]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
IB/rxe: Remove unnecessary enum values
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
2fc77572 58#include <linux/netdevice.h>
e2773c06 59
50174a7f 60#include <linux/if_link.h>
60063497 61#include <linux/atomic.h>
882214e2 62#include <linux/mmu_notifier.h>
7c0f6ba6 63#include <linux/uaccess.h>
43579b5f 64#include <linux/cgroup_rdma.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
02d8883f 66#include <rdma/restrack.h>
0ede73bc 67#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 68#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 69
9abb0d1b
LR
70#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
71
b5231b01
JG
72struct ib_umem_odp;
73
f0626710 74extern struct workqueue_struct *ib_wq;
14d3a3b2 75extern struct workqueue_struct *ib_comp_wq;
f794809a 76extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 77
1da177e4
LT
78union ib_gid {
79 u8 raw[16];
80 struct {
97f52eb4
SH
81 __be64 subnet_prefix;
82 __be64 interface_id;
1da177e4
LT
83 } global;
84};
85
e26be1bf
MS
86extern union ib_gid zgid;
87
b39ffa1d
MB
88enum ib_gid_type {
89 /* If link layer is Ethernet, this is RoCE V1 */
90 IB_GID_TYPE_IB = 0,
91 IB_GID_TYPE_ROCE = 0,
7766a99f 92 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
93 IB_GID_TYPE_SIZE
94};
95
7ead4bcb 96#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
97struct ib_gid_attr {
98 struct net_device *ndev;
598ff6ba 99 struct ib_device *device;
b150c386 100 union ib_gid gid;
598ff6ba
PP
101 enum ib_gid_type gid_type;
102 u16 index;
103 u8 port_num;
03db3a2d
MB
104};
105
07ebafba
TT
106enum rdma_node_type {
107 /* IB values map to NodeInfo:NodeType. */
108 RDMA_NODE_IB_CA = 1,
109 RDMA_NODE_IB_SWITCH,
110 RDMA_NODE_IB_ROUTER,
180771a3
UM
111 RDMA_NODE_RNIC,
112 RDMA_NODE_USNIC,
5db5765e 113 RDMA_NODE_USNIC_UDP,
1da177e4
LT
114};
115
a0c1b2a3
EC
116enum {
117 /* set the local administered indication */
118 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
119};
120
07ebafba
TT
121enum rdma_transport_type {
122 RDMA_TRANSPORT_IB,
180771a3 123 RDMA_TRANSPORT_IWARP,
248567f7
UM
124 RDMA_TRANSPORT_USNIC,
125 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
126};
127
6b90a6d6
MW
128enum rdma_protocol_type {
129 RDMA_PROTOCOL_IB,
130 RDMA_PROTOCOL_IBOE,
131 RDMA_PROTOCOL_IWARP,
132 RDMA_PROTOCOL_USNIC_UDP
133};
134
8385fd84
RD
135__attribute_const__ enum rdma_transport_type
136rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 137
c865f246
SK
138enum rdma_network_type {
139 RDMA_NETWORK_IB,
140 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
141 RDMA_NETWORK_IPV4,
142 RDMA_NETWORK_IPV6
143};
144
145static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
146{
147 if (network_type == RDMA_NETWORK_IPV4 ||
148 network_type == RDMA_NETWORK_IPV6)
149 return IB_GID_TYPE_ROCE_UDP_ENCAP;
150
151 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
152 return IB_GID_TYPE_IB;
153}
154
47ec3866
PP
155static inline enum rdma_network_type
156rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 157{
47ec3866 158 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
159 return RDMA_NETWORK_IB;
160
47ec3866 161 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
162 return RDMA_NETWORK_IPV4;
163 else
164 return RDMA_NETWORK_IPV6;
165}
166
a3f5adaf
EC
167enum rdma_link_layer {
168 IB_LINK_LAYER_UNSPECIFIED,
169 IB_LINK_LAYER_INFINIBAND,
170 IB_LINK_LAYER_ETHERNET,
171};
172
1da177e4 173enum ib_device_cap_flags {
7ca0bc53
LR
174 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
175 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
176 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
177 IB_DEVICE_RAW_MULTI = (1 << 3),
178 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
179 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
180 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
181 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
182 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 183 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
184 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
185 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
186 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
187 IB_DEVICE_SRQ_RESIZE = (1 << 13),
188 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
189
190 /*
191 * This device supports a per-device lkey or stag that can be
192 * used without performing a memory registration for the local
193 * memory. Note that ULPs should never check this flag, but
194 * instead of use the local_dma_lkey flag in the ib_pd structure,
195 * which will always contain a usable lkey.
196 */
7ca0bc53 197 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 198 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 199 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
200 /*
201 * Devices should set IB_DEVICE_UD_IP_SUM if they support
202 * insertion of UDP and TCP checksum on outgoing UD IPoIB
203 * messages and can verify the validity of checksum for
204 * incoming messages. Setting this flag implies that the
205 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
206 */
7ca0bc53
LR
207 IB_DEVICE_UD_IP_CSUM = (1 << 18),
208 IB_DEVICE_UD_TSO = (1 << 19),
209 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
210
211 /*
212 * This device supports the IB "base memory management extension",
213 * which includes support for fast registrations (IB_WR_REG_MR,
214 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
215 * also be set by any iWarp device which must support FRs to comply
216 * to the iWarp verbs spec. iWarp devices also support the
217 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
218 * stag.
219 */
7ca0bc53
LR
220 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
221 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
222 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
223 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
224 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 225 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 226 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
227 /*
228 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
229 * support execution of WQEs that involve synchronization
230 * of I/O operations with single completion queue managed
231 * by hardware.
232 */
78b57f95 233 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
234 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
235 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 236 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 237 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 238 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 239 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 240 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 241 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
242 /* The device supports padding incoming writes to cacheline. */
243 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
244};
245
246enum ib_signature_prot_cap {
247 IB_PROT_T10DIF_TYPE_1 = 1,
248 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
249 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
250};
251
252enum ib_signature_guard_cap {
253 IB_GUARD_T10DIF_CRC = 1,
254 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
255};
256
257enum ib_atomic_cap {
258 IB_ATOMIC_NONE,
259 IB_ATOMIC_HCA,
260 IB_ATOMIC_GLOB
261};
262
860f10a7 263enum ib_odp_general_cap_bits {
25bf14d6
AK
264 IB_ODP_SUPPORT = 1 << 0,
265 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
266};
267
268enum ib_odp_transport_cap_bits {
269 IB_ODP_SUPPORT_SEND = 1 << 0,
270 IB_ODP_SUPPORT_RECV = 1 << 1,
271 IB_ODP_SUPPORT_WRITE = 1 << 2,
272 IB_ODP_SUPPORT_READ = 1 << 3,
273 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
274};
275
276struct ib_odp_caps {
277 uint64_t general_caps;
278 struct {
279 uint32_t rc_odp_caps;
280 uint32_t uc_odp_caps;
281 uint32_t ud_odp_caps;
282 } per_transport_caps;
283};
284
ccf20562
YH
285struct ib_rss_caps {
286 /* Corresponding bit will be set if qp type from
287 * 'enum ib_qp_type' is supported, e.g.
288 * supported_qpts |= 1 << IB_QPT_UD
289 */
290 u32 supported_qpts;
291 u32 max_rwq_indirection_tables;
292 u32 max_rwq_indirection_table_size;
293};
294
6938fc1e
AK
295enum ib_tm_cap_flags {
296 /* Support tag matching on RC transport */
297 IB_TM_CAP_RC = 1 << 0,
298};
299
78b1beb0 300struct ib_tm_caps {
6938fc1e
AK
301 /* Max size of RNDV header */
302 u32 max_rndv_hdr_size;
303 /* Max number of entries in tag matching list */
304 u32 max_num_tags;
305 /* From enum ib_tm_cap_flags */
306 u32 flags;
307 /* Max number of outstanding list operations */
308 u32 max_ops;
309 /* Max number of SGE in tag matching entry */
310 u32 max_sge;
311};
312
bcf4c1ea
MB
313struct ib_cq_init_attr {
314 unsigned int cqe;
315 int comp_vector;
316 u32 flags;
317};
318
869ddcf8
YC
319enum ib_cq_attr_mask {
320 IB_CQ_MODERATE = 1 << 0,
321};
322
18bd9072
YC
323struct ib_cq_caps {
324 u16 max_cq_moderation_count;
325 u16 max_cq_moderation_period;
326};
327
be934cca
AL
328struct ib_dm_mr_attr {
329 u64 length;
330 u64 offset;
331 u32 access_flags;
332};
333
bee76d7a
AL
334struct ib_dm_alloc_attr {
335 u64 length;
336 u32 alignment;
337 u32 flags;
338};
339
1da177e4
LT
340struct ib_device_attr {
341 u64 fw_ver;
97f52eb4 342 __be64 sys_image_guid;
1da177e4
LT
343 u64 max_mr_size;
344 u64 page_size_cap;
345 u32 vendor_id;
346 u32 vendor_part_id;
347 u32 hw_ver;
348 int max_qp;
349 int max_qp_wr;
fb532d6a 350 u64 device_cap_flags;
33023fb8
SW
351 int max_send_sge;
352 int max_recv_sge;
1da177e4
LT
353 int max_sge_rd;
354 int max_cq;
355 int max_cqe;
356 int max_mr;
357 int max_pd;
358 int max_qp_rd_atom;
359 int max_ee_rd_atom;
360 int max_res_rd_atom;
361 int max_qp_init_rd_atom;
362 int max_ee_init_rd_atom;
363 enum ib_atomic_cap atomic_cap;
5e80ba8f 364 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
365 int max_ee;
366 int max_rdd;
367 int max_mw;
368 int max_raw_ipv6_qp;
369 int max_raw_ethy_qp;
370 int max_mcast_grp;
371 int max_mcast_qp_attach;
372 int max_total_mcast_qp_attach;
373 int max_ah;
374 int max_fmr;
375 int max_map_per_fmr;
376 int max_srq;
377 int max_srq_wr;
378 int max_srq_sge;
00f7ec36 379 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
380 u16 max_pkeys;
381 u8 local_ca_ack_delay;
1b01d335
SG
382 int sig_prot_cap;
383 int sig_guard_cap;
860f10a7 384 struct ib_odp_caps odp_caps;
24306dc6
MB
385 uint64_t timestamp_mask;
386 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
387 struct ib_rss_caps rss_caps;
388 u32 max_wq_type_rq;
ebaaee25 389 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 390 struct ib_tm_caps tm_caps;
18bd9072 391 struct ib_cq_caps cq_caps;
1d8eeb9f 392 u64 max_dm_size;
1da177e4
LT
393};
394
395enum ib_mtu {
396 IB_MTU_256 = 1,
397 IB_MTU_512 = 2,
398 IB_MTU_1024 = 3,
399 IB_MTU_2048 = 4,
400 IB_MTU_4096 = 5
401};
402
403static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
404{
405 switch (mtu) {
406 case IB_MTU_256: return 256;
407 case IB_MTU_512: return 512;
408 case IB_MTU_1024: return 1024;
409 case IB_MTU_2048: return 2048;
410 case IB_MTU_4096: return 4096;
411 default: return -1;
412 }
413}
414
d3f4aadd
AR
415static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
416{
417 if (mtu >= 4096)
418 return IB_MTU_4096;
419 else if (mtu >= 2048)
420 return IB_MTU_2048;
421 else if (mtu >= 1024)
422 return IB_MTU_1024;
423 else if (mtu >= 512)
424 return IB_MTU_512;
425 else
426 return IB_MTU_256;
427}
428
1da177e4
LT
429enum ib_port_state {
430 IB_PORT_NOP = 0,
431 IB_PORT_DOWN = 1,
432 IB_PORT_INIT = 2,
433 IB_PORT_ARMED = 3,
434 IB_PORT_ACTIVE = 4,
435 IB_PORT_ACTIVE_DEFER = 5
436};
437
1da177e4
LT
438enum ib_port_width {
439 IB_WIDTH_1X = 1,
440 IB_WIDTH_4X = 2,
441 IB_WIDTH_8X = 4,
442 IB_WIDTH_12X = 8
443};
444
445static inline int ib_width_enum_to_int(enum ib_port_width width)
446{
447 switch (width) {
448 case IB_WIDTH_1X: return 1;
449 case IB_WIDTH_4X: return 4;
450 case IB_WIDTH_8X: return 8;
451 case IB_WIDTH_12X: return 12;
452 default: return -1;
453 }
454}
455
2e96691c
OG
456enum ib_port_speed {
457 IB_SPEED_SDR = 1,
458 IB_SPEED_DDR = 2,
459 IB_SPEED_QDR = 4,
460 IB_SPEED_FDR10 = 8,
461 IB_SPEED_FDR = 16,
12113a35
NO
462 IB_SPEED_EDR = 32,
463 IB_SPEED_HDR = 64
2e96691c
OG
464};
465
b40f4757
CL
466/**
467 * struct rdma_hw_stats
e945130b
MB
468 * @lock - Mutex to protect parallel write access to lifespan and values
469 * of counters, which are 64bits and not guaranteeed to be written
470 * atomicaly on 32bits systems.
b40f4757
CL
471 * @timestamp - Used by the core code to track when the last update was
472 * @lifespan - Used by the core code to determine how old the counters
473 * should be before being updated again. Stored in jiffies, defaults
474 * to 10 milliseconds, drivers can override the default be specifying
475 * their own value during their allocation routine.
476 * @name - Array of pointers to static names used for the counters in
477 * directory.
478 * @num_counters - How many hardware counters there are. If name is
479 * shorter than this number, a kernel oops will result. Driver authors
480 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
481 * in their code to prevent this.
482 * @value - Array of u64 counters that are accessed by the sysfs code and
483 * filled in by the drivers get_stats routine
484 */
485struct rdma_hw_stats {
e945130b 486 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
487 unsigned long timestamp;
488 unsigned long lifespan;
489 const char * const *names;
490 int num_counters;
491 u64 value[];
7f624d02
SW
492};
493
b40f4757
CL
494#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
495/**
496 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
497 * for drivers.
498 * @names - Array of static const char *
499 * @num_counters - How many elements in array
500 * @lifespan - How many milliseconds between updates
501 */
502static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
503 const char * const *names, int num_counters,
504 unsigned long lifespan)
505{
506 struct rdma_hw_stats *stats;
507
508 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
509 GFP_KERNEL);
510 if (!stats)
511 return NULL;
512 stats->names = names;
513 stats->num_counters = num_counters;
514 stats->lifespan = msecs_to_jiffies(lifespan);
515
516 return stats;
517}
518
519
f9b22e35
IW
520/* Define bits for the various functionality this port needs to be supported by
521 * the core.
