]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/xarray.h
xarray: Add range store functionality
[mirror_ubuntu-jammy-kernel.git] / include / linux / xarray.h
CommitLineData
f6bb2a2c
MW
1/* SPDX-License-Identifier: GPL-2.0+ */
2#ifndef _LINUX_XARRAY_H
3#define _LINUX_XARRAY_H
4/*
5 * eXtensible Arrays
6 * Copyright (c) 2017 Microsoft Corporation
3d0186bb 7 * Author: Matthew Wilcox <willy@infradead.org>
3159f943
MW
8 *
9 * See Documentation/core-api/xarray.rst for how to use the XArray.
f6bb2a2c
MW
10 */
11
3159f943 12#include <linux/bug.h>
f8d5d0cc 13#include <linux/compiler.h>
9b89a035 14#include <linux/gfp.h>
f8d5d0cc 15#include <linux/kconfig.h>
ad3d6c72
MW
16#include <linux/kernel.h>
17#include <linux/rcupdate.h>
f6bb2a2c 18#include <linux/spinlock.h>
3159f943
MW
19#include <linux/types.h>
20
21/*
22 * The bottom two bits of the entry determine how the XArray interprets
23 * the contents:
24 *
25 * 00: Pointer entry
26 * 10: Internal entry
27 * x1: Value entry or tagged pointer
28 *
29 * Attempting to store internal entries in the XArray is a bug.
02c02bf1
MW
30 *
31 * Most internal entries are pointers to the next node in the tree.
32 * The following internal entries have a special meaning:
33 *
34 * 0-62: Sibling entries
9f14d4f1
MW
35 * 256: Zero entry
36 * 257: Retry entry
ad3d6c72
MW
37 *
38 * Errors are also represented as internal entries, but use the negative
39 * space (-4094 to -2). They're never stored in the slots array; only
40 * returned by the normal API.
3159f943
MW
41 */
42
43#define BITS_PER_XA_VALUE (BITS_PER_LONG - 1)
44
45/**
46 * xa_mk_value() - Create an XArray entry from an integer.
47 * @v: Value to store in XArray.
48 *
49 * Context: Any context.
50 * Return: An entry suitable for storing in the XArray.
51 */
52static inline void *xa_mk_value(unsigned long v)
53{
54 WARN_ON((long)v < 0);
55 return (void *)((v << 1) | 1);
56}
57
58/**
59 * xa_to_value() - Get value stored in an XArray entry.
60 * @entry: XArray entry.
61 *
62 * Context: Any context.
63 * Return: The value stored in the XArray entry.
64 */
65static inline unsigned long xa_to_value(const void *entry)
66{
67 return (unsigned long)entry >> 1;
68}
69
70/**
71 * xa_is_value() - Determine if an entry is a value.
72 * @entry: XArray entry.
73 *
74 * Context: Any context.
75 * Return: True if the entry is a value, false if it is a pointer.
76 */
77static inline bool xa_is_value(const void *entry)
78{
79 return (unsigned long)entry & 1;
80}
81
82/**
83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
84 * @p: Plain pointer.
85 * @tag: Tag value (0, 1 or 3).
86 *
87 * If the user of the XArray prefers, they can tag their pointers instead
88 * of storing value entries. Three tags are available (0, 1 and 3).
89 * These are distinct from the xa_mark_t as they are not replicated up
90 * through the array and cannot be searched for.
91 *
92 * Context: Any context.
93 * Return: An XArray entry.
94 */
95static inline void *xa_tag_pointer(void *p, unsigned long tag)
96{
97 return (void *)((unsigned long)p | tag);
98}
99
100/**
101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
102 * @entry: XArray entry.
103 *
104 * If you have stored a tagged pointer in the XArray, call this function
105 * to get the untagged version of the pointer.
106 *
107 * Context: Any context.
108 * Return: A pointer.
109 */
110static inline void *xa_untag_pointer(void *entry)
111{
112 return (void *)((unsigned long)entry & ~3UL);
113}
114
115/**
116 * xa_pointer_tag() - Get the tag stored in an XArray entry.
117 * @entry: XArray entry.
118 *
119 * If you have stored a tagged pointer in the XArray, call this function
120 * to get the tag of that pointer.
121 *
122 * Context: Any context.
123 * Return: A tag.
124 */
125static inline unsigned int xa_pointer_tag(void *entry)
126{
127 return (unsigned long)entry & 3UL;
128}
f6bb2a2c 129
02c02bf1
MW
130/*
131 * xa_mk_internal() - Create an internal entry.
132 * @v: Value to turn into an internal entry.
133 *
134 * Context: Any context.
135 * Return: An XArray internal entry corresponding to this value.
136 */
137static inline void *xa_mk_internal(unsigned long v)
138{
139 return (void *)((v << 2) | 2);
140}
141
142/*
143 * xa_to_internal() - Extract the value from an internal entry.
144 * @entry: XArray entry.
145 *
146 * Context: Any context.
147 * Return: The value which was stored in the internal entry.
148 */
149static inline unsigned long xa_to_internal(const void *entry)
150{
151 return (unsigned long)entry >> 2;
152}
153
154/*
155 * xa_is_internal() - Is the entry an internal entry?
156 * @entry: XArray entry.
157 *
158 * Context: Any context.
159 * Return: %true if the entry is an internal entry.
160 */
161static inline bool xa_is_internal(const void *entry)
162{
163 return ((unsigned long)entry & 3) == 2;
164}
165
ad3d6c72
MW
166/**
167 * xa_is_err() - Report whether an XArray operation returned an error
168 * @entry: Result from calling an XArray function
169 *
170 * If an XArray operation cannot complete an operation, it will return
171 * a special value indicating an error. This function tells you
172 * whether an error occurred; xa_err() tells you which error occurred.
