]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/spi/spi.h
Merge tag 'rxrpc-fixes-20160809' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / include / linux / spi / spi.h
CommitLineData
8ae12a0d
DB
1/*
2 * Copyright (C) 2005 David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
8ae12a0d
DB
13 */
14
15#ifndef __LINUX_SPI_H
16#define __LINUX_SPI_H
17
0a30c5ce 18#include <linux/device.h>
75368bf6 19#include <linux/mod_devicetable.h>
5a0e3ad6 20#include <linux/slab.h>
ffbbdd21 21#include <linux/kthread.h>
b158935f 22#include <linux/completion.h>
6ad45a27 23#include <linux/scatterlist.h>
0a30c5ce 24
99adef31 25struct dma_chan;
eca2ebc7
MS
26struct spi_master;
27struct spi_transfer;
556351f1 28struct spi_flash_read_message;
0a30c5ce 29
8ae12a0d 30/*
b885244e 31 * INTERFACES between SPI master-side drivers and SPI infrastructure.
8ae12a0d 32 * (There's no SPI slave support for Linux yet...)
8ae12a0d
DB
33 */
34extern struct bus_type spi_bus_type;
35
eca2ebc7
MS
36/**
37 * struct spi_statistics - statistics for spi transfers
0243ed44 38 * @lock: lock protecting this structure
eca2ebc7
MS
39 *
40 * @messages: number of spi-messages handled
41 * @transfers: number of spi_transfers handled
42 * @errors: number of errors during spi_transfer
43 * @timedout: number of timeouts during spi_transfer
44 *
45 * @spi_sync: number of times spi_sync is used
46 * @spi_sync_immediate:
47 * number of times spi_sync is executed immediately
48 * in calling context without queuing and scheduling
49 * @spi_async: number of times spi_async is used
50 *
51 * @bytes: number of bytes transferred to/from device
52 * @bytes_tx: number of bytes sent to device
53 * @bytes_rx: number of bytes received from device
54 *
6b7bc061
MS
55 * @transfer_bytes_histo:
56 * transfer bytes histogramm
d9f12122
MS
57 *
58 * @transfers_split_maxsize:
59 * number of transfers that have been split because of
60 * maxsize limit
eca2ebc7
MS
61 */
62struct spi_statistics {
63 spinlock_t lock; /* lock for the whole structure */
64
65 unsigned long messages;
66 unsigned long transfers;
67 unsigned long errors;
68 unsigned long timedout;
69
70 unsigned long spi_sync;
71 unsigned long spi_sync_immediate;
72 unsigned long spi_async;
73
74 unsigned long long bytes;
75 unsigned long long bytes_rx;
76 unsigned long long bytes_tx;
77
6b7bc061
MS
78#define SPI_STATISTICS_HISTO_SIZE 17
79 unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
d9f12122
MS
80
81 unsigned long transfers_split_maxsize;
eca2ebc7
MS
82};
83
84void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
85 struct spi_transfer *xfer,
86 struct spi_master *master);
87
88#define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count) \
89 do { \
90 unsigned long flags; \
91 spin_lock_irqsave(&(stats)->lock, flags); \
92 (stats)->field += count; \
93 spin_unlock_irqrestore(&(stats)->lock, flags); \
94 } while (0)
95
96#define SPI_STATISTICS_INCREMENT_FIELD(stats, field) \
97 SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
98
8ae12a0d
DB
99/**
100 * struct spi_device - Master side proxy for an SPI slave device
101 * @dev: Driver model representation of the device.
102 * @master: SPI controller used with the device.
103 * @max_speed_hz: Maximum clock rate to be used with this chip
104 * (on this board); may be changed by the device's driver.
4cff33f9 105 * The spi_transfer.speed_hz can override this for each transfer.
33e34dc6 106 * @chip_select: Chipselect, distinguishing chips handled by @master.
8ae12a0d
DB
107 * @mode: The spi mode defines how data is clocked out and in.
108 * This may be changed by the device's driver.
33e34dc6
DB
109 * The "active low" default for chipselect mode can be overridden
110 * (by specifying SPI_CS_HIGH) as can the "MSB first" default for
111 * each word in a transfer (by specifying SPI_LSB_FIRST).
8ae12a0d 112 * @bits_per_word: Data transfers involve one or more words; word sizes
747d844e 113 * like eight or 12 bits are common. In-memory wordsizes are
8ae12a0d 114 * powers of two bytes (e.g. 20 bit samples use 32 bits).
ccf77cc4
DB
115 * This may be changed by the device's driver, or left at the
116 * default (0) indicating protocol words are eight bit bytes.
4cff33f9 117 * The spi_transfer.bits_per_word can override this for each transfer.
8ae12a0d 118 * @irq: Negative, or the number passed to request_irq() to receive
747d844e 119 * interrupts from this device.
8ae12a0d 120 * @controller_state: Controller's runtime state
b885244e 121 * @controller_data: Board-specific definitions for controller, such as
747d844e 122 * FIFO initialization parameters; from board_info.controller_data
33e34dc6
DB
123 * @modalias: Name of the driver to use with this device, or an alias
124 * for that name. This appears in the sysfs "modalias" attribute
125 * for driver coldplugging, and in uevents used for hotplugging
446411e1 126 * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
095c3752 127 * when not using a GPIO line)
8ae12a0d 128 *
eca2ebc7
MS
129 * @statistics: statistics for the spi_device
130 *
33e34dc6 131 * A @spi_device is used to interchange data between an SPI slave
8ae12a0d
DB
132 * (usually a discrete chip) and CPU memory.
133 *
33e34dc6 134 * In @dev, the platform_data is used to hold information about this
8ae12a0d
DB
135 * device that's meaningful to the device's protocol driver, but not
136 * to its controller. One example might be an identifier for a chip
33e34dc6
DB
137 * variant with slightly different functionality; another might be
138 * information about how this particular board wires the chip's pins.
8ae12a0d
DB
139 */
140struct spi_device {
141 struct device dev;
142 struct spi_master *master;
143 u32 max_speed_hz;
144 u8 chip_select;
89c1f607 145 u8 bits_per_word;
f477b7fb 146 u16 mode;
b885244e
DB
147#define SPI_CPHA 0x01 /* clock phase */
148#define SPI_CPOL 0x02 /* clock polarity */
0c868461
DB
149#define SPI_MODE_0 (0|0) /* (original MicroWire) */
150#define SPI_MODE_1 (0|SPI_CPHA)
8ae12a0d
DB
151#define SPI_MODE_2 (SPI_CPOL|0)
152#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
b885244e 153#define SPI_CS_HIGH 0x04 /* chipselect active high? */
ccf77cc4 154#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
c06e677a 155#define SPI_3WIRE 0x10 /* SI/SO signals shared */
4ef7af50 156#define SPI_LOOP 0x20 /* loopback mode */
b55f627f
DB
157#define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
158#define SPI_READY 0x80 /* slave pulls low to pause */
f477b7fb 159#define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
160#define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
161#define SPI_RX_DUAL 0x400 /* receive with 2 wires */
162#define SPI_RX_QUAD 0x800 /* receive with 4 wires */
8ae12a0d
DB
163 int irq;
164 void *controller_state;
b885244e 165 void *controller_data;
75368bf6 166 char modalias[SPI_NAME_SIZE];
74317984 167 int cs_gpio; /* chip select gpio */
8ae12a0d 168
eca2ebc7
MS
169 /* the statistics */
170 struct spi_statistics statistics;
171
33e34dc6
DB
172 /*
173 * likely need more hooks for more protocol options affecting how
174 * the controller talks to each chip, like:
175 * - memory packing (12 bit samples into low bits, others zeroed)
176 * - priority
177 * - drop chipselect after each word
178 * - chipselect delays
179 * - ...
