]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/net/red.h
sch_red: Adaptative RED AQM
[mirror_ubuntu-artful-kernel.git] / include / net / red.h
CommitLineData
a7834745
TG
1#ifndef __NET_SCHED_RED_H
2#define __NET_SCHED_RED_H
3
a7834745
TG
4#include <linux/types.h>
5#include <net/pkt_sched.h>
6#include <net/inet_ecn.h>
7#include <net/dsfield.h>
8af2a218 8#include <linux/reciprocal_div.h>
a7834745
TG
9
10/* Random Early Detection (RED) algorithm.
11 =======================================
12
13 Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
14 for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
15
16 This file codes a "divisionless" version of RED algorithm
17 as written down in Fig.17 of the paper.
18
19 Short description.
20 ------------------
21
22 When a new packet arrives we calculate the average queue length:
23
24 avg = (1-W)*avg + W*current_queue_len,
25
26 W is the filter time constant (chosen as 2^(-Wlog)), it controls
27 the inertia of the algorithm. To allow larger bursts, W should be
28 decreased.
29
30 if (avg > th_max) -> packet marked (dropped).
31 if (avg < th_min) -> packet passes.
32 if (th_min < avg < th_max) we calculate probability:
33
34 Pb = max_P * (avg - th_min)/(th_max-th_min)
35
36 and mark (drop) packet with this probability.
37 Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
38 max_P should be small (not 1), usually 0.01..0.02 is good value.
39
40 max_P is chosen as a number, so that max_P/(th_max-th_min)
41 is a negative power of two in order arithmetics to contain
42 only shifts.
43
44
45 Parameters, settable by user:
46 -----------------------------
47
48 qth_min - bytes (should be < qth_max/2)
49 qth_max - bytes (should be at least 2*qth_min and less limit)
50 Wlog - bits (<32) log(1/W).
51 Plog - bits (<32)
52
53 Plog is related to max_P by formula:
54
55 max_P = (qth_max-qth_min)/2^Plog;
56
57 F.e. if qth_max=128K and qth_min=32K, then Plog=22
58 corresponds to max_P=0.02
59
60 Scell_log
61 Stab
62
63 Lookup table for log((1-W)^(t/t_ave).
64
65
66 NOTES:
67
68 Upper bound on W.
69 -----------------
70
71 If you want to allow bursts of L packets of size S,
72 you should choose W:
73
74 L + 1 - th_min/S < (1-(1-W)^L)/W
75
76 th_min/S = 32 th_min/S = 4
77
78 log(W) L
79 -1 33
80 -2 35
81 -3 39
82 -4 46
83 -5 57
84 -6 75
85 -7 101
86 -8 135
87 -9 190
88 etc.
89 */
90
8af2a218
ED
91/*
92 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
93 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
94 *
95 * Every 500 ms:
96 * if (avg > target and max_p <= 0.5)
97 * increase max_p : max_p += alpha;
98 * else if (avg < target and max_p >= 0.01)
99 * decrease max_p : max_p *= beta;
100 *
101 * target :[qth_min + 0.4*(qth_min - qth_max),
102 * qth_min + 0.6*(qth_min - qth_max)].
