]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/spi/spi.h
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / include / linux / spi / spi.h
CommitLineData
b445bfcb 1/* SPDX-License-Identifier: GPL-2.0-or-later
8ae12a0d 2 *
b445bfcb 3 * Copyright (C) 2005 David Brownell
8ae12a0d
DB
4 */
5
6#ifndef __LINUX_SPI_H
7#define __LINUX_SPI_H
8
d962608c 9#include <linux/bits.h>
0a30c5ce 10#include <linux/device.h>
75368bf6 11#include <linux/mod_devicetable.h>
5a0e3ad6 12#include <linux/slab.h>
ffbbdd21 13#include <linux/kthread.h>
b158935f 14#include <linux/completion.h>
6ad45a27 15#include <linux/scatterlist.h>
f3186dd8 16#include <linux/gpio/consumer.h>
b42faeee 17#include <linux/ptp_clock_kernel.h>
0a30c5ce 18
f7005142 19#include <uapi/linux/spi/spi.h>
e6e21f7a 20#include <linux/acpi.h>
f7005142 21
99adef31 22struct dma_chan;
47afc77b 23struct software_node;
8caab75f 24struct spi_controller;
eca2ebc7 25struct spi_transfer;
c36ff266 26struct spi_controller_mem_ops;
0a30c5ce 27
8ae12a0d 28/*
6c364062
GU
29 * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
30 * and SPI infrastructure.
8ae12a0d
DB
31 */
32extern struct bus_type spi_bus_type;
33
eca2ebc7
MS
34/**
35 * struct spi_statistics - statistics for spi transfers
0243ed44 36 * @lock: lock protecting this structure
eca2ebc7
MS
37 *
38 * @messages: number of spi-messages handled
39 * @transfers: number of spi_transfers handled
40 * @errors: number of errors during spi_transfer
41 * @timedout: number of timeouts during spi_transfer
42 *
43 * @spi_sync: number of times spi_sync is used
44 * @spi_sync_immediate:
45 * number of times spi_sync is executed immediately
46 * in calling context without queuing and scheduling
47 * @spi_async: number of times spi_async is used
48 *
49 * @bytes: number of bytes transferred to/from device
50 * @bytes_tx: number of bytes sent to device
51 * @bytes_rx: number of bytes received from device
52 *
6b7bc061
MS
53 * @transfer_bytes_histo:
54 * transfer bytes histogramm
d9f12122
MS
55 *
56 * @transfers_split_maxsize:
57 * number of transfers that have been split because of
58 * maxsize limit
eca2ebc7
MS
59 */
60struct spi_statistics {
61 spinlock_t lock; /* lock for the whole structure */
62
63 unsigned long messages;
64 unsigned long transfers;
65 unsigned long errors;
66 unsigned long timedout;
67
68 unsigned long spi_sync;
69 unsigned long spi_sync_immediate;
70 unsigned long spi_async;
71
72 unsigned long long bytes;
73 unsigned long long bytes_rx;
74 unsigned long long bytes_tx;
75
6b7bc061
MS
76#define SPI_STATISTICS_HISTO_SIZE 17
77 unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
d9f12122
MS
78
79 unsigned long transfers_split_maxsize;
eca2ebc7
MS
80};
81
82void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
83 struct spi_transfer *xfer,
8caab75f 84 struct spi_controller *ctlr);
eca2ebc7
MS
85
86#define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count) \
87 do { \
88 unsigned long flags; \
89 spin_lock_irqsave(&(stats)->lock, flags); \
90 (stats)->field += count; \
91 spin_unlock_irqrestore(&(stats)->lock, flags); \
92 } while (0)
93
94#define SPI_STATISTICS_INCREMENT_FIELD(stats, field) \
95 SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
96
b2c98153
AA
97/**
98 * struct spi_delay - SPI delay information
99 * @value: Value for the delay
100 * @unit: Unit for the delay
101 */
102struct spi_delay {
103#define SPI_DELAY_UNIT_USECS 0
104#define SPI_DELAY_UNIT_NSECS 1
105#define SPI_DELAY_UNIT_SCK 2
106 u16 value;
107 u8 unit;
108};
109
3984d39b 110extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
b2c98153
AA
111extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
112
8ae12a0d 113/**
8caab75f 114 * struct spi_device - Controller side proxy for an SPI slave device
8ae12a0d 115 * @dev: Driver model representation of the device.
8caab75f
GU
116 * @controller: SPI controller used with the device.
117 * @master: Copy of controller, for backwards compatibility.
8ae12a0d
DB
118 * @max_speed_hz: Maximum clock rate to be used with this chip
119 * (on this board); may be changed by the device's driver.
4cff33f9 120 * The spi_transfer.speed_hz can override this for each transfer.
8caab75f 121 * @chip_select: Chipselect, distinguishing chips handled by @controller.
8ae12a0d
DB
122 * @mode: The spi mode defines how data is clocked out and in.
123 * This may be changed by the device's driver.
33e34dc6
DB
124 * The "active low" default for chipselect mode can be overridden
125 * (by specifying SPI_CS_HIGH) as can the "MSB first" default for
126 * each word in a transfer (by specifying SPI_LSB_FIRST).
8ae12a0d 127 * @bits_per_word: Data transfers involve one or more words; word sizes
747d844e 128 * like eight or 12 bits are common. In-memory wordsizes are
8ae12a0d 129 * powers of two bytes (e.g. 20 bit samples use 32 bits).
ccf77cc4
DB
130 * This may be changed by the device's driver, or left at the
131 * default (0) indicating protocol words are eight bit bytes.
4cff33f9 132 * The spi_transfer.bits_per_word can override this for each transfer.
924b5867 133 * @rt: Make the pump thread real time priority.
8ae12a0d 134 * @irq: Negative, or the number passed to request_irq() to receive
747d844e 135 * interrupts from this device.
8ae12a0d 136 * @controller_state: Controller's runtime state
b885244e 137 * @controller_data: Board-specific definitions for controller, such as
747d844e 138 * FIFO initialization parameters; from board_info.controller_data
33e34dc6
DB
139 * @modalias: Name of the driver to use with this device, or an alias
140 * for that name. This appears in the sysfs "modalias" attribute
141 * for driver coldplugging, and in uevents used for hotplugging
7a86a419
QH
142 * @driver_override: If the name of a driver is written to this attribute, then
143 * the device will bind to the named driver and only the named driver.
f3186dd8
LW
144 * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
145 * not using a GPIO line) use cs_gpiod in new drivers by opting in on
146 * the spi_master.
147 * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
8d26fdfc 148 * not using a GPIO line)
6c613f68 149 * @word_delay: delay to be inserted between consecutive
b7bb367a 150 * words of a transfer
8c33ebfe
MZ
151 * @cs_setup: delay to be introduced by the controller after CS is asserted
152 * @cs_hold: delay to be introduced by the controller before CS is deasserted
153 * @cs_inactive: delay to be introduced by the controller after CS is
154 * deasserted. If @cs_change_delay is used from @spi_transfer, then the
155 * two delays will be added up.
eca2ebc7
MS
156 * @statistics: statistics for the spi_device
157 *
33e34dc6 158 * A @spi_device is used to interchange data between an SPI slave
8ae12a0d
DB
159 * (usually a discrete chip) and CPU memory.
160 *
33e34dc6 161 * In @dev, the platform_data is used to hold information about this
8ae12a0d
DB
162 * device that's meaningful to the device's protocol driver, but not
163 * to its controller. One example might be an identifier for a chip
33e34dc6
DB
164 * variant with slightly different functionality; another might be
165 * information about how this particular board wires the chip's pins.
8ae12a0d
DB
166 */
167struct spi_device {
168 struct device dev;
8caab75f
GU
169 struct spi_controller *controller;
170 struct spi_controller *master; /* compatibility layer */
8ae12a0d
DB
171 u32 max_speed_hz;
172 u8 chip_select;
89c1f607 173 u8 bits_per_word;
924b5867 174 bool rt;
d962608c
DB
175#define SPI_NO_TX BIT(31) /* no transmit wire */
176#define SPI_NO_RX BIT(30) /* no receive wire */
177 /*
178 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
179 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
180 * which is defined in 'include/uapi/linux/spi/spi.h'.
181 * The bits defined here are from bit 31 downwards, while in
182 * SPI_MODE_USER_MASK are from 0 upwards.
183 * These bits must not overlap. A static assert check should make sure of that.
184 * If adding extra bits, make sure to decrease the bit index below as well.