522 */
523/* Management 0x00000FFF */
524#define RDMA_CORE_CAP_IB_MAD 0x00000001
525#define RDMA_CORE_CAP_IB_SMI 0x00000002
526#define RDMA_CORE_CAP_IB_CM 0x00000004
527#define RDMA_CORE_CAP_IW_CM 0x00000008
528#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 529#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
530
531/* Address format 0x000FF000 */
532#define RDMA_CORE_CAP_AF_IB 0x00001000
533#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 534#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 535#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
536
537/* Protocol 0xFFF00000 */
538#define RDMA_CORE_CAP_PROT_IB 0x00100000
539#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
540#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 541#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 542#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 543#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 544
b02289b3
AK
545#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
546 | RDMA_CORE_CAP_PROT_ROCE \
547 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
548
f9b22e35
IW
549#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
550 | RDMA_CORE_CAP_IB_MAD \
551 | RDMA_CORE_CAP_IB_SMI \
552 | RDMA_CORE_CAP_IB_CM \
553 | RDMA_CORE_CAP_IB_SA \
554 | RDMA_CORE_CAP_AF_IB)
555#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
556 | RDMA_CORE_CAP_IB_MAD \
557 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
558 | RDMA_CORE_CAP_AF_IB \
559 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
560#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
561 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
562 | RDMA_CORE_CAP_IB_MAD \
563 | RDMA_CORE_CAP_IB_CM \
564 | RDMA_CORE_CAP_AF_IB \
565 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
566#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
567 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
568#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
569 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 570
aa773bd4
OG
571#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
572
ce1e055f
OG
573#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
574
1da177e4 575struct ib_port_attr {
fad61ad4 576 u64 subnet_prefix;
1da177e4
LT
577 enum ib_port_state state;
578 enum ib_mtu max_mtu;
579 enum ib_mtu active_mtu;
580 int gid_tbl_len;
2f944c0f
JG
581 unsigned int ip_gids:1;
582 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
583 u32 port_cap_flags;
584 u32 max_msg_sz;
585 u32 bad_pkey_cntr;
586 u32 qkey_viol_cntr;
587 u16 pkey_tbl_len;
db58540b 588 u32 sm_lid;
582faf31 589 u32 lid;
1da177e4
LT
590 u8 lmc;
591 u8 max_vl_num;
592 u8 sm_sl;
593 u8 subnet_timeout;
594 u8 init_type_reply;
595 u8 active_width;
596 u8 active_speed;
597 u8 phys_state;
598};
599
600enum ib_device_modify_flags {
c5bcbbb9
RD
601 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
602 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
603};
604
bd99fdea
YS
605#define IB_DEVICE_NODE_DESC_MAX 64
606
1da177e4
LT
607struct ib_device_modify {
608 u64 sys_image_guid;
bd99fdea 609 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
610};
611
612enum ib_port_modify_flags {
613 IB_PORT_SHUTDOWN = 1,
614 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
615 IB_PORT_RESET_QKEY_CNTR = (1<<3),
616 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
617};
618
619struct ib_port_modify {
620 u32 set_port_cap_mask;
621 u32 clr_port_cap_mask;
622 u8 init_type;
623};
624
625enum ib_event_type {
626 IB_EVENT_CQ_ERR,
627 IB_EVENT_QP_FATAL,
628 IB_EVENT_QP_REQ_ERR,
629 IB_EVENT_QP_ACCESS_ERR,
630 IB_EVENT_COMM_EST,
631 IB_EVENT_SQ_DRAINED,
632 IB_EVENT_PATH_MIG,
633 IB_EVENT_PATH_MIG_ERR,
634 IB_EVENT_DEVICE_FATAL,
635 IB_EVENT_PORT_ACTIVE,
636 IB_EVENT_PORT_ERR,
637 IB_EVENT_LID_CHANGE,
638 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
639 IB_EVENT_SM_CHANGE,
640 IB_EVENT_SRQ_ERR,
641 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 642 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
643 IB_EVENT_CLIENT_REREGISTER,
644 IB_EVENT_GID_CHANGE,
f213c052 645 IB_EVENT_WQ_FATAL,
1da177e4
LT
646};
647
db7489e0 648const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 649
1da177e4
LT
650struct ib_event {
651 struct ib_device *device;
652 union {
653 struct ib_cq *cq;
654 struct ib_qp *qp;
d41fcc67 655 struct ib_srq *srq;
f213c052 656 struct ib_wq *wq;
1da177e4
LT
657 u8 port_num;
658 } element;
659 enum ib_event_type event;
660};
661
662struct ib_event_handler {
663 struct ib_device *device;
664 void (*handler)(struct ib_event_handler *, struct ib_event *);
665 struct list_head list;
666};
667
668#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
669 do { \
670 (_ptr)->device = _device; \
671 (_ptr)->handler = _handler; \
672 INIT_LIST_HEAD(&(_ptr)->list); \
673 } while (0)
674
675struct ib_global_route {
8d9ec9ad 676 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
677 union ib_gid dgid;
678 u32 flow_label;
679 u8 sgid_index;
680 u8 hop_limit;
681 u8 traffic_class;
682};
683
513789ed 684struct ib_grh {
97f52eb4
SH
685 __be32 version_tclass_flow;
686 __be16 paylen;
513789ed
HR
687 u8 next_hdr;
688 u8 hop_limit;
689 union ib_gid sgid;
690 union ib_gid dgid;
691};
692
c865f246
SK
693union rdma_network_hdr {
694 struct ib_grh ibgrh;
695 struct {
696 /* The IB spec states that if it's IPv4, the header
697 * is located in the last 20 bytes of the header.
698 */
699 u8 reserved[20];
700 struct iphdr roce4grh;
701 };
702};
703
7dafbab3
DH
704#define IB_QPN_MASK 0xFFFFFF
705
1da177e4
LT
706enum {
707 IB_MULTICAST_QPN = 0xffffff
708};
709
f3a7c66b 710#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 711#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 712
1da177e4
LT
713enum ib_ah_flags {
714 IB_AH_GRH = 1
715};
716
bf6a9e31
JM
717enum ib_rate {
718 IB_RATE_PORT_CURRENT = 0,
719 IB_RATE_2_5_GBPS = 2,
720 IB_RATE_5_GBPS = 5,
721 IB_RATE_10_GBPS = 3,
722 IB_RATE_20_GBPS = 6,
723 IB_RATE_30_GBPS = 4,
724 IB_RATE_40_GBPS = 7,
725 IB_RATE_60_GBPS = 8,
726 IB_RATE_80_GBPS = 9,
71eeba16
MA
727 IB_RATE_120_GBPS = 10,
728 IB_RATE_14_GBPS = 11,
729 IB_RATE_56_GBPS = 12,
730 IB_RATE_112_GBPS = 13,
731 IB_RATE_168_GBPS = 14,
732 IB_RATE_25_GBPS = 15,
733 IB_RATE_100_GBPS = 16,
734 IB_RATE_200_GBPS = 17,
735 IB_RATE_300_GBPS = 18
bf6a9e31
JM
736};
737
738/**
739 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
740 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
741 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
742 * @rate: rate to convert.
743 */
8385fd84 744__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 745
71eeba16
MA
746/**
747 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
748 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
749 * @rate: rate to convert.
750 */
8385fd84 751__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 752
17cd3a2d
SG
753
754/**
9bee178b
SG
755 * enum ib_mr_type - memory region type
756 * @IB_MR_TYPE_MEM_REG: memory region that is used for
757 * normal registration
758 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
759 * signature operations (data-integrity
760 * capable regions)
f5aa9159
SG
761 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
762 * register any arbitrary sg lists (without
763 * the normal mr constraints - see
764 * ib_map_mr_sg)
17cd3a2d 765 */
9bee178b
SG
766enum ib_mr_type {
767 IB_MR_TYPE_MEM_REG,
768 IB_MR_TYPE_SIGNATURE,
f5aa9159 769 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
770};
771
1b01d335 772/**
78eda2bb
SG
773 * Signature types
774 * IB_SIG_TYPE_NONE: Unprotected.
775 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 776 */
78eda2bb
SG
777enum ib_signature_type {
778 IB_SIG_TYPE_NONE,
779 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
780};
781
782/**
783 * Signature T10-DIF block-guard types
784 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
785 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
786 */
787enum ib_t10_dif_bg_type {
788 IB_T10DIF_CRC,
789 IB_T10DIF_CSUM
790};
791
792/**
793 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
794 * domain.
1b01d335
SG
795 * @bg_type: T10-DIF block guard type (CRC|CSUM)
796 * @pi_interval: protection information interval.
797 * @bg: seed of guard computation.
798 * @app_tag: application tag of guard block
799 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
800 * @ref_remap: Indicate wethear the reftag increments each block
801 * @app_escape: Indicate to skip block check if apptag=0xffff
802 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
803 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
804 */
805struct ib_t10_dif_domain {
1b01d335
SG
806 enum ib_t10_dif_bg_type bg_type;
807 u16 pi_interval;
808 u16 bg;
809 u16 app_tag;
810 u32 ref_tag;
78eda2bb
SG
811 bool ref_remap;
812 bool app_escape;
813 bool ref_escape;
814 u16 apptag_check_mask;
1b01d335
SG
815};
816
817/**
818 * struct ib_sig_domain - Parameters for signature domain
819 * @sig_type: specific signauture type
820 * @sig: union of all signature domain attributes that may
821 * be used to set domain layout.
822 */
823struct ib_sig_domain {
824 enum ib_signature_type sig_type;
825 union {
826 struct ib_t10_dif_domain dif;
827 } sig;
828};
829
830/**
831 * struct ib_sig_attrs - Parameters for signature handover operation
832 * @check_mask: bitmask for signature byte check (8 bytes)
833 * @mem: memory domain layout desciptor.
834 * @wire: wire domain layout desciptor.
835 */
836struct ib_sig_attrs {
837 u8 check_mask;
838 struct ib_sig_domain mem;
839 struct ib_sig_domain wire;
840};
841
842enum ib_sig_err_type {
843 IB_SIG_BAD_GUARD,
844 IB_SIG_BAD_REFTAG,
845 IB_SIG_BAD_APPTAG,
846};
847
ca24da00
MG
848/**
849 * Signature check masks (8 bytes in total) according to the T10-PI standard:
850 * -------- -------- ------------
851 * | GUARD | APPTAG | REFTAG |
852 * | 2B | 2B | 4B |
853 * -------- -------- ------------
854 */
855enum {
856 IB_SIG_CHECK_GUARD = 0xc0,
857 IB_SIG_CHECK_APPTAG = 0x30,
858 IB_SIG_CHECK_REFTAG = 0x0f,
859};
860
1b01d335
SG
861/**
862 * struct ib_sig_err - signature error descriptor
863 */
864struct ib_sig_err {
865 enum ib_sig_err_type err_type;
866 u32 expected;
867 u32 actual;
868 u64 sig_err_offset;
869 u32 key;
870};
871
872enum ib_mr_status_check {
873 IB_MR_CHECK_SIG_STATUS = 1,
874};
875
876/**
877 * struct ib_mr_status - Memory region status container
878 *
879 * @fail_status: Bitmask of MR checks status. For each
880 * failed check a corresponding status bit is set.
881 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
882 * failure.
883 */
884struct ib_mr_status {
885 u32 fail_status;
886 struct ib_sig_err sig_err;
887};
888
bf6a9e31
JM
889/**
890 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
891 * enum.
892 * @mult: multiple to convert.
893 */
8385fd84 894__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 895
44c58487 896enum rdma_ah_attr_type {
87daac68 897 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
898 RDMA_AH_ATTR_TYPE_IB,
899 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 900 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
901};
902
903struct ib_ah_attr {
904 u16 dlid;
905 u8 src_path_bits;
906};
907
908struct roce_ah_attr {
909 u8 dmac[ETH_ALEN];
910};
911
64b4646e
DC
912struct opa_ah_attr {
913 u32 dlid;
914 u8 src_path_bits;
d98bb7f7 915 bool make_grd;
64b4646e
DC
916};
917
90898850 918struct rdma_ah_attr {
1da177e4 919 struct ib_global_route grh;
1da177e4 920 u8 sl;
1da177e4 921 u8 static_rate;
1da177e4 922 u8 port_num;
44c58487
DC
923 u8 ah_flags;
924 enum rdma_ah_attr_type type;
925 union {
926 struct ib_ah_attr ib;
927 struct roce_ah_attr roce;
64b4646e 928 struct opa_ah_attr opa;
44c58487 929 };
1da177e4
LT
930};
931
932enum ib_wc_status {
933 IB_WC_SUCCESS,
934 IB_WC_LOC_LEN_ERR,
935 IB_WC_LOC_QP_OP_ERR,
936 IB_WC_LOC_EEC_OP_ERR,
937 IB_WC_LOC_PROT_ERR,
938 IB_WC_WR_FLUSH_ERR,
939 IB_WC_MW_BIND_ERR,
940 IB_WC_BAD_RESP_ERR,
941 IB_WC_LOC_ACCESS_ERR,
942 IB_WC_REM_INV_REQ_ERR,
943 IB_WC_REM_ACCESS_ERR,
944 IB_WC_REM_OP_ERR,
945 IB_WC_RETRY_EXC_ERR,
946 IB_WC_RNR_RETRY_EXC_ERR,
947 IB_WC_LOC_RDD_VIOL_ERR,
948 IB_WC_REM_INV_RD_REQ_ERR,
949 IB_WC_REM_ABORT_ERR,
950 IB_WC_INV_EECN_ERR,
951 IB_WC_INV_EEC_STATE_ERR,
952 IB_WC_FATAL_ERR,
953 IB_WC_RESP_TIMEOUT_ERR,
954 IB_WC_GENERAL_ERR
955};
956
db7489e0 957const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 958
1da177e4
LT
959enum ib_wc_opcode {
960 IB_WC_SEND,
961 IB_WC_RDMA_WRITE,
962 IB_WC_RDMA_READ,
963 IB_WC_COMP_SWAP,
964 IB_WC_FETCH_ADD,
c93570f2 965 IB_WC_LSO,
00f7ec36 966 IB_WC_LOCAL_INV,
4c67e2bf 967 IB_WC_REG_MR,
5e80ba8f
VS
968 IB_WC_MASKED_COMP_SWAP,
969 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
970/*
971 * Set value of IB_WC_RECV so consumers can test if a completion is a
972 * receive by testing (opcode & IB_WC_RECV).
973 */
974 IB_WC_RECV = 1 << 7,
975 IB_WC_RECV_RDMA_WITH_IMM
976};
977
978enum ib_wc_flags {
979 IB_WC_GRH = 1,
00f7ec36
SW
980 IB_WC_WITH_IMM = (1<<1),
981 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 982 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
983 IB_WC_WITH_SMAC = (1<<4),
984 IB_WC_WITH_VLAN = (1<<5),
c865f246 985 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
986};
987
988struct ib_wc {
14d3a3b2
CH
989 union {
990 u64 wr_id;
991 struct ib_cqe *wr_cqe;
992 };
1da177e4
LT
993 enum ib_wc_status status;
994 enum ib_wc_opcode opcode;
995 u32 vendor_err;
996 u32 byte_len;
062dbb69 997 struct ib_qp *qp;
00f7ec36
SW
998 union {
999 __be32 imm_data;
1000 u32 invalidate_rkey;
1001 } ex;
1da177e4 1002 u32 src_qp;
cd2a6e7d 1003 u32 slid;
1da177e4
LT
1004 int wc_flags;
1005 u16 pkey_index;
1da177e4
LT
1006 u8 sl;
1007 u8 dlid_path_bits;
1008 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1009 u8 smac[ETH_ALEN];
1010 u16 vlan_id;
c865f246 1011 u8 network_hdr_type;
1da177e4
LT
1012};
1013
ed23a727
RD
1014enum ib_cq_notify_flags {
1015 IB_CQ_SOLICITED = 1 << 0,
1016 IB_CQ_NEXT_COMP = 1 << 1,
1017 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1018 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1019};
1020
96104eda 1021enum ib_srq_type {
418d5130 1022 IB_SRQT_BASIC,
9c2c8496
AK
1023 IB_SRQT_XRC,
1024 IB_SRQT_TM,
96104eda
SH
1025};
1026
1a56ff6d
AK
1027static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1028{
9c2c8496
AK
1029 return srq_type == IB_SRQT_XRC ||
1030 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1031}
1032
d41fcc67
RD
1033enum ib_srq_attr_mask {
1034 IB_SRQ_MAX_WR = 1 << 0,
1035 IB_SRQ_LIMIT = 1 << 1,
1036};
1037
1038struct ib_srq_attr {
1039 u32 max_wr;
1040 u32 max_sge;
1041 u32 srq_limit;
1042};
1043
1044struct ib_srq_init_attr {
1045 void (*event_handler)(struct ib_event *, void *);
1046 void *srq_context;
1047 struct ib_srq_attr attr;
96104eda 1048 enum ib_srq_type srq_type;
418d5130 1049
1a56ff6d
AK
1050 struct {
1051 struct ib_cq *cq;
1052 union {
1053 struct {
1054 struct ib_xrcd *xrcd;
1055 } xrc;
9c2c8496
AK
1056
1057 struct {
1058 u32 max_num_tags;
1059 } tag_matching;
1a56ff6d 1060 };
418d5130 1061 } ext;
d41fcc67
RD
1062};
1063
1da177e4
LT
1064struct ib_qp_cap {
1065 u32 max_send_wr;
1066 u32 max_recv_wr;
1067 u32 max_send_sge;
1068 u32 max_recv_sge;
1069 u32 max_inline_data;
a060b562
CH
1070
1071 /*
1072 * Maximum number of rdma_rw_ctx structures in flight at a time.
1073 * ib_create_qp() will calculate the right amount of neededed WRs
1074 * and MRs based on this.
1075 */
1076 u32 max_rdma_ctxs;
1da177e4
LT
1077};
1078
1079enum ib_sig_type {
1080 IB_SIGNAL_ALL_WR,
1081 IB_SIGNAL_REQ_WR
1082};
1083
1084enum ib_qp_type {
1085 /*
1086 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1087 * here (and in that order) since the MAD layer uses them as
1088 * indices into a 2-entry table.
1089 */
1090 IB_QPT_SMI,
1091 IB_QPT_GSI,
1092
1093 IB_QPT_RC,
1094 IB_QPT_UC,
1095 IB_QPT_UD,
1096 IB_QPT_RAW_IPV6,
b42b63cf 1097 IB_QPT_RAW_ETHERTYPE,
c938a616 1098 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1099 IB_QPT_XRC_INI = 9,
1100 IB_QPT_XRC_TGT,
0134f16b 1101 IB_QPT_MAX,
8011c1e3 1102 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1103 /* Reserve a range for qp types internal to the low level driver.
1104 * These qp types will not be visible at the IB core layer, so the
1105 * IB_QPT_MAX usages should not be affected in the core layer
1106 */
1107 IB_QPT_RESERVED1 = 0x1000,
1108 IB_QPT_RESERVED2,
1109 IB_QPT_RESERVED3,
1110 IB_QPT_RESERVED4,
1111 IB_QPT_RESERVED5,
1112 IB_QPT_RESERVED6,
1113 IB_QPT_RESERVED7,
1114 IB_QPT_RESERVED8,
1115 IB_QPT_RESERVED9,
1116 IB_QPT_RESERVED10,
1da177e4
LT
1117};
1118
b846f25a 1119enum ib_qp_create_flags {
47ee1b9f
RL
1120 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1121 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1122 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1123 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1124 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1125 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1126 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1127 /* FREE = 1 << 7, */
b531b909 1128 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1129 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1130 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1131 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1132 /* reserve bits 26-31 for low level drivers' internal use */
1133 IB_QP_CREATE_RESERVED_START = 1 << 26,
1134 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1135};
1136
73c40c61
YH
1137/*
1138 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1139 * callback to destroy the passed in QP.