173 *
174 * Context: Any context.
175 * Return: %true if the entry indicates an error.
176 */
177static inline bool xa_is_err(const void *entry)
178{
179 return unlikely(xa_is_internal(entry));
180}
181
182/**
183 * xa_err() - Turn an XArray result into an errno.
184 * @entry: Result from calling an XArray function.
185 *
186 * If an XArray operation cannot complete an operation, it will return
187 * a special pointer value which encodes an errno. This function extracts
188 * the errno from the pointer value, or returns 0 if the pointer does not
189 * represent an errno.
190 *
191 * Context: Any context.
192 * Return: A negative errno or 0.
193 */
194static inline int xa_err(void *entry)
195{
196 /* xa_to_internal() would not do sign extension. */
197 if (xa_is_err(entry))
198 return (long)entry >> 2;
199 return 0;
200}
201
9b89a035
MW
202typedef unsigned __bitwise xa_mark_t;
203#define XA_MARK_0 ((__force xa_mark_t)0U)
204#define XA_MARK_1 ((__force xa_mark_t)1U)
205#define XA_MARK_2 ((__force xa_mark_t)2U)
206#define XA_PRESENT ((__force xa_mark_t)8U)
207#define XA_MARK_MAX XA_MARK_2
371c752d 208#define XA_FREE_MARK XA_MARK_0
9b89a035 209
58d6ea30
MW
210enum xa_lock_type {
211 XA_LOCK_IRQ = 1,
212 XA_LOCK_BH = 2,
213};
214
9b89a035
MW
215/*
216 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags,
217 * and we remain compatible with that.
218 */
58d6ea30
MW
219#define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ)
220#define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH)
371c752d 221#define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U)
9b89a035
MW
222#define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
223 (__force unsigned)(mark)))
224
371c752d
MW
225#define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
226
f8d5d0cc
MW
227/**
228 * struct xarray - The anchor of the XArray.
229 * @xa_lock: Lock that protects the contents of the XArray.
230 *
231 * To use the xarray, define it statically or embed it in your data structure.
232 * It is a very small data structure, so it does not usually make sense to
233 * allocate it separately and keep a pointer to it in your data structure.
234 *
235 * You may use the xa_lock to protect your own data structures as well.
236 */
237/*
238 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
239 * If the only non-NULL entry in the array is at index 0, @xa_head is that
240 * entry. If any other entry in the array is non-NULL, @xa_head points
241 * to an @xa_node.
242 */
243struct xarray {
244 spinlock_t xa_lock;
245/* private: The rest of the data structure is not to be used directly. */
246 gfp_t xa_flags;
247 void __rcu * xa_head;
248};
249
250#define XARRAY_INIT(name, flags) { \
251 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \
252 .xa_flags = flags, \
253 .xa_head = NULL, \
254}
255
256/**
257 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
258 * @name: A string that names your XArray.
259 * @flags: XA_FLAG values.
260 *
261 * This is intended for file scope definitions of XArrays. It declares
262 * and initialises an empty XArray with the chosen name and flags. It is
263 * equivalent to calling xa_init_flags() on the array, but it does the
264 * initialisation at compiletime instead of runtime.
265 */
266#define DEFINE_XARRAY_FLAGS(name, flags) \
267 struct xarray name = XARRAY_INIT(name, flags)
268
269/**
270 * DEFINE_XARRAY() - Define an XArray.
271 * @name: A string that names your XArray.
272 *
273 * This is intended for file scope definitions of XArrays. It declares
274 * and initialises an empty XArray with the chosen name. It is equivalent
275 * to calling xa_init() on the array, but it does the initialisation at
276 * compiletime instead of runtime.
277 */
278#define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
279
371c752d
MW
280/**
281 * DEFINE_XARRAY_ALLOC() - Define an XArray which can allocate IDs.
282 * @name: A string that names your XArray.
283 *
284 * This is intended for file scope definitions of allocating XArrays.
285 * See also DEFINE_XARRAY().
286 */
287#define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
288
f8d5d0cc 289void xa_init_flags(struct xarray *, gfp_t flags);
ad3d6c72 290void *xa_load(struct xarray *, unsigned long index);
58d6ea30 291void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
41aec91f
MW
292void *xa_cmpxchg(struct xarray *, unsigned long index,
293 void *old, void *entry, gfp_t);
9f14d4f1 294int xa_reserve(struct xarray *, unsigned long index, gfp_t);
0e9446c3
MW
295void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
296 void *entry, gfp_t);
9b89a035
MW
297bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
298void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
299void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
b803b428
MW
300void *xa_find(struct xarray *xa, unsigned long *index,
301 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
302void *xa_find_after(struct xarray *xa, unsigned long *index,
303 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
80a0a1a9
MW
304unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
305 unsigned long max, unsigned int n, xa_mark_t);
687149fc 306void xa_destroy(struct xarray *);
f8d5d0cc
MW
307
308/**
309 * xa_init() - Initialise an empty XArray.
310 * @xa: XArray.
311 *
312 * An empty XArray is full of NULL entries.
313 *
314 * Context: Any context.
315 */
316static inline void xa_init(struct xarray *xa)
317{
318 xa_init_flags(xa, 0);
319}
320
ad3d6c72
MW
321/**
322 * xa_empty() - Determine if an array has any present entries.
323 * @xa: XArray.
324 *
325 * Context: Any context.
326 * Return: %true if the array contains only NULL pointers.
327 */
328static inline bool xa_empty(const struct xarray *xa)
329{
330 return xa->xa_head == NULL;
331}
332
9b89a035
MW
333/**
334 * xa_marked() - Inquire whether any entry in this array has a mark set
335 * @xa: Array
336 * @mark: Mark value
337 *
338 * Context: Any context.
339 * Return: %true if any entry has this mark set.