180 */
8ae12a0d
DB
181};
182
183static inline struct spi_device *to_spi_device(struct device *dev)
184{
b885244e 185 return dev ? container_of(dev, struct spi_device, dev) : NULL;
8ae12a0d
DB
186}
187
188/* most drivers won't need to care about device refcounting */
189static inline struct spi_device *spi_dev_get(struct spi_device *spi)
190{
191 return (spi && get_device(&spi->dev)) ? spi : NULL;
192}
193
194static inline void spi_dev_put(struct spi_device *spi)
195{
196 if (spi)
197 put_device(&spi->dev);
198}
199
200/* ctldata is for the bus_master driver's runtime state */
201static inline void *spi_get_ctldata(struct spi_device *spi)
202{
203 return spi->controller_state;
204}
205
206static inline void spi_set_ctldata(struct spi_device *spi, void *state)
207{
208 spi->controller_state = state;
209}
210
9b40ff4d
BD
211/* device driver data */
212
213static inline void spi_set_drvdata(struct spi_device *spi, void *data)
214{
215 dev_set_drvdata(&spi->dev, data);
216}
217
218static inline void *spi_get_drvdata(struct spi_device *spi)
219{
220 return dev_get_drvdata(&spi->dev);
221}
8ae12a0d
DB
222
223struct spi_message;
b158935f 224struct spi_transfer;
b885244e 225
2604288f
DB
226/**
227 * struct spi_driver - Host side "protocol" driver
75368bf6 228 * @id_table: List of SPI devices supported by this driver
2604288f
DB
229 * @probe: Binds this driver to the spi device. Drivers can verify
230 * that the device is actually present, and may need to configure
231 * characteristics (such as bits_per_word) which weren't needed for
232 * the initial configuration done during system setup.
233 * @remove: Unbinds this driver from the spi device
234 * @shutdown: Standard shutdown callback used during system state
235 * transitions such as powerdown/halt and kexec
2604288f
DB
236 * @driver: SPI device drivers should initialize the name and owner
237 * field of this structure.
238 *
239 * This represents the kind of device driver that uses SPI messages to
240 * interact with the hardware at the other end of a SPI link. It's called
241 * a "protocol" driver because it works through messages rather than talking
242 * directly to SPI hardware (which is what the underlying SPI controller
243 * driver does to pass those messages). These protocols are defined in the
244 * specification for the device(s) supported by the driver.
245 *
246 * As a rule, those device protocols represent the lowest level interface
247 * supported by a driver, and it will support upper level interfaces too.
248 * Examples of such upper levels include frameworks like MTD, networking,
249 * MMC, RTC, filesystem character device nodes, and hardware monitoring.
250 */
b885244e 251struct spi_driver {
75368bf6 252 const struct spi_device_id *id_table;
b885244e
DB
253 int (*probe)(struct spi_device *spi);
254 int (*remove)(struct spi_device *spi);
255 void (*shutdown)(struct spi_device *spi);
b885244e
DB
256 struct device_driver driver;
257};
258
259static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
260{
261 return drv ? container_of(drv, struct spi_driver, driver) : NULL;
262}
263
ca5d2485 264extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
b885244e 265
33e34dc6
DB
266/**
267 * spi_unregister_driver - reverse effect of spi_register_driver
268 * @sdrv: the driver to unregister
269 * Context: can sleep
270 */
b885244e
DB
271static inline void spi_unregister_driver(struct spi_driver *sdrv)
272{
ddc1e975
BD
273 if (sdrv)
274 driver_unregister(&sdrv->driver);
b885244e
DB
275}
276
ca5d2485
AD
277/* use a define to avoid include chaining to get THIS_MODULE */
278#define spi_register_driver(driver) \
279 __spi_register_driver(THIS_MODULE, driver)
280
3acbb014
LPC
281/**
282 * module_spi_driver() - Helper macro for registering a SPI driver
283 * @__spi_driver: spi_driver struct
284 *
285 * Helper macro for SPI drivers which do not do anything special in module
286 * init/exit. This eliminates a lot of boilerplate. Each module may only
287 * use this macro once, and calling it replaces module_init() and module_exit()
288 */
289#define module_spi_driver(__spi_driver) \
290 module_driver(__spi_driver, spi_register_driver, \
291 spi_unregister_driver)
b885244e 292
8ae12a0d
DB
293/**
294 * struct spi_master - interface to SPI master controller
49dce689 295 * @dev: device interface to this driver
2b9603a0 296 * @list: link with the global spi_master list
8ae12a0d 297 * @bus_num: board-specific (and often SOC-specific) identifier for a
747d844e 298 * given SPI controller.
b885244e 299 * @num_chipselect: chipselects are used to distinguish individual
747d844e
DB
300 * SPI slaves, and are numbered from zero to num_chipselects.
301 * each slave has a chipselect signal, but it's common that not
302 * every chipselect is connected to a slave.
fd5e191e 303 * @dma_alignment: SPI controller constraint on DMA buffers alignment.
b73b2559 304 * @mode_bits: flags understood by this controller driver
543bb255
SW
305 * @bits_per_word_mask: A mask indicating which values of bits_per_word are
306 * supported by the driver. Bit n indicates that a bits_per_word n+1 is
e227867f 307 * supported. If set, the SPI core will reject any transfer with an
543bb255
SW
308 * unsupported bits_per_word. If not set, this value is simply ignored,
309 * and it's up to the individual driver to perform any validation.
a2fd4f9f
MB
310 * @min_speed_hz: Lowest supported transfer speed
311 * @max_speed_hz: Highest supported transfer speed
b73b2559 312 * @flags: other constraints relevant to this driver
ee7683a3
RD
313 * @max_transfer_size: function that returns the max transfer size for
314 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
ef4d96ec 315 * @io_mutex: mutex for physical bus access
5c79a5ae 316 * @bus_lock_spinlock: spinlock for SPI bus locking
ef4d96ec 317 * @bus_lock_mutex: mutex for exclusion of multiple callers
5c79a5ae 318 * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
8ae12a0d 319 * @setup: updates the device mode and clocking records used by a
80224561
DB
320 * device's SPI controller; protocol code may call this. This
321 * must fail if an unrecognized or unsupported mode is requested.
