meta data */
75 int objsize; /* The size of an object without meta data */
76 int offset; /* Free pointer offset. */
834f3d11 77 struct kmem_cache_order_objects oo;
81819f0f
CL
78
79 /*
80 * Avoid an extra cache line for UP, SMP and for the node local to
81 * struct kmem_cache.
82 */
83 struct kmem_cache_node local_node;
84
85 /* Allocation and freeing of slabs */
205ab99d 86 struct kmem_cache_order_objects max;
65c3376a 87 struct kmem_cache_order_objects min;
b7a49f0d 88 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 89 int refcount; /* Refcount for slab cache destroy */
51cc5068 90 void (*ctor)(void *);
81819f0f
CL
91 int inuse; /* Offset to metadata */
92 int align; /* Alignment */
3b89d7d8 93 unsigned long min_partial;
81819f0f
CL
94 const char *name; /* Name (only for display!) */
95 struct list_head list; /* List of slab caches */
0c710013 96#ifdef CONFIG_SLUB_DEBUG
81819f0f 97 struct kobject kobj; /* For sysfs */
0c710013 98#endif
81819f0f
CL
99
100#ifdef CONFIG_NUMA
9824601e
CL
101 /*
102 * Defragmentation by allocating from a remote node.
103 */
104 int remote_node_defrag_ratio;
81819f0f
CL
105 struct kmem_cache_node *node[MAX_NUMNODES];
106#endif
4c93c355
CL
107#ifdef CONFIG_SMP
108 struct kmem_cache_cpu *cpu_slab[NR_CPUS];
109#else
110 struct kmem_cache_cpu cpu_slab;
111#endif
81819f0f
CL
112};
113
114/*
115 * Kmalloc subsystem.
116 */
4b356be0
CL
117#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
118#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
119#else
120#define KMALLOC_MIN_SIZE 8
121#endif
122
123#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 124
ffadd4d0
CL
125/*
126 * Maximum kmalloc object size handled by SLUB. Larger object allocations
127 * are passed through to the page allocator. The page allocator "fastpath"
128 * is relatively slow so we need this value sufficiently high so that
129 * performance critical objects are allocated through the SLUB fastpath.
130 *
131 * This should be dropped to PAGE_SIZE / 2 once the page allocator
132 * "fastpath" becomes competitive with the slab allocator fastpaths.
133 */
51735a7c 134#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 135
51735a7c 136#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 137
81819f0f
CL
138/*
139 * We keep the general caches in an array of slab caches that are used for
140 * 2^x bytes of allocations.
141 */
ffadd4d0 142extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
143
144/*
145 * Sorry that the following has to be that ugly but some versions of GCC
146 * have trouble with constant propagation and loops.
147 */
aa137f9d 148static __always_inline int kmalloc_index(size_t size)
81819f0f 149{
272c1d21
CL
150 if (!size)
151 return 0;
614410d5 152
4b356be0
CL
153 if (size <= KMALLOC_MIN_SIZE)
154 return KMALLOC_SHIFT_LOW;
155
acdfcd04 156 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 157 return 1;
acdfcd04 158 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
159 return 2;
160 if (size <= 8) return 3;
161 if (size <= 16) return 4;
162 if (size <= 32) return 5;
163 if (size <= 64) return 6;
164 if (size <= 128) return 7;
165 if (size <= 256) return 8;
166 if (size <= 512) return 9;
167 if (size <= 1024) return 10;
168 if (size <= 2 * 1024) return 11;
6446faa2 169 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
170/*
171 * The following is only needed to support architectures with a larger page
172 * size than 4k.