340 */
341static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
342{
343 return xa->xa_flags & XA_FLAGS_MARK(mark);
344}
345
58d6ea30
MW
346/**
347 * xa_erase() - Erase this entry from the XArray.
348 * @xa: XArray.
349 * @index: Index of entry.
350 *
351 * This function is the equivalent of calling xa_store() with %NULL as
352 * the third argument. The XArray does not need to allocate memory, so
353 * the user does not need to provide GFP flags.
354 *
355 * Context: Process context. Takes and releases the xa_lock.
356 * Return: The entry which used to be at this index.
357 */
358static inline void *xa_erase(struct xarray *xa, unsigned long index)
359{
360 return xa_store(xa, index, NULL, 0);
361}
362
41aec91f
MW
363/**
364 * xa_insert() - Store this entry in the XArray unless another entry is
365 * already present.
366 * @xa: XArray.
367 * @index: Index into array.
368 * @entry: New entry.
369 * @gfp: Memory allocation flags.
370 *
371 * If you would rather see the existing entry in the array, use xa_cmpxchg().
372 * This function is for users who don't care what the entry is, only that
373 * one is present.
374 *
375 * Context: Process context. Takes and releases the xa_lock.
376 * May sleep if the @gfp flags permit.
377 * Return: 0 if the store succeeded. -EEXIST if another entry was present.
378 * -ENOMEM if memory could not be allocated.
379 */
380static inline int xa_insert(struct xarray *xa, unsigned long index,
381 void *entry, gfp_t gfp)
382{
383 void *curr = xa_cmpxchg(xa, index, NULL, entry, gfp);
384 if (!curr)
385 return 0;
386 if (xa_is_err(curr))
387 return xa_err(curr);
388 return -EEXIST;
389}
390
9f14d4f1
MW
391/**
392 * xa_release() - Release a reserved entry.
393 * @xa: XArray.
394 * @index: Index of entry.
395 *
396 * After calling xa_reserve(), you can call this function to release the
397 * reservation. If the entry at @index has been stored to, this function
398 * will do nothing.
399 */
400static inline void xa_release(struct xarray *xa, unsigned long index)
401{
402 xa_cmpxchg(xa, index, NULL, NULL, 0);
403}
404
b803b428
MW
405/**
406 * xa_for_each() - Iterate over a portion of an XArray.
407 * @xa: XArray.
408 * @entry: Entry retrieved from array.
409 * @index: Index of @entry.
410 * @max: Maximum index to retrieve from array.
411 * @filter: Selection criterion.
412 *
413 * Initialise @index to the lowest index you want to retrieve from the
414 * array. During the iteration, @entry will have the value of the entry
415 * stored in @xa at @index. The iteration will skip all entries in the
416 * array which do not match @filter. You may modify @index during the
417 * iteration if you want to skip or reprocess indices. It is safe to modify
418 * the array during the iteration. At the end of the iteration, @entry will
419 * be set to NULL and @index will have a value less than or equal to max.
420 *
421 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have
422 * to handle your own locking with xas_for_each(), and if you have to unlock
423 * after each iteration, it will also end up being O(n.log(n)). xa_for_each()
424 * will spin if it hits a retry entry; if you intend to see retry entries,
425 * you should use the xas_for_each() iterator instead. The xas_for_each()
426 * iterator will expand into more inline code than xa_for_each().
427 *
428 * Context: Any context. Takes and releases the RCU lock.
429 */
430#define xa_for_each(xa, entry, index, max, filter) \
431 for (entry = xa_find(xa, &index, max, filter); entry; \
432 entry = xa_find_after(xa, &index, max, filter))
433
f6bb2a2c
MW
434#define xa_trylock(xa) spin_trylock(&(xa)->xa_lock)
435#define xa_lock(xa) spin_lock(&(xa)->xa_lock)
436#define xa_unlock(xa) spin_unlock(&(xa)->xa_lock)
437#define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock)
438#define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock)
439#define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock)
440#define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock)
441#define xa_lock_irqsave(xa, flags) \
442 spin_lock_irqsave(&(xa)->xa_lock, flags)
443#define xa_unlock_irqrestore(xa, flags) \
444 spin_unlock_irqrestore(&(xa)->xa_lock, flags)
445
9b89a035 446/*
58d6ea30
MW
447 * Versions of the normal API which require the caller to hold the
448 * xa_lock. If the GFP flags allow it, they will drop the lock to
449 * allocate memory, then reacquire it afterwards. These functions
450 * may also re-enable interrupts if the XArray flags indicate the
451 * locking should be interrupt safe.
452 */
453void *__xa_erase(struct xarray *, unsigned long index);
454void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
41aec91f
MW
455void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
456 void *entry, gfp_t);
371c752d 457int __xa_alloc(struct xarray *, u32 *id, u32 max, void *entry, gfp_t);
9b89a035
MW
458void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
459void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
460
41aec91f
MW
461/**
462 * __xa_insert() - Store this entry in the XArray unless another entry is
463 * already present.
464 * @xa: XArray.
465 * @index: Index into array.
466 * @entry: New entry.
467 * @gfp: Memory allocation flags.
468 *
469 * If you would rather see the existing entry in the array, use __xa_cmpxchg().
470 * This function is for users who don't care what the entry is, only that
471 * one is present.
472 *
473 * Context: Any context. Expects xa_lock to be held on entry. May
474 * release and reacquire xa_lock if the @gfp flags permit.
475 * Return: 0 if the store succeeded. -EEXIST if another entry was present.
476 * -ENOMEM if memory could not be allocated.
477 */
478static inline int __xa_insert(struct xarray *xa, unsigned long index,
479 void *entry, gfp_t gfp)
480{
481 void *curr = __xa_cmpxchg(xa, index, NULL, entry, gfp);
482 if (!curr)
483 return 0;
484 if (xa_is_err(curr))
485 return xa_err(curr);
486 return -EEXIST;
487}
488
58d6ea30
MW
489/**
490 * xa_erase_bh() - Erase this entry from the XArray.