185 */
186#define SPI_MODE_KERNEL_MASK (~(BIT(30) - 1))
937e6d75 187 u32 mode;
8ae12a0d
DB
188 int irq;
189 void *controller_state;
b885244e 190 void *controller_data;
75368bf6 191 char modalias[SPI_NAME_SIZE];
5039563e 192 const char *driver_override;
f3186dd8
LW
193 int cs_gpio; /* LEGACY: chip select gpio */
194 struct gpio_desc *cs_gpiod; /* chip select gpio desc */
6c613f68 195 struct spi_delay word_delay; /* inter-word delay */
8c33ebfe
MZ
196 /* CS delays */
197 struct spi_delay cs_setup;
198 struct spi_delay cs_hold;
199 struct spi_delay cs_inactive;
8ae12a0d 200
eca2ebc7
MS
201 /* the statistics */
202 struct spi_statistics statistics;
203
33e34dc6
DB
204 /*
205 * likely need more hooks for more protocol options affecting how
206 * the controller talks to each chip, like:
207 * - memory packing (12 bit samples into low bits, others zeroed)
208 * - priority
33e34dc6
DB
209 * - chipselect delays
210 * - ...
211 */
8ae12a0d
DB
212};
213
d962608c
DB
214/* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
215static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
216 "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
217
8ae12a0d
DB
218static inline struct spi_device *to_spi_device(struct device *dev)
219{
b885244e 220 return dev ? container_of(dev, struct spi_device, dev) : NULL;
8ae12a0d
DB
221}
222
223/* most drivers won't need to care about device refcounting */
224static inline struct spi_device *spi_dev_get(struct spi_device *spi)
225{
226 return (spi && get_device(&spi->dev)) ? spi : NULL;
227}
228
229static inline void spi_dev_put(struct spi_device *spi)
230{
231 if (spi)
232 put_device(&spi->dev);
233}
234
8caab75f 235/* ctldata is for the bus_controller driver's runtime state */
8ae12a0d
DB
236static inline void *spi_get_ctldata(struct spi_device *spi)
237{
238 return spi->controller_state;
239}
240
241static inline void spi_set_ctldata(struct spi_device *spi, void *state)
242{
243 spi->controller_state = state;
244}
245
9b40ff4d
BD
246/* device driver data */
247
248static inline void spi_set_drvdata(struct spi_device *spi, void *data)
249{
250 dev_set_drvdata(&spi->dev, data);
251}
252
253static inline void *spi_get_drvdata(struct spi_device *spi)
254{
255 return dev_get_drvdata(&spi->dev);
256}
8ae12a0d
DB
257
258struct spi_message;
b885244e 259
2604288f
DB
260/**
261 * struct spi_driver - Host side "protocol" driver
75368bf6 262 * @id_table: List of SPI devices supported by this driver
2604288f
DB
263 * @probe: Binds this driver to the spi device. Drivers can verify
264 * that the device is actually present, and may need to configure
265 * characteristics (such as bits_per_word) which weren't needed for
266 * the initial configuration done during system setup.
267 * @remove: Unbinds this driver from the spi device
268 * @shutdown: Standard shutdown callback used during system state
269 * transitions such as powerdown/halt and kexec
2604288f
DB
270 * @driver: SPI device drivers should initialize the name and owner
271 * field of this structure.
272 *
273 * This represents the kind of device driver that uses SPI messages to
274 * interact with the hardware at the other end of a SPI link. It's called
275 * a "protocol" driver because it works through messages rather than talking
276 * directly to SPI hardware (which is what the underlying SPI controller
277 * driver does to pass those messages). These protocols are defined in the
278 * specification for the device(s) supported by the driver.
279 *
280 * As a rule, those device protocols represent the lowest level interface
281 * supported by a driver, and it will support upper level interfaces too.
282 * Examples of such upper levels include frameworks like MTD, networking,
283 * MMC, RTC, filesystem character device nodes, and hardware monitoring.
284 */
b885244e 285struct spi_driver {
75368bf6 286 const struct spi_device_id *id_table;
b885244e
DB
287 int (*probe)(struct spi_device *spi);
288 int (*remove)(struct spi_device *spi);
289 void (*shutdown)(struct spi_device *spi);
b885244e
DB
290 struct device_driver driver;
291};
292
293static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
294{
295 return drv ? container_of(drv, struct spi_driver, driver) : NULL;
296}
297
ca5d2485 298extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
b885244e 299
33e34dc6
DB
300/**
301 * spi_unregister_driver - reverse effect of spi_register_driver
302 * @sdrv: the driver to unregister
303 * Context: can sleep
304 */
b885244e
DB
305static inline void spi_unregister_driver(struct spi_driver *sdrv)
306{
ddc1e975
BD
307 if (sdrv)
308 driver_unregister(&sdrv->driver);
b885244e
DB
309}
310
0c79378c
SR
311extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
312
ca5d2485
AD
313/* use a define to avoid include chaining to get THIS_MODULE */
314#define spi_register_driver(driver) \
315 __spi_register_driver(THIS_MODULE, driver)
316
3acbb014
LPC
317/**
318 * module_spi_driver() - Helper macro for registering a SPI driver
319 * @__spi_driver: spi_driver struct
320 *
321 * Helper macro for SPI drivers which do not do anything special in module
322 * init/exit. This eliminates a lot of boilerplate. Each module may only
323 * use this macro once, and calling it replaces module_init() and module_exit()
324 */
325#define module_spi_driver(__spi_driver) \
326 module_driver(__spi_driver, spi_register_driver, \
327 spi_unregister_driver)
b885244e 328
8ae12a0d 329/**
8caab75f 330 * struct spi_controller - interface to SPI master or slave controller
49dce689 331 * @dev: device interface to this driver
8caab75f 332 * @list: link with the global spi_controller list
8ae12a0d 333 * @bus_num: board-specific (and often SOC-specific) identifier for a
747d844e 334 * given SPI controller.
b885244e 335 * @num_chipselect: chipselects are used to distinguish individual
747d844e
DB
336 * SPI slaves, and are numbered from zero to num_chipselects.
337 * each slave has a chipselect signal, but it's common that not
338 * every chipselect is connected to a slave.
fd5e191e 339 * @dma_alignment: SPI controller constraint on DMA buffers alignment.
b73b2559 340 * @mode_bits: flags understood by this controller driver
cfd97f94 341 * @buswidth_override_bits: flags to override for this controller driver
543bb255
SW
342 * @bits_per_word_mask: A mask indicating which values of bits_per_word are
343 * supported by the driver. Bit n indicates that a bits_per_word n+1 is
e227867f 344 * supported. If set, the SPI core will reject any transfer with an
543bb255
SW
345 * unsupported bits_per_word. If not set, this value is simply ignored,
346 * and it's up to the individual driver to perform any validation.
a2fd4f9f
MB
347 * @min_speed_hz: Lowest supported transfer speed
348 * @max_speed_hz: Highest supported transfer speed
b73b2559 349 * @flags: other constraints relevant to this driver
6c364062 350 * @slave: indicates that this is an SPI slave controller
8dd591ad 351 * @devm_allocated: whether the allocation of this struct is devres-managed
ee7683a3
RD
352 * @max_transfer_size: function that returns the max transfer size for
353 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
5090cc6a
HK
354 * @max_message_size: function that returns the max message size for
355 * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
ef4d96ec 356 * @io_mutex: mutex for physical bus access
5c79a5ae 357 * @bus_lock_spinlock: spinlock for SPI bus locking
ef4d96ec 358 * @bus_lock_mutex: mutex for exclusion of multiple callers
5c79a5ae 359 * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
8ae12a0d 360 * @setup: updates the device mode and clocking records used by a
80224561
DB
361 * device's SPI controller; protocol code may call this. This
362 * must fail if an unrecognized or unsupported mode is requested.
33e34dc6
DB
363 * It's always safe to call this unless transfers are pending on
364 * the device whose settings are being modified.
f1ca9992
SK
365 * @set_cs_timing: optional hook for SPI devices to request SPI master
366 * controller for configuring specific CS setup time, hold time and inactive
367 * delay interms of clock counts
8ae12a0d
DB
368 * @transfer: adds a message to the controller's transfer queue.