33e34dc6
DB
322 * It's always safe to call this unless transfers are pending on
323 * the device whose settings are being modified.
8ae12a0d
DB
324 * @transfer: adds a message to the controller's transfer queue.
325 * @cleanup: frees controller-specific state
2c675689 326 * @can_dma: determine whether this master supports DMA
ffbbdd21
LW
327 * @queued: whether this master is providing an internal message queue
328 * @kworker: thread struct for message pump
329 * @kworker_task: pointer to task for message pump kworker thread
330 * @pump_messages: work struct for scheduling work to the message pump
331 * @queue_lock: spinlock to syncronise access to message queue
332 * @queue: message queue
0461a414 333 * @idling: the device is entering idle state
ffbbdd21 334 * @cur_msg: the currently in-flight message
2841a5fc
MB
335 * @cur_msg_prepared: spi_prepare_message was called for the currently
336 * in-flight message
2c675689 337 * @cur_msg_mapped: message has been mapped for DMA
e227867f 338 * @xfer_completion: used by core transfer_one_message()
ffbbdd21
LW
339 * @busy: message pump is busy
340 * @running: message pump is running
341 * @rt: whether this queue is set to run as a realtime task
49834de2
MB
342 * @auto_runtime_pm: the core should ensure a runtime PM reference is held
343 * while the hardware is prepared, using the parent
344 * device for the spidev
6ad45a27 345 * @max_dma_len: Maximum length of a DMA transfer for the device.
ffbbdd21
LW
346 * @prepare_transfer_hardware: a message will soon arrive from the queue
347 * so the subsystem requests the driver to prepare the transfer hardware
348 * by issuing this call
349 * @transfer_one_message: the subsystem calls the driver to transfer a single
350 * message while queuing transfers that arrive in the meantime. When the
351 * driver is finished with this message, it must call
352 * spi_finalize_current_message() so the subsystem can issue the next
e9305331 353 * message
dbabe0d6 354 * @unprepare_transfer_hardware: there are currently no more messages on the
ffbbdd21
LW
355 * queue so the subsystem notifies the driver that it may relax the
356 * hardware by issuing this call
bd6857a0 357 * @set_cs: set the logic level of the chip select line. May be called
b158935f 358 * from interrupt context.
2841a5fc
MB
359 * @prepare_message: set up the controller to transfer a single message,
360 * for example doing DMA mapping. Called from threaded
361 * context.
0516712c
GU
362 * @transfer_one: transfer a single spi_transfer.
363 * - return 0 if the transfer is finished,
364 * - return 1 if the transfer is still in progress. When
365 * the driver is finished with this transfer it must
366 * call spi_finalize_current_transfer() so the subsystem
6e5f5267
BS
367 * can issue the next transfer. Note: transfer_one and
368 * transfer_one_message are mutually exclusive; when both
369 * are set, the generic subsystem does not call your
370 * transfer_one callback.
ff61eb42 371 * @handle_err: the subsystem calls the driver to handle an error that occurs
b716c4ff 372 * in the generic implementation of transfer_one_message().
2841a5fc 373 * @unprepare_message: undo any work done by prepare_message().
556351f1
V
374 * @spi_flash_read: to support spi-controller hardwares that provide
375 * accelerated interface to read from flash devices.
7ba2f275 376 * @flash_read_supported: spi device supports flash read
095c3752 377 * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
446411e1 378 * number. Any individual value may be -ENOENT for CS lines that
095c3752 379 * are not GPIOs (driven by the SPI controller itself).
eca2ebc7 380 * @statistics: statistics for the spi_master
2c675689
TR
381 * @dma_tx: DMA transmit channel
382 * @dma_rx: DMA receive channel
383 * @dummy_rx: dummy receive buffer for full-duplex devices
384 * @dummy_tx: dummy transmit buffer for full-duplex devices
a0a90718
MW
385 * @fw_translate_cs: If the boot firmware uses different numbering scheme
386 * what Linux expects, this optional hook can be used to translate
387 * between the two.
8ae12a0d 388 *
33e34dc6 389 * Each SPI master controller can communicate with one or more @spi_device
8ae12a0d
DB
390 * children. These make a small bus, sharing MOSI, MISO and SCK signals
391 * but not chip select signals. Each device may be configured to use a
392 * different clock rate, since those shared signals are ignored unless
393 * the chip is selected.
394 *
395 * The driver for an SPI controller manages access to those devices through
33e34dc6
DB
396 * a queue of spi_message transactions, copying data between CPU memory and
397 * an SPI slave device. For each such message it queues, it calls the
8ae12a0d
DB
398 * message's completion function when the transaction completes.
399 */
400struct spi_master {
49dce689 401 struct device dev;
8ae12a0d 402
2b9603a0
FT
403 struct list_head list;
404
a020ed75 405 /* other than negative (== assign one dynamically), bus_num is fully
8ae12a0d 406 * board-specific. usually that simplifies to being SOC-specific.
a020ed75 407 * example: one SOC has three SPI controllers, numbered 0..2,
8ae12a0d
DB
408 * and one board's schematics might show it using SPI-2. software
409 * would normally use bus_num=2 for that controller.
410 */
a020ed75 411 s16 bus_num;
8ae12a0d
DB
412
413 /* chipselects will be integral to many controllers; some others
414 * might use board-specific GPIOs.
415 */
416 u16 num_chipselect;
417
fd5e191e
MR
418 /* some SPI controllers pose alignment requirements on DMAable
419 * buffers; let protocol drivers know about these requirements.
420 */
421 u16 dma_alignment;
422
e7db06b5
DB
423 /* spi_device.mode flags understood by this controller driver */
424 u16 mode_bits;
425
543bb255
SW
426 /* bitmask of supported bits_per_word for transfers */
427 u32 bits_per_word_mask;
2922a8de 428#define SPI_BPW_MASK(bits) BIT((bits) - 1)
b6aa23cc 429#define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
eca8960a 430#define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
543bb255 431
a2fd4f9f
MB
432 /* limits on transfer speed */
433 u32 min_speed_hz;
434 u32 max_speed_hz;
435
70d6027f
DB
436 /* other constraints relevant to this driver */
437 u16 flags;
438#define SPI_MASTER_HALF_DUPLEX BIT(0) /* can't do full duplex */
568d0697
DB
439#define SPI_MASTER_NO_RX BIT(1) /* can't do buffer read */
440#define SPI_MASTER_NO_TX BIT(2) /* can't do buffer write */
3a2eba9b
MB
441#define SPI_MASTER_MUST_RX BIT(3) /* requires rx */
442#define SPI_MASTER_MUST_TX BIT(4) /* requires tx */
70d6027f 443
4acad4aa
MS
444 /*
445 * on some hardware transfer size may be constrained
446 * the limit may depend on device transfer settings
447 */
448 size_t (*max_transfer_size)(struct spi_device *spi);
449
ef4d96ec
MB
450 /* I/O mutex */
451 struct mutex io_mutex;
452
cf32b71e
ES
453 /* lock and mutex for SPI bus locking */
454 spinlock_t bus_lock_spinlock;
455 struct mutex bus_lock_mutex;
456
457 /* flag indicating that the SPI bus is locked for exclusive use */
458 bool bus_lock_flag;
459
6e538aaf
DB
460 /* Setup mode and clock, etc (spi driver may call many times).
