]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/rdma/ib_verbs.h
IB/core: Add flow spec tunneling support
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
e2773c06 58
50174a7f 59#include <linux/if_link.h>
60063497 60#include <linux/atomic.h>
882214e2 61#include <linux/mmu_notifier.h>
e2773c06 62#include <asm/uaccess.h>
1da177e4 63
f0626710 64extern struct workqueue_struct *ib_wq;
14d3a3b2 65extern struct workqueue_struct *ib_comp_wq;
f0626710 66
1da177e4
LT
67union ib_gid {
68 u8 raw[16];
69 struct {
97f52eb4
SH
70 __be64 subnet_prefix;
71 __be64 interface_id;
1da177e4
LT
72 } global;
73};
74
e26be1bf
MS
75extern union ib_gid zgid;
76
b39ffa1d
MB
77enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
7766a99f 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
82 IB_GID_TYPE_SIZE
83};
84
7ead4bcb 85#define ROCE_V2_UDP_DPORT 4791
03db3a2d 86struct ib_gid_attr {
b39ffa1d 87 enum ib_gid_type gid_type;
03db3a2d
MB
88 struct net_device *ndev;
89};
90
07ebafba
TT
91enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
180771a3
UM
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
5db5765e 98 RDMA_NODE_USNIC_UDP,
1da177e4
LT
99};
100
a0c1b2a3
EC
101enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104};
105
07ebafba
TT
106enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
180771a3 108 RDMA_TRANSPORT_IWARP,
248567f7
UM
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
111};
112
6b90a6d6
MW
113enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118};
119
8385fd84
RD
120__attribute_const__ enum rdma_transport_type
121rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 122
c865f246
SK
123enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128};
129
130static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131{
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138}
139
140static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142{
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150}
151
a3f5adaf
EC
152enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156};
157
1da177e4 158enum ib_device_cap_flags {
7ca0bc53
LR
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
7ca0bc53
LR
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
7ca0bc53
LR
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
7ca0bc53
LR
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4
MG
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
1b01d335
SG
224};
225
226enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230};
231
232enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
235};
236
237enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241};
242
860f10a7
SG
243enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245};
246
247enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253};
254
255struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262};
263
ccf20562
YH
264struct ib_rss_caps {
265 /* Corresponding bit will be set if qp type from
266 * 'enum ib_qp_type' is supported, e.g.
267 * supported_qpts |= 1 << IB_QPT_UD
268 */
269 u32 supported_qpts;
270 u32 max_rwq_indirection_tables;
271 u32 max_rwq_indirection_table_size;
272};
273
b9926b92
MB
274enum ib_cq_creation_flags {
275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
8a06ce59 276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
b9926b92
MB
277};
278
bcf4c1ea
MB
279struct ib_cq_init_attr {
280 unsigned int cqe;
281 int comp_vector;
282 u32 flags;
283};
284
1da177e4
LT
285struct ib_device_attr {
286 u64 fw_ver;
97f52eb4 287 __be64 sys_image_guid;
1da177e4
LT
288 u64 max_mr_size;
289 u64 page_size_cap;
290 u32 vendor_id;
291 u32 vendor_part_id;
292 u32 hw_ver;
293 int max_qp;
294 int max_qp_wr;
fb532d6a 295 u64 device_cap_flags;
1da177e4
LT
296 int max_sge;
297 int max_sge_rd;
298 int max_cq;
299 int max_cqe;
300 int max_mr;
301 int max_pd;
302 int max_qp_rd_atom;
303 int max_ee_rd_atom;
304 int max_res_rd_atom;
305 int max_qp_init_rd_atom;
306 int max_ee_init_rd_atom;
307 enum ib_atomic_cap atomic_cap;
5e80ba8f 308 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
309 int max_ee;
310 int max_rdd;
311 int max_mw;