1140 */
1141
1da177e4 1142struct ib_qp_init_attr {
eb93c82e 1143 /* Consumer's event_handler callback must not block */
1da177e4 1144 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1145
1da177e4
LT
1146 void *qp_context;
1147 struct ib_cq *send_cq;
1148 struct ib_cq *recv_cq;
1149 struct ib_srq *srq;
b42b63cf 1150 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1151 struct ib_qp_cap cap;
1152 enum ib_sig_type sq_sig_type;
1153 enum ib_qp_type qp_type;
b56511c1 1154 u32 create_flags;
a060b562
CH
1155
1156 /*
1157 * Only needed for special QP types, or when using the RW API.
1158 */
1159 u8 port_num;
a9017e23 1160 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1161 u32 source_qpn;
1da177e4
LT
1162};
1163
0e0ec7e0
SH
1164struct ib_qp_open_attr {
1165 void (*event_handler)(struct ib_event *, void *);
1166 void *qp_context;
1167 u32 qp_num;
1168 enum ib_qp_type qp_type;
1169};
1170
1da177e4
LT
1171enum ib_rnr_timeout {
1172 IB_RNR_TIMER_655_36 = 0,
1173 IB_RNR_TIMER_000_01 = 1,
1174 IB_RNR_TIMER_000_02 = 2,
1175 IB_RNR_TIMER_000_03 = 3,
1176 IB_RNR_TIMER_000_04 = 4,
1177 IB_RNR_TIMER_000_06 = 5,
1178 IB_RNR_TIMER_000_08 = 6,
1179 IB_RNR_TIMER_000_12 = 7,
1180 IB_RNR_TIMER_000_16 = 8,
1181 IB_RNR_TIMER_000_24 = 9,
1182 IB_RNR_TIMER_000_32 = 10,
1183 IB_RNR_TIMER_000_48 = 11,
1184 IB_RNR_TIMER_000_64 = 12,
1185 IB_RNR_TIMER_000_96 = 13,
1186 IB_RNR_TIMER_001_28 = 14,
1187 IB_RNR_TIMER_001_92 = 15,
1188 IB_RNR_TIMER_002_56 = 16,
1189 IB_RNR_TIMER_003_84 = 17,
1190 IB_RNR_TIMER_005_12 = 18,
1191 IB_RNR_TIMER_007_68 = 19,
1192 IB_RNR_TIMER_010_24 = 20,
1193 IB_RNR_TIMER_015_36 = 21,
1194 IB_RNR_TIMER_020_48 = 22,
1195 IB_RNR_TIMER_030_72 = 23,
1196 IB_RNR_TIMER_040_96 = 24,
1197 IB_RNR_TIMER_061_44 = 25,
1198 IB_RNR_TIMER_081_92 = 26,
1199 IB_RNR_TIMER_122_88 = 27,
1200 IB_RNR_TIMER_163_84 = 28,
1201 IB_RNR_TIMER_245_76 = 29,
1202 IB_RNR_TIMER_327_68 = 30,
1203 IB_RNR_TIMER_491_52 = 31
1204};
1205
1206enum ib_qp_attr_mask {
1207 IB_QP_STATE = 1,
1208 IB_QP_CUR_STATE = (1<<1),
1209 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1210 IB_QP_ACCESS_FLAGS = (1<<3),
1211 IB_QP_PKEY_INDEX = (1<<4),
1212 IB_QP_PORT = (1<<5),
1213 IB_QP_QKEY = (1<<6),
1214 IB_QP_AV = (1<<7),
1215 IB_QP_PATH_MTU = (1<<8),
1216 IB_QP_TIMEOUT = (1<<9),
1217 IB_QP_RETRY_CNT = (1<<10),
1218 IB_QP_RNR_RETRY = (1<<11),
1219 IB_QP_RQ_PSN = (1<<12),
1220 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1221 IB_QP_ALT_PATH = (1<<14),
1222 IB_QP_MIN_RNR_TIMER = (1<<15),
1223 IB_QP_SQ_PSN = (1<<16),
1224 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1225 IB_QP_PATH_MIG_STATE = (1<<18),
1226 IB_QP_CAP = (1<<19),
dd5f03be 1227 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1228 IB_QP_RESERVED1 = (1<<21),
1229 IB_QP_RESERVED2 = (1<<22),
1230 IB_QP_RESERVED3 = (1<<23),
1231 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1232 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1233};
1234
1235enum ib_qp_state {
1236 IB_QPS_RESET,
1237 IB_QPS_INIT,
1238 IB_QPS_RTR,
1239 IB_QPS_RTS,
1240 IB_QPS_SQD,
1241 IB_QPS_SQE,
1242 IB_QPS_ERR
1243};
1244
1245enum ib_mig_state {
1246 IB_MIG_MIGRATED,
1247 IB_MIG_REARM,
1248 IB_MIG_ARMED
1249};
1250
7083e42e
SM
1251enum ib_mw_type {
1252 IB_MW_TYPE_1 = 1,
1253 IB_MW_TYPE_2 = 2
1254};
1255
1da177e4
LT
1256struct ib_qp_attr {
1257 enum ib_qp_state qp_state;
1258 enum ib_qp_state cur_qp_state;
1259 enum ib_mtu path_mtu;
1260 enum ib_mig_state path_mig_state;
1261 u32 qkey;
1262 u32 rq_psn;
1263 u32 sq_psn;
1264 u32 dest_qp_num;
1265 int qp_access_flags;
1266 struct ib_qp_cap cap;
90898850
DC
1267 struct rdma_ah_attr ah_attr;
1268 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1269 u16 pkey_index;
1270 u16 alt_pkey_index;
1271 u8 en_sqd_async_notify;
1272 u8 sq_draining;
1273 u8 max_rd_atomic;
1274 u8 max_dest_rd_atomic;
1275 u8 min_rnr_timer;
1276 u8 port_num;
1277 u8 timeout;
1278 u8 retry_cnt;
1279 u8 rnr_retry;
1280 u8 alt_port_num;
1281 u8 alt_timeout;
528e5a1b 1282 u32 rate_limit;
1da177e4
LT
1283};
1284
1285enum ib_wr_opcode {
9a59739b
JG
1286 /* These are shared with userspace */
1287 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1288 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1289 IB_WR_SEND = IB_UVERBS_WR_SEND,
1290 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1291 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1292 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1293 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1294 IB_WR_LSO = IB_UVERBS_WR_TSO,
1295 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1296 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1297 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1298 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1299 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1300 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1301 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1302
1303 /* These are kernel only and can not be issued by userspace */
1304 IB_WR_REG_MR = 0x20,
1b01d335 1305 IB_WR_REG_SIG_MR,
9a59739b 1306
0134f16b
JM
1307 /* reserve values for low level drivers' internal use.
1308 * These values will not be used at all in the ib core layer.
1309 */
1310 IB_WR_RESERVED1 = 0xf0,
1311 IB_WR_RESERVED2,
1312 IB_WR_RESERVED3,
1313 IB_WR_RESERVED4,
1314 IB_WR_RESERVED5,
1315 IB_WR_RESERVED6,
1316 IB_WR_RESERVED7,
1317 IB_WR_RESERVED8,
1318 IB_WR_RESERVED9,
1319 IB_WR_RESERVED10,
1da177e4
LT
1320};
1321
1322enum ib_send_flags {
1323 IB_SEND_FENCE = 1,
1324 IB_SEND_SIGNALED = (1<<1),
1325 IB_SEND_SOLICITED = (1<<2),
e0605d91 1326 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1327 IB_SEND_IP_CSUM = (1<<4),
1328
1329 /* reserve bits 26-31 for low level drivers' internal use */
1330 IB_SEND_RESERVED_START = (1 << 26),
1331 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1332};
1333
1334struct ib_sge {
1335 u64 addr;
1336 u32 length;
1337 u32 lkey;
1338};
1339
14d3a3b2
CH
1340struct ib_cqe {
1341 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1342};
1343
1da177e4
LT
1344struct ib_send_wr {
1345 struct ib_send_wr *next;
14d3a3b2
CH
1346 union {
1347 u64 wr_id;
1348 struct ib_cqe *wr_cqe;
1349 };
1da177e4
LT
1350 struct ib_sge *sg_list;
1351 int num_sge;
1352 enum ib_wr_opcode opcode;
1353 int send_flags;
0f39cf3d
RD
1354 union {
1355 __be32 imm_data;
1356 u32 invalidate_rkey;
1357 } ex;
1da177e4
LT
1358};
1359
e622f2f4
CH
1360struct ib_rdma_wr {
1361 struct ib_send_wr wr;
1362 u64 remote_addr;
1363 u32 rkey;
1364};
1365
f696bf6d 1366static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1367{
1368 return container_of(wr, struct ib_rdma_wr, wr);
1369}
1370
1371struct ib_atomic_wr {
1372 struct ib_send_wr wr;
1373 u64 remote_addr;
1374 u64 compare_add;
1375 u64 swap;
1376 u64 compare_add_mask;
1377 u64 swap_mask;
1378 u32 rkey;
1379};
1380
f696bf6d 1381static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1382{
1383 return container_of(wr, struct ib_atomic_wr, wr);
1384}
1385
1386struct ib_ud_wr {
1387 struct ib_send_wr wr;
1388 struct ib_ah *ah;
1389 void *header;
1390 int hlen;
1391 int mss;
1392 u32 remote_qpn;
1393 u32 remote_qkey;
1394 u16 pkey_index; /* valid for GSI only */
1395 u8 port_num; /* valid for DR SMPs on switch only */
1396};
1397
f696bf6d 1398static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1399{
1400 return container_of(wr, struct ib_ud_wr, wr);
1401}
1402
4c67e2bf
SG
1403struct ib_reg_wr {
1404 struct ib_send_wr wr;
1405 struct ib_mr *mr;
1406 u32 key;
1407 int access;
1408};
1409
f696bf6d 1410static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1411{
1412 return container_of(wr, struct ib_reg_wr, wr);
1413}
1414
e622f2f4
CH
1415struct ib_sig_handover_wr {
1416 struct ib_send_wr wr;
1417 struct ib_sig_attrs *sig_attrs;
1418 struct ib_mr *sig_mr;
1419 int access_flags;
1420 struct ib_sge *prot;
1421};
1422
f696bf6d
BVA
1423static inline const struct ib_sig_handover_wr *
1424sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1425{
1426 return container_of(wr, struct ib_sig_handover_wr, wr);
1427}
1428
1da177e4
LT
1429struct ib_recv_wr {
1430 struct ib_recv_wr *next;
14d3a3b2
CH
1431 union {
1432 u64 wr_id;
1433 struct ib_cqe *wr_cqe;
1434 };
1da177e4
LT
1435 struct ib_sge *sg_list;
1436 int num_sge;
1437};
1438
1439enum ib_access_flags {
4fca0377
JG
1440 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1441 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1442 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1443 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1444 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1445 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1446 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1447 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1448
1449 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1450};
1451
b7d3e0a9
CH
1452/*
1453 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454 * are hidden here instead of a uapi header!
1455 */
1da177e4
LT
1456enum ib_mr_rereg_flags {
1457 IB_MR_REREG_TRANS = 1,
1458 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1459 IB_MR_REREG_ACCESS = (1<<2),
1460 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1461};
1462
1da177e4
LT
1463struct ib_fmr_attr {
1464 int max_pages;
1465 int max_maps;
d36f34aa 1466 u8 page_shift;
1da177e4
LT
1467};
1468
882214e2
HE
1469struct ib_umem;
1470
38321256 1471enum rdma_remove_reason {
1c77483e
YH
1472 /*
1473 * Userspace requested uobject deletion or initial try
1474 * to remove uobject via cleanup. Call could fail
1475 */
38321256
MB
1476 RDMA_REMOVE_DESTROY,
1477 /* Context deletion. This call should delete the actual object itself */
1478 RDMA_REMOVE_CLOSE,
1479 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1480 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1481 /* uobj is being cleaned-up before being committed */
1482 RDMA_REMOVE_ABORT,
38321256
MB
1483};
1484
43579b5f
PP
1485struct ib_rdmacg_object {
1486#ifdef CONFIG_CGROUP_RDMA
1487 struct rdma_cgroup *cg; /* owner rdma cgroup */
1488#endif
1489};
1490
e2773c06
RD
1491struct ib_ucontext {
1492 struct ib_device *device;
771addf6 1493 struct ib_uverbs_file *ufile;
e951747a
JG
1494 /*
1495 * 'closing' can be read by the driver only during a destroy callback,
1496 * it is set when we are closing the file descriptor and indicates
1497 * that mm_sem may be locked.
1498 */
6ceb6331 1499 bool closing;
8ada2c1c 1500
1c77483e 1501 bool cleanup_retryable;
38321256 1502
882214e2 1503#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
b5231b01 1504 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
882214e2 1505 unsigned long start, unsigned long end);
f27a0d50
JG
1506 struct mutex per_mm_list_lock;
1507 struct list_head per_mm_list;
882214e2 1508#endif
43579b5f
PP
1509
1510 struct ib_rdmacg_object cg_obj;
e2773c06
RD
1511};
1512
1513struct ib_uobject {
1514 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1515 /* ufile & ucontext owning this object */
1516 struct ib_uverbs_file *ufile;
1517 /* FIXME, save memory: ufile->context == context */
e2773c06 1518 struct ib_ucontext *context; /* associated user context */
9ead190b 1519 void *object; /* containing object */
e2773c06 1520 struct list_head list; /* link to context's list */
43579b5f 1521 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1522 int id; /* index into kernel idr */
9ead190b 1523 struct kref ref;
38321256 1524 atomic_t usecnt; /* protects exclusive access */
d144da8c 1525 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1526
6b0d08f4 1527 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1528};
1529
e2773c06 1530struct ib_udata {
309243ec 1531 const void __user *inbuf;
e2773c06
RD
1532 void __user *outbuf;
1533 size_t inlen;
1534 size_t outlen;
1535};
1536
1da177e4 1537struct ib_pd {
96249d70 1538 u32 local_dma_lkey;
ed082d36 1539 u32 flags;
e2773c06
RD
1540 struct ib_device *device;
1541 struct ib_uobject *uobject;
1542 atomic_t usecnt; /* count all resources */
50d46335 1543
ed082d36
CH
1544 u32 unsafe_global_rkey;
1545
50d46335
CH
1546 /*
1547 * Implementation details of the RDMA core, don't use in drivers:
1548 */
1549 struct ib_mr *__internal_mr;
02d8883f 1550 struct rdma_restrack_entry res;
1da177e4
LT
1551};
1552
59991f94
SH
1553struct ib_xrcd {
1554 struct ib_device *device;
d3d72d90 1555 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1556 struct inode *inode;
d3d72d90
SH
1557
1558 struct mutex tgt_qp_mutex;
1559 struct list_head tgt_qp_list;
59991f94
SH
1560};
1561
1da177e4
LT
1562struct ib_ah {
1563 struct ib_device *device;
1564 struct ib_pd *pd;
e2773c06 1565 struct ib_uobject *uobject;
1a1f460f 1566 const struct ib_gid_attr *sgid_attr;
44c58487 1567 enum rdma_ah_attr_type type;
1da177e4
LT
1568};
1569
1570typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1571
14d3a3b2 1572enum ib_poll_context {
f794809a
JM
1573 IB_POLL_DIRECT, /* caller context, no hw completions */
1574 IB_POLL_SOFTIRQ, /* poll from softirq context */
1575 IB_POLL_WORKQUEUE, /* poll from workqueue */
1576 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
14d3a3b2
CH
1577};
1578
1da177e4 1579struct ib_cq {
e2773c06
RD
1580 struct ib_device *device;
1581 struct ib_uobject *uobject;
1582 ib_comp_handler comp_handler;
1583 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1584 void *cq_context;
e2773c06
RD
1585 int cqe;
1586 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1587 enum ib_poll_context poll_ctx;
1588 struct ib_wc *wc;
1589 union {
1590 struct irq_poll iop;
1591 struct work_struct work;
1592 };
f794809a 1593 struct workqueue_struct *comp_wq;
02d8883f
LR
1594 /*
1595 * Implementation details of the RDMA core, don't use in drivers:
1596 */
1597 struct rdma_restrack_entry res;
1da177e4
LT
1598};
1599
1600struct ib_srq {
d41fcc67
RD
1601 struct ib_device *device;
1602 struct ib_pd *pd;
1603 struct ib_uobject *uobject;
1604 void (*event_handler)(struct ib_event *, void *);
1605 void *srq_context;
96104eda 1606 enum ib_srq_type srq_type;
1da177e4 1607 atomic_t usecnt;
418d5130 1608
1a56ff6d
AK
1609 struct {
1610 struct ib_cq *cq;
1611 union {
1612 struct {
1613 struct ib_xrcd *xrcd;
1614 u32 srq_num;
1615 } xrc;
1616 };
418d5130 1617 } ext;
1da177e4
LT
1618};
1619
ebaaee25
NO
1620enum ib_raw_packet_caps {
1621 /* Strip cvlan from incoming packet and report it in the matching work
1622 * completion is supported.