461 *
462 * IMPORTANT: this may be called when transfers to another
463 * device are active. DO NOT UPDATE SHARED REGISTERS in ways
464 * which could break those transfers.
465 */
8ae12a0d
DB
466 int (*setup)(struct spi_device *spi);
467
468 /* bidirectional bulk transfers
469 *
470 * + The transfer() method may not sleep; its main role is
471 * just to add the message to the queue.
472 * + For now there's no remove-from-queue operation, or
473 * any other request management
474 * + To a given spi_device, message queueing is pure fifo
475 *
476 * + The master's main job is to process its message queue,
477 * selecting a chip then transferring data
478 * + If there are multiple spi_device children, the i/o queue
479 * arbitration algorithm is unspecified (round robin, fifo,
480 * priority, reservations, preemption, etc)
481 *
482 * + Chipselect stays active during the entire message
483 * (unless modified by spi_transfer.cs_change != 0).
484 * + The message transfers use clock and SPI mode parameters
485 * previously established by setup() for this device
486 */
487 int (*transfer)(struct spi_device *spi,
488 struct spi_message *mesg);
489
490 /* called on release() to free memory provided by spi_master */
0ffa0285 491 void (*cleanup)(struct spi_device *spi);
ffbbdd21 492
99adef31
MB
493 /*
494 * Used to enable core support for DMA handling, if can_dma()
495 * exists and returns true then the transfer will be mapped
496 * prior to transfer_one() being called. The driver should
497 * not modify or store xfer and dma_tx and dma_rx must be set
498 * while the device is prepared.
499 */
500 bool (*can_dma)(struct spi_master *master,
501 struct spi_device *spi,
502 struct spi_transfer *xfer);
503
ffbbdd21
LW
504 /*
505 * These hooks are for drivers that want to use the generic
506 * master transfer queueing mechanism. If these are used, the
507 * transfer() function above must NOT be specified by the driver.
508 * Over time we expect SPI drivers to be phased over to this API.
509 */
510 bool queued;
511 struct kthread_worker kworker;
512 struct task_struct *kworker_task;
513 struct kthread_work pump_messages;
514 spinlock_t queue_lock;
515 struct list_head queue;
516 struct spi_message *cur_msg;
0461a414 517 bool idling;
ffbbdd21
LW
518 bool busy;
519 bool running;
520 bool rt;
49834de2 521 bool auto_runtime_pm;
2841a5fc 522 bool cur_msg_prepared;
99adef31 523 bool cur_msg_mapped;
b158935f 524 struct completion xfer_completion;
6ad45a27 525 size_t max_dma_len;
ffbbdd21
LW
526
527 int (*prepare_transfer_hardware)(struct spi_master *master);
528 int (*transfer_one_message)(struct spi_master *master,
529 struct spi_message *mesg);
530 int (*unprepare_transfer_hardware)(struct spi_master *master);
2841a5fc
MB
531 int (*prepare_message)(struct spi_master *master,
532 struct spi_message *message);
533 int (*unprepare_message)(struct spi_master *master,
534 struct spi_message *message);
556351f1
V
535 int (*spi_flash_read)(struct spi_device *spi,
536 struct spi_flash_read_message *msg);
7ba2f275 537 bool (*flash_read_supported)(struct spi_device *spi);
49834de2 538
b158935f
MB
539 /*
540 * These hooks are for drivers that use a generic implementation
541 * of transfer_one_message() provied by the core.
542 */
543 void (*set_cs)(struct spi_device *spi, bool enable);
544 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
545 struct spi_transfer *transfer);
b716c4ff
AS
546 void (*handle_err)(struct spi_master *master,
547 struct spi_message *message);
b158935f 548
74317984
JCPV
549 /* gpio chip select */
550 int *cs_gpios;
99adef31 551
eca2ebc7
MS
552 /* statistics */
553 struct spi_statistics statistics;
554
99adef31
MB
555 /* DMA channels for use with core dmaengine helpers */
556 struct dma_chan *dma_tx;
557 struct dma_chan *dma_rx;
3a2eba9b
MB
558
559 /* dummy data for full duplex devices */
560 void *dummy_rx;
561 void *dummy_tx;
a0a90718
MW
562
563 int (*fw_translate_cs)(struct spi_master *master, unsigned cs);
8ae12a0d
DB
564};
565
0c868461
DB
566static inline void *spi_master_get_devdata(struct spi_master *master)
567{
49dce689 568 return dev_get_drvdata(&master->dev);
0c868461
DB
569}
570
571static inline void spi_master_set_devdata(struct spi_master *master, void *data)
572{
49dce689 573 dev_set_drvdata(&master->dev, data);
0c868461
DB
574}
575
576static inline struct spi_master *spi_master_get(struct spi_master *master)
577{
49dce689 578 if (!master || !get_device(&master->dev))
0c868461
DB
579 return NULL;
580 return master;
581}
582
583static inline void spi_master_put(struct spi_master *master)
584{
585 if (master)
49dce689 586 put_device(&master->dev);
0c868461
DB
587}
588
ffbbdd21
LW
589/* PM calls that need to be issued by the driver */
590extern int spi_master_suspend(struct spi_master *master);
591extern int spi_master_resume(struct spi_master *master);
592
593/* Calls the driver make to interact with the message queue */
594extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
595extern void spi_finalize_current_message(struct spi_master *master);
b158935f 596extern void spi_finalize_current_transfer(struct spi_master *master);
0c868461 597
8ae12a0d
DB
598/* the spi driver core manages memory for the spi_master classdev */
599extern struct spi_master *
600spi_alloc_master(struct device *host, unsigned size);
601
602extern int spi_register_master(struct spi_master *master);
666d5b4c
MB
603extern int devm_spi_register_master(struct device *dev,
604 struct spi_master *master);
8ae12a0d
DB
605extern void spi_unregister_master(struct spi_master *master);
606
607extern struct spi_master *spi_busnum_to_master(u16 busnum);
608
d780c371
MS
609/*
610 * SPI resource management while processing a SPI message
611 */
612
d6497816
MS
613typedef void (*spi_res_release_t)(struct spi_master *master,
614 struct spi_message *msg,
615 void *res);
616
d780c371
MS
617/**
618 * struct spi_res - spi resource management structure
619 * @entry: list entry
620 * @release: release code called prior to freeing this resource
621 * @data: extra data allocated for the specific use-case
622 *
623 * this is based on ideas from devres, but focused on life-cycle
624 * management during spi_message processing
625 */
d780c371
MS
626struct spi_res {
627 struct list_head entry;
628 spi_res_release_t release;
629 unsigned long long data[]; /* guarantee ull alignment */
630};
631
632extern void *spi_res_alloc(struct spi_device *spi,
633 spi_res_release_t release,
634 size_t size, gfp_t gfp);
635extern void spi_res_add(struct spi_message *message, void *res);
636extern void spi_res_free(void *res);
637
638extern void spi_res_release(struct spi_master *master,
639 struct spi_message *message);
640
8ae12a0d
DB
641/*---------------------------------------------------------------------------*/
642
643/*
644 * I/O INTERFACE between SPI controller and protocol drivers
645 *
646 * Protocol drivers use a queue of spi_messages, each transferring data
647 * between the controller and memory buffers.