312 int max_raw_ipv6_qp;
313 int max_raw_ethy_qp;
314 int max_mcast_grp;
315 int max_mcast_qp_attach;
316 int max_total_mcast_qp_attach;
317 int max_ah;
318 int max_fmr;
319 int max_map_per_fmr;
320 int max_srq;
321 int max_srq_wr;
322 int max_srq_sge;
00f7ec36 323 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
324 u16 max_pkeys;
325 u8 local_ca_ack_delay;
1b01d335
SG
326 int sig_prot_cap;
327 int sig_guard_cap;
860f10a7 328 struct ib_odp_caps odp_caps;
24306dc6
MB
329 uint64_t timestamp_mask;
330 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
331 struct ib_rss_caps rss_caps;
332 u32 max_wq_type_rq;
1da177e4
LT
333};
334
335enum ib_mtu {
336 IB_MTU_256 = 1,
337 IB_MTU_512 = 2,
338 IB_MTU_1024 = 3,
339 IB_MTU_2048 = 4,
340 IB_MTU_4096 = 5
341};
342
343static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
344{
345 switch (mtu) {
346 case IB_MTU_256: return 256;
347 case IB_MTU_512: return 512;
348 case IB_MTU_1024: return 1024;
349 case IB_MTU_2048: return 2048;
350 case IB_MTU_4096: return 4096;
351 default: return -1;
352 }
353}
354
355enum ib_port_state {
356 IB_PORT_NOP = 0,
357 IB_PORT_DOWN = 1,
358 IB_PORT_INIT = 2,
359 IB_PORT_ARMED = 3,
360 IB_PORT_ACTIVE = 4,
361 IB_PORT_ACTIVE_DEFER = 5
362};
363
364enum ib_port_cap_flags {
365 IB_PORT_SM = 1 << 1,
366 IB_PORT_NOTICE_SUP = 1 << 2,
367 IB_PORT_TRAP_SUP = 1 << 3,
368 IB_PORT_OPT_IPD_SUP = 1 << 4,
369 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
370 IB_PORT_SL_MAP_SUP = 1 << 6,
371 IB_PORT_MKEY_NVRAM = 1 << 7,
372 IB_PORT_PKEY_NVRAM = 1 << 8,
373 IB_PORT_LED_INFO_SUP = 1 << 9,
374 IB_PORT_SM_DISABLED = 1 << 10,
375 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
376 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 377 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
378 IB_PORT_CM_SUP = 1 << 16,
379 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
380 IB_PORT_REINIT_SUP = 1 << 18,
381 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
382 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
383 IB_PORT_DR_NOTICE_SUP = 1 << 21,
384 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
385 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
386 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 387 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 388 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
389};
390
391enum ib_port_width {
392 IB_WIDTH_1X = 1,
393 IB_WIDTH_4X = 2,
394 IB_WIDTH_8X = 4,
395 IB_WIDTH_12X = 8
396};
397
398static inline int ib_width_enum_to_int(enum ib_port_width width)
399{
400 switch (width) {
401 case IB_WIDTH_1X: return 1;
402 case IB_WIDTH_4X: return 4;
403 case IB_WIDTH_8X: return 8;
404 case IB_WIDTH_12X: return 12;
405 default: return -1;
406 }
407}
408
2e96691c
OG
409enum ib_port_speed {
410 IB_SPEED_SDR = 1,
411 IB_SPEED_DDR = 2,
412 IB_SPEED_QDR = 4,
413 IB_SPEED_FDR10 = 8,
414 IB_SPEED_FDR = 16,
415 IB_SPEED_EDR = 32
416};
417
b40f4757
CL
418/**
419 * struct rdma_hw_stats
420 * @timestamp - Used by the core code to track when the last update was
421 * @lifespan - Used by the core code to determine how old the counters
422 * should be before being updated again. Stored in jiffies, defaults
423 * to 10 milliseconds, drivers can override the default be specifying
424 * their own value during their allocation routine.
425 * @name - Array of pointers to static names used for the counters in
426 * directory.
427 * @num_counters - How many hardware counters there are. If name is
428 * shorter than this number, a kernel oops will result. Driver authors
429 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
430 * in their code to prevent this.
431 * @value - Array of u64 counters that are accessed by the sysfs code and
432 * filled in by the drivers get_stats routine
433 */
434struct rdma_hw_stats {
435 unsigned long timestamp;
436 unsigned long lifespan;
437 const char * const *names;
438 int num_counters;
439 u64 value[];
7f624d02
SW
440};
441
b40f4757
CL
442#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
443/**
444 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
445 * for drivers.
