]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slub_def.h
slab: Rename nodelists to node
[mirror_ubuntu-bionic-kernel.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
81819f0f
CL
12#include <linux/workqueue.h>
13#include <linux/kobject.h>
14
4a92379b 15#include <linux/kmemleak.h>
039ca4e7 16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
8028dcea 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
8ff12cfc
CL
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 36 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 37 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
8028dcea
AS
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
8ff12cfc
CL
44 NR_SLUB_STAT_ITEMS };
45
dfb4f096 46struct kmem_cache_cpu {
8a5ec0ba 47 void **freelist; /* Pointer to next available object */
8a5ec0ba 48 unsigned long tid; /* Globally unique transaction id */
da89b79e 49 struct page *page; /* The slab from which we are allocating */
49e22585 50 struct page *partial; /* Partially allocated frozen slabs */
8ff12cfc
CL
51#ifdef CONFIG_SLUB_STATS
52 unsigned stat[NR_SLUB_STAT_ITEMS];
53#endif
4c93c355 54};
dfb4f096 55
81819f0f
CL
56struct kmem_cache_node {
57 spinlock_t list_lock; /* Protect partial list and nr_partial */
58 unsigned long nr_partial;
81819f0f 59 struct list_head partial;
0c710013 60#ifdef CONFIG_SLUB_DEBUG
0f389ec6 61 atomic_long_t nr_slabs;
205ab99d 62 atomic_long_t total_objects;
643b1138 63 struct list_head full;
0c710013 64#endif
81819f0f
CL
65};
66
834f3d11
CL
67/*
68 * Word size structure that can be atomically updated or read and that
69 * contains both the order and the number of objects that a slab of the
70 * given order would contain.
71 */
72struct kmem_cache_order_objects {
73 unsigned long x;
74};
75
81819f0f
CL
76/*
77 * Slab cache management.
78 */
79struct kmem_cache {
1b5ad248 80 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
81 /* Used for retriving partial slabs etc */
82 unsigned long flags;
1a757fe5 83 unsigned long min_partial;
81819f0f 84 int size; /* The size of an object including meta data */
3b0efdfa 85 int object_size; /* The size of an object without meta data */
81819f0f 86 int offset; /* Free pointer offset. */
9f264904 87 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 88 struct kmem_cache_order_objects oo;
81819f0f 89
81819f0f 90 /* Allocation and freeing of slabs */
205ab99d 91 struct kmem_cache_order_objects max;
65c3376a 92 struct kmem_cache_order_objects min;
b7a49f0d 93 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 94 int refcount; /* Refcount for slab cache destroy */
51cc5068 95 void (*ctor)(void *);
81819f0f
CL
96 int inuse; /* Offset to metadata */
97 int align; /* Alignment */
ab9a0f19 98 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
99 const char *name; /* Name (only for display!) */
100 struct list_head list; /* List of slab caches */
ab4d5ed5 101#ifdef CONFIG_SYSFS
81819f0f 102 struct kobject kobj; /* For sysfs */
0c710013 103#endif
ba6c496e
GC
104#ifdef CONFIG_MEMCG_KMEM
105 struct memcg_cache_params *memcg_params;
107dab5c 106 int max_attr_size; /* for propagation, maximum size of a stored attr */
ba6c496e 107#endif
81819f0f
CL
108
109#ifdef CONFIG_NUMA
9824601e
CL
110 /*
111 * Defragmentation by allocating from a remote node.
112 */
113 int remote_node_defrag_ratio;
81819f0f 114#endif
7340cc84 115 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
116};
117
ffadd4d0
CL
118/*
119 * Maximum kmalloc object size handled by SLUB. Larger object allocations
120 * are passed through to the page allocator. The page allocator "fastpath"
121 * is relatively slow so we need this value sufficiently high so that
122 * performance critical objects are allocated through the SLUB fastpath.
123 *
124 * This should be dropped to PAGE_SIZE / 2 once the page allocator
125 * "fastpath" becomes competitive with the slab allocator fastpaths.