1623 */
1624 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1625 /* Scatter FCS field of an incoming packet to host memory is supported.
1626 */
1627 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1628 /* Checksum offloads are supported (for both send and receive). */
1629 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1630 /* When a packet is received for an RQ with no receive WQEs, the
1631 * packet processing is delayed.
1632 */
1633 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1634};
1635
5fd251c8
YH
1636enum ib_wq_type {
1637 IB_WQT_RQ
1638};
1639
1640enum ib_wq_state {
1641 IB_WQS_RESET,
1642 IB_WQS_RDY,
1643 IB_WQS_ERR
1644};
1645
1646struct ib_wq {
1647 struct ib_device *device;
1648 struct ib_uobject *uobject;
1649 void *wq_context;
1650 void (*event_handler)(struct ib_event *, void *);
1651 struct ib_pd *pd;
1652 struct ib_cq *cq;
1653 u32 wq_num;
1654 enum ib_wq_state state;
1655 enum ib_wq_type wq_type;
1656 atomic_t usecnt;
1657};
1658
10bac72b
NO
1659enum ib_wq_flags {
1660 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1661 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1662 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1663 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1664};
1665
5fd251c8
YH
1666struct ib_wq_init_attr {
1667 void *wq_context;
1668 enum ib_wq_type wq_type;
1669 u32 max_wr;
1670 u32 max_sge;
1671 struct ib_cq *cq;
1672 void (*event_handler)(struct ib_event *, void *);
10bac72b 1673 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1674};
1675
1676enum ib_wq_attr_mask {
10bac72b
NO
1677 IB_WQ_STATE = 1 << 0,
1678 IB_WQ_CUR_STATE = 1 << 1,
1679 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1680};
1681
1682struct ib_wq_attr {
1683 enum ib_wq_state wq_state;
1684 enum ib_wq_state curr_wq_state;
10bac72b
NO
1685 u32 flags; /* Use enum ib_wq_flags */
1686 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1687};
1688
6d39786b
YH
1689struct ib_rwq_ind_table {
1690 struct ib_device *device;
1691 struct ib_uobject *uobject;
1692 atomic_t usecnt;
1693 u32 ind_tbl_num;
1694 u32 log_ind_tbl_size;
1695 struct ib_wq **ind_tbl;
1696};
1697
1698struct ib_rwq_ind_table_init_attr {
1699 u32 log_ind_tbl_size;
1700 /* Each entry is a pointer to Receive Work Queue */
1701 struct ib_wq **ind_tbl;
1702};
1703
d291f1a6
DJ
1704enum port_pkey_state {
1705 IB_PORT_PKEY_NOT_VALID = 0,
1706 IB_PORT_PKEY_VALID = 1,
1707 IB_PORT_PKEY_LISTED = 2,
1708};
1709
1710struct ib_qp_security;
1711
1712struct ib_port_pkey {
1713 enum port_pkey_state state;
1714 u16 pkey_index;
1715 u8 port_num;
1716 struct list_head qp_list;
1717 struct list_head to_error_list;
1718 struct ib_qp_security *sec;
1719};
1720
1721struct ib_ports_pkeys {
1722 struct ib_port_pkey main;
1723 struct ib_port_pkey alt;
1724};
1725
1726struct ib_qp_security {
1727 struct ib_qp *qp;
1728 struct ib_device *dev;
1729 /* Hold this mutex when changing port and pkey settings. */
1730 struct mutex mutex;
1731 struct ib_ports_pkeys *ports_pkeys;
1732 /* A list of all open shared QP handles. Required to enforce security
1733 * properly for all users of a shared QP.
1734 */
1735 struct list_head shared_qp_list;
1736 void *security;
1737 bool destroying;
1738 atomic_t error_list_count;
1739 struct completion error_complete;
1740 int error_comps_pending;
1741};
1742
632bc3f6
BVA
1743/*
1744 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1745 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1746 */
1da177e4
LT
1747struct ib_qp {
1748 struct ib_device *device;
1749 struct ib_pd *pd;
1750 struct ib_cq *send_cq;
1751 struct ib_cq *recv_cq;
fffb0383
CH
1752 spinlock_t mr_lock;
1753 int mrs_used;
a060b562 1754 struct list_head rdma_mrs;
0e353e34 1755 struct list_head sig_mrs;
1da177e4 1756 struct ib_srq *srq;
b42b63cf 1757 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1758 struct list_head xrcd_list;
fffb0383 1759
319a441d
HHZ
1760 /* count times opened, mcast attaches, flow attaches */
1761 atomic_t usecnt;
0e0ec7e0
SH
1762 struct list_head open_list;
1763 struct ib_qp *real_qp;
e2773c06 1764 struct ib_uobject *uobject;
1da177e4
LT
1765 void (*event_handler)(struct ib_event *, void *);
1766 void *qp_context;
1a1f460f
JG
1767 /* sgid_attrs associated with the AV's */
1768 const struct ib_gid_attr *av_sgid_attr;
1769 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1770 u32 qp_num;
632bc3f6
BVA
1771 u32 max_write_sge;
1772 u32 max_read_sge;
1da177e4 1773 enum ib_qp_type qp_type;
a9017e23 1774 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1775 struct ib_qp_security *qp_sec;
498ca3c8 1776 u8 port;
02d8883f
LR
1777
1778 /*
1779 * Implementation details of the RDMA core, don't use in drivers:
1780 */
1781 struct rdma_restrack_entry res;
1da177e4
LT
1782};
1783
bee76d7a
AL
1784struct ib_dm {
1785 struct ib_device *device;
1786 u32 length;
1787 u32 flags;
1788 struct ib_uobject *uobject;
1789 atomic_t usecnt;
1790};
1791
1da177e4 1792struct ib_mr {
e2773c06
RD
1793 struct ib_device *device;
1794 struct ib_pd *pd;
e2773c06
RD
1795 u32 lkey;
1796 u32 rkey;
4c67e2bf 1797 u64 iova;
edd31551 1798 u64 length;
4c67e2bf 1799 unsigned int page_size;
d4a85c30 1800 bool need_inval;
fffb0383
CH
1801 union {
1802 struct ib_uobject *uobject; /* user */
1803 struct list_head qp_entry; /* FR */
1804 };
fccec5b8 1805
be934cca
AL
1806 struct ib_dm *dm;
1807
fccec5b8
SW
1808 /*
1809 * Implementation details of the RDMA core, don't use in drivers:
1810 */
1811 struct rdma_restrack_entry res;
1da177e4
LT
1812};
1813
1814struct ib_mw {
1815 struct ib_device *device;
1816 struct ib_pd *pd;
e2773c06 1817 struct ib_uobject *uobject;
1da177e4 1818 u32 rkey;
7083e42e 1819 enum ib_mw_type type;
1da177e4
LT
1820};
1821
1822struct ib_fmr {
1823 struct ib_device *device;
1824 struct ib_pd *pd;
1825 struct list_head list;
1826 u32 lkey;
1827 u32 rkey;
1828};
1829
319a441d
HHZ
1830/* Supported steering options */
1831enum ib_flow_attr_type {
1832 /* steering according to rule specifications */
1833 IB_FLOW_ATTR_NORMAL = 0x0,
1834 /* default unicast and multicast rule -
1835 * receive all Eth traffic which isn't steered to any QP
1836 */
1837 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1838 /* default multicast rule -
1839 * receive all Eth multicast traffic which isn't steered to any QP
1840 */
1841 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1842 /* sniffer rule - receive all port traffic */
1843 IB_FLOW_ATTR_SNIFFER = 0x3
1844};
1845
1846/* Supported steering header types */
1847enum ib_flow_spec_type {
1848 /* L2 headers*/
76bd23b3
MR
1849 IB_FLOW_SPEC_ETH = 0x20,
1850 IB_FLOW_SPEC_IB = 0x22,
319a441d 1851 /* L3 header*/
76bd23b3
MR
1852 IB_FLOW_SPEC_IPV4 = 0x30,
1853 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1854 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1855 /* L4 headers*/
76bd23b3
MR
1856 IB_FLOW_SPEC_TCP = 0x40,
1857 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1858 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1859 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1860 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1861 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1862 /* Actions */
1863 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1864 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1865 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1866 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1867};
240ae00e 1868#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1869#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1870
319a441d
HHZ
1871/* Flow steering rule priority is set according to it's domain.
1872 * Lower domain value means higher priority.
1873 */
1874enum ib_flow_domain {
1875 IB_FLOW_DOMAIN_USER,
1876 IB_FLOW_DOMAIN_ETHTOOL,
1877 IB_FLOW_DOMAIN_RFS,
1878 IB_FLOW_DOMAIN_NIC,
1879 IB_FLOW_DOMAIN_NUM /* Must be last */
1880};
1881
a3100a78
MV
1882enum ib_flow_flags {
1883 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1884 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1885 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1886};
1887
319a441d
HHZ
1888struct ib_flow_eth_filter {
1889 u8 dst_mac[6];
1890 u8 src_mac[6];
1891 __be16 ether_type;
1892 __be16 vlan_tag;
15dfbd6b
MG
1893 /* Must be last */
1894 u8 real_sz[0];
319a441d
HHZ
1895};
1896
1897struct ib_flow_spec_eth {
fbf46860 1898 u32 type;
319a441d
HHZ
1899 u16 size;
1900 struct ib_flow_eth_filter val;
1901 struct ib_flow_eth_filter mask;
1902};
1903
240ae00e
MB
1904struct ib_flow_ib_filter {
1905 __be16 dlid;
1906 __u8 sl;
15dfbd6b
MG
1907 /* Must be last */
1908 u8 real_sz[0];
240ae00e
MB
1909};
1910
1911struct ib_flow_spec_ib {
fbf46860 1912 u32 type;
240ae00e
MB
1913 u16 size;
1914 struct ib_flow_ib_filter val;
1915 struct ib_flow_ib_filter mask;
1916};
1917
989a3a8f
MG
1918/* IPv4 header flags */
1919enum ib_ipv4_flags {
1920 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1921 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1922 last have this flag set */
1923};
1924
319a441d
HHZ
1925struct ib_flow_ipv4_filter {
1926 __be32 src_ip;
1927 __be32 dst_ip;
989a3a8f
MG
1928 u8 proto;
1929 u8 tos;
1930 u8 ttl;
1931 u8 flags;
15dfbd6b
MG
1932 /* Must be last */
1933 u8 real_sz[0];
319a441d
HHZ
1934};
1935
1936struct ib_flow_spec_ipv4 {
fbf46860 1937 u32 type;
319a441d
HHZ
1938 u16 size;
1939 struct ib_flow_ipv4_filter val;
1940 struct ib_flow_ipv4_filter mask;
1941};
1942
4c2aae71
MG
1943struct ib_flow_ipv6_filter {
1944 u8 src_ip[16];
1945 u8 dst_ip[16];
a72c6a2b
MG
1946 __be32 flow_label;
1947 u8 next_hdr;
1948 u8 traffic_class;
1949 u8 hop_limit;
15dfbd6b
MG
1950 /* Must be last */
1951 u8 real_sz[0];
4c2aae71
MG
1952};
1953
1954struct ib_flow_spec_ipv6 {
fbf46860 1955 u32 type;
4c2aae71
MG
1956 u16 size;
1957 struct ib_flow_ipv6_filter val;
1958 struct ib_flow_ipv6_filter mask;
1959};
1960
319a441d
HHZ
1961struct ib_flow_tcp_udp_filter {
1962 __be16 dst_port;
1963 __be16 src_port;
15dfbd6b
MG
1964 /* Must be last */
1965 u8 real_sz[0];
319a441d
HHZ
1966};
1967
1968struct ib_flow_spec_tcp_udp {
fbf46860 1969 u32 type;
319a441d
HHZ
1970 u16 size;
1971 struct ib_flow_tcp_udp_filter val;
1972 struct ib_flow_tcp_udp_filter mask;
1973};
1974
0dbf3332
MR
1975struct ib_flow_tunnel_filter {
1976 __be32 tunnel_id;
1977 u8 real_sz[0];
1978};
1979
1980/* ib_flow_spec_tunnel describes the Vxlan tunnel
1981 * the tunnel_id from val has the vni value
1982 */
1983struct ib_flow_spec_tunnel {
fbf46860 1984 u32 type;
0dbf3332
MR
1985 u16 size;
1986 struct ib_flow_tunnel_filter val;
1987 struct ib_flow_tunnel_filter mask;
1988};
1989
56ab0b38
MB
1990struct ib_flow_esp_filter {
1991 __be32 spi;
1992 __be32 seq;
1993 /* Must be last */
1994 u8 real_sz[0];
1995};
1996
1997struct ib_flow_spec_esp {
1998 u32 type;
1999 u16 size;
2000 struct ib_flow_esp_filter val;
2001 struct ib_flow_esp_filter mask;
2002};
2003
d90e5e50
AL
2004struct ib_flow_gre_filter {
2005 __be16 c_ks_res0_ver;
2006 __be16 protocol;
2007 __be32 key;
2008 /* Must be last */
2009 u8 real_sz[0];
2010};
2011
2012struct ib_flow_spec_gre {
2013 u32 type;
2014 u16 size;
2015 struct ib_flow_gre_filter val;
2016 struct ib_flow_gre_filter mask;
2017};
2018
b04f0f03
AL
2019struct ib_flow_mpls_filter {
2020 __be32 tag;
2021 /* Must be last */
2022 u8 real_sz[0];
2023};
2024
2025struct ib_flow_spec_mpls {
2026 u32 type;
2027 u16 size;
2028 struct ib_flow_mpls_filter val;
2029 struct ib_flow_mpls_filter mask;
2030};
2031
460d0198
MR
2032struct ib_flow_spec_action_tag {
2033 enum ib_flow_spec_type type;
2034 u16 size;
2035 u32 tag_id;
2036};
2037
483a3966
SS
2038struct ib_flow_spec_action_drop {
2039 enum ib_flow_spec_type type;
2040 u16 size;
2041};
2042
9b828441
MB
2043struct ib_flow_spec_action_handle {
2044 enum ib_flow_spec_type type;
2045 u16 size;
2046 struct ib_flow_action *act;
2047};
2048
7eea23a5
RS
2049enum ib_counters_description {
2050 IB_COUNTER_PACKETS,
2051 IB_COUNTER_BYTES,
2052};
2053
2054struct ib_flow_spec_action_count {
2055 enum ib_flow_spec_type type;
2056 u16 size;
2057 struct ib_counters *counters;
2058};
2059
319a441d
HHZ
2060union ib_flow_spec {
2061 struct {
fbf46860 2062 u32 type;
319a441d
HHZ
2063 u16 size;
2064 };
2065 struct ib_flow_spec_eth eth;
240ae00e 2066 struct ib_flow_spec_ib ib;
319a441d
HHZ
2067 struct ib_flow_spec_ipv4 ipv4;
2068 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2069 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2070 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2071 struct ib_flow_spec_esp esp;
d90e5e50 2072 struct ib_flow_spec_gre gre;
b04f0f03 2073 struct ib_flow_spec_mpls mpls;
460d0198 2074 struct ib_flow_spec_action_tag flow_tag;
483a3966 2075 struct ib_flow_spec_action_drop drop;
9b828441 2076 struct ib_flow_spec_action_handle action;
7eea23a5 2077 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2078};
2079
2080struct ib_flow_attr {
2081 enum ib_flow_attr_type type;
2082 u16 size;
2083 u16 priority;
2084 u32 flags;
2085 u8 num_of_specs;
2086 u8 port;
7654cb1b 2087 union ib_flow_spec flows[];
319a441d
HHZ
2088};
2089
2090struct ib_flow {
2091 struct ib_qp *qp;
6cd080a6 2092 struct ib_device *device;
319a441d
HHZ
2093 struct ib_uobject *uobject;
2094};
2095
2eb9beae
MB
2096enum ib_flow_action_type {
2097 IB_FLOW_ACTION_UNSPECIFIED,
2098 IB_FLOW_ACTION_ESP = 1,
2099};
2100
2101struct ib_flow_action_attrs_esp_keymats {
2102 enum ib_uverbs_flow_action_esp_keymat protocol;
2103 union {
2104 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2105 } keymat;
2106};
2107
2108struct ib_flow_action_attrs_esp_replays {
2109 enum ib_uverbs_flow_action_esp_replay protocol;
2110 union {
2111 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2112 } replay;
2113};
2114
2115enum ib_flow_action_attrs_esp_flags {
2116 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2117 * This is done in order to share the same flags between user-space and
2118 * kernel and spare an unnecessary translation.
2119 */
2120
2121 /* Kernel flags */
2122 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2123 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2124};
2125
2126struct ib_flow_spec_list {
2127 struct ib_flow_spec_list *next;
2128 union ib_flow_spec spec;
2129};
2130
2131struct ib_flow_action_attrs_esp {
2132 struct ib_flow_action_attrs_esp_keymats *keymat;
2133 struct ib_flow_action_attrs_esp_replays *replay;
2134 struct ib_flow_spec_list *encap;
2135 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2136 * Value of 0 is a valid value.
