]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/net/red.h
net: sched: Allow extending set of supported RED flags
[mirror_ubuntu-jammy-kernel.git] / include / net / red.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
a7834745
TG
2#ifndef __NET_SCHED_RED_H
3#define __NET_SCHED_RED_H
4
a7834745 5#include <linux/types.h>
187f1882 6#include <linux/bug.h>
a7834745
TG
7#include <net/pkt_sched.h>
8#include <net/inet_ecn.h>
9#include <net/dsfield.h>
8af2a218 10#include <linux/reciprocal_div.h>
a7834745
TG
11
12/* Random Early Detection (RED) algorithm.
13 =======================================
14
15 Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
16 for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
17
18 This file codes a "divisionless" version of RED algorithm
19 as written down in Fig.17 of the paper.
20
21 Short description.
22 ------------------
23
24 When a new packet arrives we calculate the average queue length:
25
26 avg = (1-W)*avg + W*current_queue_len,
27
28 W is the filter time constant (chosen as 2^(-Wlog)), it controls
29 the inertia of the algorithm. To allow larger bursts, W should be
30 decreased.
31
32 if (avg > th_max) -> packet marked (dropped).
33 if (avg < th_min) -> packet passes.
34 if (th_min < avg < th_max) we calculate probability:
35
36 Pb = max_P * (avg - th_min)/(th_max-th_min)
37
38 and mark (drop) packet with this probability.
39 Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
40 max_P should be small (not 1), usually 0.01..0.02 is good value.
41
42 max_P is chosen as a number, so that max_P/(th_max-th_min)
43 is a negative power of two in order arithmetics to contain
44 only shifts.
45
46
47 Parameters, settable by user:
48 -----------------------------
49
50 qth_min - bytes (should be < qth_max/2)
51 qth_max - bytes (should be at least 2*qth_min and less limit)
52 Wlog - bits (<32) log(1/W).
53 Plog - bits (<32)
54
55 Plog is related to max_P by formula:
56
57 max_P = (qth_max-qth_min)/2^Plog;
58
59 F.e. if qth_max=128K and qth_min=32K, then Plog=22
60 corresponds to max_P=0.02
61
62 Scell_log
63 Stab
64
65 Lookup table for log((1-W)^(t/t_ave).
66
67
68 NOTES:
69
70 Upper bound on W.
71 -----------------
72
73 If you want to allow bursts of L packets of size S,
74 you should choose W:
75
76 L + 1 - th_min/S < (1-(1-W)^L)/W
77
78 th_min/S = 32 th_min/S = 4
79
80 log(W) L
81 -1 33
82 -2 35
83 -3 39
84 -4 46
85 -5 57
86 -6 75
87 -7 101
88 -8 135
89 -9 190
90 etc.
91 */
92
8af2a218
ED
93/*
94 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
95 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
96 *
97 * Every 500 ms:
98 * if (avg > target and max_p <= 0.5)
99 * increase max_p : max_p += alpha;
100 * else if (avg < target and max_p >= 0.01)
101 * decrease max_p : max_p *= beta;
102 *
103 * target :[qth_min + 0.4*(qth_min - qth_max),
104 * qth_min + 0.6*(qth_min - qth_max)].