446 * @names - Array of static const char *
447 * @num_counters - How many elements in array
448 * @lifespan - How many milliseconds between updates
449 */
450static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
451 const char * const *names, int num_counters,
452 unsigned long lifespan)
453{
454 struct rdma_hw_stats *stats;
455
456 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
457 GFP_KERNEL);
458 if (!stats)
459 return NULL;
460 stats->names = names;
461 stats->num_counters = num_counters;
462 stats->lifespan = msecs_to_jiffies(lifespan);
463
464 return stats;
465}
466
467
f9b22e35
IW
468/* Define bits for the various functionality this port needs to be supported by
469 * the core.
470 */
471/* Management 0x00000FFF */
472#define RDMA_CORE_CAP_IB_MAD 0x00000001
473#define RDMA_CORE_CAP_IB_SMI 0x00000002
474#define RDMA_CORE_CAP_IB_CM 0x00000004
475#define RDMA_CORE_CAP_IW_CM 0x00000008
476#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 477#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
478
479/* Address format 0x000FF000 */
480#define RDMA_CORE_CAP_AF_IB 0x00001000
481#define RDMA_CORE_CAP_ETH_AH 0x00002000
482
483/* Protocol 0xFFF00000 */
484#define RDMA_CORE_CAP_PROT_IB 0x00100000
485#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
486#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 487#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
f9b22e35
IW
488
489#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_SMI \
492 | RDMA_CORE_CAP_IB_CM \
493 | RDMA_CORE_CAP_IB_SA \
494 | RDMA_CORE_CAP_AF_IB)
495#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
496 | RDMA_CORE_CAP_IB_MAD \
497 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
498 | RDMA_CORE_CAP_AF_IB \
499 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
500#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
501 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
502 | RDMA_CORE_CAP_IB_MAD \
503 | RDMA_CORE_CAP_IB_CM \
504 | RDMA_CORE_CAP_AF_IB \
505 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
506#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
507 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
508#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
509 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 510
1da177e4 511struct ib_port_attr {
fad61ad4 512 u64 subnet_prefix;
1da177e4
LT
513 enum ib_port_state state;
514 enum ib_mtu max_mtu;
515 enum ib_mtu active_mtu;
516 int gid_tbl_len;
517 u32 port_cap_flags;
518 u32 max_msg_sz;
519 u32 bad_pkey_cntr;
520 u32 qkey_viol_cntr;
521 u16 pkey_tbl_len;
522 u16 lid;
523 u16 sm_lid;
524 u8 lmc;
525 u8 max_vl_num;
526 u8 sm_sl;
527 u8 subnet_timeout;
528 u8 init_type_reply;
529 u8 active_width;
530 u8 active_speed;
531 u8 phys_state;
a0c1b2a3 532 bool grh_required;
1da177e4
LT
533};
534
535enum ib_device_modify_flags {
c5bcbbb9
RD
536 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
537 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
538};
539
bd99fdea
YS
540#define IB_DEVICE_NODE_DESC_MAX 64
541
1da177e4
LT
542struct ib_device_modify {
543 u64 sys_image_guid;
bd99fdea 544 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
545};
546
547enum ib_port_modify_flags {
548 IB_PORT_SHUTDOWN = 1,
549 IB_PORT_INIT_TYPE = (1<<2),
550 IB_PORT_RESET_QKEY_CNTR = (1<<3)
551};
552
553struct ib_port_modify {
554 u32 set_port_cap_mask;
555 u32 clr_port_cap_mask;
556 u8 init_type;
557};
558
559enum ib_event_type {
560 IB_EVENT_CQ_ERR,
561 IB_EVENT_QP_FATAL,
562 IB_EVENT_QP_REQ_ERR,
563 IB_EVENT_QP_ACCESS_ERR,
564 IB_EVENT_COMM_EST,
565 IB_EVENT_SQ_DRAINED,
566 IB_EVENT_PATH_MIG,
567 IB_EVENT_PATH_MIG_ERR,
568 IB_EVENT_DEVICE_FATAL,
569 IB_EVENT_PORT_ACTIVE,
570 IB_EVENT_PORT_ERR,
571 IB_EVENT_LID_CHANGE,
572 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
573 IB_EVENT_SM_CHANGE,
574 IB_EVENT_SRQ_ERR,
575 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 576 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
577 IB_EVENT_CLIENT_REREGISTER,
578 IB_EVENT_GID_CHANGE,