491 * @xa: XArray.
492 * @index: Index of entry.
493 *
494 * This function is the equivalent of calling xa_store() with %NULL as
495 * the third argument. The XArray does not need to allocate memory, so
496 * the user does not need to provide GFP flags.
497 *
498 * Context: Process context. Takes and releases the xa_lock while
499 * disabling softirqs.
500 * Return: The entry which used to be at this index.
501 */
502static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
503{
504 void *entry;
505
506 xa_lock_bh(xa);
507 entry = __xa_erase(xa, index);
508 xa_unlock_bh(xa);
509
510 return entry;
511}
512
513/**
514 * xa_erase_irq() - Erase this entry from the XArray.
515 * @xa: XArray.
516 * @index: Index of entry.
517 *
518 * This function is the equivalent of calling xa_store() with %NULL as
519 * the third argument. The XArray does not need to allocate memory, so
520 * the user does not need to provide GFP flags.
521 *
522 * Context: Process context. Takes and releases the xa_lock while
523 * disabling interrupts.
524 * Return: The entry which used to be at this index.
525 */
526static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
527{
528 void *entry;
529
530 xa_lock_irq(xa);
531 entry = __xa_erase(xa, index);
532 xa_unlock_irq(xa);
533
534 return entry;
535}
536
371c752d
MW
537/**
538 * xa_alloc() - Find somewhere to store this entry in the XArray.
539 * @xa: XArray.
540 * @id: Pointer to ID.
541 * @max: Maximum ID to allocate (inclusive).
542 * @entry: New entry.
543 * @gfp: Memory allocation flags.
544 *
545 * Allocates an unused ID in the range specified by @id and @max.
546 * Updates the @id pointer with the index, then stores the entry at that
547 * index. A concurrent lookup will not see an uninitialised @id.
548 *
549 * Context: Process context. Takes and releases the xa_lock. May sleep if
550 * the @gfp flags permit.
551 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
552 * there is no more space in the XArray.
553 */
554static inline int xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry,
555 gfp_t gfp)
556{
557 int err;
558
559 xa_lock(xa);
560 err = __xa_alloc(xa, id, max, entry, gfp);
561 xa_unlock(xa);
562
563 return err;
564}
565
566/**
567 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
568 * @xa: XArray.
569 * @id: Pointer to ID.
570 * @max: Maximum ID to allocate (inclusive).
571 * @entry: New entry.
572 * @gfp: Memory allocation flags.
573 *
574 * Allocates an unused ID in the range specified by @id and @max.
575 * Updates the @id pointer with the index, then stores the entry at that
576 * index. A concurrent lookup will not see an uninitialised @id.
577 *
578 * Context: Process context. Takes and releases the xa_lock while
579 * disabling softirqs. May sleep if the @gfp flags permit.
580 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
581 * there is no more space in the XArray.
582 */
583static inline int xa_alloc_bh(struct xarray *xa, u32 *id, u32 max, void *entry,
584 gfp_t gfp)
585{
586 int err;
587
588 xa_lock_bh(xa);
589 err = __xa_alloc(xa, id, max, entry, gfp);
590 xa_unlock_bh(xa);
591
592 return err;
593}
594
595/**
596 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
597 * @xa: XArray.
598 * @id: Pointer to ID.
599 * @max: Maximum ID to allocate (inclusive).
600 * @entry: New entry.
601 * @gfp: Memory allocation flags.
602 *
603 * Allocates an unused ID in the range specified by @id and @max.
604 * Updates the @id pointer with the index, then stores the entry at that
605 * index. A concurrent lookup will not see an uninitialised @id.
606 *
607 * Context: Process context. Takes and releases the xa_lock while
608 * disabling interrupts. May sleep if the @gfp flags permit.
609 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
610 * there is no more space in the XArray.
611 */
612static inline int xa_alloc_irq(struct xarray *xa, u32 *id, u32 max, void *entry,
613 gfp_t gfp)
614{
615 int err;
616
617 xa_lock_irq(xa);
618 err = __xa_alloc(xa, id, max, entry, gfp);
619 xa_unlock_irq(xa);
620
621 return err;
622}
623
02c02bf1
MW
624/* Everything below here is the Advanced API. Proceed with caution. */
625
626/*
627 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing
628 * the best chunk size requires some tradeoffs. A power of two recommends
629 * itself so that we can walk the tree based purely on shifts and masks.
630 * Generally, the larger the better; as the number of slots per level of the
631 * tree increases, the less tall the tree needs to be. But that needs to be
632 * balanced against the memory consumption of each node. On a 64-bit system,
633 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we
634 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
635 */
636#ifndef XA_CHUNK_SHIFT
637#define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
638#endif
639#define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT)
640#define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1)
01959dfe
MW
641#define XA_MAX_MARKS 3
642#define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
643
644/*
645 * @count is the count of every non-NULL element in the ->slots array
646 * whether that is a value entry, a retry entry, a user pointer,
647 * a sibling entry or a pointer to the next level of the tree.
648 * @nr_values is the count of every element in ->slots which is
649 * either a value entry or a sibling of a value entry.