103 * alpha : min(0.01, max_p / 4)
104 * beta : 0.9
105 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
106 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
107 */
108#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
109
110#define MAX_P_MIN (1 * RED_ONE_PERCENT)
111#define MAX_P_MAX (50 * RED_ONE_PERCENT)
112#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
113
a7834745
TG
114#define RED_STAB_SIZE 256
115#define RED_STAB_MASK (RED_STAB_SIZE - 1)
116
fd2c3ef7 117struct red_stats {
a7834745
TG
118 u32 prob_drop; /* Early probability drops */
119 u32 prob_mark; /* Early probability marks */
120 u32 forced_drop; /* Forced drops, qavg > max_thresh */
121 u32 forced_mark; /* Forced marks, qavg > max_thresh */
122 u32 pdrop; /* Drops due to queue limits */
123 u32 other; /* Drops due to drop() calls */
a7834745
TG
124};
125
fd2c3ef7 126struct red_parms {
a7834745 127 /* Parameters */
8af2a218
ED
128 u32 qth_min; /* Min avg length threshold: Wlog scaled */
129 u32 qth_max; /* Max avg length threshold: Wlog scaled */
a7834745 130 u32 Scell_max;
8af2a218
ED
131 u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
132 u32 max_P_reciprocal; /* reciprocal_value(max_P / qth_delta) */
133 u32 qth_delta; /* max_th - min_th */
134 u32 target_min; /* min_th + 0.4*(max_th - min_th) */
135 u32 target_max; /* min_th + 0.6*(max_th - min_th) */
a7834745
TG
136 u8 Scell_log;
137 u8 Wlog; /* log(W) */
138 u8 Plog; /* random number bits */
139 u8 Stab[RED_STAB_SIZE];
140
141 /* Variables */
142 int qcount; /* Number of packets since last random
143 number generation */
144 u32 qR; /* Cached random number */
145
8af2a218 146 unsigned long qavg; /* Average queue length: Wlog scaled */
ea6a5d3b 147 ktime_t qidlestart; /* Start of current idle period */
a7834745
TG
148};
149
8af2a218 150static inline u32 red_maxp(u8 Plog)
a7834745 151{
8af2a218 152 return Plog < 32 ? (~0U >> Plog) : ~0U;
a7834745
TG
153}
154
8af2a218 155
a7834745
TG
156static inline void red_set_parms(struct red_parms *p,
157 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
158 u8 Scell_log, u8 *stab)
159{
8af2a218
ED
160 int delta = qth_max - qth_min;
161
a7834745
TG
162 /* Reset average queue length, the value is strictly bound
163 * to the parameters below, reseting hurts a bit but leaving
164 * it might result in an unreasonable qavg for a while. --TGR
165 */
166 p->qavg = 0;
167
168 p->qcount = -1;
169 p->qth_min = qth_min << Wlog;
170 p->qth_max = qth_max << Wlog;
171 p->Wlog = Wlog;
172 p->Plog = Plog;
8af2a218
ED
173 if (delta < 0)
174 delta = 1;
175 p->qth_delta = delta;
176 p->max_P = red_maxp(Plog);
177 p->max_P *= delta; /* max_P = (qth_max-qth_min)/2^Plog */
178
179 p->max_P_reciprocal = reciprocal_value(p->max_P / delta);
180
181 /* RED Adaptative target :
182 * [min_th + 0.4*(min_th - max_th),
183 * min_th + 0.6*(min_th - max_th)].
184 */
185 delta /= 5;
186 p->target_min = qth_min + 2*delta;
187 p->target_max = qth_min + 3*delta;
188
a7834745
TG
189 p->Scell_log = Scell_log;
190 p->Scell_max = (255 << Scell_log);
191
192 memcpy(p->Stab, stab, sizeof(p->Stab));
193}
194
8af2a218 195static inline int red_is_idling(const struct red_parms *p)
a7834745 196{
ea6a5d3b 197 return p->qidlestart.tv64 != 0;
a7834745
TG
198}
199
200static inline void red_start_of_idle_period(struct red_parms *p)
201{
ea6a5d3b 202 p->qidlestart = ktime_get();
a7834745
TG
203}
204
205static inline void red_end_of_idle_period(struct red_parms *p)
206{
ea6a5d3b 207 p->qidlestart.tv64 = 0;
a7834745
TG
208}
209
210static inline void red_restart(struct red_parms *p)
211{
212 red_end_of_idle_period(p);
213 p->qavg = 0;
214 p->qcount = -1;
215}
216
8af2a218 217static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p)
a7834745 218{
ea6a5d3b
ED
219 s64 delta = ktime_us_delta(ktime_get(), p->qidlestart);
220 long us_idle = min_t(s64, delta, p->Scell_max);
a7834745
TG
221 int shift;
222
a7834745
TG
223 /*
224 * The problem: ideally, average length queue recalcultion should
225 * be done over constant clock intervals. This is too expensive, so
226 * that the calculation is driven by outgoing packets.
227 * When the queue is idle we have to model this clock by hand.
228 *
229 * SF+VJ proposed to "generate":
230 *
231 * m = idletime / (average_pkt_size / bandwidth)
232 *
233 * dummy packets as a burst after idle time, i.e.
234 *
235 * p->qavg *= (1-W)^m
236 *
237 * This is an apparently overcomplicated solution (f.e. we have to
238 * precompute a table to make this calculation in reasonable time)
239 * I believe that a simpler model may be used here,
240 * but it is field for experiments.