f213c052 579 IB_EVENT_WQ_FATAL,
1da177e4
LT
580};
581
db7489e0 582const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 583
1da177e4
LT
584struct ib_event {
585 struct ib_device *device;
586 union {
587 struct ib_cq *cq;
588 struct ib_qp *qp;
d41fcc67 589 struct ib_srq *srq;
f213c052 590 struct ib_wq *wq;
1da177e4
LT
591 u8 port_num;
592 } element;
593 enum ib_event_type event;
594};
595
596struct ib_event_handler {
597 struct ib_device *device;
598 void (*handler)(struct ib_event_handler *, struct ib_event *);
599 struct list_head list;
600};
601
602#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
603 do { \
604 (_ptr)->device = _device; \
605 (_ptr)->handler = _handler; \
606 INIT_LIST_HEAD(&(_ptr)->list); \
607 } while (0)
608
609struct ib_global_route {
610 union ib_gid dgid;
611 u32 flow_label;
612 u8 sgid_index;
613 u8 hop_limit;
614 u8 traffic_class;
615};
616
513789ed 617struct ib_grh {
97f52eb4
SH
618 __be32 version_tclass_flow;
619 __be16 paylen;
513789ed
HR
620 u8 next_hdr;
621 u8 hop_limit;
622 union ib_gid sgid;
623 union ib_gid dgid;
624};
625
c865f246
SK
626union rdma_network_hdr {
627 struct ib_grh ibgrh;
628 struct {
629 /* The IB spec states that if it's IPv4, the header
630 * is located in the last 20 bytes of the header.
631 */
632 u8 reserved[20];
633 struct iphdr roce4grh;
634 };
635};
636
1da177e4
LT
637enum {
638 IB_MULTICAST_QPN = 0xffffff
639};
640
f3a7c66b 641#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 642#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 643
1da177e4
LT
644enum ib_ah_flags {
645 IB_AH_GRH = 1
646};
647
bf6a9e31
JM
648enum ib_rate {
649 IB_RATE_PORT_CURRENT = 0,
650 IB_RATE_2_5_GBPS = 2,
651 IB_RATE_5_GBPS = 5,
652 IB_RATE_10_GBPS = 3,
653 IB_RATE_20_GBPS = 6,
654 IB_RATE_30_GBPS = 4,
655 IB_RATE_40_GBPS = 7,
656 IB_RATE_60_GBPS = 8,
657 IB_RATE_80_GBPS = 9,
71eeba16
MA
658 IB_RATE_120_GBPS = 10,
659 IB_RATE_14_GBPS = 11,
660 IB_RATE_56_GBPS = 12,
661 IB_RATE_112_GBPS = 13,
662 IB_RATE_168_GBPS = 14,
663 IB_RATE_25_GBPS = 15,
664 IB_RATE_100_GBPS = 16,
665 IB_RATE_200_GBPS = 17,
666 IB_RATE_300_GBPS = 18
bf6a9e31
JM
667};
668
669/**
670 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
671 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
672 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
673 * @rate: rate to convert.
674 */
8385fd84 675__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 676
71eeba16
MA
677/**
678 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
679 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
680 * @rate: rate to convert.
681 */
8385fd84 682__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 683
17cd3a2d
SG
684
685/**
9bee178b
SG
686 * enum ib_mr_type - memory region type
687 * @IB_MR_TYPE_MEM_REG: memory region that is used for
688 * normal registration
689 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
690 * signature operations (data-integrity
691 * capable regions)
f5aa9159
SG
692 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
693 * register any arbitrary sg lists (without
694 * the normal mr constraints - see
695 * ib_map_mr_sg)
17cd3a2d 696 */
9bee178b
SG
697enum ib_mr_type {
698 IB_MR_TYPE_MEM_REG,
699 IB_MR_TYPE_SIGNATURE,
f5aa9159 700 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
701};
702
1b01d335 703/**
78eda2bb
SG
704 * Signature types
705 * IB_SIG_TYPE_NONE: Unprotected.
706 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 707 */
78eda2bb
SG
708enum ib_signature_type {
709 IB_SIG_TYPE_NONE,
710 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
711};
712
713/**
714 * Signature T10-DIF block-guard types
715 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
716 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
717 */
718enum ib_t10_dif_bg_type {
719 IB_T10DIF_CRC,
720 IB_T10DIF_CSUM
721};
722
723/**
724 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
725 * domain.
1b01d335
SG
726 * @bg_type: T10-DIF block guard type (CRC|CSUM)
727 * @pi_interval: protection information interval.
728 * @bg: seed of guard computation.