2137 */
2138 u32 esn;
2139 u32 spi;
2140 u32 seq;
2141 u32 tfc_pad;
2142 /* Use enum ib_flow_action_attrs_esp_flags */
2143 u64 flags;
2144 u64 hard_limit_pkts;
2145};
2146
2147struct ib_flow_action {
2148 struct ib_device *device;
2149 struct ib_uobject *uobject;
2150 enum ib_flow_action_type type;
2151 atomic_t usecnt;
2152};
2153
4cd7c947 2154struct ib_mad_hdr;
1da177e4
LT
2155struct ib_grh;
2156
2157enum ib_process_mad_flags {
2158 IB_MAD_IGNORE_MKEY = 1,
2159 IB_MAD_IGNORE_BKEY = 2,
2160 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2161};
2162
2163enum ib_mad_result {
2164 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2165 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2166 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2167 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2168};
2169
21d6454a 2170struct ib_port_cache {
883c71fe 2171 u64 subnet_prefix;
21d6454a
JW
2172 struct ib_pkey_cache *pkey;
2173 struct ib_gid_table *gid;
2174 u8 lmc;
2175 enum ib_port_state port_state;
2176};
2177
1da177e4
LT
2178struct ib_cache {
2179 rwlock_t lock;
2180 struct ib_event_handler event_handler;
21d6454a 2181 struct ib_port_cache *ports;
1da177e4
LT
2182};
2183
07ebafba
TT
2184struct iw_cm_verbs;
2185
7738613e
IW
2186struct ib_port_immutable {
2187 int pkey_tbl_len;
2188 int gid_tbl_len;
f9b22e35 2189 u32 core_cap_flags;
337877a4 2190 u32 max_mad_size;
7738613e
IW
2191};
2192
2fc77572
VN
2193/* rdma netdev type - specifies protocol type */
2194enum rdma_netdev_t {
f0ad83ac
NV
2195 RDMA_NETDEV_OPA_VNIC,
2196 RDMA_NETDEV_IPOIB,
2fc77572
VN
2197};
2198
2199/**
2200 * struct rdma_netdev - rdma netdev
2201 * For cases where netstack interfacing is required.
2202 */
2203struct rdma_netdev {
2204 void *clnt_priv;
2205 struct ib_device *hca;
2206 u8 port_num;
2207
9f49a5b5
JG
2208 /*
2209 * cleanup function must be specified.
2210 * FIXME: This is only used for OPA_VNIC and that usage should be
2211 * removed too.
2212 */
8e959601
NV
2213 void (*free_rdma_netdev)(struct net_device *netdev);
2214
2fc77572
VN
2215 /* control functions */
2216 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2217 /* send packet */
2218 int (*send)(struct net_device *dev, struct sk_buff *skb,
2219 struct ib_ah *address, u32 dqpn);
2220 /* multicast */
2221 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222 union ib_gid *gid, u16 mlid,
2223 int set_qkey, u32 qkey);
2224 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225 union ib_gid *gid, u16 mlid);
2fc77572
VN
2226};
2227
d291f1a6
DJ
2228struct ib_port_pkey_list {
2229 /* Lock to hold while modifying the list. */
2230 spinlock_t list_lock;
2231 struct list_head pkey_list;
2232};
2233
fa9b1802
RS
2234struct ib_counters {
2235 struct ib_device *device;
2236 struct ib_uobject *uobject;
2237 /* num of objects attached */
2238 atomic_t usecnt;
2239};
2240
51d7a538
RS
2241struct ib_counters_read_attr {
2242 u64 *counters_buff;
2243 u32 ncounters;
2244 u32 flags; /* use enum ib_read_counters_flags */
2245};
2246
2eb9beae
MB
2247struct uverbs_attr_bundle;
2248
1da177e4 2249struct ib_device {
0957c29f
BVA
2250 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2251 struct device *dma_device;
2252
1da177e4
LT
2253 char name[IB_DEVICE_NAME_MAX];
2254
2255 struct list_head event_handler_list;
2256 spinlock_t event_handler_lock;
2257
e1f540c3 2258 rwlock_t client_data_lock;
1da177e4 2259 struct list_head core_list;
7c1eb45a 2260 /* Access to the client_data_list is protected by the client_data_lock
e1f540c3
PP
2261 * rwlock and the lists_rwsem read-write semaphore
2262 */
1da177e4 2263 struct list_head client_data_list;
1da177e4
LT
2264
2265 struct ib_cache cache;
7738613e
IW
2266 /**
2267 * port_immutable is indexed by port number
2268 */
2269 struct ib_port_immutable *port_immutable;
1da177e4 2270
f4fd0b22
MT
2271 int num_comp_vectors;
2272
d291f1a6
DJ
2273 struct ib_port_pkey_list *port_pkey_list;
2274
07ebafba
TT
2275 struct iw_cm_verbs *iwcm;
2276
b40f4757
CL
2277 /**
2278 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2279 * driver initialized data. The struct is kfree()'ed by the sysfs
2280 * core when the device is removed. A lifespan of -1 in the return
2281 * struct tells the core to set a default lifespan.
2282 */
2283 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2284 u8 port_num);
2285 /**
2286 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2287 * @index - The index in the value array we wish to have updated, or
2288 * num_counters if we want all stats updated
2289 * Return codes -
2290 * < 0 - Error, no counters updated
2291 * index - Updated the single counter pointed to by index
2292 * num_counters - Updated all counters (will reset the timestamp
2293 * and prevent further calls for lifespan milliseconds)
2294 * Drivers are allowed to update all counters in leiu of just the
2295 * one given in index at their option
2296 */
2297 int (*get_hw_stats)(struct ib_device *device,
2298 struct rdma_hw_stats *stats,
2299 u8 port, int index);
1da177e4 2300 int (*query_device)(struct ib_device *device,
2528e33e
MB
2301 struct ib_device_attr *device_attr,
2302 struct ib_udata *udata);
1da177e4
LT
2303 int (*query_port)(struct ib_device *device,
2304 u8 port_num,
2305 struct ib_port_attr *port_attr);
a3f5adaf
EC
2306 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2307 u8 port_num);
03db3a2d
MB
2308 /* When calling get_netdev, the HW vendor's driver should return the
2309 * net device of device @device at port @port_num or NULL if such
2310 * a net device doesn't exist. The vendor driver should call dev_hold
2311 * on this net device. The HW vendor's device driver must guarantee
070f2d7e
KT
2312 * that this function returns NULL before the net device has finished
2313 * NETDEV_UNREGISTER state.
03db3a2d
MB
2314 */
2315 struct net_device *(*get_netdev)(struct ib_device *device,
2316 u8 port_num);
72e1ff0f
PP
2317 /* query_gid should be return GID value for @device, when @port_num
2318 * link layer is either IB or iWarp. It is no-op if @port_num port
2319 * is RoCE link layer.
2320 */
1da177e4
LT
2321 int (*query_gid)(struct ib_device *device,
2322 u8 port_num, int index,
2323 union ib_gid *gid);
414448d2
PP
2324 /* When calling add_gid, the HW vendor's driver should add the gid
2325 * of device of port at gid index available at @attr. Meta-info of
2326 * that gid (for example, the network device related to this gid) is
2327 * available at @attr. @context allows the HW vendor driver to store
2328 * extra information together with a GID entry. The HW vendor driver may
2329 * allocate memory to contain this information and store it in @context
2330 * when a new GID entry is written to. Params are consistent until the
2331 * next call of add_gid or delete_gid. The function should return 0 on
03db3a2d 2332 * success or error otherwise. The function could be called
414448d2
PP
2333 * concurrently for different ports. This function is only called when
2334 * roce_gid_table is used.
03db3a2d 2335 */
f4df9a7c 2336 int (*add_gid)(const struct ib_gid_attr *attr,
03db3a2d
MB
2337 void **context);
2338 /* When calling del_gid, the HW vendor's driver should delete the
414448d2
PP
2339 * gid of device @device at gid index gid_index of port port_num
2340 * available in @attr.
03db3a2d
MB
2341 * Upon the deletion of a GID entry, the HW vendor must free any
2342 * allocated memory. The caller will clear @context afterwards.
2343 * This function is only called when roce_gid_table is used.
2344 */
414448d2 2345 int (*del_gid)(const struct ib_gid_attr *attr,
03db3a2d 2346 void **context);
1da177e4
LT
2347 int (*query_pkey)(struct ib_device *device,
2348 u8 port_num, u16 index, u16 *pkey);
2349 int (*modify_device)(struct ib_device *device,
2350 int device_modify_mask,
2351 struct ib_device_modify *device_modify);
2352 int (*modify_port)(struct ib_device *device,
2353 u8 port_num, int port_modify_mask,
2354 struct ib_port_modify *port_modify);
e2773c06
RD
2355 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2356 struct ib_udata *udata);
2357 int (*dealloc_ucontext)(struct ib_ucontext *context);
2358 int (*mmap)(struct ib_ucontext *context,
2359 struct vm_area_struct *vma);
2360 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2361 struct ib_ucontext *context,
2362 struct ib_udata *udata);
1da177e4
LT
2363 int (*dealloc_pd)(struct ib_pd *pd);
2364 struct ib_ah * (*create_ah)(struct ib_pd *pd,
90898850 2365 struct rdma_ah_attr *ah_attr,
477864c8 2366 struct ib_udata *udata);
1da177e4 2367 int (*modify_ah)(struct ib_ah *ah,
90898850 2368 struct rdma_ah_attr *ah_attr);
1da177e4 2369 int (*query_ah)(struct ib_ah *ah,
90898850 2370 struct rdma_ah_attr *ah_attr);
1da177e4 2371 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2372 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2373 struct ib_srq_init_attr *srq_init_attr,
2374 struct ib_udata *udata);
2375 int (*modify_srq)(struct ib_srq *srq,
2376 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2377 enum ib_srq_attr_mask srq_attr_mask,
2378 struct ib_udata *udata);
d41fcc67
RD
2379 int (*query_srq)(struct ib_srq *srq,
2380 struct ib_srq_attr *srq_attr);
2381 int (*destroy_srq)(struct ib_srq *srq);
2382 int (*post_srq_recv)(struct ib_srq *srq,
d34ac5cd
BVA
2383 const struct ib_recv_wr *recv_wr,
2384 const struct ib_recv_wr **bad_recv_wr);
1da177e4 2385 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2386 struct ib_qp_init_attr *qp_init_attr,
2387 struct ib_udata *udata);
1da177e4
LT
2388 int (*modify_qp)(struct ib_qp *qp,
2389 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2390 int qp_attr_mask,
2391 struct ib_udata *udata);
1da177e4
LT
2392 int (*query_qp)(struct ib_qp *qp,
2393 struct ib_qp_attr *qp_attr,
2394 int qp_attr_mask,
2395 struct ib_qp_init_attr *qp_init_attr);
2396 int (*destroy_qp)(struct ib_qp *qp);
2397 int (*post_send)(struct ib_qp *qp,
d34ac5cd
BVA
2398 const struct ib_send_wr *send_wr,
2399 const struct ib_send_wr **bad_send_wr);
1da177e4 2400 int (*post_recv)(struct ib_qp *qp,
d34ac5cd
BVA
2401 const struct ib_recv_wr *recv_wr,
2402 const struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2403 struct ib_cq * (*create_cq)(struct ib_device *device,
2404 const struct ib_cq_init_attr *attr,
e2773c06
RD
2405 struct ib_ucontext *context,
2406 struct ib_udata *udata);
2dd57162
EC
2407 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2408 u16 cq_period);
1da177e4 2409 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2410 int (*resize_cq)(struct ib_cq *cq, int cqe,
2411 struct ib_udata *udata);
1da177e4
LT
2412 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2413 struct ib_wc *wc);
2414 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2415 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2416 enum ib_cq_notify_flags flags);
1da177e4
LT
2417 int (*req_ncomp_notif)(struct ib_cq *cq,
2418 int wc_cnt);
2419 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2420 int mr_access_flags);
e2773c06 2421 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2422 u64 start, u64 length,
2423 u64 virt_addr,
e2773c06
RD
2424 int mr_access_flags,
2425 struct ib_udata *udata);
7e6edb9b
MB
2426 int (*rereg_user_mr)(struct ib_mr *mr,
2427 int flags,
2428 u64 start, u64 length,
2429 u64 virt_addr,
2430 int mr_access_flags,
2431 struct ib_pd *pd,
2432 struct ib_udata *udata);
1da177e4 2433 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2434 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2435 enum ib_mr_type mr_type,
2436 u32 max_num_sg);
4c67e2bf
SG
2437 int (*map_mr_sg)(struct ib_mr *mr,
2438 struct scatterlist *sg,
ff2ba993 2439 int sg_nents,
9aa8b321 2440 unsigned int *sg_offset);
7083e42e 2441 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2442 enum ib_mw_type type,
2443 struct ib_udata *udata);
1da177e4
LT
2444 int (*dealloc_mw)(struct ib_mw *mw);
2445 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2446 int mr_access_flags,
2447 struct ib_fmr_attr *fmr_attr);
2448 int (*map_phys_fmr)(struct ib_fmr *fmr,
2449 u64 *page_list, int list_len,
2450 u64 iova);
2451 int (*unmap_fmr)(struct list_head *fmr_list);
2452 int (*dealloc_fmr)(struct ib_fmr *fmr);
2453 int (*attach_mcast)(struct ib_qp *qp,
2454 union ib_gid *gid,
2455 u16 lid);
2456 int (*detach_mcast)(struct ib_qp *qp,
2457 union ib_gid *gid,
2458 u16 lid);
2459 int (*process_mad)(struct ib_device *device,
2460 int process_mad_flags,
2461 u8 port_num,
a97e2d86
IW
2462 const struct ib_wc *in_wc,
2463 const struct ib_grh *in_grh,
4cd7c947
IW
2464 const struct ib_mad_hdr *in_mad,
2465 size_t in_mad_size,
2466 struct ib_mad_hdr *out_mad,
2467 size_t *out_mad_size,
2468 u16 *out_mad_pkey_index);
59991f94
SH
2469 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2470 struct ib_ucontext *ucontext,
2471 struct ib_udata *udata);
2472 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2473 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2474 struct ib_flow_attr
2475 *flow_attr,
59082a32
MB
2476 int domain,
2477 struct ib_udata *udata);
319a441d 2478 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2479 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2480 struct ib_mr_status *mr_status);
036b1063 2481 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2482 void (*drain_rq)(struct ib_qp *qp);
2483 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2484 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2485 int state);
2486 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2487 struct ifla_vf_info *ivf);
2488 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2489 struct ifla_vf_stats *stats);
2490 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2491 int type);
5fd251c8
YH
2492 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2493 struct ib_wq_init_attr *init_attr,
2494 struct ib_udata *udata);
2495 int (*destroy_wq)(struct ib_wq *wq);
2496 int (*modify_wq)(struct ib_wq *wq,
2497 struct ib_wq_attr *attr,
2498 u32 wq_attr_mask,
2499 struct ib_udata *udata);
6d39786b
YH
2500 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2501 struct ib_rwq_ind_table_init_attr *init_attr,
2502 struct ib_udata *udata);
2503 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2eb9beae
MB
2504 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device,
2505 const struct ib_flow_action_attrs_esp *attr,
2506 struct uverbs_attr_bundle *attrs);
2507 int (*destroy_flow_action)(struct ib_flow_action *action);
7d12f8d5
MB
2508 int (*modify_flow_action_esp)(struct ib_flow_action *action,
2509 const struct ib_flow_action_attrs_esp *attr,
2510 struct uverbs_attr_bundle *attrs);
bee76d7a
AL
2511 struct ib_dm * (*alloc_dm)(struct ib_device *device,
2512 struct ib_ucontext *context,
2513 struct ib_dm_alloc_attr *attr,
2514 struct uverbs_attr_bundle *attrs);
2515 int (*dealloc_dm)(struct ib_dm *dm);
be934cca
AL
2516 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2517 struct ib_dm_mr_attr *attr,
2518 struct uverbs_attr_bundle *attrs);
fa9b1802
RS
2519 struct ib_counters * (*create_counters)(struct ib_device *device,
2520 struct uverbs_attr_bundle *attrs);
2521 int (*destroy_counters)(struct ib_counters *counters);
51d7a538
RS
2522 int (*read_counters)(struct ib_counters *counters,
2523 struct ib_counters_read_attr *counters_read_attr,
2524 struct uverbs_attr_bundle *attrs);
fa9b1802 2525
2fc77572 2526 /**
8e959601 2527 * rdma netdev operation
2fc77572
VN
2528 *
2529 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2530 * doesn't support the specified rdma netdev type.