648 *
649 * The spi_messages themselves consist of a series of read+write transfer
650 * segments. Those segments always read the same number of bits as they
651 * write; but one or the other is easily ignored by passing a null buffer
652 * pointer. (This is unlike most types of I/O API, because SPI hardware
653 * is full duplex.)
654 *
655 * NOTE: Allocation of spi_transfer and spi_message memory is entirely
656 * up to the protocol driver, which guarantees the integrity of both (as
657 * well as the data buffers) for as long as the message is queued.
658 */
659
660/**
661 * struct spi_transfer - a read/write buffer pair
8275c642
VW
662 * @tx_buf: data to be written (dma-safe memory), or NULL
663 * @rx_buf: data to be read (dma-safe memory), or NULL
33e34dc6
DB
664 * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
665 * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
e227867f 666 * @tx_nbits: number of bits used for writing. If 0 the default
f477b7fb 667 * (SPI_NBITS_SINGLE) is used.
668 * @rx_nbits: number of bits used for reading. If 0 the default
669 * (SPI_NBITS_SINGLE) is used.
8ae12a0d 670 * @len: size of rx and tx buffers (in bytes)
025dfdaf 671 * @speed_hz: Select a speed other than the device default for this
33e34dc6 672 * transfer. If 0 the default (from @spi_device) is used.
025dfdaf 673 * @bits_per_word: select a bits_per_word other than the device default
33e34dc6 674 * for this transfer. If 0 the default (from @spi_device) is used.
8ae12a0d
DB
675 * @cs_change: affects chipselect after this transfer completes
676 * @delay_usecs: microseconds to delay after this transfer before
747d844e 677 * (optionally) changing the chipselect status, then starting
33e34dc6
DB
678 * the next transfer or completing this @spi_message.
679 * @transfer_list: transfers are sequenced through @spi_message.transfers
6ad45a27
MB
680 * @tx_sg: Scatterlist for transmit, currently not for client use
681 * @rx_sg: Scatterlist for receive, currently not for client use
8ae12a0d
DB
682 *
683 * SPI transfers always write the same number of bytes as they read.
33e34dc6 684 * Protocol drivers should always provide @rx_buf and/or @tx_buf.
8ae12a0d
DB
685 * In some cases, they may also want to provide DMA addresses for
686 * the data being transferred; that may reduce overhead, when the
687 * underlying driver uses dma.
688 *
4b1badf5 689 * If the transmit buffer is null, zeroes will be shifted out
33e34dc6 690 * while filling @rx_buf. If the receive buffer is null, the data
8275c642
VW
691 * shifted in will be discarded. Only "len" bytes shift out (or in).
692 * It's an error to try to shift out a partial word. (For example, by
693 * shifting out three bytes with word size of sixteen or twenty bits;
694 * the former uses two bytes per word, the latter uses four bytes.)
695 *
80224561
DB
696 * In-memory data values are always in native CPU byte order, translated
697 * from the wire byte order (big-endian except with SPI_LSB_FIRST). So
698 * for example when bits_per_word is sixteen, buffers are 2N bytes long
33e34dc6 699 * (@len = 2N) and hold N sixteen bit words in CPU byte order.
80224561
DB
700 *
701 * When the word size of the SPI transfer is not a power-of-two multiple
702 * of eight bits, those in-memory words include extra bits. In-memory
703 * words are always seen by protocol drivers as right-justified, so the
704 * undefined (rx) or unused (tx) bits are always the most significant bits.
705 *
8275c642
VW
706 * All SPI transfers start with the relevant chipselect active. Normally
707 * it stays selected until after the last transfer in a message. Drivers
33e34dc6 708 * can affect the chipselect signal using cs_change.
8ae12a0d
DB
709 *
710 * (i) If the transfer isn't the last one in the message, this flag is
711 * used to make the chipselect briefly go inactive in the middle of the
712 * message. Toggling chipselect in this way may be needed to terminate
713 * a chip command, letting a single spi_message perform all of group of
714 * chip transactions together.
715 *
716 * (ii) When the transfer is the last one in the message, the chip may
f5a9c77d
DB
717 * stay selected until the next transfer. On multi-device SPI busses
718 * with nothing blocking messages going to other devices, this is just
719 * a performance hint; starting a message to another device deselects
720 * this one. But in other cases, this can be used to ensure correctness.
721 * Some devices need protocol transactions to be built from a series of
722 * spi_message submissions, where the content of one message is determined
723 * by the results of previous messages and where the whole transaction
724 * ends when the chipselect goes intactive.
0c868461 725 *
e227867f 726 * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
f477b7fb 727 * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
728 * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
729 * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
730 *
0c868461
DB
731 * The code that submits an spi_message (and its spi_transfers)
732 * to the lower layers is responsible for managing its memory.
733 * Zero-initialize every field you don't set up explicitly, to
8275c642
VW
734 * insulate against future API updates. After you submit a message
735 * and its transfers, ignore them until its completion callback.
8ae12a0d
DB
736 */
737struct spi_transfer {
738 /* it's ok if tx_buf == rx_buf (right?)