369 * @cleanup: frees controller-specific state
8caab75f
GU
370 * @can_dma: determine whether this controller supports DMA
371 * @queued: whether this controller is providing an internal message queue
60a883d1 372 * @kworker: pointer to thread struct for message pump
ffbbdd21
LW
373 * @pump_messages: work struct for scheduling work to the message pump
374 * @queue_lock: spinlock to syncronise access to message queue
375 * @queue: message queue
0461a414 376 * @idling: the device is entering idle state
ffbbdd21 377 * @cur_msg: the currently in-flight message
2841a5fc
MB
378 * @cur_msg_prepared: spi_prepare_message was called for the currently
379 * in-flight message
2c675689 380 * @cur_msg_mapped: message has been mapped for DMA
d40f0b6f
DA
381 * @last_cs_enable: was enable true on the last call to set_cs.
382 * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
e227867f 383 * @xfer_completion: used by core transfer_one_message()
ffbbdd21
LW
384 * @busy: message pump is busy
385 * @running: message pump is running
386 * @rt: whether this queue is set to run as a realtime task
49834de2
MB
387 * @auto_runtime_pm: the core should ensure a runtime PM reference is held
388 * while the hardware is prepared, using the parent
389 * device for the spidev
6ad45a27 390 * @max_dma_len: Maximum length of a DMA transfer for the device.
ffbbdd21
LW
391 * @prepare_transfer_hardware: a message will soon arrive from the queue
392 * so the subsystem requests the driver to prepare the transfer hardware
393 * by issuing this call
394 * @transfer_one_message: the subsystem calls the driver to transfer a single
395 * message while queuing transfers that arrive in the meantime. When the
396 * driver is finished with this message, it must call
397 * spi_finalize_current_message() so the subsystem can issue the next
e9305331 398 * message
dbabe0d6 399 * @unprepare_transfer_hardware: there are currently no more messages on the
ffbbdd21
LW
400 * queue so the subsystem notifies the driver that it may relax the
401 * hardware by issuing this call
f1ca9992 402 *
bd6857a0 403 * @set_cs: set the logic level of the chip select line. May be called
b158935f 404 * from interrupt context.
2841a5fc
MB
405 * @prepare_message: set up the controller to transfer a single message,
406 * for example doing DMA mapping. Called from threaded
407 * context.
0516712c 408 * @transfer_one: transfer a single spi_transfer.
ad89c885 409 *
0516712c
GU
410 * - return 0 if the transfer is finished,
411 * - return 1 if the transfer is still in progress. When
412 * the driver is finished with this transfer it must
413 * call spi_finalize_current_transfer() so the subsystem
6e5f5267
BS
414 * can issue the next transfer. Note: transfer_one and
415 * transfer_one_message are mutually exclusive; when both
416 * are set, the generic subsystem does not call your
417 * transfer_one callback.
ff61eb42 418 * @handle_err: the subsystem calls the driver to handle an error that occurs
b716c4ff 419 * in the generic implementation of transfer_one_message().
c36ff266
BB
420 * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
421 * This field is optional and should only be implemented if the
422 * controller has native support for memory like operations.
2841a5fc 423 * @unprepare_message: undo any work done by prepare_message().
6c364062 424 * @slave_abort: abort the ongoing transfer request on an SPI slave controller
f3186dd8
LW
425 * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
426 * CS number. Any individual value may be -ENOENT for CS lines that
427 * are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
428 * in new drivers.
429 * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
430 * number. Any individual value may be NULL for CS lines that
095c3752 431 * are not GPIOs (driven by the SPI controller itself).
f3186dd8
LW
432 * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
433 * GPIO descriptors rather than using global GPIO numbers grabbed by the
434 * driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
435 * and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
7d93aecd
GU
436 * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
437 * fill in this field with the first unused native CS, to be used by SPI
438 * controller drivers that need to drive a native CS when using GPIO CS.
439 * @max_native_cs: When cs_gpiods is used, and this field is filled in,
440 * spi_register_controller() will validate all native CS (including the
441 * unused native CS) against this value.
8caab75f 442 * @statistics: statistics for the spi_controller
2c675689
TR
443 * @dma_tx: DMA transmit channel
444 * @dma_rx: DMA receive channel
445 * @dummy_rx: dummy receive buffer for full-duplex devices
446 * @dummy_tx: dummy transmit buffer for full-duplex devices
a0a90718
MW
447 * @fw_translate_cs: If the boot firmware uses different numbering scheme
448 * what Linux expects, this optional hook can be used to translate
449 * between the two.
b42faeee
VO
450 * @ptp_sts_supported: If the driver sets this to true, it must provide a
451 * time snapshot in @spi_transfer->ptp_sts as close as possible to the
452 * moment in time when @spi_transfer->ptp_sts_word_pre and
453 * @spi_transfer->ptp_sts_word_post were transmitted.
454 * If the driver does not set this, the SPI core takes the snapshot as
455 * close to the driver hand-over as possible.
7a86a419 456 * @irq_flags: Interrupt enable state during PTP system timestamping
809b1b04
RG
457 * @fallback: fallback to pio if dma transfer return failure with
458 * SPI_TRANS_FAIL_NO_START.
8ae12a0d 459 *
8caab75f 460 * Each SPI controller can communicate with one or more @spi_device
8ae12a0d
DB
461 * children. These make a small bus, sharing MOSI, MISO and SCK signals
462 * but not chip select signals. Each device may be configured to use a
463 * different clock rate, since those shared signals are ignored unless
464 * the chip is selected.
465 *
466 * The driver for an SPI controller manages access to those devices through
33e34dc6
DB
467 * a queue of spi_message transactions, copying data between CPU memory and
468 * an SPI slave device. For each such message it queues, it calls the
8ae12a0d
DB
469 * message's completion function when the transaction completes.
470 */
8caab75f 471struct spi_controller {
49dce689 472 struct device dev;
8ae12a0d 473
2b9603a0
FT
474 struct list_head list;
475
a020ed75 476 /* other than negative (== assign one dynamically), bus_num is fully
8ae12a0d 477 * board-specific. usually that simplifies to being SOC-specific.
a020ed75 478 * example: one SOC has three SPI controllers, numbered 0..2,
8ae12a0d
DB
479 * and one board's schematics might show it using SPI-2. software
480 * would normally use bus_num=2 for that controller.
481 */
a020ed75 482 s16 bus_num;
8ae12a0d
DB
483
484 /* chipselects will be integral to many controllers; some others
485 * might use board-specific GPIOs.
486 */
487 u16 num_chipselect;
488
fd5e191e
MR
489 /* some SPI controllers pose alignment requirements on DMAable
490 * buffers; let protocol drivers know about these requirements.
491 */
492 u16 dma_alignment;
493
e7db06b5 494 /* spi_device.mode flags understood by this controller driver */
937e6d75 495 u32 mode_bits;
e7db06b5 496
ea235786
JG
497 /* spi_device.mode flags override flags for this controller */
498 u32 buswidth_override_bits;
499
543bb255
SW
500 /* bitmask of supported bits_per_word for transfers */
501 u32 bits_per_word_mask;
2922a8de 502#define SPI_BPW_MASK(bits) BIT((bits) - 1)
6d850281 503#define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
543bb255 504
a2fd4f9f
MB
505 /* limits on transfer speed */
506 u32 min_speed_hz;
507 u32 max_speed_hz;
508
70d6027f
DB
509 /* other constraints relevant to this driver */
510 u16 flags;
8caab75f
GU
511#define SPI_CONTROLLER_HALF_DUPLEX BIT(0) /* can't do full duplex */
512#define SPI_CONTROLLER_NO_RX BIT(1) /* can't do buffer read */
513#define SPI_CONTROLLER_NO_TX BIT(2) /* can't do buffer write */
514#define SPI_CONTROLLER_MUST_RX BIT(3) /* requires rx */
515#define SPI_CONTROLLER_MUST_TX BIT(4) /* requires tx */
516
517#define SPI_MASTER_GPIO_SS BIT(5) /* GPIO CS must select slave */
70d6027f 518
8dd591ad 519 /* flag indicating if the allocation of this struct is devres-managed */
794aaf01
WKI
520 bool devm_allocated;
521
6c364062
GU
522 /* flag indicating this is an SPI slave controller */
523 bool slave;
524
4acad4aa 525 /*
5090cc6a 526 * on some hardware transfer / message size may be constrained
4acad4aa
MS
527 * the limit may depend on device transfer settings
528 */
529 size_t (*max_transfer_size)(struct spi_device *spi);
5090cc6a 530 size_t (*max_message_size)(struct spi_device *spi);
4acad4aa 531
ef4d96ec
MB
532 /* I/O mutex */
533 struct mutex io_mutex;
534
6098475d
MB
535 /* Used to avoid adding the same CS twice */
536 struct mutex add_lock;
537
cf32b71e
ES
538 /* lock and mutex for SPI bus locking */
539 spinlock_t bus_lock_spinlock;
540 struct mutex bus_lock_mutex;
541
542 /* flag indicating that the SPI bus is locked for exclusive use */
543 bool bus_lock_flag;
544
6e538aaf
DB
545 /* Setup mode and clock, etc (spi driver may call many times).