2531 */
2532 struct net_device *(*alloc_rdma_netdev)(
2533 struct ib_device *device,
2534 u8 port_num,
2535 enum rdma_netdev_t type,
2536 const char *name,
2537 unsigned char name_assign_type,
2538 void (*setup)(struct net_device *));
9b513090 2539
e2773c06 2540 struct module *owner;
f4e91eb4 2541 struct device dev;
adee9f3f
PP
2542 /* First group for device attributes, NULL terminated array */
2543 const struct attribute_group *groups[2];
2544
1ae4cfa0 2545 struct kobject *ports_kobj;
1da177e4
LT
2546 struct list_head port_list;
2547
2548 enum {
2549 IB_DEV_UNINITIALIZED,
2550 IB_DEV_REGISTERED,
2551 IB_DEV_UNREGISTERED
2552 } reg_state;
2553
274c0891 2554 int uverbs_abi_ver;
17a55f79 2555 u64 uverbs_cmd_mask;
f21519b2 2556 u64 uverbs_ex_cmd_mask;
274c0891 2557
bd99fdea 2558 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2559 __be64 node_guid;
96f15c03 2560 u32 local_dma_lkey;
4139032b 2561 u16 is_switch:1;
1da177e4
LT
2562 u8 node_type;
2563 u8 phys_port_cnt;
3e153a93 2564 struct ib_device_attr attrs;
b40f4757
CL
2565 struct attribute_group *hw_stats_ag;
2566 struct rdma_hw_stats *hw_stats;
7738613e 2567
43579b5f
PP
2568#ifdef CONFIG_CGROUP_RDMA
2569 struct rdmacg_device cg_device;
2570#endif
2571
ecc82c53 2572 u32 index;
02d8883f
LR
2573 /*
2574 * Implementation details of the RDMA core, don't use in drivers
2575 */
2576 struct rdma_restrack_root res;
ecc82c53 2577
7738613e
IW
2578 /**
2579 * The following mandatory functions are used only at device
2580 * registration. Keep functions such as these at the end of this
2581 * structure to avoid cache line misses when accessing struct ib_device
2582 * in fast paths.
2583 */
2584 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
9abb0d1b 2585 void (*get_dev_fw_str)(struct ib_device *, char *str);
c66cd353
SG
2586 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2587 int comp_vector);
fac9658c 2588
7d96c9b1 2589 const struct uverbs_object_tree_def *const *driver_specs;
0ede73bc 2590 enum rdma_driver_id driver_id;
1da177e4
LT
2591};
2592
2593struct ib_client {
2594 char *name;
2595 void (*add) (struct ib_device *);
7c1eb45a 2596 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2597
9268f72d
YK
2598 /* Returns the net_dev belonging to this ib_client and matching the
2599 * given parameters.
2600 * @dev: An RDMA device that the net_dev use for communication.
2601 * @port: A physical port number on the RDMA device.
2602 * @pkey: P_Key that the net_dev uses if applicable.
2603 * @gid: A GID that the net_dev uses to communicate.
2604 * @addr: An IP address the net_dev is configured with.
2605 * @client_data: The device's client data set by ib_set_client_data().
2606 *
2607 * An ib_client that implements a net_dev on top of RDMA devices
2608 * (such as IP over IB) should implement this callback, allowing the
2609 * rdma_cm module to find the right net_dev for a given request.
2610 *
2611 * The caller is responsible for calling dev_put on the returned
2612 * netdev. */
2613 struct net_device *(*get_net_dev_by_params)(
2614 struct ib_device *dev,
2615 u8 port,
2616 u16 pkey,
2617 const union ib_gid *gid,
2618 const struct sockaddr *addr,
2619 void *client_data);
1da177e4
LT
2620 struct list_head list;
2621};
2622
2623struct ib_device *ib_alloc_device(size_t size);
2624void ib_dealloc_device(struct ib_device *device);
2625
9abb0d1b 2626void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2627
e349f858
JG
2628int ib_register_device(struct ib_device *device, const char *name,
2629 int (*port_callback)(struct ib_device *, u8,
2630 struct kobject *));
1da177e4
LT
2631void ib_unregister_device(struct ib_device *device);
2632
2633int ib_register_client (struct ib_client *client);
2634void ib_unregister_client(struct ib_client *client);
2635
2636void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2637void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2638 void *data);
2639
5f9794dc
JG
2640#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2641int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2642 unsigned long pfn, unsigned long size, pgprot_t prot);
2643int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2644 struct vm_area_struct *vma, struct page *page,
2645 unsigned long size);
2646#else
2647static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2648 struct vm_area_struct *vma,
2649 unsigned long pfn, unsigned long size,
2650 pgprot_t prot)
2651{
2652 return -EINVAL;
2653}
2654static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2655 struct vm_area_struct *vma, struct page *page,
2656 unsigned long size)
2657{
2658 return -EINVAL;
2659}
2660#endif
2661
e2773c06
RD
2662static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2663{
2664 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2665}
2666
2667static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2668{
43c61165 2669 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2670}
2671
c66db311
MB
2672static inline bool ib_is_buffer_cleared(const void __user *p,
2673 size_t len)
301a721e 2674{
92d27ae6 2675 bool ret;
301a721e
MB
2676 u8 *buf;
2677
2678 if (len > USHRT_MAX)
2679 return false;
2680
92d27ae6
ME
2681 buf = memdup_user(p, len);
2682 if (IS_ERR(buf))
301a721e
MB
2683 return false;
2684
301a721e 2685 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2686 kfree(buf);
2687 return ret;
2688}
2689
c66db311
MB
2690static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2691 size_t offset,
2692 size_t len)
2693{
2694 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2695}
2696
1c77483e
YH
2697/**
2698 * ib_is_destroy_retryable - Check whether the uobject destruction
2699 * is retryable.
2700 * @ret: The initial destruction return code
2701 * @why: remove reason
2702 * @uobj: The uobject that is destroyed
2703 *
2704 * This function is a helper function that IB layer and low-level drivers
2705 * can use to consider whether the destruction of the given uobject is
2706 * retry-able.
2707 * It checks the original return code, if it wasn't success the destruction
2708 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2709 * the remove reason. (i.e. why).
2710 * Must be called with the object locked for destroy.
2711 */
2712static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2713 struct ib_uobject *uobj)
2714{
2715 return ret && (why == RDMA_REMOVE_DESTROY ||
2716 uobj->context->cleanup_retryable);
2717}
2718
2719/**
2720 * ib_destroy_usecnt - Called during destruction to check the usecnt
2721 * @usecnt: The usecnt atomic
2722 * @why: remove reason
2723 * @uobj: The uobject that is destroyed
2724 *
2725 * Non-zero usecnts will block destruction unless destruction was triggered by
2726 * a ucontext cleanup.
2727 */
2728static inline int ib_destroy_usecnt(atomic_t *usecnt,
2729 enum rdma_remove_reason why,
2730 struct ib_uobject *uobj)
2731{
2732 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2733 return -EBUSY;
2734 return 0;
2735}
2736
8a51866f
RD
2737/**
2738 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2739 * contains all required attributes and no attributes not allowed for
2740 * the given QP state transition.
2741 * @cur_state: Current QP state
2742 * @next_state: Next QP state
2743 * @type: QP type
2744 * @mask: Mask of supplied QP attributes
2745 *
2746 * This function is a helper function that a low-level driver's
2747 * modify_qp method can use to validate the consumer's input. It
2748 * checks that cur_state and next_state are valid QP states, that a
2749 * transition from cur_state to next_state is allowed by the IB spec,
2750 * and that the attribute mask supplied is allowed for the transition.
2751 */
19b1f540 2752bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2753 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2754
dcc9881e
LR
2755void ib_register_event_handler(struct ib_event_handler *event_handler);
2756void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2757void ib_dispatch_event(struct ib_event *event);
2758
1da177e4
LT
2759int ib_query_port(struct ib_device *device,
2760 u8 port_num, struct ib_port_attr *port_attr);
2761
a3f5adaf
EC
2762enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2763 u8 port_num);
2764
4139032b
HR
2765/**
2766 * rdma_cap_ib_switch - Check if the device is IB switch
2767 * @device: Device to check
2768 *
2769 * Device driver is responsible for setting is_switch bit on
2770 * in ib_device structure at init time.
2771 *
2772 * Return: true if the device is IB switch.
2773 */
2774static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2775{
2776 return device->is_switch;
2777}
2778
0cf18d77
IW
2779/**
2780 * rdma_start_port - Return the first valid port number for the device
2781 * specified
2782 *
2783 * @device: Device to be checked
2784 *
2785 * Return start port number
2786 */
2787static inline u8 rdma_start_port(const struct ib_device *device)
2788{
4139032b 2789 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2790}
2791
2792/**
2793 * rdma_end_port - Return the last valid port number for the device
2794 * specified
2795 *
2796 * @device: Device to be checked
2797 *
2798 * Return last port number
2799 */
2800static inline u8 rdma_end_port(const struct ib_device *device)
2801{
4139032b 2802 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2803}
2804
24dc831b
YS
2805static inline int rdma_is_port_valid(const struct ib_device *device,
2806 unsigned int port)
2807{
2808 return (port >= rdma_start_port(device) &&
2809 port <= rdma_end_port(device));
2810}
2811
b02289b3
AK
2812static inline bool rdma_is_grh_required(const struct ib_device *device,
2813 u8 port_num)
2814{
2815 return device->port_immutable[port_num].core_cap_flags &
2816 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2817}
2818
5ede9289 2819static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2820{
f9b22e35 2821 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2822}
2823
5ede9289 2824static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2825{
2826 return device->port_immutable[port_num].core_cap_flags &
2827 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2828}
2829
2830static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2831{
2832 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2833}
2834
2835static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2836{
f9b22e35 2837 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2838}
2839
5ede9289 2840static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2841{
f9b22e35 2842 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2843}
2844
5ede9289 2845static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2846{
7766a99f
MB
2847 return rdma_protocol_ib(device, port_num) ||
2848 rdma_protocol_roce(device, port_num);
de66be94
MW
2849}
2850
aa773bd4
OG
2851static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2852{
2853 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2854}
2855
ce1e055f
OG
2856static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2857{
2858 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2859}
2860
c757dea8 2861/**
296ec009 2862 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2863 * Management Datagrams.
296ec009
MW
2864 * @device: Device to check
2865 * @port_num: Port number to check
c757dea8 2866 *
296ec009
MW
2867 * Management Datagrams (MAD) are a required part of the InfiniBand
2868 * specification and are supported on all InfiniBand devices. A slightly
2869 * extended version are also supported on OPA interfaces.
c757dea8 2870 *
296ec009 2871 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2872 */
5ede9289 2873static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2874{
f9b22e35 2875 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2876}
2877
65995fee
IW
2878/**
2879 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2880 * Management Datagrams.
2881 * @device: Device to check
2882 * @port_num: Port number to check
2883 *
2884 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2885 * datagrams with their own versions. These OPA MADs share many but not all of
2886 * the characteristics of InfiniBand MADs.
2887 *
2888 * OPA MADs differ in the following ways:
2889 *
2890 * 1) MADs are variable size up to 2K
2891 * IBTA defined MADs remain fixed at 256 bytes
2892 * 2) OPA SMPs must carry valid PKeys
2893 * 3) OPA SMP packets are a different format
2894 *
2895 * Return: true if the port supports OPA MAD packet formats.
2896 */
2897static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2898{
2899 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2900 == RDMA_CORE_CAP_OPA_MAD;
2901}
2902
29541e3a 2903/**
296ec009
MW
2904 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2905 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2906 * @device: Device to check
2907 * @port_num: Port number to check
29541e3a 2908 *
296ec009
MW
2909 * Each InfiniBand node is required to provide a Subnet Management Agent
2910 * that the subnet manager can access. Prior to the fabric being fully
2911 * configured by the subnet manager, the SMA is accessed via a well known
2912 * interface called the Subnet Management Interface (SMI). This interface
2913 * uses directed route packets to communicate with the SM to get around the
2914 * chicken and egg problem of the SM needing to know what's on the fabric
2915 * in order to configure the fabric, and needing to configure the fabric in
2916 * order to send packets to the devices on the fabric. These directed
2917 * route packets do not need the fabric fully configured in order to reach
2918 * their destination. The SMI is the only method allowed to send
2919 * directed route packets on an InfiniBand fabric.
29541e3a 2920 *
296ec009 2921 * Return: true if the port provides an SMI.
29541e3a 2922 */
5ede9289 2923static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2924{
f9b22e35 2925 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2926}
2927
72219cea
MW
2928/**
2929 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2930 * Communication Manager.
296ec009
MW
2931 * @device: Device to check
2932 * @port_num: Port number to check
72219cea 2933 *
296ec009
MW
2934 * The InfiniBand Communication Manager is one of many pre-defined General
2935 * Service Agents (GSA) that are accessed via the General Service
2936 * Interface (GSI). It's role is to facilitate establishment of connections
2937 * between nodes as well as other management related tasks for established
2938 * connections.
72219cea 2939 *
296ec009
MW
2940 * Return: true if the port supports an IB CM (this does not guarantee that
2941 * a CM is actually running however).
72219cea 2942 */
5ede9289 2943static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2944{
f9b22e35 2945 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2946}
2947
04215330
MW
2948/**
2949 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2950 * Communication Manager.
296ec009
MW
2951 * @device: Device to check
2952 * @port_num: Port number to check
04215330 2953 *
296ec009
MW
2954 * Similar to above, but specific to iWARP connections which have a different
2955 * managment protocol than InfiniBand.
04215330 2956 *
296ec009
MW
2957 * Return: true if the port supports an iWARP CM (this does not guarantee that
2958 * a CM is actually running however).
04215330 2959 */
5ede9289 2960static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2961{
f9b22e35 2962 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2963}
2964
fe53ba2f
MW
2965/**
2966 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2967 * Subnet Administration.
296ec009
MW
2968 * @device: Device to check
2969 * @port_num: Port number to check
fe53ba2f 2970 *
296ec009
MW
2971 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2972 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2973 * fabrics, devices should resolve routes to other hosts by contacting the
2974 * SA to query the proper route.
fe53ba2f 2975 *
296ec009
MW
2976 * Return: true if the port should act as a client to the fabric Subnet
2977 * Administration interface. This does not imply that the SA service is
2978 * running locally.
fe53ba2f 2979 */
5ede9289 2980static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2981{
f9b22e35 2982 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2983}
2984
a31ad3b0
MW
2985/**
2986 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2987 * Multicast.
296ec009
MW
2988 * @device: Device to check
2989 * @port_num: Port number to check
a31ad3b0 2990 *
296ec009
MW
2991 * InfiniBand multicast registration is more complex than normal IPv4 or
2992 * IPv6 multicast registration. Each Host Channel Adapter must register
2993 * with the Subnet Manager when it wishes to join a multicast group. It
2994 * should do so only once regardless of how many queue pairs it subscribes
2995 * to this group. And it should leave the group only after all queue pairs
2996 * attached to the group have been detached.
a31ad3b0 2997 *
296ec009
MW
2998 * Return: true if the port must undertake the additional adminstrative
2999 * overhead of registering/unregistering with the SM and tracking of the
3000 * total number of queue pairs attached to the multicast group.
a31ad3b0 3001 */
5ede9289 3002static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3003{
3004 return rdma_cap_ib_sa(device, port_num);
3005}
3006
30a74ef4
MW
3007/**
3008 * rdma_cap_af_ib - Check if the port of device has the capability
3009 * Native Infiniband Address.
296ec009
MW
3010 * @device: Device to check
3011 * @port_num: Port number to check
30a74ef4 3012 *
296ec009
MW
3013 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3014 * GID. RoCE uses a different mechanism, but still generates a GID via
3015 * a prescribed mechanism and port specific data.
30a74ef4 3016 *
296ec009
MW
3017 * Return: true if the port uses a GID address to identify devices on the
3018 * network.
30a74ef4 3019 */
5ede9289 3020static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3021{
f9b22e35 3022 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3023}
3024
227128fc
MW
3025/**
3026 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3027 * Ethernet Address Handle.
3028 * @device: Device to check
3029 * @port_num: Port number to check
227128fc 3030 *
296ec009
MW
3031 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3032 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3033 * port. Normally, packet headers are generated by the sending host
3034 * adapter, but when sending connectionless datagrams, we must manually
3035 * inject the proper headers for the fabric we are communicating over.
227128fc 3036 *
296ec009
MW
3037 * Return: true if we are running as a RoCE port and must force the
3038 * addition of a Global Route Header built from our Ethernet Address
3039 * Handle into our header list for connectionless packets.
227128fc 3040 */
5ede9289 3041static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3042{
f9b22e35 3043 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3044}
3045
94d595c5
DC
3046/**
3047 * rdma_cap_opa_ah - Check if the port of device supports
3048 * OPA Address handles
3049 * @device: Device to check
3050 * @port_num: Port number to check
3051 *
3052 * Return: true if we are running on an OPA device which supports
3053 * the extended OPA addressing.
3054 */
3055static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3056{
3057 return (device->port_immutable[port_num].core_cap_flags &
3058 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3059}
3060
337877a4
IW
3061/**
3062 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3063 *
3064 * @device: Device
3065 * @port_num: Port number
3066 *
3067 * This MAD size includes the MAD headers and MAD payload. No other headers
3068 * are included.
3069 *
3070 * Return the max MAD size required by the Port. Will return 0 if the port
3071 * does not support MADs
3072 */
3073static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3074{
3075 return device->port_immutable[port_num].max_mad_size;
3076}
3077
03db3a2d
MB
3078/**
3079 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3080 * @device: Device to check
3081 * @port_num: Port number to check
3082 *
3083 * RoCE GID table mechanism manages the various GIDs for a device.
