]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slub_def.h
sl[au]b: always get the cache from its page in kmem_cache_free()
[mirror_ubuntu-bionic-kernel.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
81819f0f
CL
12#include <linux/workqueue.h>
13#include <linux/kobject.h>
14
4a92379b 15#include <linux/kmemleak.h>
039ca4e7 16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
8028dcea 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
8ff12cfc
CL
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 36 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 37 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
8028dcea
AS
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
8ff12cfc
CL
44 NR_SLUB_STAT_ITEMS };
45
dfb4f096 46struct kmem_cache_cpu {
8a5ec0ba 47 void **freelist; /* Pointer to next available object */
8a5ec0ba 48 unsigned long tid; /* Globally unique transaction id */
da89b79e 49 struct page *page; /* The slab from which we are allocating */
49e22585 50 struct page *partial; /* Partially allocated frozen slabs */
8ff12cfc
CL
51#ifdef CONFIG_SLUB_STATS
52 unsigned stat[NR_SLUB_STAT_ITEMS];
53#endif
4c93c355 54};
dfb4f096 55
81819f0f
CL
56struct kmem_cache_node {
57 spinlock_t list_lock; /* Protect partial list and nr_partial */
58 unsigned long nr_partial;
81819f0f 59 struct list_head partial;
0c710013 60#ifdef CONFIG_SLUB_DEBUG
0f389ec6 61 atomic_long_t nr_slabs;
205ab99d 62 atomic_long_t total_objects;
643b1138 63 struct list_head full;
0c710013 64#endif
81819f0f
CL
65};
66
834f3d11
CL
67/*
68 * Word size structure that can be atomically updated or read and that
69 * contains both the order and the number of objects that a slab of the
70 * given order would contain.
71 */
72struct kmem_cache_order_objects {
73 unsigned long x;
74};
75
81819f0f
CL
76/*
77 * Slab cache management.
78 */
79struct kmem_cache {
1b5ad248 80 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
81 /* Used for retriving partial slabs etc */
82 unsigned long flags;
1a757fe5 83 unsigned long min_partial;
81819f0f 84 int size; /* The size of an object including meta data */
3b0efdfa 85 int object_size; /* The size of an object without meta data */
81819f0f 86 int offset; /* Free pointer offset. */
9f264904 87 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 88 struct kmem_cache_order_objects oo;
81819f0f 89
81819f0f 90 /* Allocation and freeing of slabs */
205ab99d 91 struct kmem_cache_order_objects max;
65c3376a 92 struct kmem_cache_order_objects min;
b7a49f0d 93 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 94 int refcount; /* Refcount for slab cache destroy */
51cc5068 95 void (*ctor)(void *);
81819f0f
CL
96 int inuse; /* Offset to metadata */
97 int align; /* Alignment */
ab9a0f19 98 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
99 const char *name; /* Name (only for display!) */
100 struct list_head list; /* List of slab caches */
ab4d5ed5 101#ifdef CONFIG_SYSFS
81819f0f 102 struct kobject kobj; /* For sysfs */
0c710013 103#endif
ba6c496e
GC
104#ifdef CONFIG_MEMCG_KMEM
105 struct memcg_cache_params *memcg_params;
106#endif
81819f0f
CL
107
108#ifdef CONFIG_NUMA
9824601e
CL
109 /*
110 * Defragmentation by allocating from a remote node.
111 */
112 int remote_node_defrag_ratio;
81819f0f 113#endif
7340cc84 114 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
115};
116
117/*
118 * Kmalloc subsystem.
119 */
a6eb9fe1
FT
120#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
121#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
122#else
123#define KMALLOC_MIN_SIZE 8
124#endif
125
126#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 127
ffadd4d0
CL
128/*
129 * Maximum kmalloc object size handled by SLUB. Larger object allocations
130 * are passed through to the page allocator. The page allocator "fastpath"
131 * is relatively slow so we need this value sufficiently high so that
132 * performance critical objects are allocated through the SLUB fastpath.
133 *
134 * This should be dropped to PAGE_SIZE / 2 once the page allocator
135 * "fastpath" becomes competitive with the slab allocator fastpaths.
136 */
51735a7c 137#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 138
51735a7c 139#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 140
756dee75
CL
141#ifdef CONFIG_ZONE_DMA
142#define SLUB_DMA __GFP_DMA
756dee75
CL
143#else
144/* Disable DMA functionality */
145#define SLUB_DMA (__force gfp_t)0
756dee75
CL
146#endif
147
81819f0f
CL
148/*
149 * We keep the general caches in an array of slab caches that are used for
150 * 2^x bytes of allocations.
151 */
51df1142 152extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
153
154/*
155 * Sorry that the following has to be that ugly but some versions of GCC
156 * have trouble with constant propagation and loops.