650 */
651struct xa_node {
652 unsigned char shift; /* Bits remaining in each slot */
653 unsigned char offset; /* Slot offset in parent */
654 unsigned char count; /* Total entry count */
655 unsigned char nr_values; /* Value entry count */
656 struct xa_node __rcu *parent; /* NULL at top of tree */
657 struct xarray *array; /* The array we belong to */
658 union {
659 struct list_head private_list; /* For tree user */
660 struct rcu_head rcu_head; /* Used when freeing node */
661 };
662 void __rcu *slots[XA_CHUNK_SIZE];
663 union {
664 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS];
665 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS];
666 };
667};
02c02bf1 668
ad3d6c72
MW
669void xa_dump(const struct xarray *);
670void xa_dump_node(const struct xa_node *);
671
672#ifdef XA_DEBUG
673#define XA_BUG_ON(xa, x) do { \
674 if (x) { \
675 xa_dump(xa); \
676 BUG(); \
677 } \
678 } while (0)
679#define XA_NODE_BUG_ON(node, x) do { \
680 if (x) { \
681 if (node) xa_dump_node(node); \
682 BUG(); \
683 } \
684 } while (0)
685#else
686#define XA_BUG_ON(xa, x) do { } while (0)
687#define XA_NODE_BUG_ON(node, x) do { } while (0)
688#endif
689
690/* Private */
691static inline void *xa_head(const struct xarray *xa)
692{
693 return rcu_dereference_check(xa->xa_head,
694 lockdep_is_held(&xa->xa_lock));
695}
696
697/* Private */
698static inline void *xa_head_locked(const struct xarray *xa)
699{
700 return rcu_dereference_protected(xa->xa_head,
701 lockdep_is_held(&xa->xa_lock));
702}
703
704/* Private */
705static inline void *xa_entry(const struct xarray *xa,
706 const struct xa_node *node, unsigned int offset)
707{
708 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
709 return rcu_dereference_check(node->slots[offset],
710 lockdep_is_held(&xa->xa_lock));
711}
712
713/* Private */
714static inline void *xa_entry_locked(const struct xarray *xa,
715 const struct xa_node *node, unsigned int offset)
716{
717 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
718 return rcu_dereference_protected(node->slots[offset],
719 lockdep_is_held(&xa->xa_lock));
720}
721
9b89a035
MW
722/* Private */
723static inline struct xa_node *xa_parent(const struct xarray *xa,
724 const struct xa_node *node)
725{
726 return rcu_dereference_check(node->parent,
727 lockdep_is_held(&xa->xa_lock));
728}
729
730/* Private */
731static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
732 const struct xa_node *node)
733{
734 return rcu_dereference_protected(node->parent,
735 lockdep_is_held(&xa->xa_lock));
736}
737
58d6ea30
MW
738/* Private */
739static inline void *xa_mk_node(const struct xa_node *node)
740{
741 return (void *)((unsigned long)node | 2);
742}
743
ad3d6c72
MW
744/* Private */
745static inline struct xa_node *xa_to_node(const void *entry)
746{
747 return (struct xa_node *)((unsigned long)entry - 2);
748}
749
02c02bf1
MW
750/* Private */
751static inline bool xa_is_node(const void *entry)
752{
753 return xa_is_internal(entry) && (unsigned long)entry > 4096;
754}
755
756/* Private */
757static inline void *xa_mk_sibling(unsigned int offset)
758{
759 return xa_mk_internal(offset);
760}
761
762/* Private */
763static inline unsigned long xa_to_sibling(const void *entry)
764{
765 return xa_to_internal(entry);
766}
767
768/**
769 * xa_is_sibling() - Is the entry a sibling entry?
770 * @entry: Entry retrieved from the XArray
771 *
772 * Return: %true if the entry is a sibling entry.
773 */
774static inline bool xa_is_sibling(const void *entry)
775{
776 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
777 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
778}
779
9f14d4f1
MW
780#define XA_ZERO_ENTRY xa_mk_internal(256)
781#define XA_RETRY_ENTRY xa_mk_internal(257)
782
783/**
784 * xa_is_zero() - Is the entry a zero entry?
785 * @entry: Entry retrieved from the XArray
786 *
787 * Return: %true if the entry is a zero entry.
788 */
789static inline bool xa_is_zero(const void *entry)
790{
791 return unlikely(entry == XA_ZERO_ENTRY);
792}
02c02bf1 793
ad3d6c72
MW
794/**
795 * xa_is_retry() - Is the entry a retry entry?
796 * @entry: Entry retrieved from the XArray
797 *
798 * Return: %true if the entry is a retry entry.
799 */
800static inline bool xa_is_retry(const void *entry)
801{
802 return unlikely(entry == XA_RETRY_ENTRY);
803}
804
805/**
806 * typedef xa_update_node_t - A callback function from the XArray.
807 * @node: The node which is being processed
808 *
809 * This function is called every time the XArray updates the count of
810 * present and value entries in a node. It allows advanced users to
811 * maintain the private_list in the node.
812 *
813 * Context: The xa_lock is held and interrupts may be disabled.
814 * Implementations should not drop the xa_lock, nor re-enable
815 * interrupts.
816 */
817typedef void (*xa_update_node_t)(struct xa_node *node);
818
819/*
820 * The xa_state is opaque to its users. It contains various different pieces
821 * of state involved in the current operation on the XArray. It should be
822 * declared on the stack and passed between the various internal routines.
823 * The various elements in it should not be accessed directly, but only
824 * through the provided accessor functions. The below documentation is for
825 * the benefit of those working on the code, not for users of the XArray.
826 *
827 * @xa_node usually points to the xa_node containing the slot we're operating
828 * on (and @xa_offset is the offset in the slots array). If there is a
829 * single entry in the array at index 0, there are no allocated xa_nodes to
830 * point to, and so we store %NULL in @xa_node. @xa_node is set to
831 * the value %XAS_RESTART if the xa_state is not walked to the correct
832 * position in the tree of nodes for this operation. If an error occurs
833 * during an operation, it is set to an %XAS_ERROR value. If we run off the
834 * end of the allocated nodes, it is set to %XAS_BOUNDS.