729 * @app_tag: application tag of guard block
730 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
731 * @ref_remap: Indicate wethear the reftag increments each block
732 * @app_escape: Indicate to skip block check if apptag=0xffff
733 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
734 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
735 */
736struct ib_t10_dif_domain {
1b01d335
SG
737 enum ib_t10_dif_bg_type bg_type;
738 u16 pi_interval;
739 u16 bg;
740 u16 app_tag;
741 u32 ref_tag;
78eda2bb
SG
742 bool ref_remap;
743 bool app_escape;
744 bool ref_escape;
745 u16 apptag_check_mask;
1b01d335
SG
746};
747
748/**
749 * struct ib_sig_domain - Parameters for signature domain
750 * @sig_type: specific signauture type
751 * @sig: union of all signature domain attributes that may
752 * be used to set domain layout.
753 */
754struct ib_sig_domain {
755 enum ib_signature_type sig_type;
756 union {
757 struct ib_t10_dif_domain dif;
758 } sig;
759};
760
761/**
762 * struct ib_sig_attrs - Parameters for signature handover operation
763 * @check_mask: bitmask for signature byte check (8 bytes)
764 * @mem: memory domain layout desciptor.
765 * @wire: wire domain layout desciptor.
766 */
767struct ib_sig_attrs {
768 u8 check_mask;
769 struct ib_sig_domain mem;
770 struct ib_sig_domain wire;
771};
772
773enum ib_sig_err_type {
774 IB_SIG_BAD_GUARD,
775 IB_SIG_BAD_REFTAG,
776 IB_SIG_BAD_APPTAG,
777};
778
779/**
780 * struct ib_sig_err - signature error descriptor
781 */
782struct ib_sig_err {
783 enum ib_sig_err_type err_type;
784 u32 expected;
785 u32 actual;
786 u64 sig_err_offset;
787 u32 key;
788};
789
790enum ib_mr_status_check {
791 IB_MR_CHECK_SIG_STATUS = 1,
792};
793
794/**
795 * struct ib_mr_status - Memory region status container
796 *
797 * @fail_status: Bitmask of MR checks status. For each
798 * failed check a corresponding status bit is set.
799 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
800 * failure.
801 */
802struct ib_mr_status {
803 u32 fail_status;
804 struct ib_sig_err sig_err;
805};
806
bf6a9e31
JM
807/**
808 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
809 * enum.
810 * @mult: multiple to convert.
811 */
8385fd84 812__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 813
1da177e4
LT
814struct ib_ah_attr {
815 struct ib_global_route grh;
816 u16 dlid;
817 u8 sl;
818 u8 src_path_bits;
819 u8 static_rate;
820 u8 ah_flags;
821 u8 port_num;
dd5f03be 822 u8 dmac[ETH_ALEN];
1da177e4
LT
823};
824
825enum ib_wc_status {
826 IB_WC_SUCCESS,
827 IB_WC_LOC_LEN_ERR,
828 IB_WC_LOC_QP_OP_ERR,
829 IB_WC_LOC_EEC_OP_ERR,
830 IB_WC_LOC_PROT_ERR,
831 IB_WC_WR_FLUSH_ERR,
832 IB_WC_MW_BIND_ERR,
833 IB_WC_BAD_RESP_ERR,
834 IB_WC_LOC_ACCESS_ERR,
835 IB_WC_REM_INV_REQ_ERR,
836 IB_WC_REM_ACCESS_ERR,
837 IB_WC_REM_OP_ERR,
838 IB_WC_RETRY_EXC_ERR,
839 IB_WC_RNR_RETRY_EXC_ERR,
840 IB_WC_LOC_RDD_VIOL_ERR,
841 IB_WC_REM_INV_RD_REQ_ERR,
842 IB_WC_REM_ABORT_ERR,
843 IB_WC_INV_EECN_ERR,
844 IB_WC_INV_EEC_STATE_ERR,
845 IB_WC_FATAL_ERR,
846 IB_WC_RESP_TIMEOUT_ERR,
847 IB_WC_GENERAL_ERR
848};
849
db7489e0 850const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 851
1da177e4
LT
852enum ib_wc_opcode {
853 IB_WC_SEND,
854 IB_WC_RDMA_WRITE,
855 IB_WC_RDMA_READ,
856 IB_WC_COMP_SWAP,
857 IB_WC_FETCH_ADD,
c93570f2 858 IB_WC_LSO,
00f7ec36 859 IB_WC_LOCAL_INV,
4c67e2bf 860 IB_WC_REG_MR,
5e80ba8f
VS
861 IB_WC_MASKED_COMP_SWAP,
862 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
863/*
864 * Set value of IB_WC_RECV so consumers can test if a completion is a
865 * receive by testing (opcode & IB_WC_RECV).