546 *
547 * IMPORTANT: this may be called when transfers to another
548 * device are active. DO NOT UPDATE SHARED REGISTERS in ways
549 * which could break those transfers.
550 */
8ae12a0d
DB
551 int (*setup)(struct spi_device *spi);
552
f1ca9992
SK
553 /*
554 * set_cs_timing() method is for SPI controllers that supports
555 * configuring CS timing.
556 *
557 * This hook allows SPI client drivers to request SPI controllers
558 * to configure specific CS timing through spi_set_cs_timing() after
559 * spi_setup().
560 */
04e6bb0d 561 int (*set_cs_timing)(struct spi_device *spi);
f1ca9992 562
8ae12a0d
DB
563 /* bidirectional bulk transfers
564 *
565 * + The transfer() method may not sleep; its main role is
566 * just to add the message to the queue.
567 * + For now there's no remove-from-queue operation, or
568 * any other request management
569 * + To a given spi_device, message queueing is pure fifo
570 *
8caab75f
GU
571 * + The controller's main job is to process its message queue,
572 * selecting a chip (for masters), then transferring data
8ae12a0d
DB
573 * + If there are multiple spi_device children, the i/o queue
574 * arbitration algorithm is unspecified (round robin, fifo,
575 * priority, reservations, preemption, etc)
576 *
577 * + Chipselect stays active during the entire message
578 * (unless modified by spi_transfer.cs_change != 0).
579 * + The message transfers use clock and SPI mode parameters
580 * previously established by setup() for this device
581 */
582 int (*transfer)(struct spi_device *spi,
583 struct spi_message *mesg);
584
8caab75f 585 /* called on release() to free memory provided by spi_controller */
0ffa0285 586 void (*cleanup)(struct spi_device *spi);
ffbbdd21 587
99adef31
MB
588 /*
589 * Used to enable core support for DMA handling, if can_dma()
590 * exists and returns true then the transfer will be mapped
591 * prior to transfer_one() being called. The driver should
592 * not modify or store xfer and dma_tx and dma_rx must be set
593 * while the device is prepared.
594 */
8caab75f 595 bool (*can_dma)(struct spi_controller *ctlr,
99adef31
MB
596 struct spi_device *spi,
597 struct spi_transfer *xfer);
b470e10e 598 struct device *dma_map_dev;
99adef31 599
ffbbdd21
LW
600 /*
601 * These hooks are for drivers that want to use the generic
8caab75f 602 * controller transfer queueing mechanism. If these are used, the
ffbbdd21
LW
603 * transfer() function above must NOT be specified by the driver.
604 * Over time we expect SPI drivers to be phased over to this API.
605 */
606 bool queued;
60a883d1 607 struct kthread_worker *kworker;
ffbbdd21
LW
608 struct kthread_work pump_messages;
609 spinlock_t queue_lock;
610 struct list_head queue;
611 struct spi_message *cur_msg;
0461a414 612 bool idling;
ffbbdd21
LW
613 bool busy;
614 bool running;
615 bool rt;
49834de2 616 bool auto_runtime_pm;
2841a5fc 617 bool cur_msg_prepared;
99adef31 618 bool cur_msg_mapped;
d40f0b6f
DA
619 bool last_cs_enable;
620 bool last_cs_mode_high;
809b1b04 621 bool fallback;
b158935f 622 struct completion xfer_completion;
6ad45a27 623 size_t max_dma_len;
ffbbdd21 624
8caab75f
GU
625 int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
626 int (*transfer_one_message)(struct spi_controller *ctlr,
ffbbdd21 627 struct spi_message *mesg);
8caab75f
GU
628 int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
629 int (*prepare_message)(struct spi_controller *ctlr,
2841a5fc 630 struct spi_message *message);
8caab75f 631 int (*unprepare_message)(struct spi_controller *ctlr,
2841a5fc 632 struct spi_message *message);
8caab75f 633 int (*slave_abort)(struct spi_controller *ctlr);
49834de2 634
b158935f
MB
635 /*
636 * These hooks are for drivers that use a generic implementation
883c36a3 637 * of transfer_one_message() provided by the core.
b158935f
MB
638 */
639 void (*set_cs)(struct spi_device *spi, bool enable);
8caab75f 640 int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
b158935f 641 struct spi_transfer *transfer);
8caab75f 642 void (*handle_err)(struct spi_controller *ctlr,
b716c4ff 643 struct spi_message *message);
b158935f 644
c36ff266
BB
645 /* Optimized handlers for SPI memory-like operations. */
646 const struct spi_controller_mem_ops *mem_ops;
647
74317984
JCPV
648 /* gpio chip select */
649 int *cs_gpios;
f3186dd8
LW
650 struct gpio_desc **cs_gpiods;
651 bool use_gpio_descriptors;
35f3f850
AS
652 s8 unused_native_cs;
653 s8 max_native_cs;
99adef31 654
eca2ebc7
MS
655 /* statistics */
656 struct spi_statistics statistics;
657
99adef31
MB
658 /* DMA channels for use with core dmaengine helpers */
659 struct dma_chan *dma_tx;
660 struct dma_chan *dma_rx;
3a2eba9b
MB
661
662 /* dummy data for full duplex devices */
663 void *dummy_rx;
664 void *dummy_tx;
a0a90718 665
8caab75f 666 int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
b42faeee
VO
667
668 /*
669 * Driver sets this field to indicate it is able to snapshot SPI
670 * transfers (needed e.g. for reading the time of POSIX clocks)
671 */
672 bool ptp_sts_supported;
673
674 /* Interrupt enable state during PTP system timestamping */
675 unsigned long irq_flags;
8ae12a0d
DB
676};
677
8caab75f 678static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
0c868461 679{
8caab75f 680 return dev_get_drvdata(&ctlr->dev);
0c868461
DB
681}
682
8caab75f
GU
683static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
684 void *data)
0c868461 685{
8caab75f 686 dev_set_drvdata(&ctlr->dev, data);
0c868461
DB
687}
688
8caab75f 689static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
0c868461 690{
8caab75f 691 if (!ctlr || !get_device(&ctlr->dev))
0c868461 692 return NULL;
8caab75f 693 return ctlr;
0c868461
DB
694}
695
8caab75f 696static inline void spi_controller_put(struct spi_controller *ctlr)
0c868461 697{
8caab75f
GU
698 if (ctlr)
699 put_device(&ctlr->dev);
0c868461
DB
700}
701
8caab75f 702static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
6c364062
GU
703{
704 return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
705}
706
ffbbdd21 707/* PM calls that need to be issued by the driver */
8caab75f
GU
708extern int spi_controller_suspend(struct spi_controller *ctlr);
709extern int spi_controller_resume(struct spi_controller *ctlr);
ffbbdd21
LW
710
711/* Calls the driver make to interact with the message queue */
8caab75f
GU
712extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
713extern void spi_finalize_current_message(struct spi_controller *ctlr);
714extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
0c868461 715
b42faeee
VO
716/* Helper calls for driver to timestamp transfer */
717void spi_take_timestamp_pre(struct spi_controller *ctlr,
718 struct spi_transfer *xfer,
862dd2a9 719 size_t progress, bool irqs_off);
b42faeee
VO
720void spi_take_timestamp_post(struct spi_controller *ctlr,
721 struct spi_transfer *xfer,
862dd2a9 722 size_t progress, bool irqs_off);
b42faeee 723
8caab75f
GU
724/* the spi driver core manages memory for the spi_controller classdev */
725extern struct spi_controller *__spi_alloc_controller(struct device *host,
726 unsigned int size, bool slave);
6c364062 727
8caab75f
GU
728static inline struct spi_controller *spi_alloc_master(struct device *host,
729 unsigned int size)
6c364062
GU
730{
731 return __spi_alloc_controller(host, size, false);
732}
733
8caab75f
GU
734static inline struct spi_controller *spi_alloc_slave(struct device *host,
735 unsigned int size)
6c364062
GU
736{
737 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
738 return NULL;
739
740 return __spi_alloc_controller(host, size, true);
741}
8ae12a0d 742
5e844cc3
LW
743struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
744 unsigned int size,
745 bool slave);
746
747static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
748 unsigned int size)
749{
750 return __devm_spi_alloc_controller(dev, size, false);
751}
752
753static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
754 unsigned int size)
755{
756 if (!IS_ENABLED(CONFIG_SPI_SLAVE))
757 return NULL;
758
759 return __devm_spi_alloc_controller(dev, size, true);
760}
761
8caab75f
GU
762extern int spi_register_controller(struct spi_controller *ctlr);
763extern int devm_spi_register_controller(struct device *dev,
764 struct spi_controller *ctlr);
765extern void spi_unregister_controller(struct spi_controller *ctlr);
8ae12a0d 766
8caab75f 767extern struct spi_controller *spi_busnum_to_master(u16 busnum);
e6e21f7a
SB
768#if IS_ENABLED(CONFIG_ACPI)
769extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
650ecfa8
SB
770 struct acpi_device *adev,
771 int index);
b37573ba 772int acpi_spi_count_resources(struct acpi_device *adev);
e6e21f7a 773#endif
8ae12a0d 774
d780c371
MS
775/*
776 * SPI resource management while processing a SPI message
777 */
778
8caab75f 779typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
d6497816
MS
780 struct spi_message *msg,
781 void *res);
782
d780c371
MS
783/**
784 * struct spi_res - spi resource management structure
785 * @entry: list entry
786 * @release: release code called prior to freeing this resource
787 * @data: extra data allocated for the specific use-case
788 *
789 * this is based on ideas from devres, but focused on life-cycle
790 * management during spi_message processing
791 */
d780c371
MS
792struct spi_res {
793 struct list_head entry;
794 spi_res_release_t release;
795 unsigned long long data[]; /* guarantee ull alignment */
796};
797
798extern void *spi_res_alloc(struct spi_device *spi,
799 spi_res_release_t release,
800 size_t size, gfp_t gfp);
801extern void spi_res_add(struct spi_message *message, void *res);
802extern void spi_res_free(void *res);
803
8caab75f 804extern void spi_res_release(struct spi_controller *ctlr,
d780c371
MS
805 struct spi_message *message);
806
8ae12a0d
DB
807/*---------------------------------------------------------------------------*/
808
809/*
810 * I/O INTERFACE between SPI controller and protocol drivers
811 *
812 * Protocol drivers use a queue of spi_messages, each transferring data
813 * between the controller and memory buffers.