157 */
aa137f9d 158static __always_inline int kmalloc_index(size_t size)
81819f0f 159{
272c1d21
CL
160 if (!size)
161 return 0;
614410d5 162
4b356be0
CL
163 if (size <= KMALLOC_MIN_SIZE)
164 return KMALLOC_SHIFT_LOW;
165
acdfcd04 166 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 167 return 1;
acdfcd04 168 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
169 return 2;
170 if (size <= 8) return 3;
171 if (size <= 16) return 4;
172 if (size <= 32) return 5;
173 if (size <= 64) return 6;
174 if (size <= 128) return 7;
175 if (size <= 256) return 8;
176 if (size <= 512) return 9;
177 if (size <= 1024) return 10;
178 if (size <= 2 * 1024) return 11;
6446faa2 179 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
180/*
181 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
182 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
183 * size we would have to go up to 128k.
aadb4bc4 184 */
81819f0f
CL
185 if (size <= 8 * 1024) return 13;
186 if (size <= 16 * 1024) return 14;
187 if (size <= 32 * 1024) return 15;
188 if (size <= 64 * 1024) return 16;
189 if (size <= 128 * 1024) return 17;
190 if (size <= 256 * 1024) return 18;
aadb4bc4 191 if (size <= 512 * 1024) return 19;
81819f0f 192 if (size <= 1024 * 1024) return 20;
81819f0f 193 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
194 BUG();
195 return -1; /* Will never be reached */
81819f0f
CL
196
197/*
198 * What we really wanted to do and cannot do because of compiler issues is:
199 * int i;
200 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
201 * if (size <= (1 << i))
202 * return i;
203 */
204}
205
206/*
207 * Find the slab cache for a given combination of allocation flags and size.
208 *
209 * This ought to end up with a global pointer to the right cache
210 * in kmalloc_caches.
211 */
aa137f9d 212static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
213{
214 int index = kmalloc_index(size);
215
216 if (index == 0)
217 return NULL;
218
51df1142 219 return kmalloc_caches[index];
81819f0f
CL
220}
221
6193a2ff
PM
222void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
223void *__kmalloc(size_t size, gfp_t flags);
224
4a92379b
RK
225static __always_inline void *
226kmalloc_order(size_t size, gfp_t flags, unsigned int order)
227{
228 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
229 kmemleak_alloc(ret, size, 1, flags);
230 return ret;
231}
232
d18a90dd
BG
233/**
234 * Calling this on allocated memory will check that the memory
235 * is expected to be in use, and print warnings if not.
236 */
237#ifdef CONFIG_SLUB_DEBUG
238extern bool verify_mem_not_deleted(const void *x);
239#else
240static inline bool verify_mem_not_deleted(const void *x)
241{
242 return true;
243}
244#endif
245
0f24f128 246#ifdef CONFIG_TRACING
4a92379b
RK
247extern void *
248kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
249extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
250#else
251static __always_inline void *
4a92379b 252kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
253{
254 return kmem_cache_alloc(s, gfpflags);
255}
4a92379b
RK
256
257static __always_inline void *
258kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
259{
260 return kmalloc_order(size, flags, order);
261}
5b882be4
EGM
262#endif
263
eada35ef
PE
264static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
265{
5b882be4 266 unsigned int order = get_order(size);
4a92379b 267 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
268}
269
aa137f9d 270static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 271{
aadb4bc4 272 if (__builtin_constant_p(size)) {
ffadd4d0 273 if (size > SLUB_MAX_SIZE)
eada35ef 274 return kmalloc_large(size, flags);
81819f0f 275
aadb4bc4
CL
276 if (!(flags & SLUB_DMA)) {
277 struct kmem_cache *s = kmalloc_slab(size);
278
279 if (!s)
280 return ZERO_SIZE_PTR;
81819f0f 281
4a92379b 282 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
283 }
284 }
285 return __kmalloc(size, flags);
81819f0f
CL
286}
287
81819f0f 288#ifdef CONFIG_NUMA
6193a2ff
PM
289void *__kmalloc_node(size_t size, gfp_t flags, int node);
290void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 291
0f24f128 292#ifdef CONFIG_TRACING
4a92379b 293extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 294 gfp_t gfpflags,
4a92379b 295 int node, size_t size);
5b882be4
EGM
296#else
297static __always_inline void *
4a92379b 298kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 299 gfp_t gfpflags,
4a92379b 300 int node, size_t size)
5b882be4
EGM
301{
302 return kmem_cache_alloc_node(s, gfpflags, node);
303}
304#endif
305
aa137f9d 306static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 307{
aadb4bc4 308 if (__builtin_constant_p(size) &&
ffadd4d0 309 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 310 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
311
312 if (!s)
272c1d21 313 return ZERO_SIZE_PTR;
81819f0f 314
4a92379b 315 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
316 }
317 return __kmalloc_node(size, flags, node);
81819f0f
CL
318}
319#endif
320
321#endif /* _LINUX_SLUB_DEF_H */