835 */
836struct xa_state {
837 struct xarray *xa;
838 unsigned long xa_index;
839 unsigned char xa_shift;
840 unsigned char xa_sibs;
841 unsigned char xa_offset;
842 unsigned char xa_pad; /* Helps gcc generate better code */
843 struct xa_node *xa_node;
844 struct xa_node *xa_alloc;
845 xa_update_node_t xa_update;
846};
847
848/*
849 * We encode errnos in the xas->xa_node. If an error has happened, we need to
850 * drop the lock to fix it, and once we've done so the xa_state is invalid.
851 */
852#define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
853#define XAS_BOUNDS ((struct xa_node *)1UL)
854#define XAS_RESTART ((struct xa_node *)3UL)
855
856#define __XA_STATE(array, index, shift, sibs) { \
857 .xa = array, \
858 .xa_index = index, \
859 .xa_shift = shift, \
860 .xa_sibs = sibs, \
861 .xa_offset = 0, \
862 .xa_pad = 0, \
863 .xa_node = XAS_RESTART, \
864 .xa_alloc = NULL, \
865 .xa_update = NULL \
866}
867
868/**
869 * XA_STATE() - Declare an XArray operation state.
870 * @name: Name of this operation state (usually xas).
871 * @array: Array to operate on.
872 * @index: Initial index of interest.
873 *
874 * Declare and initialise an xa_state on the stack.
875 */
876#define XA_STATE(name, array, index) \
877 struct xa_state name = __XA_STATE(array, index, 0, 0)
878
879/**
880 * XA_STATE_ORDER() - Declare an XArray operation state.
881 * @name: Name of this operation state (usually xas).
882 * @array: Array to operate on.
883 * @index: Initial index of interest.
884 * @order: Order of entry.
885 *
886 * Declare and initialise an xa_state on the stack. This variant of
887 * XA_STATE() allows you to specify the 'order' of the element you
888 * want to operate on.`
889 */
890#define XA_STATE_ORDER(name, array, index, order) \
891 struct xa_state name = __XA_STATE(array, \
892 (index >> order) << order, \
893 order - (order % XA_CHUNK_SHIFT), \
894 (1U << (order % XA_CHUNK_SHIFT)) - 1)
895
896#define xas_marked(xas, mark) xa_marked((xas)->xa, (mark))
897#define xas_trylock(xas) xa_trylock((xas)->xa)
898#define xas_lock(xas) xa_lock((xas)->xa)
899#define xas_unlock(xas) xa_unlock((xas)->xa)
900#define xas_lock_bh(xas) xa_lock_bh((xas)->xa)
901#define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa)
902#define xas_lock_irq(xas) xa_lock_irq((xas)->xa)
903#define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa)
904#define xas_lock_irqsave(xas, flags) \
905 xa_lock_irqsave((xas)->xa, flags)
906#define xas_unlock_irqrestore(xas, flags) \
907 xa_unlock_irqrestore((xas)->xa, flags)
908
909/**
910 * xas_error() - Return an errno stored in the xa_state.
911 * @xas: XArray operation state.
912 *
913 * Return: 0 if no error has been noted. A negative errno if one has.
914 */
915static inline int xas_error(const struct xa_state *xas)
916{
917 return xa_err(xas->xa_node);
918}
919
920/**
921 * xas_set_err() - Note an error in the xa_state.
922 * @xas: XArray operation state.
923 * @err: Negative error number.
924 *
925 * Only call this function with a negative @err; zero or positive errors
926 * will probably not behave the way you think they should. If you want
927 * to clear the error from an xa_state, use xas_reset().
928 */
929static inline void xas_set_err(struct xa_state *xas, long err)
930{
931 xas->xa_node = XA_ERROR(err);
932}
933
934/**
935 * xas_invalid() - Is the xas in a retry or error state?
936 * @xas: XArray operation state.
937 *
938 * Return: %true if the xas cannot be used for operations.
939 */
940static inline bool xas_invalid(const struct xa_state *xas)
941{
942 return (unsigned long)xas->xa_node & 3;
943}
944
945/**
946 * xas_valid() - Is the xas a valid cursor into the array?
947 * @xas: XArray operation state.
948 *
949 * Return: %true if the xas can be used for operations.
950 */
951static inline bool xas_valid(const struct xa_state *xas)
952{
953 return !xas_invalid(xas);
954}
955
2264f513
MW
956/**
957 * xas_is_node() - Does the xas point to a node?
958 * @xas: XArray operation state.
959 *
960 * Return: %true if the xas currently references a node.
961 */
962static inline bool xas_is_node(const struct xa_state *xas)
963{
964 return xas_valid(xas) && xas->xa_node;
965}
966
9b89a035
MW
967/* True if the pointer is something other than a node */
968static inline bool xas_not_node(struct xa_node *node)
969{
970 return ((unsigned long)node & 3) || !node;
971}
972
64d3e9a9
MW
973/* True if the node represents RESTART or an error */
974static inline bool xas_frozen(struct xa_node *node)
975{
976 return (unsigned long)node & 2;
977}
978
58d6ea30
MW
979/* True if the node represents head-of-tree, RESTART or BOUNDS */
980static inline bool xas_top(struct xa_node *node)
981{
982 return node <= XAS_RESTART;
983}
984
ad3d6c72
MW
985/**
986 * xas_reset() - Reset an XArray operation state.
987 * @xas: XArray operation state.
988 *
989 * Resets the error or walk state of the @xas so future walks of the
990 * array will start from the root. Use this if you have dropped the
991 * xarray lock and want to reuse the xa_state.
992 *
993 * Context: Any context.
994 */
995static inline void xas_reset(struct xa_state *xas)
996{
997 xas->xa_node = XAS_RESTART;
998}
999
1000/**
1001 * xas_retry() - Retry the operation if appropriate.
1002 * @xas: XArray operation state.