739 * for MicroWire, one buffer must be null
0c868461
DB
740 * buffers must work with dma_*map_single() calls, unless
741 * spi_message.is_dma_mapped reports a pre-existing mapping
8ae12a0d
DB
742 */
743 const void *tx_buf;
744 void *rx_buf;
745 unsigned len;
746
747 dma_addr_t tx_dma;
748 dma_addr_t rx_dma;
6ad45a27
MB
749 struct sg_table tx_sg;
750 struct sg_table rx_sg;
8ae12a0d
DB
751
752 unsigned cs_change:1;
d3fbd457
MB
753 unsigned tx_nbits:3;
754 unsigned rx_nbits:3;
f477b7fb 755#define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
756#define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
757#define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
4cff33f9 758 u8 bits_per_word;
8ae12a0d 759 u16 delay_usecs;
4cff33f9 760 u32 speed_hz;
8275c642
VW
761
762 struct list_head transfer_list;
8ae12a0d
DB
763};
764
765/**
766 * struct spi_message - one multi-segment SPI transaction
8275c642 767 * @transfers: list of transfer segments in this transaction
8ae12a0d
DB
768 * @spi: SPI device to which the transaction is queued
769 * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
770 * addresses for each transfer buffer
771 * @complete: called to report transaction completions
772 * @context: the argument to complete() when it's called
2c675689 773 * @frame_length: the total number of bytes in the message
b885244e
DB
774 * @actual_length: the total number of bytes that were transferred in all
775 * successful segments
8ae12a0d
DB
776 * @status: zero for success, else negative errno
777 * @queue: for use by whichever driver currently owns the message
778 * @state: for use by whichever driver currently owns the message
d780c371 779 * @resources: for resource management when the spi message is processed
0c868461 780 *
33e34dc6 781 * A @spi_message is used to execute an atomic sequence of data transfers,
8275c642
VW
782 * each represented by a struct spi_transfer. The sequence is "atomic"
783 * in the sense that no other spi_message may use that SPI bus until that
784 * sequence completes. On some systems, many such sequences can execute as
785 * as single programmed DMA transfer. On all systems, these messages are
786 * queued, and might complete after transactions to other devices. Messages
c6331ba3 787 * sent to a given spi_device are always executed in FIFO order.
8275c642 788 *
0c868461
DB
789 * The code that submits an spi_message (and its spi_transfers)
790 * to the lower layers is responsible for managing its memory.
791 * Zero-initialize every field you don't set up explicitly, to
8275c642
VW
792 * insulate against future API updates. After you submit a message
793 * and its transfers, ignore them until its completion callback.
8ae12a0d
DB
794 */
795struct spi_message {
747d844e 796 struct list_head transfers;
8ae12a0d
DB
797
798 struct spi_device *spi;
799
800 unsigned is_dma_mapped:1;
801
802 /* REVISIT: we might want a flag affecting the behavior of the
803 * last transfer ... allowing things like "read 16 bit length L"
804 * immediately followed by "read L bytes". Basically imposing
805 * a specific message scheduling algorithm.
806 *
807 * Some controller drivers (message-at-a-time queue processing)
808 * could provide that as their default scheduling algorithm. But
b885244e 809 * others (with multi-message pipelines) could need a flag to
8ae12a0d
DB
810 * tell them about such special cases.
811 */
812
813 /* completion is reported through a callback */
747d844e 814 void (*complete)(void *context);
8ae12a0d 815 void *context;
078726ce 816 unsigned frame_length;
8ae12a0d
DB
817 unsigned actual_length;
818 int status;
819
820 /* for optional use by whatever driver currently owns the
821 * spi_message ... between calls to spi_async and then later
822 * complete(), that's the spi_master controller driver.
823 */
824 struct list_head queue;
825 void *state;
d780c371
MS
826
827 /* list of spi_res reources when the spi message is processed */
828 struct list_head resources;
8ae12a0d
DB
829};
830
49ddedf3
MS
831static inline void spi_message_init_no_memset(struct spi_message *m)
832{
833 INIT_LIST_HEAD(&m->transfers);
d780c371 834 INIT_LIST_HEAD(&m->resources);
49ddedf3
MS
835}
836
8275c642
VW
837static inline void spi_message_init(struct spi_message *m)
838{
839 memset(m, 0, sizeof *m);
49ddedf3 840 spi_message_init_no_memset(m);
8275c642
VW
841}
842
843static inline void
844spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
845{
846 list_add_tail(&t->transfer_list, &m->transfers);
847}
848
849static inline void
850spi_transfer_del(struct spi_transfer *t)
851{
852 list_del(&t->transfer_list);
853}
854
6d9eecd4
LPC
855/**
856 * spi_message_init_with_transfers - Initialize spi_message and append transfers
857 * @m: spi_message to be initialized
858 * @xfers: An array of spi transfers
859 * @num_xfers: Number of items in the xfer array
860 *
861 * This function initializes the given spi_message and adds each spi_transfer in
862 * the given array to the message.
863 */
864static inline void
865spi_message_init_with_transfers(struct spi_message *m,
866struct spi_transfer *xfers, unsigned int num_xfers)
867{
868 unsigned int i;
869
870 spi_message_init(m);
871 for (i = 0; i < num_xfers; ++i)
872 spi_message_add_tail(&xfers[i], m);
873}
874
0c868461
DB
875/* It's fine to embed message and transaction structures in other data
876 * structures so long as you don't free them while they're in use.
877 */
878
879static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
880{
881 struct spi_message *m;
882
883 m = kzalloc(sizeof(struct spi_message)
884 + ntrans * sizeof(struct spi_transfer),
885 flags);
886 if (m) {
8f53602b 887 unsigned i;
8275c642
VW
888 struct spi_transfer *t = (struct spi_transfer *)(m + 1);
889
890 INIT_LIST_HEAD(&m->transfers);
891 for (i = 0; i < ntrans; i++, t++)
892 spi_message_add_tail(t, m);
0c868461
DB
893 }
894 return m;
895}
896
897static inline void spi_message_free(struct spi_message *m)
898{
899 kfree(m);
900}
901
7d077197 902extern int spi_setup(struct spi_device *spi);
568d0697 903extern int spi_async(struct spi_device *spi, struct spi_message *message);
cf32b71e
ES
904extern int spi_async_locked(struct spi_device *spi,
905 struct spi_message *message);
8ae12a0d 906
4acad4aa
MS
907static inline size_t
908spi_max_transfer_size(struct spi_device *spi)
909{
910 struct spi_master *master = spi->master;
911 if (!master->max_transfer_size)
912 return SIZE_MAX;
913 return master->max_transfer_size(spi);
914}
915
8ae12a0d
DB
916/*---------------------------------------------------------------------------*/
917
523baf5a
MS
918/* SPI transfer replacement methods which make use of spi_res */
919
c76d9ae4
JMC
920struct spi_replaced_transfers;
921typedef void (*spi_replaced_release_t)(struct spi_master *master,
922 struct spi_message *msg,
923 struct spi_replaced_transfers *res);
523baf5a
MS
924/**
925 * struct spi_replaced_transfers - structure describing the spi_transfer
926 * replacements that have occurred
927 * so that they can get reverted
928 * @release: some extra release code to get executed prior to
929 * relasing this structure
930 * @extradata: pointer to some extra data if requested or NULL
931 * @replaced_transfers: transfers that have been replaced and which need
932 * to get restored
933 * @replaced_after: the transfer after which the @replaced_transfers
934 * are to get re-inserted
935 * @inserted: number of transfers inserted
936 * @inserted_transfers: array of spi_transfers of array-size @inserted,
937 * that have been replacing replaced_transfers
938 *
939 * note: that @extradata will point to @inserted_transfers[@inserted]
940 * if some extra allocation is requested, so alignment will be the same
941 * as for spi_transfers
942 */
523baf5a
MS
943struct spi_replaced_transfers {
944 spi_replaced_release_t release;
945 void *extradata;
946 struct list_head replaced_transfers;
947 struct list_head *replaced_after;
948 size_t inserted;
949 struct spi_transfer inserted_transfers[];
950};
951
952extern struct spi_replaced_transfers *spi_replace_transfers(
953 struct spi_message *msg,
954 struct spi_transfer *xfer_first,
955 size_t remove,
956 size_t insert,
957 spi_replaced_release_t release,
958 size_t extradatasize,
959 gfp_t gfp);
960
961/*---------------------------------------------------------------------------*/
962
d9f12122
MS
963/* SPI transfer transformation methods */
964
965extern int spi_split_transfers_maxsize(struct spi_master *master,
966 struct spi_message *msg,
967 size_t maxsize,
968 gfp_t gfp);
969
970/*---------------------------------------------------------------------------*/
971
8ae12a0d
DB
972/* All these synchronous SPI transfer routines are utilities layered
973 * over the core async transfer primitive. Here, "synchronous" means
974 * they will sleep uninterruptibly until the async transfer completes.