3084 *
3085 * NOTE: if allocating the port's GID table has failed, this call will still
3086 * return true, but any RoCE GID table API will fail.
3087 *
3088 * Return: true if the port uses RoCE GID table mechanism in order to manage
3089 * its GIDs.
3090 */
3091static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3092 u8 port_num)
3093{
3094 return rdma_protocol_roce(device, port_num) &&
3095 device->add_gid && device->del_gid;
3096}
3097
002516ed
CH
3098/*
3099 * Check if the device supports READ W/ INVALIDATE.
3100 */
3101static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3102{
3103 /*
3104 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3105 * has support for it yet.
3106 */
3107 return rdma_protocol_iwarp(dev, port_num);
3108}
3109
50174a7f
EC
3110int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3111 int state);
3112int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3113 struct ifla_vf_info *info);
3114int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3115 struct ifla_vf_stats *stats);
3116int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3117 int type);
3118
1da177e4
LT
3119int ib_query_pkey(struct ib_device *device,
3120 u8 port_num, u16 index, u16 *pkey);
3121
3122int ib_modify_device(struct ib_device *device,
3123 int device_modify_mask,
3124 struct ib_device_modify *device_modify);
3125
3126int ib_modify_port(struct ib_device *device,
3127 u8 port_num, int port_modify_mask,
3128 struct ib_port_modify *port_modify);
3129
5eb620c8 3130int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3131 u8 *port_num, u16 *index);
5eb620c8
YE
3132
3133int ib_find_pkey(struct ib_device *device,
3134 u8 port_num, u16 pkey, u16 *index);
3135
ed082d36
CH
3136enum ib_pd_flags {
3137 /*
3138 * Create a memory registration for all memory in the system and place
3139 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3140 * ULPs to avoid the overhead of dynamic MRs.
3141 *
3142 * This flag is generally considered unsafe and must only be used in
3143 * extremly trusted environments. Every use of it will log a warning
3144 * in the kernel log.
3145 */
3146 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3147};
1da177e4 3148
ed082d36
CH
3149struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3150 const char *caller);
3151#define ib_alloc_pd(device, flags) \
e4496447 3152 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
7dd78647 3153void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
3154
3155/**
0a18cfe4 3156 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3157 * @pd: The protection domain associated with the address handle.
3158 * @ah_attr: The attributes of the address vector.
3159 *
3160 * The address handle is used to reference a local or global destination
3161 * in all UD QP post sends.
3162 */
0a18cfe4 3163struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 3164
5cda6587
PP
3165/**
3166 * rdma_create_user_ah - Creates an address handle for the given address vector.
3167 * It resolves destination mac address for ah attribute of RoCE type.
3168 * @pd: The protection domain associated with the address handle.
3169 * @ah_attr: The attributes of the address vector.
3170 * @udata: pointer to user's input output buffer information need by
3171 * provider driver.
3172 *
3173 * It returns 0 on success and returns appropriate error code on error.
3174 * The address handle is used to reference a local or global destination
3175 * in all UD QP post sends.
3176 */
3177struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3178 struct rdma_ah_attr *ah_attr,
3179 struct ib_udata *udata);
850d8fd7
MS
3180/**
3181 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3182 * work completion.
3183 * @hdr: the L3 header to parse
3184 * @net_type: type of header to parse
3185 * @sgid: place to store source gid
3186 * @dgid: place to store destination gid
3187 */
3188int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3189 enum rdma_network_type net_type,
3190 union ib_gid *sgid, union ib_gid *dgid);
3191
3192/**
3193 * ib_get_rdma_header_version - Get the header version
3194 * @hdr: the L3 header to parse
3195 */
3196int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3197
4e00d694 3198/**
f6bdb142 3199 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3200 * work completion.
3201 * @device: Device on which the received message arrived.
3202 * @port_num: Port on which the received message arrived.
3203 * @wc: Work completion associated with the received message.
3204 * @grh: References the received global route header. This parameter is
3205 * ignored unless the work completion indicates that the GRH is valid.
3206 * @ah_attr: Returned attributes that can be used when creating an address
3207 * handle for replying to the message.
b7403217
PP
3208 * When ib_init_ah_attr_from_wc() returns success,
3209 * (a) for IB link layer it optionally contains a reference to SGID attribute
3210 * when GRH is present for IB link layer.
3211 * (b) for RoCE link layer it contains a reference to SGID attribute.
3212 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3213 * attributes which are initialized using ib_init_ah_attr_from_wc().
3214 *
4e00d694 3215 */
f6bdb142
PP
3216int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3217 const struct ib_wc *wc, const struct ib_grh *grh,
3218 struct rdma_ah_attr *ah_attr);
4e00d694 3219
513789ed
HR
3220/**
3221 * ib_create_ah_from_wc - Creates an address handle associated with the
3222 * sender of the specified work completion.
3223 * @pd: The protection domain associated with the address handle.
3224 * @wc: Work completion information associated with a received message.
3225 * @grh: References the received global route header. This parameter is
3226 * ignored unless the work completion indicates that the GRH is valid.
3227 * @port_num: The outbound port number to associate with the address.
3228 *
3229 * The address handle is used to reference a local or global destination
3230 * in all UD QP post sends.
3231 */
73cdaaee
IW
3232struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3233 const struct ib_grh *grh, u8 port_num);
513789ed 3234
1da177e4 3235/**
67b985b6 3236 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3237 * handle.
3238 * @ah: The address handle to modify.
3239 * @ah_attr: The new address vector attributes to associate with the
3240 * address handle.
3241 */
67b985b6 3242int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3243
3244/**
bfbfd661 3245 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3246 * handle.
3247 * @ah: The address handle to query.
3248 * @ah_attr: The address vector attributes associated with the address
3249 * handle.
3250 */
bfbfd661 3251int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3252
3253/**
36523159 3254 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
3255 * @ah: The address handle to destroy.
3256 */
36523159 3257int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 3258
d41fcc67
RD
3259/**
3260 * ib_create_srq - Creates a SRQ associated with the specified protection
3261 * domain.
3262 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3263 * @srq_init_attr: A list of initial attributes required to create the
3264 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3265 * the actual capabilities of the created SRQ.
d41fcc67
RD
3266 *
3267 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3268 * requested size of the SRQ, and set to the actual values allocated
3269 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3270 * will always be at least as large as the requested values.
3271 */
3272struct ib_srq *ib_create_srq(struct ib_pd *pd,
3273 struct ib_srq_init_attr *srq_init_attr);
3274
3275/**
3276 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3277 * @srq: The SRQ to modify.
3278 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3279 * the current values of selected SRQ attributes are returned.
3280 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3281 * are being modified.
3282 *
3283 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3284 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3285 * the number of receives queued drops below the limit.
3286 */
3287int ib_modify_srq(struct ib_srq *srq,
3288 struct ib_srq_attr *srq_attr,
3289 enum ib_srq_attr_mask srq_attr_mask);
3290
3291/**
3292 * ib_query_srq - Returns the attribute list and current values for the
3293 * specified SRQ.
3294 * @srq: The SRQ to query.
3295 * @srq_attr: The attributes of the specified SRQ.
3296 */
3297int ib_query_srq(struct ib_srq *srq,
3298 struct ib_srq_attr *srq_attr);
3299
3300/**
3301 * ib_destroy_srq - Destroys the specified SRQ.
3302 * @srq: The SRQ to destroy.
3303 */
3304int ib_destroy_srq(struct ib_srq *srq);
3305
3306/**
3307 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3308 * @srq: The SRQ to post the work request on.
3309 * @recv_wr: A list of work requests to post on the receive queue.
3310 * @bad_recv_wr: On an immediate failure, this parameter will reference
3311 * the work request that failed to be posted on the QP.
3312 */
3313static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3314 const struct ib_recv_wr *recv_wr,
3315 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3316{
d34ac5cd 3317 const struct ib_recv_wr *dummy;
bb039a87
BVA
3318
3319 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy);
d41fcc67
RD
3320}
3321
1da177e4
LT
3322/**
3323 * ib_create_qp - Creates a QP associated with the specified protection
3324 * domain.
3325 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3326 * @qp_init_attr: A list of initial attributes required to create the
3327 * QP. If QP creation succeeds, then the attributes are updated to
3328 * the actual capabilities of the created QP.
1da177e4
LT
3329 */
3330struct ib_qp *ib_create_qp(struct ib_pd *pd,
3331 struct ib_qp_init_attr *qp_init_attr);
3332
a512c2fb
PP
3333/**
3334 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3335 * @qp: The QP to modify.
3336 * @attr: On input, specifies the QP attributes to modify. On output,
3337 * the current values of selected QP attributes are returned.
3338 * @attr_mask: A bit-mask used to specify which attributes of the QP
3339 * are being modified.
3340 * @udata: pointer to user's input output buffer information
3341 * are being modified.
3342 * It returns 0 on success and returns appropriate error code on error.
3343 */
3344int ib_modify_qp_with_udata(struct ib_qp *qp,
3345 struct ib_qp_attr *attr,
3346 int attr_mask,
3347 struct ib_udata *udata);
3348
1da177e4
LT
3349/**
3350 * ib_modify_qp - Modifies the attributes for the specified QP and then
3351 * transitions the QP to the given state.
3352 * @qp: The QP to modify.
3353 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3354 * the current values of selected QP attributes are returned.
3355 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3356 * are being modified.
3357 */
3358int ib_modify_qp(struct ib_qp *qp,
3359 struct ib_qp_attr *qp_attr,
3360 int qp_attr_mask);
3361
3362/**
3363 * ib_query_qp - Returns the attribute list and current values for the
3364 * specified QP.
3365 * @qp: The QP to query.
3366 * @qp_attr: The attributes of the specified QP.
3367 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3368 * @qp_init_attr: Additional attributes of the selected QP.
3369 *
3370 * The qp_attr_mask may be used to limit the query to gathering only the
3371 * selected attributes.
3372 */
3373int ib_query_qp(struct ib_qp *qp,
3374 struct ib_qp_attr *qp_attr,
3375 int qp_attr_mask,
3376 struct ib_qp_init_attr *qp_init_attr);
3377
3378/**
3379 * ib_destroy_qp - Destroys the specified QP.
3380 * @qp: The QP to destroy.
3381 */
3382int ib_destroy_qp(struct ib_qp *qp);
3383
d3d72d90 3384/**
0e0ec7e0
SH
3385 * ib_open_qp - Obtain a reference to an existing sharable QP.
3386 * @xrcd - XRC domain
3387 * @qp_open_attr: Attributes identifying the QP to open.
3388 *
3389 * Returns a reference to a sharable QP.
3390 */
3391struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3392 struct ib_qp_open_attr *qp_open_attr);
3393
3394/**
3395 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3396 * @qp: The QP handle to release
3397 *
0e0ec7e0
SH
3398 * The opened QP handle is released by the caller. The underlying
3399 * shared QP is not destroyed until all internal references are released.
d3d72d90 3400 */
0e0ec7e0 3401int ib_close_qp(struct ib_qp *qp);
d3d72d90 3402
1da177e4
LT
3403/**
3404 * ib_post_send - Posts a list of work requests to the send queue of
3405 * the specified QP.
3406 * @qp: The QP to post the work request on.
3407 * @send_wr: A list of work requests to post on the send queue.
3408 * @bad_send_wr: On an immediate failure, this parameter will reference
3409 * the work request that failed to be posted on the QP.
55464d46
BVA
3410 *
3411 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3412 * error is returned, the QP state shall not be affected,
3413 * ib_post_send() will return an immediate error after queueing any
3414 * earlier work requests in the list.
1da177e4
LT
3415 */
3416static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3417 const struct ib_send_wr *send_wr,
3418 const struct ib_send_wr **bad_send_wr)
1da177e4 3419{
d34ac5cd 3420 const struct ib_send_wr *dummy;
bb039a87
BVA
3421
3422 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3423}
3424
3425/**
3426 * ib_post_recv - Posts a list of work requests to the receive queue of
3427 * the specified QP.
3428 * @qp: The QP to post the work request on.
3429 * @recv_wr: A list of work requests to post on the receive queue.
3430 * @bad_recv_wr: On an immediate failure, this parameter will reference
3431 * the work request that failed to be posted on the QP.
3432 */
3433static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3434 const struct ib_recv_wr *recv_wr,
3435 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3436{
d34ac5cd 3437 const struct ib_recv_wr *dummy;
bb039a87
BVA
3438
3439 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3440}
3441
f66c8ba4
LR
3442struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3443 int nr_cqe, int comp_vector,
3444 enum ib_poll_context poll_ctx, const char *caller);
3445#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3446 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3447
14d3a3b2
CH
3448void ib_free_cq(struct ib_cq *cq);
3449int ib_process_cq_direct(struct ib_cq *cq, int budget);
3450
1da177e4
LT
3451/**
3452 * ib_create_cq - Creates a CQ on the specified device.
3453 * @device: The device on which to create the CQ.
3454 * @comp_handler: A user-specified callback that is invoked when a
3455 * completion event occurs on the CQ.
3456 * @event_handler: A user-specified callback that is invoked when an
3457 * asynchronous event not associated with a completion occurs on the CQ.
3458 * @cq_context: Context associated with the CQ returned to the user via
3459 * the associated completion and event handlers.
8e37210b 3460 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3461 *
3462 * Users can examine the cq structure to determine the actual CQ size.
3463 */
7350cdd0
BP
3464struct ib_cq *__ib_create_cq(struct ib_device *device,
3465 ib_comp_handler comp_handler,
3466 void (*event_handler)(struct ib_event *, void *),
3467 void *cq_context,
3468 const struct ib_cq_init_attr *cq_attr,
3469 const char *caller);
3470#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3471 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3472
3473/**
3474 * ib_resize_cq - Modifies the capacity of the CQ.
3475 * @cq: The CQ to resize.
3476 * @cqe: The minimum size of the CQ.
3477 *
3478 * Users can examine the cq structure to determine the actual CQ size.
3479 */
3480int ib_resize_cq(struct ib_cq *cq, int cqe);
3481
2dd57162 3482/**
4190b4e9 3483 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3484 * @cq: The CQ to modify.
3485 * @cq_count: number of CQEs that will trigger an event
3486 * @cq_period: max period of time in usec before triggering an event
3487 *
3488 */
4190b4e9 3489int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3490
1da177e4
LT
3491/**
3492 * ib_destroy_cq - Destroys the specified CQ.
3493 * @cq: The CQ to destroy.
3494 */
3495int ib_destroy_cq(struct ib_cq *cq);
3496
3497/**
3498 * ib_poll_cq - poll a CQ for completion(s)
3499 * @cq:the CQ being polled
3500 * @num_entries:maximum number of completions to return
3501 * @wc:array of at least @num_entries &struct ib_wc where completions
3502 * will be returned
3503 *
3504 * Poll a CQ for (possibly multiple) completions. If the return value
3505 * is < 0, an error occurred. If the return value is >= 0, it is the
3506 * number of completions returned. If the return value is
3507 * non-negative and < num_entries, then the CQ was emptied.
3508 */
3509static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3510 struct ib_wc *wc)
3511{
3512 return cq->device->poll_cq(cq, num_entries, wc);
3513}
3514
1da177e4
LT
3515/**
3516 * ib_req_notify_cq - Request completion notification on a CQ.
3517 * @cq: The CQ to generate an event for.
ed23a727
RD
3518 * @flags:
3519 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3520 * to request an event on the next solicited event or next work
3521 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3522 * may also be |ed in to request a hint about missed events, as
3523 * described below.
3524 *
3525 * Return Value:
3526 * < 0 means an error occurred while requesting notification
3527 * == 0 means notification was requested successfully, and if
3528 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3529 * were missed and it is safe to wait for another event. In
3530 * this case is it guaranteed that any work completions added
3531 * to the CQ since the last CQ poll will trigger a completion
3532 * notification event.
3533 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3534 * in. It means that the consumer must poll the CQ again to
3535 * make sure it is empty to avoid missing an event because of a
3536 * race between requesting notification and an entry being
3537 * added to the CQ. This return value means it is possible
3538 * (but not guaranteed) that a work completion has been added
3539 * to the CQ since the last poll without triggering a
3540 * completion notification event.
1da177e4
LT
3541 */
3542static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3543 enum ib_cq_notify_flags flags)
1da177e4 3544{
ed23a727 3545 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3546}
3547
3548/**
3549 * ib_req_ncomp_notif - Request completion notification when there are
3550 * at least the specified number of unreaped completions on the CQ.
3551 * @cq: The CQ to generate an event for.
3552 * @wc_cnt: The number of unreaped completions that should be on the
3553 * CQ before an event is generated.
3554 */
3555static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3556{
3557 return cq->device->req_ncomp_notif ?
