]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slub_def.h
slab: Remove some accessors
[mirror_ubuntu-bionic-kernel.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
81819f0f
CL
12#include <linux/workqueue.h>
13#include <linux/kobject.h>
14
4a92379b 15#include <linux/kmemleak.h>
039ca4e7 16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
8028dcea 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
8ff12cfc
CL
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 36 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 37 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
8028dcea
AS
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
8ff12cfc
CL
44 NR_SLUB_STAT_ITEMS };
45
dfb4f096 46struct kmem_cache_cpu {
8a5ec0ba 47 void **freelist; /* Pointer to next available object */
8a5ec0ba 48 unsigned long tid; /* Globally unique transaction id */
da89b79e 49 struct page *page; /* The slab from which we are allocating */
49e22585 50 struct page *partial; /* Partially allocated frozen slabs */
8ff12cfc
CL
51#ifdef CONFIG_SLUB_STATS
52 unsigned stat[NR_SLUB_STAT_ITEMS];
53#endif
4c93c355 54};
dfb4f096 55
81819f0f
CL
56struct kmem_cache_node {
57 spinlock_t list_lock; /* Protect partial list and nr_partial */
58 unsigned long nr_partial;
81819f0f 59 struct list_head partial;
0c710013 60#ifdef CONFIG_SLUB_DEBUG
0f389ec6 61 atomic_long_t nr_slabs;
205ab99d 62 atomic_long_t total_objects;
643b1138 63 struct list_head full;
0c710013 64#endif
81819f0f
CL
65};
66
834f3d11
CL
67/*
68 * Word size structure that can be atomically updated or read and that
69 * contains both the order and the number of objects that a slab of the
70 * given order would contain.
71 */
72struct kmem_cache_order_objects {
73 unsigned long x;
74};
75
81819f0f
CL
76/*
77 * Slab cache management.
78 */
79struct kmem_cache {
1b5ad248 80 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
81 /* Used for retriving partial slabs etc */
82 unsigned long flags;
1a757fe5 83 unsigned long min_partial;
81819f0f
CL
84 int size; /* The size of an object including meta data */
85 int objsize; /* The size of an object without meta data */
86 int offset; /* Free pointer offset. */
9f264904 87 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 88 struct kmem_cache_order_objects oo;
81819f0f 89
81819f0f 90 /* Allocation and freeing of slabs */
205ab99d 91 struct kmem_cache_order_objects max;
65c3376a 92 struct kmem_cache_order_objects min;
b7a49f0d 93 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 94 int refcount; /* Refcount for slab cache destroy */
51cc5068 95 void (*ctor)(void *);
81819f0f
CL
96 int inuse; /* Offset to metadata */
97 int align; /* Alignment */
ab9a0f19 98 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
99 const char *name; /* Name (only for display!) */
100 struct list_head list; /* List of slab caches */
ab4d5ed5 101#ifdef CONFIG_SYSFS
81819f0f 102 struct kobject kobj; /* For sysfs */
0c710013 103#endif
81819f0f
CL
104
105#ifdef CONFIG_NUMA
9824601e
CL
106 /*
107 * Defragmentation by allocating from a remote node.
108 */
109 int remote_node_defrag_ratio;
81819f0f 110#endif
7340cc84 111 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
112};
113
114/*
115 * Kmalloc subsystem.
116 */
a6eb9fe1
FT
117#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
118#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
119#else
120#define KMALLOC_MIN_SIZE 8
121#endif
122
123#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 124
ffadd4d0
CL
125/*
126 * Maximum kmalloc object size handled by SLUB. Larger object allocations
127 * are passed through to the page allocator. The page allocator "fastpath"
128 * is relatively slow so we need this value sufficiently high so that
129 * performance critical objects are allocated through the SLUB fastpath.
130 *
131 * This should be dropped to PAGE_SIZE / 2 once the page allocator
132 * "fastpath" becomes competitive with the slab allocator fastpaths.
133 */
51735a7c 134#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 135
51735a7c 136#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 137
756dee75
CL
138#ifdef CONFIG_ZONE_DMA
139#define SLUB_DMA __GFP_DMA
756dee75
CL
140#else
141/* Disable DMA functionality */
142#define SLUB_DMA (__force gfp_t)0
756dee75
CL
143#endif
144
81819f0f
CL
145/*
146 * We keep the general caches in an array of slab caches that are used for
147 * 2^x bytes of allocations.
148 */
51df1142 149extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
150
151/*
152 * Sorry that the following has to be that ugly but some versions of GCC
153 * have trouble with constant propagation and loops.