126 */
51735a7c 127#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 128
51735a7c 129#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 130
756dee75
CL
131#ifdef CONFIG_ZONE_DMA
132#define SLUB_DMA __GFP_DMA
756dee75
CL
133#else
134/* Disable DMA functionality */
135#define SLUB_DMA (__force gfp_t)0
756dee75
CL
136#endif
137
81819f0f
CL
138/*
139 * We keep the general caches in an array of slab caches that are used for
140 * 2^x bytes of allocations.
141 */
51df1142 142extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f 143
81819f0f
CL
144/*
145 * Find the slab cache for a given combination of allocation flags and size.
146 *
147 * This ought to end up with a global pointer to the right cache
148 * in kmalloc_caches.
149 */
aa137f9d 150static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
151{
152 int index = kmalloc_index(size);
153
154 if (index == 0)
155 return NULL;
156
51df1142 157 return kmalloc_caches[index];
81819f0f
CL
158}
159
6193a2ff
PM
160void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
161void *__kmalloc(size_t size, gfp_t flags);
162
4a92379b
RK
163static __always_inline void *
164kmalloc_order(size_t size, gfp_t flags, unsigned int order)
165{
d79923fa
GC
166 void *ret;
167
168 flags |= (__GFP_COMP | __GFP_KMEMCG);
169 ret = (void *) __get_free_pages(flags, order);
4a92379b
RK
170 kmemleak_alloc(ret, size, 1, flags);
171 return ret;
172}
173
d18a90dd
BG
174/**
175 * Calling this on allocated memory will check that the memory
176 * is expected to be in use, and print warnings if not.
177 */
178#ifdef CONFIG_SLUB_DEBUG
179extern bool verify_mem_not_deleted(const void *x);
180#else
181static inline bool verify_mem_not_deleted(const void *x)
182{
183 return true;
184}
185#endif
186
0f24f128 187#ifdef CONFIG_TRACING
4a92379b
RK
188extern void *
189kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
190extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
191#else
192static __always_inline void *
4a92379b 193kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
194{
195 return kmem_cache_alloc(s, gfpflags);
196}
4a92379b
RK
197
198static __always_inline void *
199kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
200{
201 return kmalloc_order(size, flags, order);
202}
5b882be4
EGM
203#endif
204
eada35ef
PE
205static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
206{
5b882be4 207 unsigned int order = get_order(size);
4a92379b 208 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
209}
210
aa137f9d 211static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 212{
aadb4bc4 213 if (__builtin_constant_p(size)) {
ffadd4d0 214 if (size > SLUB_MAX_SIZE)
eada35ef 215 return kmalloc_large(size, flags);
81819f0f 216
aadb4bc4
CL
217 if (!(flags & SLUB_DMA)) {
218 struct kmem_cache *s = kmalloc_slab(size);
219
220 if (!s)
221 return ZERO_SIZE_PTR;
81819f0f 222
4a92379b 223 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
224 }
225 }
226 return __kmalloc(size, flags);
81819f0f
CL
227}
228
81819f0f 229#ifdef CONFIG_NUMA
6193a2ff
PM
230void *__kmalloc_node(size_t size, gfp_t flags, int node);
231void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 232
0f24f128 233#ifdef CONFIG_TRACING
4a92379b 234extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 235 gfp_t gfpflags,
4a92379b 236 int node, size_t size);
5b882be4
EGM
237#else
238static __always_inline void *
4a92379b 239kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 240 gfp_t gfpflags,
4a92379b 241 int node, size_t size)
5b882be4
EGM
242{
243 return kmem_cache_alloc_node(s, gfpflags, node);
244}
245#endif
246
aa137f9d 247static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 248{
aadb4bc4 249 if (__builtin_constant_p(size) &&
ffadd4d0 250 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 251 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
252
253 if (!s)
272c1d21 254 return ZERO_SIZE_PTR;
81819f0f 255
4a92379b 256 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
257 }
258 return __kmalloc_node(size, flags, node);
81819f0f
CL
259}
260#endif
261
262#endif /* _LINUX_SLUB_DEF_H */