241 */
242
243 shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
244
245 if (shift)
246 return p->qavg >> shift;
247 else {
248 /* Approximate initial part of exponent with linear function:
249 *
250 * (1-W)^m ~= 1-mW + ...
251 *
252 * Seems, it is the best solution to
253 * problem of too coarse exponent tabulation.
254 */
c4c0ce5c 255 us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log;
a7834745
TG
256
257 if (us_idle < (p->qavg >> 1))
258 return p->qavg - us_idle;
259 else
260 return p->qavg >> 1;
261 }
262}
263
8af2a218 264static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
a7834745
TG
265 unsigned int backlog)
266{
267 /*
268 * NOTE: p->qavg is fixed point number with point at Wlog.
269 * The formula below is equvalent to floating point
270 * version:
271 *
272 * qavg = qavg*(1-W) + backlog*W;
273 *
274 * --ANK (980924)
275 */
276 return p->qavg + (backlog - (p->qavg >> p->Wlog));
277}
278
8af2a218 279static inline unsigned long red_calc_qavg(const struct red_parms *p,
a7834745
TG
280 unsigned int backlog)
281{
282 if (!red_is_idling(p))
283 return red_calc_qavg_no_idle_time(p, backlog);
284 else
285 return red_calc_qavg_from_idle_time(p);
286}
287
8af2a218
ED
288
289static inline u32 red_random(const struct red_parms *p)
a7834745 290{
8af2a218 291 return reciprocal_divide(net_random(), p->max_P_reciprocal);
a7834745
TG
292}
293
8af2a218 294static inline int red_mark_probability(const struct red_parms *p, unsigned long qavg)
a7834745
TG
295{
296 /* The formula used below causes questions.
297
8af2a218
ED
298 OK. qR is random number in the interval
299 (0..1/max_P)*(qth_max-qth_min)
a7834745
TG
300 i.e. 0..(2^Plog). If we used floating point
301 arithmetics, it would be: (2^Plog)*rnd_num,
302 where rnd_num is less 1.
303
304 Taking into account, that qavg have fixed
8af2a218 305 point at Wlog, two lines
a7834745
TG
306 below have the following floating point equivalent:
307
308 max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
309
310 Any questions? --ANK (980924)
311 */
312 return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
313}
314
315enum {
316 RED_BELOW_MIN_THRESH,
317 RED_BETWEEN_TRESH,
318 RED_ABOVE_MAX_TRESH,
319};
320
321static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
322{
323 if (qavg < p->qth_min)
324 return RED_BELOW_MIN_THRESH;
325 else if (qavg >= p->qth_max)
326 return RED_ABOVE_MAX_TRESH;
327 else
328 return RED_BETWEEN_TRESH;
329}
330
331enum {
332 RED_DONT_MARK,
333 RED_PROB_MARK,
334 RED_HARD_MARK,
335};
336
337static inline int red_action(struct red_parms *p, unsigned long qavg)
338{
339 switch (red_cmp_thresh(p, qavg)) {
340 case RED_BELOW_MIN_THRESH:
341 p->qcount = -1;
342 return RED_DONT_MARK;
343
344 case RED_BETWEEN_TRESH:
345 if (++p->qcount) {
346 if (red_mark_probability(p, qavg)) {
347 p->qcount = 0;
348 p->qR = red_random(p);
349 return RED_PROB_MARK;
350 }
351 } else
352 p->qR = red_random(p);
353
354 return RED_DONT_MARK;
355
356 case RED_ABOVE_MAX_TRESH:
357 p->qcount = -1;
358 return RED_HARD_MARK;
359 }
360
361 BUG();
362 return RED_DONT_MARK;
363}
364
8af2a218
ED
365static inline void red_adaptative_algo(struct red_parms *p)
366{
367 unsigned long qavg;
368 u32 max_p_delta;
369
370 qavg = p->qavg;
371 if (red_is_idling(p))
372 qavg = red_calc_qavg_from_idle_time(p);
373
374 /* p->qavg is fixed point number with point at Wlog */
375 qavg >>= p->Wlog;
376
377 if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
378 p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
379 else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
380 p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
381
382 max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
383 p->max_P_reciprocal = reciprocal_value(max_p_delta);
384}
a7834745 385#endif