1003 * @entry: Entry from xarray.
1004 *
1005 * The advanced functions may sometimes return an internal entry, such as
1006 * a retry entry or a zero entry. This function sets up the @xas to restart
1007 * the walk from the head of the array if needed.
1008 *
1009 * Context: Any context.
1010 * Return: true if the operation needs to be retried.
1011 */
1012static inline bool xas_retry(struct xa_state *xas, const void *entry)
1013{
9f14d4f1
MW
1014 if (xa_is_zero(entry))
1015 return true;
ad3d6c72
MW
1016 if (!xa_is_retry(entry))
1017 return false;
1018 xas_reset(xas);
1019 return true;
1020}
1021
1022void *xas_load(struct xa_state *);
58d6ea30 1023void *xas_store(struct xa_state *, void *entry);
b803b428 1024void *xas_find(struct xa_state *, unsigned long max);
4e99d4e9 1025void *xas_find_conflict(struct xa_state *);
ad3d6c72 1026
9b89a035
MW
1027bool xas_get_mark(const struct xa_state *, xa_mark_t);
1028void xas_set_mark(const struct xa_state *, xa_mark_t);
1029void xas_clear_mark(const struct xa_state *, xa_mark_t);
b803b428 1030void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
58d6ea30
MW
1031void xas_init_marks(const struct xa_state *);
1032
1033bool xas_nomem(struct xa_state *, gfp_t);
b803b428 1034void xas_pause(struct xa_state *);
9b89a035 1035
2264f513
MW
1036void xas_create_range(struct xa_state *);
1037
ad3d6c72
MW
1038/**
1039 * xas_reload() - Refetch an entry from the xarray.
1040 * @xas: XArray operation state.
1041 *
1042 * Use this function to check that a previously loaded entry still has
1043 * the same value. This is useful for the lockless pagecache lookup where
1044 * we walk the array with only the RCU lock to protect us, lock the page,
1045 * then check that the page hasn't moved since we looked it up.
1046 *
1047 * The caller guarantees that @xas is still valid. If it may be in an
1048 * error or restart state, call xas_load() instead.
1049 *
1050 * Return: The entry at this location in the xarray.
1051 */
1052static inline void *xas_reload(struct xa_state *xas)
1053{
1054 struct xa_node *node = xas->xa_node;
1055
1056 if (node)
1057 return xa_entry(xas->xa, node, xas->xa_offset);
1058 return xa_head(xas->xa);
1059}
1060
58d6ea30
MW
1061/**
1062 * xas_set() - Set up XArray operation state for a different index.
1063 * @xas: XArray operation state.
1064 * @index: New index into the XArray.
1065 *
1066 * Move the operation state to refer to a different index. This will
1067 * have the effect of starting a walk from the top; see xas_next()
1068 * to move to an adjacent index.
1069 */
1070static inline void xas_set(struct xa_state *xas, unsigned long index)
1071{
1072 xas->xa_index = index;
1073 xas->xa_node = XAS_RESTART;
1074}
1075
1076/**
1077 * xas_set_order() - Set up XArray operation state for a multislot entry.
1078 * @xas: XArray operation state.
1079 * @index: Target of the operation.
1080 * @order: Entry occupies 2^@order indices.
1081 */
1082static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1083 unsigned int order)
1084{
1085#ifdef CONFIG_XARRAY_MULTI
1086 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1087 xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1088 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1089 xas->xa_node = XAS_RESTART;
1090#else
1091 BUG_ON(order > 0);
1092 xas_set(xas, index);
1093#endif
1094}
1095
1096/**
1097 * xas_set_update() - Set up XArray operation state for a callback.
1098 * @xas: XArray operation state.
1099 * @update: Function to call when updating a node.
1100 *
1101 * The XArray can notify a caller after it has updated an xa_node.
1102 * This is advanced functionality and is only needed by the page cache.
1103 */
1104static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1105{
1106 xas->xa_update = update;
1107}
1108
b803b428
MW
1109/**
1110 * xas_next_entry() - Advance iterator to next present entry.
1111 * @xas: XArray operation state.
1112 * @max: Highest index to return.
1113 *
1114 * xas_next_entry() is an inline function to optimise xarray traversal for
1115 * speed. It is equivalent to calling xas_find(), and will call xas_find()
1116 * for all the hard cases.
1117 *
1118 * Return: The next present entry after the one currently referred to by @xas.
1119 */
1120static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1121{
1122 struct xa_node *node = xas->xa_node;
1123 void *entry;
1124
1125 if (unlikely(xas_not_node(node) || node->shift ||
1126 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1127 return xas_find(xas, max);
1128
1129 do {
1130 if (unlikely(xas->xa_index >= max))
1131 return xas_find(xas, max);
1132 if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1133 return xas_find(xas, max);
1134 entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1135 if (unlikely(xa_is_internal(entry)))
1136 return xas_find(xas, max);
1137 xas->xa_offset++;
1138 xas->xa_index++;
1139 } while (!entry);
1140
1141 return entry;
1142}
1143
1144/* Private */
1145static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1146 xa_mark_t mark)
1147{
1148 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1149 unsigned int offset = xas->xa_offset;
1150
1151 if (advance)
1152 offset++;
1153 if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1154 if (offset < XA_CHUNK_SIZE) {
1155 unsigned long data = *addr & (~0UL << offset);
1156 if (data)
1157 return __ffs(data);
1158 }
1159 return XA_CHUNK_SIZE;
1160 }
1161
1162 return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1163}
1164
1165/**
1166 * xas_next_marked() - Advance iterator to next marked entry.
1167 * @xas: XArray operation state.
1168 * @max: Highest index to return.
1169 * @mark: Mark to search for.
1170 *
1171 * xas_next_marked() is an inline function to optimise xarray traversal for
1172 * speed. It is equivalent to calling xas_find_marked(), and will call
1173 * xas_find_marked() for all the hard cases.