105 * alpha : min(0.01, max_p / 4)
106 * beta : 0.9
107 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109 */
110#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111
112#define MAX_P_MIN (1 * RED_ONE_PERCENT)
113#define MAX_P_MAX (50 * RED_ONE_PERCENT)
114#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115
a7834745
TG
116#define RED_STAB_SIZE 256
117#define RED_STAB_MASK (RED_STAB_SIZE - 1)
118
fd2c3ef7 119struct red_stats {
a7834745
TG
120 u32 prob_drop; /* Early probability drops */
121 u32 prob_mark; /* Early probability marks */
122 u32 forced_drop; /* Forced drops, qavg > max_thresh */
123 u32 forced_mark; /* Forced marks, qavg > max_thresh */
124 u32 pdrop; /* Drops due to queue limits */
125 u32 other; /* Drops due to drop() calls */
a7834745
TG
126};
127
fd2c3ef7 128struct red_parms {
a7834745 129 /* Parameters */
8af2a218
ED
130 u32 qth_min; /* Min avg length threshold: Wlog scaled */
131 u32 qth_max; /* Max avg length threshold: Wlog scaled */
a7834745 132 u32 Scell_max;
8af2a218 133 u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
809fa972
HFS
134 /* reciprocal_value(max_P / qth_delta) */
135 struct reciprocal_value max_P_reciprocal;
8af2a218
ED
136 u32 qth_delta; /* max_th - min_th */
137 u32 target_min; /* min_th + 0.4*(max_th - min_th) */
138 u32 target_max; /* min_th + 0.6*(max_th - min_th) */
a7834745
TG
139 u8 Scell_log;
140 u8 Wlog; /* log(W) */
141 u8 Plog; /* random number bits */
142 u8 Stab[RED_STAB_SIZE];
eeca6688 143};
a7834745 144
eeca6688 145struct red_vars {
a7834745
TG
146 /* Variables */
147 int qcount; /* Number of packets since last random
148 number generation */
149 u32 qR; /* Cached random number */
150
8af2a218 151 unsigned long qavg; /* Average queue length: Wlog scaled */
ea6a5d3b 152 ktime_t qidlestart; /* Start of current idle period */
a7834745
TG
153};
154
8af2a218 155static inline u32 red_maxp(u8 Plog)
a7834745 156{
8af2a218 157 return Plog < 32 ? (~0U >> Plog) : ~0U;
a7834745
TG
158}
159
eeca6688
ED
160static inline void red_set_vars(struct red_vars *v)
161{
162 /* Reset average queue length, the value is strictly bound
163 * to the parameters below, reseting hurts a bit but leaving
164 * it might result in an unreasonable qavg for a while. --TGR
165 */
166 v->qavg = 0;
167
168 v->qcount = -1;
169}
8af2a218 170
8afa10cb
NF
171static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog)
172{
173 if (fls(qth_min) + Wlog > 32)
174 return false;
175 if (fls(qth_max) + Wlog > 32)
176 return false;
177 if (qth_max < qth_min)
178 return false;
179 return true;
180}
181
14bc175d
PM
182static inline int red_get_flags(unsigned char qopt_flags,
183 unsigned char historic_mask,
184 struct nlattr *flags_attr,
185 unsigned char supported_mask,
186 struct nla_bitfield32 *p_flags,
187 unsigned char *p_userbits,
188 struct netlink_ext_ack *extack)
189{
190 struct nla_bitfield32 flags;
191
192 if (qopt_flags && flags_attr) {
193 NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
194 return -EINVAL;
195 }
196
197 if (flags_attr) {
198 flags = nla_get_bitfield32(flags_attr);
199 } else {
200 flags.selector = historic_mask;
201 flags.value = qopt_flags & historic_mask;
202 }
203
204 *p_flags = flags;
205 *p_userbits = qopt_flags & ~historic_mask;
206 return 0;
207}
208
209static inline int red_validate_flags(unsigned char flags,
210 struct netlink_ext_ack *extack)
211{
212 return 0;
213}
214
a7834745
TG
215static inline void red_set_parms(struct red_parms *p,
216 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
a73ed26b 217 u8 Scell_log, u8 *stab, u32 max_P)
a7834745 218{
8af2a218 219 int delta = qth_max - qth_min;
a73ed26b 220 u32 max_p_delta;
8af2a218 221
a7834745
TG
222 p->qth_min = qth_min << Wlog;
223 p->qth_max = qth_max << Wlog;
224 p->Wlog = Wlog;
225 p->Plog = Plog;
5c472203 226 if (delta <= 0)
8af2a218
ED
227 delta = 1;
228 p->qth_delta = delta;
a73ed26b
ED
229 if (!max_P) {
230 max_P = red_maxp(Plog);
231 max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
232 }
233 p->max_P = max_P;
234 max_p_delta = max_P / delta;
235 max_p_delta = max(max_p_delta, 1U);
236 p->max_P_reciprocal = reciprocal_value(max_p_delta);
8af2a218
ED
237
238 /* RED Adaptative target :
239 * [min_th + 0.4*(min_th - max_th),
240 * min_th + 0.6*(min_th - max_th)].