866 */
867 IB_WC_RECV = 1 << 7,
868 IB_WC_RECV_RDMA_WITH_IMM
869};
870
871enum ib_wc_flags {
872 IB_WC_GRH = 1,
00f7ec36
SW
873 IB_WC_WITH_IMM = (1<<1),
874 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 875 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
876 IB_WC_WITH_SMAC = (1<<4),
877 IB_WC_WITH_VLAN = (1<<5),
c865f246 878 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
879};
880
881struct ib_wc {
14d3a3b2
CH
882 union {
883 u64 wr_id;
884 struct ib_cqe *wr_cqe;
885 };
1da177e4
LT
886 enum ib_wc_status status;
887 enum ib_wc_opcode opcode;
888 u32 vendor_err;
889 u32 byte_len;
062dbb69 890 struct ib_qp *qp;
00f7ec36
SW
891 union {
892 __be32 imm_data;
893 u32 invalidate_rkey;
894 } ex;
1da177e4
LT
895 u32 src_qp;
896 int wc_flags;
897 u16 pkey_index;
898 u16 slid;
899 u8 sl;
900 u8 dlid_path_bits;
901 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
902 u8 smac[ETH_ALEN];
903 u16 vlan_id;
c865f246 904 u8 network_hdr_type;
1da177e4
LT
905};
906
ed23a727
RD
907enum ib_cq_notify_flags {
908 IB_CQ_SOLICITED = 1 << 0,
909 IB_CQ_NEXT_COMP = 1 << 1,
910 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
911 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
912};
913
96104eda 914enum ib_srq_type {
418d5130
SH
915 IB_SRQT_BASIC,
916 IB_SRQT_XRC
96104eda
SH
917};
918
d41fcc67
RD
919enum ib_srq_attr_mask {
920 IB_SRQ_MAX_WR = 1 << 0,
921 IB_SRQ_LIMIT = 1 << 1,
922};
923
924struct ib_srq_attr {
925 u32 max_wr;
926 u32 max_sge;
927 u32 srq_limit;
928};
929
930struct ib_srq_init_attr {
931 void (*event_handler)(struct ib_event *, void *);
932 void *srq_context;
933 struct ib_srq_attr attr;
96104eda 934 enum ib_srq_type srq_type;
418d5130
SH
935
936 union {
937 struct {
938 struct ib_xrcd *xrcd;
939 struct ib_cq *cq;
940 } xrc;
941 } ext;
d41fcc67
RD
942};
943
1da177e4
LT
944struct ib_qp_cap {
945 u32 max_send_wr;
946 u32 max_recv_wr;
947 u32 max_send_sge;
948 u32 max_recv_sge;
949 u32 max_inline_data;
a060b562
CH
950
951 /*
952 * Maximum number of rdma_rw_ctx structures in flight at a time.
953 * ib_create_qp() will calculate the right amount of neededed WRs
954 * and MRs based on this.
955 */
956 u32 max_rdma_ctxs;
1da177e4
LT
957};
958
959enum ib_sig_type {
960 IB_SIGNAL_ALL_WR,
961 IB_SIGNAL_REQ_WR
962};
963
964enum ib_qp_type {
965 /*
966 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
967 * here (and in that order) since the MAD layer uses them as
968 * indices into a 2-entry table.
969 */
970 IB_QPT_SMI,
971 IB_QPT_GSI,
972
973 IB_QPT_RC,
974 IB_QPT_UC,
975 IB_QPT_UD,
976 IB_QPT_RAW_IPV6,
b42b63cf 977 IB_QPT_RAW_ETHERTYPE,
c938a616 978 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
979 IB_QPT_XRC_INI = 9,
980 IB_QPT_XRC_TGT,
0134f16b
JM
981 IB_QPT_MAX,
982 /* Reserve a range for qp types internal to the low level driver.