814 *
815 * The spi_messages themselves consist of a series of read+write transfer
816 * segments. Those segments always read the same number of bits as they
817 * write; but one or the other is easily ignored by passing a null buffer
818 * pointer. (This is unlike most types of I/O API, because SPI hardware
819 * is full duplex.)
820 *
821 * NOTE: Allocation of spi_transfer and spi_message memory is entirely
822 * up to the protocol driver, which guarantees the integrity of both (as
823 * well as the data buffers) for as long as the message is queued.
824 */
825
826/**
827 * struct spi_transfer - a read/write buffer pair
8275c642
VW
828 * @tx_buf: data to be written (dma-safe memory), or NULL
829 * @rx_buf: data to be read (dma-safe memory), or NULL
33e34dc6
DB
830 * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
831 * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
e227867f 832 * @tx_nbits: number of bits used for writing. If 0 the default
f477b7fb 833 * (SPI_NBITS_SINGLE) is used.
834 * @rx_nbits: number of bits used for reading. If 0 the default
835 * (SPI_NBITS_SINGLE) is used.
8ae12a0d 836 * @len: size of rx and tx buffers (in bytes)
025dfdaf 837 * @speed_hz: Select a speed other than the device default for this
33e34dc6 838 * transfer. If 0 the default (from @spi_device) is used.
025dfdaf 839 * @bits_per_word: select a bits_per_word other than the device default
33e34dc6 840 * for this transfer. If 0 the default (from @spi_device) is used.
98621ed0 841 * @dummy_data: indicates transfer is dummy bytes transfer.
8ae12a0d 842 * @cs_change: affects chipselect after this transfer completes
0ff2de8b
MS
843 * @cs_change_delay: delay between cs deassert and assert when
844 * @cs_change is set and @spi_transfer is not the last in @spi_message
bebcfd27
AA
845 * @delay: delay to be introduced after this transfer before
846 * (optionally) changing the chipselect status, then starting
847 * the next transfer or completing this @spi_message.
84593a13 848 * @word_delay: inter word delay to be introduced after each word size
eeaceb8b 849 * (set by bits_per_word) transmission.
5d7e2b5e
MS
850 * @effective_speed_hz: the effective SCK-speed that was used to
851 * transfer this transfer. Set to 0 if the spi bus driver does
852 * not support it.
33e34dc6 853 * @transfer_list: transfers are sequenced through @spi_message.transfers
6ad45a27
MB
854 * @tx_sg: Scatterlist for transmit, currently not for client use
855 * @rx_sg: Scatterlist for receive, currently not for client use
b42faeee
VO
856 * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
857 * within @tx_buf for which the SPI device is requesting that the time
858 * snapshot for this transfer begins. Upon completing the SPI transfer,
859 * this value may have changed compared to what was requested, depending
860 * on the available snapshotting resolution (DMA transfer,
861 * @ptp_sts_supported is false, etc).
862 * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
863 * that a single byte should be snapshotted).
864 * If the core takes care of the timestamp (if @ptp_sts_supported is false
865 * for this controller), it will set @ptp_sts_word_pre to 0, and
866 * @ptp_sts_word_post to the length of the transfer. This is done
867 * purposefully (instead of setting to spi_transfer->len - 1) to denote
868 * that a transfer-level snapshot taken from within the driver may still
869 * be of higher quality.
870 * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
871 * PTP system timestamp structure may lie. If drivers use PIO or their
872 * hardware has some sort of assist for retrieving exact transfer timing,
873 * they can (and should) assert @ptp_sts_supported and populate this
874 * structure using the ptp_read_system_*ts helper functions.
875 * The timestamp must represent the time at which the SPI slave device has
876 * processed the word, i.e. the "pre" timestamp should be taken before
877 * transmitting the "pre" word, and the "post" timestamp after receiving
878 * transmit confirmation from the controller for the "post" word.
cfd97f94 879 * @timestamped: true if the transfer has been timestamped
809b1b04 880 * @error: Error status logged by spi controller driver.
8ae12a0d
DB
881 *
882 * SPI transfers always write the same number of bytes as they read.
33e34dc6 883 * Protocol drivers should always provide @rx_buf and/or @tx_buf.
8ae12a0d
DB
884 * In some cases, they may also want to provide DMA addresses for
885 * the data being transferred; that may reduce overhead, when the
886 * underlying driver uses dma.
887 *
4b1badf5 888 * If the transmit buffer is null, zeroes will be shifted out
33e34dc6 889 * while filling @rx_buf. If the receive buffer is null, the data
8275c642
VW
890 * shifted in will be discarded. Only "len" bytes shift out (or in).
891 * It's an error to try to shift out a partial word. (For example, by
892 * shifting out three bytes with word size of sixteen or twenty bits;
893 * the former uses two bytes per word, the latter uses four bytes.)
894 *
80224561
DB
895 * In-memory data values are always in native CPU byte order, translated
896 * from the wire byte order (big-endian except with SPI_LSB_FIRST). So
897 * for example when bits_per_word is sixteen, buffers are 2N bytes long
33e34dc6 898 * (@len = 2N) and hold N sixteen bit words in CPU byte order.
80224561
DB
899 *
900 * When the word size of the SPI transfer is not a power-of-two multiple
901 * of eight bits, those in-memory words include extra bits. In-memory
902 * words are always seen by protocol drivers as right-justified, so the
903 * undefined (rx) or unused (tx) bits are always the most significant bits.
904 *
8275c642
VW
905 * All SPI transfers start with the relevant chipselect active. Normally
906 * it stays selected until after the last transfer in a message. Drivers
33e34dc6 907 * can affect the chipselect signal using cs_change.
8ae12a0d
DB
908 *
909 * (i) If the transfer isn't the last one in the message, this flag is
910 * used to make the chipselect briefly go inactive in the middle of the
911 * message. Toggling chipselect in this way may be needed to terminate
912 * a chip command, letting a single spi_message perform all of group of
913 * chip transactions together.
914 *
915 * (ii) When the transfer is the last one in the message, the chip may
f5a9c77d
DB
916 * stay selected until the next transfer. On multi-device SPI busses
917 * with nothing blocking messages going to other devices, this is just
918 * a performance hint; starting a message to another device deselects
919 * this one. But in other cases, this can be used to ensure correctness.