241 */
242 delta /= 5;
243 p->target_min = qth_min + 2*delta;
244 p->target_max = qth_min + 3*delta;
245
a7834745
TG
246 p->Scell_log = Scell_log;
247 p->Scell_max = (255 << Scell_log);
248
ddecf0f4
ED
249 if (stab)
250 memcpy(p->Stab, stab, sizeof(p->Stab));
a7834745
TG
251}
252
eeca6688 253static inline int red_is_idling(const struct red_vars *v)
a7834745 254{
2456e855 255 return v->qidlestart != 0;
a7834745
TG
256}
257
eeca6688 258static inline void red_start_of_idle_period(struct red_vars *v)
a7834745 259{
eeca6688 260 v->qidlestart = ktime_get();
a7834745
TG
261}
262
eeca6688 263static inline void red_end_of_idle_period(struct red_vars *v)
a7834745 264{
2456e855 265 v->qidlestart = 0;
a7834745
TG
266}
267
eeca6688 268static inline void red_restart(struct red_vars *v)
a7834745 269{
eeca6688
ED
270 red_end_of_idle_period(v);
271 v->qavg = 0;
272 v->qcount = -1;
a7834745
TG
273}
274
eeca6688
ED
275static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
276 const struct red_vars *v)
a7834745 277{
eeca6688 278 s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
ea6a5d3b 279 long us_idle = min_t(s64, delta, p->Scell_max);
a7834745
TG
280 int shift;
281
a7834745
TG
282 /*
283 * The problem: ideally, average length queue recalcultion should
284 * be done over constant clock intervals. This is too expensive, so
285 * that the calculation is driven by outgoing packets.
286 * When the queue is idle we have to model this clock by hand.
287 *
288 * SF+VJ proposed to "generate":
289 *
290 * m = idletime / (average_pkt_size / bandwidth)
291 *
292 * dummy packets as a burst after idle time, i.e.
293 *
4362aaf6 294 * v->qavg *= (1-W)^m
a7834745
TG
295 *
296 * This is an apparently overcomplicated solution (f.e. we have to
297 * precompute a table to make this calculation in reasonable time)
298 * I believe that a simpler model may be used here,
299 * but it is field for experiments.
300 */
301
302 shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
303
304 if (shift)
eeca6688 305 return v->qavg >> shift;
a7834745
TG
306 else {
307 /* Approximate initial part of exponent with linear function:
308 *
309 * (1-W)^m ~= 1-mW + ...
310 *
311 * Seems, it is the best solution to
312 * problem of too coarse exponent tabulation.
313 */
eeca6688 314 us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
a7834745 315
eeca6688
ED
316 if (us_idle < (v->qavg >> 1))
317 return v->qavg - us_idle;
a7834745 318 else
eeca6688 319 return v->qavg >> 1;
a7834745
TG
320 }
321}
322
8af2a218 323static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
eeca6688 324 const struct red_vars *v,
a7834745
TG
325 unsigned int backlog)
326{
327 /*
4362aaf6 328 * NOTE: v->qavg is fixed point number with point at Wlog.