983 * These qp types will not be visible at the IB core layer, so the
984 * IB_QPT_MAX usages should not be affected in the core layer
985 */
986 IB_QPT_RESERVED1 = 0x1000,
987 IB_QPT_RESERVED2,
988 IB_QPT_RESERVED3,
989 IB_QPT_RESERVED4,
990 IB_QPT_RESERVED5,
991 IB_QPT_RESERVED6,
992 IB_QPT_RESERVED7,
993 IB_QPT_RESERVED8,
994 IB_QPT_RESERVED9,
995 IB_QPT_RESERVED10,
1da177e4
LT
996};
997
b846f25a 998enum ib_qp_create_flags {
47ee1b9f
RL
999 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1000 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1001 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1002 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1003 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1004 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1005 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 1006 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
b531b909 1007 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
d2b57063
JM
1008 /* reserve bits 26-31 for low level drivers' internal use */
1009 IB_QP_CREATE_RESERVED_START = 1 << 26,
1010 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1011};
1012
73c40c61
YH
1013/*
1014 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1015 * callback to destroy the passed in QP.
1016 */
1017
1da177e4
LT
1018struct ib_qp_init_attr {
1019 void (*event_handler)(struct ib_event *, void *);
1020 void *qp_context;
1021 struct ib_cq *send_cq;
1022 struct ib_cq *recv_cq;
1023 struct ib_srq *srq;
b42b63cf 1024 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1025 struct ib_qp_cap cap;
1026 enum ib_sig_type sq_sig_type;
1027 enum ib_qp_type qp_type;
b846f25a 1028 enum ib_qp_create_flags create_flags;
a060b562
CH
1029
1030 /*
1031 * Only needed for special QP types, or when using the RW API.
1032 */
1033 u8 port_num;
a9017e23 1034 struct ib_rwq_ind_table *rwq_ind_tbl;
1da177e4
LT
1035};
1036
0e0ec7e0
SH
1037struct ib_qp_open_attr {
1038 void (*event_handler)(struct ib_event *, void *);
1039 void *qp_context;
1040 u32 qp_num;
1041 enum ib_qp_type qp_type;
1042};
1043
1da177e4
LT
1044enum ib_rnr_timeout {
1045 IB_RNR_TIMER_655_36 = 0,
1046 IB_RNR_TIMER_000_01 = 1,
1047 IB_RNR_TIMER_000_02 = 2,
1048 IB_RNR_TIMER_000_03 = 3,
1049 IB_RNR_TIMER_000_04 = 4,
1050 IB_RNR_TIMER_000_06 = 5,
1051 IB_RNR_TIMER_000_08 = 6,
1052 IB_RNR_TIMER_000_12 = 7,
1053 IB_RNR_TIMER_000_16 = 8,
1054 IB_RNR_TIMER_000_24 = 9,
1055 IB_RNR_TIMER_000_32 = 10,
1056 IB_RNR_TIMER_000_48 = 11,
1057 IB_RNR_TIMER_000_64 = 12,
1058 IB_RNR_TIMER_000_96 = 13,
1059 IB_RNR_TIMER_001_28 = 14,
1060 IB_RNR_TIMER_001_92 = 15,
1061 IB_RNR_TIMER_002_56 = 16,
1062 IB_RNR_TIMER_003_84 = 17,
1063 IB_RNR_TIMER_005_12 = 18,
1064 IB_RNR_TIMER_007_68 = 19,
1065 IB_RNR_TIMER_010_24 = 20,
1066 IB_RNR_TIMER_015_36 = 21,
1067 IB_RNR_TIMER_020_48 = 22,
1068 IB_RNR_TIMER_030_72 = 23,
1069 IB_RNR_TIMER_040_96 = 24,
1070 IB_RNR_TIMER_061_44 = 25,
1071 IB_RNR_TIMER_081_92 = 26,
1072 IB_RNR_TIMER_122_88 = 27,
1073 IB_RNR_TIMER_163_84 = 28,
1074 IB_RNR_TIMER_245_76 = 29,
1075 IB_RNR_TIMER_327_68 = 30,
1076 IB_RNR_TIMER_491_52 = 31
1077};