3558 cq->device->req_ncomp_notif(cq, wc_cnt) :
3559 -ENOSYS;
3560}
3561
9b513090
RC
3562/**
3563 * ib_dma_mapping_error - check a DMA addr for error
3564 * @dev: The device for which the dma_addr was created
3565 * @dma_addr: The DMA address to check
3566 */
3567static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3568{
0957c29f 3569 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3570}
3571
3572/**
3573 * ib_dma_map_single - Map a kernel virtual address to DMA address
3574 * @dev: The device for which the dma_addr is to be created
3575 * @cpu_addr: The kernel virtual address
3576 * @size: The size of the region in bytes
3577 * @direction: The direction of the DMA
3578 */
3579static inline u64 ib_dma_map_single(struct ib_device *dev,
3580 void *cpu_addr, size_t size,
3581 enum dma_data_direction direction)
3582{
0957c29f 3583 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3584}
3585
3586/**
3587 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3588 * @dev: The device for which the DMA address was created
3589 * @addr: The DMA address
3590 * @size: The size of the region in bytes
3591 * @direction: The direction of the DMA
3592 */
3593static inline void ib_dma_unmap_single(struct ib_device *dev,
3594 u64 addr, size_t size,
3595 enum dma_data_direction direction)
3596{
0957c29f 3597 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3598}
3599
9b513090
RC
3600/**
3601 * ib_dma_map_page - Map a physical page to DMA address
3602 * @dev: The device for which the dma_addr is to be created
3603 * @page: The page to be mapped
3604 * @offset: The offset within the page
3605 * @size: The size of the region in bytes
3606 * @direction: The direction of the DMA
3607 */
3608static inline u64 ib_dma_map_page(struct ib_device *dev,
3609 struct page *page,
3610 unsigned long offset,
3611 size_t size,
3612 enum dma_data_direction direction)
3613{
0957c29f 3614 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3615}
3616
3617/**
3618 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3619 * @dev: The device for which the DMA address was created
3620 * @addr: The DMA address
3621 * @size: The size of the region in bytes
3622 * @direction: The direction of the DMA
3623 */
3624static inline void ib_dma_unmap_page(struct ib_device *dev,
3625 u64 addr, size_t size,
3626 enum dma_data_direction direction)
3627{
0957c29f 3628 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3629}
3630
3631/**
3632 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3633 * @dev: The device for which the DMA addresses are to be created
3634 * @sg: The array of scatter/gather entries
3635 * @nents: The number of scatter/gather entries
3636 * @direction: The direction of the DMA
3637 */
3638static inline int ib_dma_map_sg(struct ib_device *dev,
3639 struct scatterlist *sg, int nents,
3640 enum dma_data_direction direction)
3641{
0957c29f 3642 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3643}
3644
3645/**
3646 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3647 * @dev: The device for which the DMA addresses were created
3648 * @sg: The array of scatter/gather entries
3649 * @nents: The number of scatter/gather entries
3650 * @direction: The direction of the DMA
3651 */
3652static inline void ib_dma_unmap_sg(struct ib_device *dev,
3653 struct scatterlist *sg, int nents,
3654 enum dma_data_direction direction)
3655{
0957c29f 3656 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3657}
3658
cb9fbc5c
AK
3659static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3660 struct scatterlist *sg, int nents,
3661 enum dma_data_direction direction,
00085f1e 3662 unsigned long dma_attrs)
cb9fbc5c 3663{
0957c29f
BVA
3664 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3665 dma_attrs);
cb9fbc5c
AK
3666}
3667
3668static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3669 struct scatterlist *sg, int nents,
3670 enum dma_data_direction direction,
00085f1e 3671 unsigned long dma_attrs)
cb9fbc5c 3672{
0957c29f 3673 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3674}
9b513090
RC
3675/**
3676 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3677 * @dev: The device for which the DMA addresses were created
3678 * @sg: The scatter/gather entry
ea58a595
MM
3679 *
3680 * Note: this function is obsolete. To do: change all occurrences of
3681 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3682 */
3683static inline u64 ib_sg_dma_address(struct ib_device *dev,
3684 struct scatterlist *sg)
3685{
d1998ef3 3686 return sg_dma_address(sg);
9b513090
RC
3687}
3688
3689/**
3690 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3691 * @dev: The device for which the DMA addresses were created
3692 * @sg: The scatter/gather entry
ea58a595
MM
3693 *
3694 * Note: this function is obsolete. To do: change all occurrences of
3695 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3696 */
3697static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3698 struct scatterlist *sg)
3699{
d1998ef3 3700 return sg_dma_len(sg);
9b513090
RC
3701}
3702
3703/**
3704 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3705 * @dev: The device for which the DMA address was created
3706 * @addr: The DMA address
3707 * @size: The size of the region in bytes
3708 * @dir: The direction of the DMA
3709 */
3710static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3711 u64 addr,
3712 size_t size,
3713 enum dma_data_direction dir)
3714{
0957c29f 3715 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3716}
3717
3718/**
3719 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3720 * @dev: The device for which the DMA address was created
3721 * @addr: The DMA address
3722 * @size: The size of the region in bytes
3723 * @dir: The direction of the DMA
3724 */
3725static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3726 u64 addr,
3727 size_t size,
3728 enum dma_data_direction dir)
3729{
0957c29f 3730 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3731}
3732
3733/**
3734 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3735 * @dev: The device for which the DMA address is requested
3736 * @size: The size of the region to allocate in bytes
3737 * @dma_handle: A pointer for returning the DMA address of the region
3738 * @flag: memory allocator flags
3739 */
3740static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3741 size_t size,
d43dbacf 3742 dma_addr_t *dma_handle,
9b513090
RC
3743 gfp_t flag)
3744{
0957c29f 3745 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3746}
3747
3748/**
3749 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3750 * @dev: The device for which the DMA addresses were allocated
3751 * @size: The size of the region
3752 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3753 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3754 */
3755static inline void ib_dma_free_coherent(struct ib_device *dev,
3756 size_t size, void *cpu_addr,
d43dbacf 3757 dma_addr_t dma_handle)
9b513090 3758{
0957c29f 3759 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3760}
3761
1da177e4
LT
3762/**
3763 * ib_dereg_mr - Deregisters a memory region and removes it from the
3764 * HCA translation table.
3765 * @mr: The memory region to deregister.
7083e42e
SM
3766 *
3767 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3768 */
3769int ib_dereg_mr(struct ib_mr *mr);
3770
9bee178b
SG
3771struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3772 enum ib_mr_type mr_type,
3773 u32 max_num_sg);
00f7ec36 3774
00f7ec36
SW
3775/**
3776 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3777 * R_Key and L_Key.
3778 * @mr - struct ib_mr pointer to be updated.
3779 * @newkey - new key to be used.
3780 */
3781static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3782{
3783 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3784 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3785}
3786
7083e42e
SM
3787/**
3788 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3789 * for calculating a new rkey for type 2 memory windows.
3790 * @rkey - the rkey to increment.
3791 */
3792static inline u32 ib_inc_rkey(u32 rkey)
3793{
3794 const u32 mask = 0x000000ff;
3795 return ((rkey + 1) & mask) | (rkey & ~mask);
3796}
3797
1da177e4
LT
3798/**
3799 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3800 * @pd: The protection domain associated with the unmapped region.
3801 * @mr_access_flags: Specifies the memory access rights.
3802 * @fmr_attr: Attributes of the unmapped region.
3803 *
3804 * A fast memory region must be mapped before it can be used as part of
3805 * a work request.
3806 */
3807struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3808 int mr_access_flags,
3809 struct ib_fmr_attr *fmr_attr);
3810
3811/**
3812 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3813 * @fmr: The fast memory region to associate with the pages.
3814 * @page_list: An array of physical pages to map to the fast memory region.
3815 * @list_len: The number of pages in page_list.
3816 * @iova: The I/O virtual address to use with the mapped region.
3817 */
3818static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3819 u64 *page_list, int list_len,
3820 u64 iova)
3821{
3822 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3823}
3824
3825/**
3826 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3827 * @fmr_list: A linked list of fast memory regions to unmap.
3828 */
3829int ib_unmap_fmr(struct list_head *fmr_list);
3830
3831/**
3832 * ib_dealloc_fmr - Deallocates a fast memory region.
3833 * @fmr: The fast memory region to deallocate.
3834 */
3835int ib_dealloc_fmr(struct ib_fmr *fmr);
3836
3837/**
3838 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3839 * @qp: QP to attach to the multicast group. The QP must be type
3840 * IB_QPT_UD.
3841 * @gid: Multicast group GID.
3842 * @lid: Multicast group LID in host byte order.
3843 *
3844 * In order to send and receive multicast packets, subnet
3845 * administration must have created the multicast group and configured
3846 * the fabric appropriately. The port associated with the specified
3847 * QP must also be a member of the multicast group.
3848 */
3849int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3850
3851/**
3852 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3853 * @qp: QP to detach from the multicast group.
3854 * @gid: Multicast group GID.
3855 * @lid: Multicast group LID in host byte order.
3856 */
3857int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3858
59991f94
SH
3859/**
3860 * ib_alloc_xrcd - Allocates an XRC domain.
3861 * @device: The device on which to allocate the XRC domain.
f66c8ba4 3862 * @caller: Module name for kernel consumers
59991f94 3863 */
f66c8ba4
LR
3864struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3865#define ib_alloc_xrcd(device) \
3866 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
3867
3868/**
3869 * ib_dealloc_xrcd - Deallocates an XRC domain.
3870 * @xrcd: The XRC domain to deallocate.
3871 */
3872int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3873
1c636f80
EC
3874static inline int ib_check_mr_access(int flags)
3875{
3876 /*
3877 * Local write permission is required if remote write or
3878 * remote atomic permission is also requested.
3879 */
3880 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3881 !(flags & IB_ACCESS_LOCAL_WRITE))
3882 return -EINVAL;
3883
3884 return 0;
3885}
3886
08bb558a
JM
3887static inline bool ib_access_writable(int access_flags)
3888{
3889 /*
3890 * We have writable memory backing the MR if any of the following
3891 * access flags are set. "Local write" and "remote write" obviously
3892 * require write access. "Remote atomic" can do things like fetch and
3893 * add, which will modify memory, and "MW bind" can change permissions
3894 * by binding a window.
3895 */
3896 return access_flags &
3897 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3898 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3899}
3900
1b01d335
SG
3901/**
3902 * ib_check_mr_status: lightweight check of MR status.
3903 * This routine may provide status checks on a selected
3904 * ib_mr. first use is for signature status check.
3905 *
3906 * @mr: A memory region.
3907 * @check_mask: Bitmask of which checks to perform from
3908 * ib_mr_status_check enumeration.
3909 * @mr_status: The container of relevant status checks.
3910 * failed checks will be indicated in the status bitmask
3911 * and the relevant info shall be in the error item.
3912 */
3913int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3914 struct ib_mr_status *mr_status);
3915
9268f72d
YK
3916struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3917 u16 pkey, const union ib_gid *gid,
3918 const struct sockaddr *addr);
5fd251c8
YH
3919struct ib_wq *ib_create_wq(struct ib_pd *pd,
3920 struct ib_wq_init_attr *init_attr);
3921int ib_destroy_wq(struct ib_wq *wq);
3922int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3923 u32 wq_attr_mask);
6d39786b
YH
3924struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3925 struct ib_rwq_ind_table_init_attr*
3926 wq_ind_table_init_attr);
3927int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3928
ff2ba993 3929int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3930 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3931
3932static inline int
ff2ba993 3933ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3934 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3935{
3936 int n;
3937
ff2ba993 3938 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3939 mr->iova = 0;
3940
3941 return n;
3942}
3943
ff2ba993 3944int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3945 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3946
765d6774
SW
3947void ib_drain_rq(struct ib_qp *qp);
3948void ib_drain_sq(struct ib_qp *qp);
3949void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3950
d4186194 3951int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3952
3953static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3954{
44c58487
DC
3955 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3956 return attr->roce.dmac;
3957 return NULL;
2224c47a
DC
3958}
3959
64b4646e 3960static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3961{
44c58487 3962 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3963 attr->ib.dlid = (u16)dlid;
3964 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3965 attr->opa.dlid = dlid;
2224c47a
DC
3966}
3967
64b4646e 3968static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3969{
44c58487
DC
3970 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3971 return attr->ib.dlid;
64b4646e
DC
3972 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3973 return attr->opa.dlid;
44c58487 3974 return 0;
2224c47a
DC
3975}
3976
3977static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3978{
3979 attr->sl = sl;
3980}
3981
3982static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3983{
3984 return attr->sl;
3985}
3986
3987static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3988 u8 src_path_bits)
3989{
44c58487
DC
3990 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3991 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
3992 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3993 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
3994}
3995
3996static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3997{
44c58487
DC
3998 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3999 return attr->ib.src_path_bits;
64b4646e
DC
4000 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4001 return attr->opa.src_path_bits;
44c58487 4002 return 0;
2224c47a
DC
4003}
4004
d98bb7f7
DH
4005static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4006 bool make_grd)
4007{
4008 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4009 attr->opa.make_grd = make_grd;
4010}
4011
4012static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4013{
4014 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4015 return attr->opa.make_grd;
4016 return false;
4017}
4018
2224c47a
DC
4019static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4020{
4021 attr->port_num = port_num;
4022}
4023
4024static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4025{
4026 return attr->port_num;
4027}
4028
4029static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4030 u8 static_rate)
4031{
4032 attr->static_rate = static_rate;
4033}
4034
4035static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4036{
4037 return attr->static_rate;
4038}
4039
4040static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4041 enum ib_ah_flags flag)
4042{
4043 attr->ah_flags = flag;
4044}
4045
4046static inline enum ib_ah_flags
4047 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4048{
4049 return attr->ah_flags;
4050}
4051
4052static inline const struct ib_global_route
4053 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4054{
4055 return &attr->grh;
4056}
4057
4058/*To retrieve and modify the grh */
4059static inline struct ib_global_route
4060 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4061{
4062 return &attr->grh;
4063}
4064
4065static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4066{
4067 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4068
4069 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4070}
4071
4072static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4073 __be64 prefix)
4074{
4075 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4076
4077 grh->dgid.global.subnet_prefix = prefix;
4078}
4079
4080static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4081 __be64 if_id)
4082{
4083 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4084
4085 grh->dgid.global.interface_id = if_id;
4086}
4087
4088static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4089 union ib_gid *dgid, u32 flow_label,
4090 u8 sgid_index, u8 hop_limit,
4091 u8 traffic_class)
4092{
4093 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4094
4095 attr->ah_flags = IB_AH_GRH;
4096 if (dgid)
4097 grh->dgid = *dgid;
4098 grh->flow_label = flow_label;
4099 grh->sgid_index = sgid_index;
4100 grh->hop_limit = hop_limit;
4101 grh->traffic_class = traffic_class;
8d9ec9ad 4102 grh->sgid_attr = NULL;
2224c47a 4103}
44c58487 4104
8d9ec9ad
JG
4105void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4106void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4107 u32 flow_label, u8 hop_limit, u8 traffic_class,
4108 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4109void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4110 const struct rdma_ah_attr *src);
4111void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4112 const struct rdma_ah_attr *new);
4113void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4114
87daac68
DH
4115/**
4116 * rdma_ah_find_type - Return address handle type.
4117 *
4118 * @dev: Device to be checked
4119 * @port_num: Port number
4120 */
44c58487 4121static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4122 u8 port_num)
44c58487 4123{
a6532e71 4124 if (rdma_protocol_roce(dev, port_num))
44c58487 4125 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4126 if (rdma_protocol_ib(dev, port_num)) {
4127 if (rdma_cap_opa_ah(dev, port_num))
4128 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4129 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4130 }
4131
4132 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4133}
7db20ecd 4134
62ede777
HD
4135/**
4136 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4137 * In the current implementation the only way to get
4138 * get the 32bit lid is from other sources for OPA.
4139 * For IB, lids will always be 16bits so cast the
4140 * value accordingly.
4141 *
4142 * @lid: A 32bit LID
4143 */
4144static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4145{
62ede777
HD
4146 WARN_ON_ONCE(lid & 0xFFFF0000);
4147 return (u16)lid;
7db20ecd
HD
4148}
4149
62ede777
HD
4150/**
4151 * ib_lid_be16 - Return lid in 16bit BE encoding.
4152 *
4153 * @lid: A 32bit LID
4154 */
4155static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4156{
62ede777
HD
4157 WARN_ON_ONCE(lid & 0xFFFF0000);
4158 return cpu_to_be16((u16)lid);
7db20ecd 4159}
32043830 4160
c66cd353
SG
4161/**
4162 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4163 * vector
4164 * @device: the rdma device
4165 * @comp_vector: index of completion vector
4166 *
4167 * Returns NULL on failure, otherwise a corresponding cpu map of the
4168 * completion vector (returns all-cpus map if the device driver doesn't
4169 * implement get_vector_affinity).
4170 */
4171static inline const struct cpumask *
4172ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4173{
4174 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4175 !device->get_vector_affinity)
4176 return NULL;
4177
4178 return device->get_vector_affinity(device, comp_vector);
4179
4180}
4181
32f69e4b
DJ
4182/**
4183 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4184 * and add their gids, as needed, to the relevant RoCE devices.
4185 *
4186 * @device: the rdma device
4187 */
4188void rdma_roce_rescan_device(struct ib_device *ibdev);
4189
7dc08dcf
YH
4190struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile);
4191
e83f0ecd 4192int uverbs_destroy_def_handler(struct ib_uverbs_file *file,
528922af 4193 struct uverbs_attr_bundle *attrs);
1da177e4 4194#endif /* IB_VERBS_H */