1174 *
1175 * Return: The next marked entry after the one currently referred to by @xas.
1176 */
1177static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1178 xa_mark_t mark)
1179{
1180 struct xa_node *node = xas->xa_node;
1181 unsigned int offset;
1182
1183 if (unlikely(xas_not_node(node) || node->shift))
1184 return xas_find_marked(xas, max, mark);
1185 offset = xas_find_chunk(xas, true, mark);
1186 xas->xa_offset = offset;
1187 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1188 if (xas->xa_index > max)
1189 return NULL;
1190 if (offset == XA_CHUNK_SIZE)
1191 return xas_find_marked(xas, max, mark);
1192 return xa_entry(xas->xa, node, offset);
1193}
1194
1195/*
1196 * If iterating while holding a lock, drop the lock and reschedule
1197 * every %XA_CHECK_SCHED loops.
1198 */
1199enum {
1200 XA_CHECK_SCHED = 4096,
1201};
1202
1203/**
1204 * xas_for_each() - Iterate over a range of an XArray.
1205 * @xas: XArray operation state.
1206 * @entry: Entry retrieved from the array.
1207 * @max: Maximum index to retrieve from array.
1208 *
1209 * The loop body will be executed for each entry present in the xarray
1210 * between the current xas position and @max. @entry will be set to
1211 * the entry retrieved from the xarray. It is safe to delete entries
1212 * from the array in the loop body. You should hold either the RCU lock
1213 * or the xa_lock while iterating. If you need to drop the lock, call
1214 * xas_pause() first.
1215 */
1216#define xas_for_each(xas, entry, max) \
1217 for (entry = xas_find(xas, max); entry; \
1218 entry = xas_next_entry(xas, max))
1219
1220/**
1221 * xas_for_each_marked() - Iterate over a range of an XArray.
1222 * @xas: XArray operation state.
1223 * @entry: Entry retrieved from the array.
1224 * @max: Maximum index to retrieve from array.
1225 * @mark: Mark to search for.
1226 *
1227 * The loop body will be executed for each marked entry in the xarray
1228 * between the current xas position and @max. @entry will be set to
1229 * the entry retrieved from the xarray. It is safe to delete entries
1230 * from the array in the loop body. You should hold either the RCU lock
1231 * or the xa_lock while iterating. If you need to drop the lock, call
1232 * xas_pause() first.
1233 */
1234#define xas_for_each_marked(xas, entry, max, mark) \
1235 for (entry = xas_find_marked(xas, max, mark); entry; \
1236 entry = xas_next_marked(xas, max, mark))
1237
4e99d4e9
MW
1238/**
1239 * xas_for_each_conflict() - Iterate over a range of an XArray.
1240 * @xas: XArray operation state.
1241 * @entry: Entry retrieved from the array.
1242 *
1243 * The loop body will be executed for each entry in the XArray that lies
1244 * within the range specified by @xas. If the loop completes successfully,
1245 * any entries that lie in this range will be replaced by @entry. The caller
1246 * may break out of the loop; if they do so, the contents of the XArray will
1247 * be unchanged. The operation may fail due to an out of memory condition.
1248 * The caller may also call xa_set_err() to exit the loop while setting an
1249 * error to record the reason.
1250 */
1251#define xas_for_each_conflict(xas, entry) \
1252 while ((entry = xas_find_conflict(xas)))
1253
64d3e9a9
MW
1254void *__xas_next(struct xa_state *);
1255void *__xas_prev(struct xa_state *);
1256
1257/**
1258 * xas_prev() - Move iterator to previous index.
1259 * @xas: XArray operation state.
1260 *
1261 * If the @xas was in an error state, it will remain in an error state
1262 * and this function will return %NULL. If the @xas has never been walked,
1263 * it will have the effect of calling xas_load(). Otherwise one will be
1264 * subtracted from the index and the state will be walked to the correct
1265 * location in the array for the next operation.
1266 *
1267 * If the iterator was referencing index 0, this function wraps
1268 * around to %ULONG_MAX.
1269 *
1270 * Return: The entry at the new index. This may be %NULL or an internal
1271 * entry.
1272 */
1273static inline void *xas_prev(struct xa_state *xas)
1274{
1275 struct xa_node *node = xas->xa_node;
1276
1277 if (unlikely(xas_not_node(node) || node->shift ||
1278 xas->xa_offset == 0))
1279 return __xas_prev(xas);
1280
1281 xas->xa_index--;
1282 xas->xa_offset--;
1283 return xa_entry(xas->xa, node, xas->xa_offset);
1284}
1285
1286/**
1287 * xas_next() - Move state to next index.
1288 * @xas: XArray operation state.
1289 *
1290 * If the @xas was in an error state, it will remain in an error state
1291 * and this function will return %NULL. If the @xas has never been walked,
1292 * it will have the effect of calling xas_load(). Otherwise one will be
1293 * added to the index and the state will be walked to the correct
1294 * location in the array for the next operation.
1295 *
1296 * If the iterator was referencing index %ULONG_MAX, this function wraps
1297 * around to 0.
1298 *
1299 * Return: The entry at the new index. This may be %NULL or an internal
1300 * entry.
1301 */
1302static inline void *xas_next(struct xa_state *xas)
1303{
1304 struct xa_node *node = xas->xa_node;
1305
1306 if (unlikely(xas_not_node(node) || node->shift ||
1307 xas->xa_offset == XA_CHUNK_MASK))
1308 return __xas_next(xas);
1309
1310 xas->xa_index++;
1311 xas->xa_offset++;
1312 return xa_entry(xas->xa, node, xas->xa_offset);
1313}
1314
f6bb2a2c 1315#endif /* _LINUX_XARRAY_H */