920 * Some devices need protocol transactions to be built from a series of
921 * spi_message submissions, where the content of one message is determined
922 * by the results of previous messages and where the whole transaction
923 * ends when the chipselect goes intactive.
0c868461 924 *
e227867f 925 * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
f477b7fb 926 * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
927 * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
928 * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
929 *
0c868461
DB
930 * The code that submits an spi_message (and its spi_transfers)
931 * to the lower layers is responsible for managing its memory.
932 * Zero-initialize every field you don't set up explicitly, to
8275c642
VW
933 * insulate against future API updates. After you submit a message
934 * and its transfers, ignore them until its completion callback.
8ae12a0d
DB
935 */
936struct spi_transfer {
937 /* it's ok if tx_buf == rx_buf (right?)
938 * for MicroWire, one buffer must be null
0c868461
DB
939 * buffers must work with dma_*map_single() calls, unless
940 * spi_message.is_dma_mapped reports a pre-existing mapping
8ae12a0d
DB
941 */
942 const void *tx_buf;
943 void *rx_buf;
944 unsigned len;
945
946 dma_addr_t tx_dma;
947 dma_addr_t rx_dma;
6ad45a27
MB
948 struct sg_table tx_sg;
949 struct sg_table rx_sg;
8ae12a0d 950
98621ed0 951 unsigned dummy_data:1;
8ae12a0d 952 unsigned cs_change:1;
d3fbd457
MB
953 unsigned tx_nbits:3;
954 unsigned rx_nbits:3;
f477b7fb 955#define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
956#define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
957#define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
4cff33f9 958 u8 bits_per_word;
bebcfd27 959 struct spi_delay delay;
329f0dac 960 struct spi_delay cs_change_delay;
84593a13 961 struct spi_delay word_delay;
4cff33f9 962 u32 speed_hz;
8275c642 963
5d7e2b5e
MS
964 u32 effective_speed_hz;
965
b42faeee
VO
966 unsigned int ptp_sts_word_pre;
967 unsigned int ptp_sts_word_post;
968
969 struct ptp_system_timestamp *ptp_sts;
970
6a726824 971 bool timestamped;
b42faeee 972
8275c642 973 struct list_head transfer_list;
809b1b04
RG
974
975#define SPI_TRANS_FAIL_NO_START BIT(0)
976 u16 error;
8ae12a0d
DB
977};
978
979/**
980 * struct spi_message - one multi-segment SPI transaction
8275c642 981 * @transfers: list of transfer segments in this transaction
8ae12a0d
DB
982 * @spi: SPI device to which the transaction is queued
983 * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
984 * addresses for each transfer buffer
985 * @complete: called to report transaction completions
986 * @context: the argument to complete() when it's called
2c675689 987 * @frame_length: the total number of bytes in the message
b885244e
DB
988 * @actual_length: the total number of bytes that were transferred in all
989 * successful segments
8ae12a0d
DB
990 * @status: zero for success, else negative errno
991 * @queue: for use by whichever driver currently owns the message
992 * @state: for use by whichever driver currently owns the message
d780c371 993 * @resources: for resource management when the spi message is processed
0c868461 994 *
33e34dc6 995 * A @spi_message is used to execute an atomic sequence of data transfers,
8275c642
VW
996 * each represented by a struct spi_transfer. The sequence is "atomic"
997 * in the sense that no other spi_message may use that SPI bus until that
998 * sequence completes. On some systems, many such sequences can execute as
2ae3de10 999 * a single programmed DMA transfer. On all systems, these messages are
8275c642 1000 * queued, and might complete after transactions to other devices. Messages
c6331ba3 1001 * sent to a given spi_device are always executed in FIFO order.
8275c642 1002 *
0c868461
DB
1003 * The code that submits an spi_message (and its spi_transfers)
1004 * to the lower layers is responsible for managing its memory.
1005 * Zero-initialize every field you don't set up explicitly, to
8275c642
VW
1006 * insulate against future API updates. After you submit a message
1007 * and its transfers, ignore them until its completion callback.
8ae12a0d
DB
1008 */
1009struct spi_message {
747d844e 1010 struct list_head transfers;
8ae12a0d
DB
1011
1012 struct spi_device *spi;
1013
1014 unsigned is_dma_mapped:1;
1015
1016 /* REVISIT: we might want a flag affecting the behavior of the
1017 * last transfer ... allowing things like "read 16 bit length L"
1018 * immediately followed by "read L bytes". Basically imposing
1019 * a specific message scheduling algorithm.
1020 *
1021 * Some controller drivers (message-at-a-time queue processing)
1022 * could provide that as their default scheduling algorithm. But
b885244e 1023 * others (with multi-message pipelines) could need a flag to
8ae12a0d
DB
1024 * tell them about such special cases.
1025 */
1026
1027 /* completion is reported through a callback */
747d844e 1028 void (*complete)(void *context);
8ae12a0d 1029 void *context;
078726ce 1030 unsigned frame_length;
8ae12a0d
DB
1031 unsigned actual_length;
1032 int status;
1033
1034 /* for optional use by whatever driver currently owns the
1035 * spi_message ... between calls to spi_async and then later
8caab75f 1036 * complete(), that's the spi_controller controller driver.
8ae12a0d
DB
1037 */
1038 struct list_head queue;
1039 void *state;
d780c371
MS
1040
1041 /* list of spi_res reources when the spi message is processed */
1042 struct list_head resources;
8ae12a0d
DB
1043};
1044
49ddedf3
MS
1045static inline void spi_message_init_no_memset(struct spi_message *m)
1046{
1047 INIT_LIST_HEAD(&m->transfers);
d780c371 1048 INIT_LIST_HEAD(&m->resources);
49ddedf3
MS
1049}
1050
8275c642
VW
1051static inline void spi_message_init(struct spi_message *m)
1052{
1053 memset(m, 0, sizeof *m);
49ddedf3 1054 spi_message_init_no_memset(m);
8275c642
VW
1055}
1056
1057static inline void
1058spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1059{
1060 list_add_tail(&t->transfer_list, &m->transfers);
1061}
1062
1063static inline void
1064spi_transfer_del(struct spi_transfer *t)
1065{
1066 list_del(&t->transfer_list);
1067}
1068
bebcfd27
AA
1069static inline int
1070spi_transfer_delay_exec(struct spi_transfer *t)
1071{
bebcfd27
AA
1072 return spi_delay_exec(&t->delay, t);
1073}
1074
6d9eecd4
LPC
1075/**
1076 * spi_message_init_with_transfers - Initialize spi_message and append transfers
1077 * @m: spi_message to be initialized
1078 * @xfers: An array of spi transfers
1079 * @num_xfers: Number of items in the xfer array
1080 *
1081 * This function initializes the given spi_message and adds each spi_transfer in
1082 * the given array to the message.
1083 */
1084static inline void
1085spi_message_init_with_transfers(struct spi_message *m,
1086struct spi_transfer *xfers, unsigned int num_xfers)
1087{
1088 unsigned int i;
1089
1090 spi_message_init(m);
1091 for (i = 0; i < num_xfers; ++i)
1092 spi_message_add_tail(&xfers[i], m);
1093}
1094
0c868461
DB
1095/* It's fine to embed message and transaction structures in other data
1096 * structures so long as you don't free them while they're in use.
1097 */
1098
1099static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1100{
1101 struct spi_message *m;
1102
1103 m = kzalloc(sizeof(struct spi_message)
1104 + ntrans * sizeof(struct spi_transfer),
1105 flags);
1106 if (m) {
8f53602b 1107 unsigned i;
8275c642
VW
1108 struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1109
ed77d6bc 1110 spi_message_init_no_memset(m);
8275c642
VW
1111 for (i = 0; i < ntrans; i++, t++)
1112 spi_message_add_tail(t, m);
0c868461
DB
1113 }
1114 return m;
1115}
1116
1117static inline void spi_message_free(struct spi_message *m)
1118{
1119 kfree(m);
1120}
1121
7d077197 1122extern int spi_setup(struct spi_device *spi);
568d0697 1123extern int spi_async(struct spi_device *spi, struct spi_message *message);
cf32b71e
ES
1124extern int spi_async_locked(struct spi_device *spi,
1125 struct spi_message *message);
6c364062 1126extern int spi_slave_abort(struct spi_device *spi);
8ae12a0d 1127
4acad4aa 1128static inline size_t
5090cc6a 1129spi_max_message_size(struct spi_device *spi)
4acad4aa 1130{
8caab75f
GU
1131 struct spi_controller *ctlr = spi->controller;
1132
1133 if (!ctlr->max_message_size)
4acad4aa 1134 return SIZE_MAX;
8caab75f 1135 return ctlr->max_message_size(spi);
5090cc6a
HK
1136}
1137
1138static inline size_t
1139spi_max_transfer_size(struct spi_device *spi)
1140{
8caab75f 1141 struct spi_controller *ctlr = spi->controller;
5090cc6a
HK
1142 size_t tr_max = SIZE_MAX;
1143 size_t msg_max = spi_max_message_size(spi);
1144
8caab75f
GU
1145 if (ctlr->max_transfer_size)
1146 tr_max = ctlr->max_transfer_size(spi);
5090cc6a
HK
1147
1148 /* transfer size limit must not be greater than messsage size limit */
1149 return min(tr_max, msg_max);
4acad4aa
MS
1150}
1151
e6f3f7e4
NT
1152/**
1153 * spi_is_bpw_supported - Check if bits per word is supported
1154 * @spi: SPI device
1155 * @bpw: Bits per word
1156 *
1157 * This function checks to see if the SPI controller supports @bpw.