975 */
976
977extern int spi_sync(struct spi_device *spi, struct spi_message *message);
cf32b71e
ES
978extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
979extern int spi_bus_lock(struct spi_master *master);
980extern int spi_bus_unlock(struct spi_master *master);
8ae12a0d
DB
981
982/**
983 * spi_write - SPI synchronous write
984 * @spi: device to which data will be written
985 * @buf: data buffer
986 * @len: data buffer size
33e34dc6 987 * Context: can sleep
8ae12a0d 988 *
a1fdeaa7 989 * This function writes the buffer @buf.
8ae12a0d 990 * Callable only from contexts that can sleep.
a1fdeaa7
JMC
991 *
992 * Return: zero on success, else a negative error code.
8ae12a0d
DB
993 */
994static inline int
0c4a1590 995spi_write(struct spi_device *spi, const void *buf, size_t len)
8ae12a0d
DB
996{
997 struct spi_transfer t = {
998 .tx_buf = buf,
8ae12a0d 999 .len = len,
8ae12a0d 1000 };
8275c642 1001 struct spi_message m;
8ae12a0d 1002
8275c642
VW
1003 spi_message_init(&m);
1004 spi_message_add_tail(&t, &m);
8ae12a0d
DB
1005 return spi_sync(spi, &m);
1006}
1007
1008/**
1009 * spi_read - SPI synchronous read
1010 * @spi: device from which data will be read
1011 * @buf: data buffer
1012 * @len: data buffer size
33e34dc6 1013 * Context: can sleep
8ae12a0d 1014 *
a1fdeaa7 1015 * This function reads the buffer @buf.
8ae12a0d 1016 * Callable only from contexts that can sleep.
a1fdeaa7
JMC
1017 *
1018 * Return: zero on success, else a negative error code.
8ae12a0d
DB
1019 */
1020static inline int
0c4a1590 1021spi_read(struct spi_device *spi, void *buf, size_t len)
8ae12a0d
DB
1022{
1023 struct spi_transfer t = {
8ae12a0d
DB
1024 .rx_buf = buf,
1025 .len = len,
8ae12a0d 1026 };
8275c642 1027 struct spi_message m;
8ae12a0d 1028
8275c642
VW
1029 spi_message_init(&m);
1030 spi_message_add_tail(&t, &m);
8ae12a0d
DB
1031 return spi_sync(spi, &m);
1032}
1033
6d9eecd4
LPC
1034/**
1035 * spi_sync_transfer - synchronous SPI data transfer
1036 * @spi: device with which data will be exchanged
1037 * @xfers: An array of spi_transfers
1038 * @num_xfers: Number of items in the xfer array
1039 * Context: can sleep
1040 *
1041 * Does a synchronous SPI data transfer of the given spi_transfer array.
1042 *
1043 * For more specific semantics see spi_sync().
1044 *
a1fdeaa7 1045 * Return: Return: zero on success, else a negative error code.
6d9eecd4
LPC
1046 */
1047static inline int
1048spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1049 unsigned int num_xfers)
1050{
1051 struct spi_message msg;
1052
1053 spi_message_init_with_transfers(&msg, xfers, num_xfers);
1054
1055 return spi_sync(spi, &msg);
1056}
1057
0c868461 1058/* this copies txbuf and rxbuf data; for small transfers only! */
8ae12a0d 1059extern int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1060 const void *txbuf, unsigned n_tx,
1061 void *rxbuf, unsigned n_rx);
8ae12a0d
DB
1062
1063/**
1064 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1065 * @spi: device with which data will be exchanged
1066 * @cmd: command to be written before data is read back
33e34dc6 1067 * Context: can sleep
8ae12a0d 1068 *
a1fdeaa7
JMC
1069 * Callable only from contexts that can sleep.
1070 *
1071 * Return: the (unsigned) eight bit number returned by the
1072 * device, or else a negative error code.
8ae12a0d
DB
1073 */
1074static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1075{
1076 ssize_t status;
1077 u8 result;
1078
1079 status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1080
1081 /* return negative errno or unsigned value */
1082 return (status < 0) ? status : result;
1083}
1084
1085/**
1086 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1087 * @spi: device with which data will be exchanged
1088 * @cmd: command to be written before data is read back
33e34dc6 1089 * Context: can sleep
8ae12a0d 1090 *
8ae12a0d
DB
1091 * The number is returned in wire-order, which is at least sometimes
1092 * big-endian.
a1fdeaa7
JMC
1093 *
1094 * Callable only from contexts that can sleep.
1095 *
1096 * Return: the (unsigned) sixteen bit number returned by the
1097 * device, or else a negative error code.
8ae12a0d
DB
1098 */
1099static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1100{
1101 ssize_t status;
1102 u16 result;
1103
269ccca8 1104 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
8ae12a0d
DB
1105
1106 /* return negative errno or unsigned value */
1107 return (status < 0) ? status : result;
1108}
1109
05071aa8
LPC
1110/**
1111 * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1112 * @spi: device with which data will be exchanged
1113 * @cmd: command to be written before data is read back
1114 * Context: can sleep
1115 *
05071aa8
LPC
1116 * This function is similar to spi_w8r16, with the exception that it will
1117 * convert the read 16 bit data word from big-endian to native endianness.
1118 *
a1fdeaa7
JMC
1119 * Callable only from contexts that can sleep.
1120 *
1121 * Return: the (unsigned) sixteen bit number returned by the device in cpu
1122 * endianness, or else a negative error code.