a7834745
TG
329 * The formula below is equvalent to floating point
330 * version:
331 *
332 * qavg = qavg*(1-W) + backlog*W;
333 *
334 * --ANK (980924)
335 */
eeca6688 336 return v->qavg + (backlog - (v->qavg >> p->Wlog));
a7834745
TG
337}
338
8af2a218 339static inline unsigned long red_calc_qavg(const struct red_parms *p,
eeca6688 340 const struct red_vars *v,
a7834745
TG
341 unsigned int backlog)
342{
eeca6688
ED
343 if (!red_is_idling(v))
344 return red_calc_qavg_no_idle_time(p, v, backlog);
a7834745 345 else
eeca6688 346 return red_calc_qavg_from_idle_time(p, v);
a7834745
TG
347}
348
8af2a218
ED
349
350static inline u32 red_random(const struct red_parms *p)
a7834745 351{
63862b5b 352 return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
a7834745
TG
353}
354
eeca6688
ED
355static inline int red_mark_probability(const struct red_parms *p,
356 const struct red_vars *v,
357 unsigned long qavg)
a7834745
TG
358{
359 /* The formula used below causes questions.
360
8af2a218
ED
361 OK. qR is random number in the interval
362 (0..1/max_P)*(qth_max-qth_min)
a7834745
TG
363 i.e. 0..(2^Plog). If we used floating point
364 arithmetics, it would be: (2^Plog)*rnd_num,
365 where rnd_num is less 1.
366
367 Taking into account, that qavg have fixed
8af2a218 368 point at Wlog, two lines
a7834745
TG
369 below have the following floating point equivalent:
370
371 max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
372
373 Any questions? --ANK (980924)
374 */
eeca6688 375 return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
a7834745
TG
376}
377
378enum {
379 RED_BELOW_MIN_THRESH,
380 RED_BETWEEN_TRESH,
381 RED_ABOVE_MAX_TRESH,
382};
383
eeca6688 384static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
a7834745
TG
385{
386 if (qavg < p->qth_min)
387 return RED_BELOW_MIN_THRESH;
388 else if (qavg >= p->qth_max)
389 return RED_ABOVE_MAX_TRESH;
390 else
391 return RED_BETWEEN_TRESH;
392}
393
394enum {
395 RED_DONT_MARK,
396 RED_PROB_MARK,
397 RED_HARD_MARK,
398};
399
eeca6688
ED
400static inline int red_action(const struct red_parms *p,
401 struct red_vars *v,
402 unsigned long qavg)
a7834745
TG
403{
404 switch (red_cmp_thresh(p, qavg)) {
405 case RED_BELOW_MIN_THRESH:
eeca6688 406 v->qcount = -1;
a7834745
TG
407 return RED_DONT_MARK;
408
409 case RED_BETWEEN_TRESH:
eeca6688
ED
410 if (++v->qcount) {
411 if (red_mark_probability(p, v, qavg)) {
412 v->qcount = 0;
413 v->qR = red_random(p);
a7834745
TG
414 return RED_PROB_MARK;
415 }
416 } else
eeca6688 417 v->qR = red_random(p);
a7834745
TG
418
419 return RED_DONT_MARK;
420
421 case RED_ABOVE_MAX_TRESH:
eeca6688 422 v->qcount = -1;
a7834745
TG
423 return RED_HARD_MARK;
424 }
425
426 BUG();
427 return RED_DONT_MARK;
428}
429
eeca6688 430static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
8af2a218
ED
431{
432 unsigned long qavg;
433 u32 max_p_delta;
434
eeca6688
ED
435 qavg = v->qavg;
436 if (red_is_idling(v))
437 qavg = red_calc_qavg_from_idle_time(p, v);
8af2a218 438
4362aaf6 439 /* v->qavg is fixed point number with point at Wlog */
8af2a218
ED
440 qavg >>= p->Wlog;
441
442 if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
443 p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
444 else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
445 p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
446
447 max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
a73ed26b 448 max_p_delta = max(max_p_delta, 1U);
8af2a218
ED
449 p->max_P_reciprocal = reciprocal_value(max_p_delta);
450}
a7834745 451#endif