1158 *
1159 * Returns:
1160 * True if @bpw is supported, false otherwise.
1161 */
1162static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1163{
1164 u32 bpw_mask = spi->master->bits_per_word_mask;
1165
1166 if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1167 return true;
1168
1169 return false;
1170}
1171
8ae12a0d
DB
1172/*---------------------------------------------------------------------------*/
1173
523baf5a
MS
1174/* SPI transfer replacement methods which make use of spi_res */
1175
c76d9ae4 1176struct spi_replaced_transfers;
8caab75f 1177typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
c76d9ae4
JMC
1178 struct spi_message *msg,
1179 struct spi_replaced_transfers *res);
523baf5a
MS
1180/**
1181 * struct spi_replaced_transfers - structure describing the spi_transfer
1182 * replacements that have occurred
1183 * so that they can get reverted
1184 * @release: some extra release code to get executed prior to
1185 * relasing this structure
1186 * @extradata: pointer to some extra data if requested or NULL
1187 * @replaced_transfers: transfers that have been replaced and which need
1188 * to get restored
1189 * @replaced_after: the transfer after which the @replaced_transfers
1190 * are to get re-inserted
1191 * @inserted: number of transfers inserted
1192 * @inserted_transfers: array of spi_transfers of array-size @inserted,
1193 * that have been replacing replaced_transfers
1194 *
1195 * note: that @extradata will point to @inserted_transfers[@inserted]
1196 * if some extra allocation is requested, so alignment will be the same
1197 * as for spi_transfers
1198 */
523baf5a
MS
1199struct spi_replaced_transfers {
1200 spi_replaced_release_t release;
1201 void *extradata;
1202 struct list_head replaced_transfers;
1203 struct list_head *replaced_after;
1204 size_t inserted;
1205 struct spi_transfer inserted_transfers[];
1206};
1207
1208extern struct spi_replaced_transfers *spi_replace_transfers(
1209 struct spi_message *msg,
1210 struct spi_transfer *xfer_first,
1211 size_t remove,
1212 size_t insert,
1213 spi_replaced_release_t release,
1214 size_t extradatasize,
1215 gfp_t gfp);
1216
1217/*---------------------------------------------------------------------------*/
1218
d9f12122
MS
1219/* SPI transfer transformation methods */
1220
8caab75f 1221extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
d9f12122
MS
1222 struct spi_message *msg,
1223 size_t maxsize,
1224 gfp_t gfp);
1225
1226/*---------------------------------------------------------------------------*/
1227
8ae12a0d
DB
1228/* All these synchronous SPI transfer routines are utilities layered
1229 * over the core async transfer primitive. Here, "synchronous" means
1230 * they will sleep uninterruptibly until the async transfer completes.
1231 */
1232
1233extern int spi_sync(struct spi_device *spi, struct spi_message *message);
cf32b71e 1234extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
8caab75f
GU
1235extern int spi_bus_lock(struct spi_controller *ctlr);
1236extern int spi_bus_unlock(struct spi_controller *ctlr);
8ae12a0d 1237
323117ab
GU
1238/**
1239 * spi_sync_transfer - synchronous SPI data transfer
1240 * @spi: device with which data will be exchanged
1241 * @xfers: An array of spi_transfers
1242 * @num_xfers: Number of items in the xfer array
1243 * Context: can sleep
1244 *
1245 * Does a synchronous SPI data transfer of the given spi_transfer array.
1246 *
1247 * For more specific semantics see spi_sync().
1248 *
2ae3de10 1249 * Return: zero on success, else a negative error code.
323117ab
GU
1250 */
1251static inline int
1252spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1253 unsigned int num_xfers)
1254{
1255 struct spi_message msg;
1256
1257 spi_message_init_with_transfers(&msg, xfers, num_xfers);
1258
1259 return spi_sync(spi, &msg);
1260}
1261
8ae12a0d
DB
1262/**
1263 * spi_write - SPI synchronous write
1264 * @spi: device to which data will be written
1265 * @buf: data buffer
1266 * @len: data buffer size
33e34dc6 1267 * Context: can sleep
8ae12a0d 1268 *
a1fdeaa7 1269 * This function writes the buffer @buf.
8ae12a0d 1270 * Callable only from contexts that can sleep.
a1fdeaa7
JMC
1271 *
1272 * Return: zero on success, else a negative error code.
8ae12a0d
DB
1273 */
1274static inline int
0c4a1590 1275spi_write(struct spi_device *spi, const void *buf, size_t len)
8ae12a0d
DB
1276{
1277 struct spi_transfer t = {
1278 .tx_buf = buf,
8ae12a0d 1279 .len = len,
8ae12a0d
DB
1280 };
1281
323117ab 1282 return spi_sync_transfer(spi, &t, 1);
8ae12a0d
DB
1283}
1284
1285/**
1286 * spi_read - SPI synchronous read
1287 * @spi: device from which data will be read
1288 * @buf: data buffer
1289 * @len: data buffer size
33e34dc6 1290 * Context: can sleep
8ae12a0d 1291 *
a1fdeaa7 1292 * This function reads the buffer @buf.
8ae12a0d 1293 * Callable only from contexts that can sleep.
a1fdeaa7
JMC
1294 *
1295 * Return: zero on success, else a negative error code.
8ae12a0d
DB
1296 */
1297static inline int
0c4a1590 1298spi_read(struct spi_device *spi, void *buf, size_t len)
8ae12a0d
DB
1299{
1300 struct spi_transfer t = {
8ae12a0d
DB
1301 .rx_buf = buf,
1302 .len = len,
8ae12a0d
DB
1303 };
1304
323117ab 1305 return spi_sync_transfer(spi, &t, 1);
6d9eecd4
LPC
1306}
1307
0c868461 1308/* this copies txbuf and rxbuf data; for small transfers only! */
8ae12a0d 1309extern int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1310 const void *txbuf, unsigned n_tx,
1311 void *rxbuf, unsigned n_rx);
8ae12a0d
DB
1312
1313/**
1314 * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1315 * @spi: device with which data will be exchanged
1316 * @cmd: command to be written before data is read back
33e34dc6 1317 * Context: can sleep
8ae12a0d 1318 *
a1fdeaa7
JMC
1319 * Callable only from contexts that can sleep.
1320 *
1321 * Return: the (unsigned) eight bit number returned by the
1322 * device, or else a negative error code.
8ae12a0d
DB
1323 */
1324static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1325{
1326 ssize_t status;
1327 u8 result;
1328
1329 status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1330
1331 /* return negative errno or unsigned value */
1332 return (status < 0) ? status : result;
1333}
1334
1335/**
1336 * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1337 * @spi: device with which data will be exchanged
1338 * @cmd: command to be written before data is read back
33e34dc6 1339 * Context: can sleep
8ae12a0d 1340 *
8ae12a0d
DB
1341 * The number is returned in wire-order, which is at least sometimes
1342 * big-endian.
a1fdeaa7
JMC
1343 *
1344 * Callable only from contexts that can sleep.
1345 *
1346 * Return: the (unsigned) sixteen bit number returned by the
1347 * device, or else a negative error code.