05071aa8
LPC
1123 */
1124static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1125
1126{
1127 ssize_t status;
1128 __be16 result;
1129
1130 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1131 if (status < 0)
1132 return status;
1133
1134 return be16_to_cpu(result);
1135}
1136
556351f1
V
1137/**
1138 * struct spi_flash_read_message - flash specific information for
1139 * spi-masters that provide accelerated flash read interfaces
1140 * @buf: buffer to read data
1141 * @from: offset within the flash from where data is to be read
1142 * @len: length of data to be read
1143 * @retlen: actual length of data read
1144 * @read_opcode: read_opcode to be used to communicate with flash
1145 * @addr_width: number of address bytes
1146 * @dummy_bytes: number of dummy bytes
1147 * @opcode_nbits: number of lines to send opcode
1148 * @addr_nbits: number of lines to send address
1149 * @data_nbits: number of lines for data
f4502dd1
V
1150 * @rx_sg: Scatterlist for receive data read from flash
1151 * @cur_msg_mapped: message has been mapped for DMA
556351f1
V
1152 */
1153struct spi_flash_read_message {
1154 void *buf;
1155 loff_t from;
1156 size_t len;
1157 size_t retlen;
1158 u8 read_opcode;
1159 u8 addr_width;
1160 u8 dummy_bytes;
1161 u8 opcode_nbits;
1162 u8 addr_nbits;
1163 u8 data_nbits;
f4502dd1
V
1164 struct sg_table rx_sg;
1165 bool cur_msg_mapped;
556351f1
V
1166};
1167
1168/* SPI core interface for flash read support */
1169static inline bool spi_flash_read_supported(struct spi_device *spi)
1170{
7ba2f275
HK
1171 return spi->master->spi_flash_read &&
1172 (!spi->master->flash_read_supported ||
1173 spi->master->flash_read_supported(spi));
556351f1
V
1174}
1175
1176int spi_flash_read(struct spi_device *spi,
1177 struct spi_flash_read_message *msg);
1178
8ae12a0d
DB
1179/*---------------------------------------------------------------------------*/
1180
1181/*
1182 * INTERFACE between board init code and SPI infrastructure.
1183 *
1184 * No SPI driver ever sees these SPI device table segments, but
1185 * it's how the SPI core (or adapters that get hotplugged) grows
1186 * the driver model tree.
1187 *
1188 * As a rule, SPI devices can't be probed. Instead, board init code
1189 * provides a table listing the devices which are present, with enough
1190 * information to bind and set up the device's driver. There's basic
1191 * support for nonstatic configurations too; enough to handle adding
1192 * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1193 */
1194
2604288f
DB
1195/**
1196 * struct spi_board_info - board-specific template for a SPI device
1197 * @modalias: Initializes spi_device.modalias; identifies the driver.
1198 * @platform_data: Initializes spi_device.platform_data; the particular
1199 * data stored there is driver-specific.
1200 * @controller_data: Initializes spi_device.controller_data; some
1201 * controllers need hints about hardware setup, e.g. for DMA.
1202 * @irq: Initializes spi_device.irq; depends on how the board is wired.
1203 * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1204 * from the chip datasheet and board-specific signal quality issues.
1205 * @bus_num: Identifies which spi_master parents the spi_device; unused
1206 * by spi_new_device(), and otherwise depends on board wiring.
1207 * @chip_select: Initializes spi_device.chip_select; depends on how
1208 * the board is wired.
1209 * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1210 * wiring (some devices support both 3WIRE and standard modes), and
1211 * possibly presence of an inverter in the chipselect path.
1212 *
1213 * When adding new SPI devices to the device tree, these structures serve
1214 * as a partial device template. They hold information which can't always
1215 * be determined by drivers. Information that probe() can establish (such
1216 * as the default transfer wordsize) is not included here.
1217 *
1218 * These structures are used in two places. Their primary role is to
1219 * be stored in tables of board-specific device descriptors, which are
1220 * declared early in board initialization and then used (much later) to
1221 * populate a controller's device tree after the that controller's driver
1222 * initializes. A secondary (and atypical) role is as a parameter to
1223 * spi_new_device() call, which happens after those controller drivers
1224 * are active in some dynamic board configuration models.
1225 */
8ae12a0d
DB
1226struct spi_board_info {
1227 /* the device name and module name are coupled, like platform_bus;
1228 * "modalias" is normally the driver name.
1229 *
1230 * platform_data goes to spi_device.dev.platform_data,
b885244e 1231 * controller_data goes to spi_device.controller_data,
8ae12a0d
DB
1232 * irq is copied too
1233 */
75368bf6 1234 char modalias[SPI_NAME_SIZE];
8ae12a0d 1235 const void *platform_data;
b885244e 1236 void *controller_data;
8ae12a0d
DB
1237 int irq;
1238
1239 /* slower signaling on noisy or low voltage boards */
1240 u32 max_speed_hz;
1241
1242
1243 /* bus_num is board specific and matches the bus_num of some
1244 * spi_master that will probably be registered later.
1245 *
1246 * chip_select reflects how this chip is wired to that master;
1247 * it's less than num_chipselect.
1248 */
1249 u16 bus_num;
1250 u16 chip_select;
1251
980a01c9
DB
1252 /* mode becomes spi_device.mode, and is essential for chips
1253 * where the default of SPI_CS_HIGH = 0 is wrong.
1254 */
f477b7fb 1255 u16 mode;
980a01c9 1256
8ae12a0d
DB
1257 /* ... may need additional spi_device chip config data here.
1258 * avoid stuff protocol drivers can set; but include stuff
1259 * needed to behave without being bound to a driver:
8ae12a0d
DB
1260 * - quirks like clock rate mattering when not selected
1261 */
1262};
1263
1264#ifdef CONFIG_SPI
1265extern int
1266spi_register_board_info(struct spi_board_info const *info, unsigned n);
1267#else
1268/* board init code may ignore whether SPI is configured or not */
1269static inline int
1270spi_register_board_info(struct spi_board_info const *info, unsigned n)
1271 { return 0; }
1272#endif
1273
1274
1275/* If you're hotplugging an adapter with devices (parport, usb, etc)
0c868461
DB
1276 * use spi_new_device() to describe each device. You can also call
1277 * spi_unregister_device() to start making that device vanish, but
1278 * normally that would be handled by spi_unregister_master().
dc87c98e
GL
1279 *
1280 * You can also use spi_alloc_device() and spi_add_device() to use a two
1281 * stage registration sequence for each spi_device. This gives the caller
1282 * some more control over the spi_device structure before it is registered,
1283 * but requires that caller to initialize fields that would otherwise
1284 * be defined using the board info.
8ae12a0d 1285 */
dc87c98e
GL
1286extern struct spi_device *
1287spi_alloc_device(struct spi_master *master);
1288
1289extern int
1290spi_add_device(struct spi_device *spi);
1291
8ae12a0d
DB
1292extern struct spi_device *
1293spi_new_device(struct spi_master *, struct spi_board_info *);
1294
3b1884c2 1295extern void spi_unregister_device(struct spi_device *spi);
8ae12a0d 1296
75368bf6
AV
1297extern const struct spi_device_id *
1298spi_get_device_id(const struct spi_device *sdev);
1299
b671358a
BG
1300static inline bool
1301spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
1302{
1303 return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
1304}
1305
8ae12a0d 1306#endif /* __LINUX_SPI_H */