173 */
81819f0f
CL
174 if (size <= 8 * 1024) return 13;
175 if (size <= 16 * 1024) return 14;
176 if (size <= 32 * 1024) return 15;
177 if (size <= 64 * 1024) return 16;
178 if (size <= 128 * 1024) return 17;
179 if (size <= 256 * 1024) return 18;
aadb4bc4 180 if (size <= 512 * 1024) return 19;
81819f0f 181 if (size <= 1024 * 1024) return 20;
81819f0f 182 if (size <= 2 * 1024 * 1024) return 21;
81819f0f
CL
183 return -1;
184
185/*
186 * What we really wanted to do and cannot do because of compiler issues is:
187 * int i;
188 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
189 * if (size <= (1 << i))
190 * return i;
191 */
192}
193
194/*
195 * Find the slab cache for a given combination of allocation flags and size.
196 *
197 * This ought to end up with a global pointer to the right cache
198 * in kmalloc_caches.
199 */
aa137f9d 200static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
201{
202 int index = kmalloc_index(size);
203
204 if (index == 0)
205 return NULL;
206
81819f0f
CL
207 return &kmalloc_caches[index];
208}
209
210#ifdef CONFIG_ZONE_DMA
211#define SLUB_DMA __GFP_DMA
212#else
213/* Disable DMA functionality */
d046943c 214#define SLUB_DMA (__force gfp_t)0
81819f0f
CL
215#endif
216
6193a2ff
PM
217void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
218void *__kmalloc(size_t size, gfp_t flags);
219
0f24f128 220#ifdef CONFIG_TRACING
5b882be4
EGM
221extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
222#else
223static __always_inline void *
224kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
225{
226 return kmem_cache_alloc(s, gfpflags);
227}
228#endif
229
eada35ef
PE
230static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
231{
5b882be4
EGM
232 unsigned int order = get_order(size);
233 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
234
e4f7c0b4 235 kmemleak_alloc(ret, size, 1, flags);
ca2b84cb 236 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
5b882be4
EGM
237
238 return ret;
eada35ef
PE
239}
240
aa137f9d 241static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 242{
5b882be4
EGM
243 void *ret;
244
aadb4bc4 245 if (__builtin_constant_p(size)) {
ffadd4d0 246 if (size > SLUB_MAX_SIZE)
eada35ef 247 return kmalloc_large(size, flags);
81819f0f 248
aadb4bc4
CL
249 if (!(flags & SLUB_DMA)) {
250 struct kmem_cache *s = kmalloc_slab(size);
251
252 if (!s)
253 return ZERO_SIZE_PTR;
81819f0f 254
5b882be4
EGM
255 ret = kmem_cache_alloc_notrace(s, flags);
256
ca2b84cb 257 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
5b882be4
EGM
258
259 return ret;
aadb4bc4
CL
260 }
261 }
262 return __kmalloc(size, flags);
81819f0f
CL
263}
264
81819f0f 265#ifdef CONFIG_NUMA
6193a2ff
PM
266void *__kmalloc_node(size_t size, gfp_t flags, int node);
267void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 268
0f24f128 269#ifdef CONFIG_TRACING
5b882be4
EGM
270extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
271 gfp_t gfpflags,
272 int node);
273#else
274static __always_inline void *
275kmem_cache_alloc_node_notrace(struct kmem_cache *s,
276 gfp_t gfpflags,
277 int node)
278{
279 return kmem_cache_alloc_node(s, gfpflags, node);
280}
281#endif
282
aa137f9d 283static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 284{
5b882be4
EGM
285 void *ret;
286
aadb4bc4 287 if (__builtin_constant_p(size) &&
ffadd4d0 288 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 289 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
290
291 if (!s)
272c1d21 292 return ZERO_SIZE_PTR;
81819f0f 293
5b882be4
EGM
294 ret = kmem_cache_alloc_node_notrace(s, flags, node);
295
ca2b84cb
EGM
296 trace_kmalloc_node(_THIS_IP_, ret,
297 size, s->size, flags, node);
5b882be4
EGM
298
299 return ret;
aadb4bc4
CL
300 }
301 return __kmalloc_node(size, flags, node);
81819f0f
CL
302}
303#endif
304
305#endif /* _LINUX_SLUB_DEF_H */