8ae12a0d
DB
1348 */
1349static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1350{
1351 ssize_t status;
1352 u16 result;
1353
269ccca8 1354 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
8ae12a0d
DB
1355
1356 /* return negative errno or unsigned value */
1357 return (status < 0) ? status : result;
1358}
1359
05071aa8
LPC
1360/**
1361 * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1362 * @spi: device with which data will be exchanged
1363 * @cmd: command to be written before data is read back
1364 * Context: can sleep
1365 *
05071aa8
LPC
1366 * This function is similar to spi_w8r16, with the exception that it will
1367 * convert the read 16 bit data word from big-endian to native endianness.
1368 *
a1fdeaa7
JMC
1369 * Callable only from contexts that can sleep.
1370 *
1371 * Return: the (unsigned) sixteen bit number returned by the device in cpu
1372 * endianness, or else a negative error code.
05071aa8
LPC
1373 */
1374static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1375
1376{
1377 ssize_t status;
1378 __be16 result;
1379
1380 status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1381 if (status < 0)
1382 return status;
1383
1384 return be16_to_cpu(result);
1385}
1386
8ae12a0d
DB
1387/*---------------------------------------------------------------------------*/
1388
1389/*
1390 * INTERFACE between board init code and SPI infrastructure.
1391 *
1392 * No SPI driver ever sees these SPI device table segments, but
1393 * it's how the SPI core (or adapters that get hotplugged) grows
1394 * the driver model tree.
1395 *
1396 * As a rule, SPI devices can't be probed. Instead, board init code
1397 * provides a table listing the devices which are present, with enough
1398 * information to bind and set up the device's driver. There's basic
1399 * support for nonstatic configurations too; enough to handle adding
1400 * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1401 */
1402
2604288f
DB
1403/**
1404 * struct spi_board_info - board-specific template for a SPI device
1405 * @modalias: Initializes spi_device.modalias; identifies the driver.
1406 * @platform_data: Initializes spi_device.platform_data; the particular
1407 * data stored there is driver-specific.
47afc77b 1408 * @swnode: Software node for the device.
2604288f
DB
1409 * @controller_data: Initializes spi_device.controller_data; some
1410 * controllers need hints about hardware setup, e.g. for DMA.
1411 * @irq: Initializes spi_device.irq; depends on how the board is wired.
1412 * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1413 * from the chip datasheet and board-specific signal quality issues.
8caab75f 1414 * @bus_num: Identifies which spi_controller parents the spi_device; unused
2604288f
DB
1415 * by spi_new_device(), and otherwise depends on board wiring.
1416 * @chip_select: Initializes spi_device.chip_select; depends on how
1417 * the board is wired.
1418 * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1419 * wiring (some devices support both 3WIRE and standard modes), and
1420 * possibly presence of an inverter in the chipselect path.
1421 *
1422 * When adding new SPI devices to the device tree, these structures serve
1423 * as a partial device template. They hold information which can't always
1424 * be determined by drivers. Information that probe() can establish (such
1425 * as the default transfer wordsize) is not included here.
1426 *
1427 * These structures are used in two places. Their primary role is to
1428 * be stored in tables of board-specific device descriptors, which are
1429 * declared early in board initialization and then used (much later) to
1430 * populate a controller's device tree after the that controller's driver
1431 * initializes. A secondary (and atypical) role is as a parameter to
1432 * spi_new_device() call, which happens after those controller drivers
1433 * are active in some dynamic board configuration models.
1434 */
8ae12a0d
DB
1435struct spi_board_info {
1436 /* the device name and module name are coupled, like platform_bus;
1437 * "modalias" is normally the driver name.
1438 *
1439 * platform_data goes to spi_device.dev.platform_data,
b885244e 1440 * controller_data goes to spi_device.controller_data,
8ae12a0d
DB
1441 * irq is copied too
1442 */
75368bf6 1443 char modalias[SPI_NAME_SIZE];
8ae12a0d 1444 const void *platform_data;
47afc77b 1445 const struct software_node *swnode;
b885244e 1446 void *controller_data;
8ae12a0d
DB
1447 int irq;
1448
1449 /* slower signaling on noisy or low voltage boards */
1450 u32 max_speed_hz;
1451
1452
1453 /* bus_num is board specific and matches the bus_num of some
8caab75f 1454 * spi_controller that will probably be registered later.
8ae12a0d
DB
1455 *
1456 * chip_select reflects how this chip is wired to that master;
1457 * it's less than num_chipselect.
1458 */
1459 u16 bus_num;
1460 u16 chip_select;
1461
980a01c9
DB
1462 /* mode becomes spi_device.mode, and is essential for chips
1463 * where the default of SPI_CS_HIGH = 0 is wrong.
1464 */
937e6d75 1465 u32 mode;
980a01c9 1466
8ae12a0d
DB
1467 /* ... may need additional spi_device chip config data here.
1468 * avoid stuff protocol drivers can set; but include stuff
1469 * needed to behave without being bound to a driver:
8ae12a0d
DB
1470 * - quirks like clock rate mattering when not selected
1471 */
1472};
1473
1474#ifdef CONFIG_SPI
1475extern int
1476spi_register_board_info(struct spi_board_info const *info, unsigned n);
1477#else
1478/* board init code may ignore whether SPI is configured or not */
1479static inline int
1480spi_register_board_info(struct spi_board_info const *info, unsigned n)
1481 { return 0; }
1482#endif
1483
8ae12a0d 1484/* If you're hotplugging an adapter with devices (parport, usb, etc)
0c868461
DB
1485 * use spi_new_device() to describe each device. You can also call
1486 * spi_unregister_device() to start making that device vanish, but
8caab75f 1487 * normally that would be handled by spi_unregister_controller().
dc87c98e
GL
1488 *
1489 * You can also use spi_alloc_device() and spi_add_device() to use a two
1490 * stage registration sequence for each spi_device. This gives the caller
1491 * some more control over the spi_device structure before it is registered,
1492 * but requires that caller to initialize fields that would otherwise
1493 * be defined using the board info.
8ae12a0d 1494 */
dc87c98e 1495extern struct spi_device *
8caab75f 1496spi_alloc_device(struct spi_controller *ctlr);
dc87c98e
GL
1497
1498extern int
1499spi_add_device(struct spi_device *spi);
1500
8ae12a0d 1501extern struct spi_device *
8caab75f 1502spi_new_device(struct spi_controller *, struct spi_board_info *);
8ae12a0d 1503
3b1884c2 1504extern void spi_unregister_device(struct spi_device *spi);
8ae12a0d 1505
75368bf6
AV
1506extern const struct spi_device_id *
1507spi_get_device_id(const struct spi_device *sdev);
1508
b671358a 1509static inline bool
8caab75f 1510spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
b671358a 1511{
8caab75f 1512 return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
b671358a
BG
1513}
1514
5f143af7
MF
1515/* OF support code */
1516#if IS_ENABLED(CONFIG_OF)
1517
1518/* must call put_device() when done with returned spi_device device */
1519extern struct spi_device *
1520of_find_spi_device_by_node(struct device_node *node);
1521
1522#else
1523
1524static inline struct spi_device *
1525of_find_spi_device_by_node(struct device_node *node)
1526{
1527 return NULL;
1528}
1529
1530#endif /* IS_ENABLED(CONFIG_OF) */
8caab75f
GU
1531
1532/* Compatibility layer */
1533#define spi_master spi_controller
1534
1535#define SPI_MASTER_HALF_DUPLEX SPI_CONTROLLER_HALF_DUPLEX
1536#define SPI_MASTER_NO_RX SPI_CONTROLLER_NO_RX
1537#define SPI_MASTER_NO_TX SPI_CONTROLLER_NO_TX
1538#define SPI_MASTER_MUST_RX SPI_CONTROLLER_MUST_RX
1539#define SPI_MASTER_MUST_TX SPI_CONTROLLER_MUST_TX
1540
1541#define spi_master_get_devdata(_ctlr) spi_controller_get_devdata(_ctlr)
1542#define spi_master_set_devdata(_ctlr, _data) \
1543 spi_controller_set_devdata(_ctlr, _data)
1544#define spi_master_get(_ctlr) spi_controller_get(_ctlr)
1545#define spi_master_put(_ctlr) spi_controller_put(_ctlr)
1546#define spi_master_suspend(_ctlr) spi_controller_suspend(_ctlr)
1547#define spi_master_resume(_ctlr) spi_controller_resume(_ctlr)
1548
1549#define spi_register_master(_ctlr) spi_register_controller(_ctlr)
1550#define devm_spi_register_master(_dev, _ctlr) \
1551 devm_spi_register_controller(_dev, _ctlr)
1552#define spi_unregister_master(_ctlr) spi_unregister_controller(_ctlr)
1553
8ae12a0d 1554#endif /* __LINUX_SPI_H */