154 */
aa137f9d 155static __always_inline int kmalloc_index(size_t size)
81819f0f 156{
272c1d21
CL
157 if (!size)
158 return 0;
614410d5 159
4b356be0
CL
160 if (size <= KMALLOC_MIN_SIZE)
161 return KMALLOC_SHIFT_LOW;
162
acdfcd04 163 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 164 return 1;
acdfcd04 165 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
166 return 2;
167 if (size <= 8) return 3;
168 if (size <= 16) return 4;
169 if (size <= 32) return 5;
170 if (size <= 64) return 6;
171 if (size <= 128) return 7;
172 if (size <= 256) return 8;
173 if (size <= 512) return 9;
174 if (size <= 1024) return 10;
175 if (size <= 2 * 1024) return 11;
6446faa2 176 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
177/*
178 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
179 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
180 * size we would have to go up to 128k.
aadb4bc4 181 */
81819f0f
CL
182 if (size <= 8 * 1024) return 13;
183 if (size <= 16 * 1024) return 14;
184 if (size <= 32 * 1024) return 15;
185 if (size <= 64 * 1024) return 16;
186 if (size <= 128 * 1024) return 17;
187 if (size <= 256 * 1024) return 18;
aadb4bc4 188 if (size <= 512 * 1024) return 19;
81819f0f 189 if (size <= 1024 * 1024) return 20;
81819f0f 190 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
191 BUG();
192 return -1; /* Will never be reached */
81819f0f
CL
193
194/*
195 * What we really wanted to do and cannot do because of compiler issues is:
196 * int i;
197 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
198 * if (size <= (1 << i))
199 * return i;
200 */
201}
202
203/*
204 * Find the slab cache for a given combination of allocation flags and size.
205 *
206 * This ought to end up with a global pointer to the right cache
207 * in kmalloc_caches.
208 */
aa137f9d 209static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
210{
211 int index = kmalloc_index(size);
212
213 if (index == 0)
214 return NULL;
215
51df1142 216 return kmalloc_caches[index];
81819f0f
CL
217}
218
6193a2ff
PM
219void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
220void *__kmalloc(size_t size, gfp_t flags);
221
4a92379b
RK
222static __always_inline void *
223kmalloc_order(size_t size, gfp_t flags, unsigned int order)
224{
225 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
226 kmemleak_alloc(ret, size, 1, flags);
227 return ret;
228}
229
d18a90dd
BG
230/**
231 * Calling this on allocated memory will check that the memory
232 * is expected to be in use, and print warnings if not.
233 */
234#ifdef CONFIG_SLUB_DEBUG
235extern bool verify_mem_not_deleted(const void *x);
236#else
237static inline bool verify_mem_not_deleted(const void *x)
238{
239 return true;
240}
241#endif
242
0f24f128 243#ifdef CONFIG_TRACING
4a92379b
RK
244extern void *
245kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
246extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
247#else
248static __always_inline void *
4a92379b 249kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
250{
251 return kmem_cache_alloc(s, gfpflags);
252}
4a92379b
RK
253
254static __always_inline void *
255kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
256{
257 return kmalloc_order(size, flags, order);
258}
5b882be4
EGM
259#endif
260
eada35ef
PE
261static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
262{
5b882be4 263 unsigned int order = get_order(size);
4a92379b 264 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
265}
266
aa137f9d 267static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 268{
aadb4bc4 269 if (__builtin_constant_p(size)) {
ffadd4d0 270 if (size > SLUB_MAX_SIZE)
eada35ef 271 return kmalloc_large(size, flags);
81819f0f 272
aadb4bc4
CL
273 if (!(flags & SLUB_DMA)) {
274 struct kmem_cache *s = kmalloc_slab(size);
275
276 if (!s)
277 return ZERO_SIZE_PTR;
81819f0f 278
4a92379b 279 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
280 }
281 }
282 return __kmalloc(size, flags);
81819f0f
CL
283}
284
81819f0f 285#ifdef CONFIG_NUMA
6193a2ff
PM
286void *__kmalloc_node(size_t size, gfp_t flags, int node);
287void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 288
0f24f128 289#ifdef CONFIG_TRACING
4a92379b 290extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 291 gfp_t gfpflags,
4a92379b 292 int node, size_t size);
5b882be4
EGM
293#else
294static __always_inline void *
4a92379b 295kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 296 gfp_t gfpflags,
4a92379b 297 int node, size_t size)
5b882be4
EGM
298{
299 return kmem_cache_alloc_node(s, gfpflags, node);
300}
301#endif
302
aa137f9d 303static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 304{
aadb4bc4 305 if (__builtin_constant_p(size) &&
ffadd4d0 306 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 307 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
308
309 if (!s)
272c1d21 310 return ZERO_SIZE_PTR;
81819f0f 311
4a92379b 312 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
313 }
314 return __kmalloc_node(size, flags, node);
81819f0f
CL
315}
316#endif
317
318#endif /* _LINUX_SLUB_DEF_H */