1078
1079enum ib_qp_attr_mask {
1080 IB_QP_STATE = 1,
1081 IB_QP_CUR_STATE = (1<<1),
1082 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1083 IB_QP_ACCESS_FLAGS = (1<<3),
1084 IB_QP_PKEY_INDEX = (1<<4),
1085 IB_QP_PORT = (1<<5),
1086 IB_QP_QKEY = (1<<6),
1087 IB_QP_AV = (1<<7),
1088 IB_QP_PATH_MTU = (1<<8),
1089 IB_QP_TIMEOUT = (1<<9),
1090 IB_QP_RETRY_CNT = (1<<10),
1091 IB_QP_RNR_RETRY = (1<<11),
1092 IB_QP_RQ_PSN = (1<<12),
1093 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1094 IB_QP_ALT_PATH = (1<<14),
1095 IB_QP_MIN_RNR_TIMER = (1<<15),
1096 IB_QP_SQ_PSN = (1<<16),
1097 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1098 IB_QP_PATH_MIG_STATE = (1<<18),
1099 IB_QP_CAP = (1<<19),
dd5f03be 1100 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1101 IB_QP_RESERVED1 = (1<<21),
1102 IB_QP_RESERVED2 = (1<<22),
1103 IB_QP_RESERVED3 = (1<<23),
1104 IB_QP_RESERVED4 = (1<<24),
1da177e4
LT
1105};
1106
1107enum ib_qp_state {
1108 IB_QPS_RESET,
1109 IB_QPS_INIT,
1110 IB_QPS_RTR,
1111 IB_QPS_RTS,
1112 IB_QPS_SQD,
1113 IB_QPS_SQE,
1114 IB_QPS_ERR
1115};
1116
1117enum ib_mig_state {
1118 IB_MIG_MIGRATED,
1119 IB_MIG_REARM,
1120 IB_MIG_ARMED
1121};
1122
7083e42e
SM
1123enum ib_mw_type {
1124 IB_MW_TYPE_1 = 1,
1125 IB_MW_TYPE_2 = 2
1126};
1127
1da177e4
LT
1128struct ib_qp_attr {
1129 enum ib_qp_state qp_state;
1130 enum ib_qp_state cur_qp_state;
1131 enum ib_mtu path_mtu;
1132 enum ib_mig_state path_mig_state;
1133 u32 qkey;
1134 u32 rq_psn;
1135 u32 sq_psn;
1136 u32 dest_qp_num;
1137 int qp_access_flags;
1138 struct ib_qp_cap cap;
1139 struct ib_ah_attr ah_attr;
1140 struct ib_ah_attr alt_ah_attr;
1141 u16 pkey_index;
1142 u16 alt_pkey_index;
1143 u8 en_sqd_async_notify;
1144 u8 sq_draining;
1145 u8 max_rd_atomic;
1146 u8 max_dest_rd_atomic;
1147 u8 min_rnr_timer;
1148 u8 port_num;
1149 u8 timeout;
1150 u8 retry_cnt;
1151 u8 rnr_retry;
1152 u8 alt_port_num;
1153 u8 alt_timeout;
1154};
1155
1156enum ib_wr_opcode {
1157 IB_WR_RDMA_WRITE,
1158 IB_WR_RDMA_WRITE_WITH_IMM,
1159 IB_WR_SEND,
1160 IB_WR_SEND_WITH_IMM,
1161 IB_WR_RDMA_READ,
1162 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1163 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1164 IB_WR_LSO,
1165 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1166 IB_WR_RDMA_READ_WITH_INV,
1167 IB_WR_LOCAL_INV,
4c67e2bf 1168 IB_WR_REG_MR,
5e80ba8f
VS
1169 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1170 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1171 IB_WR_REG_SIG_MR,
0134f16b
JM
1172 /* reserve values for low level drivers' internal use.
1173 * These values will not be used at all in the ib core layer.
1174 */
1175 IB_WR_RESERVED1 = 0xf0,
1176 IB_WR_RESERVED2,
1177 IB_WR_RESERVED3,
1178 IB_WR_RESERVED4,
1179 IB_WR_RESERVED5,
1180 IB_WR_RESERVED6,
1181 IB_WR_RESERVED7,
1182 IB_WR_RESERVED8,
1183 IB_WR_RESERVED9,
1184 IB_WR_RESERVED10,
1da177e4
LT
1185};
1186
1187enum ib_send_flags {
1188 IB_SEND_FENCE = 1,
1189 IB_SEND_SIGNALED = (1<<1),
1190 IB_SEND_SOLICITED = (1<<2),
e0605d91 1191 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1192 IB_SEND_IP_CSUM = (1<<4),
1193
1194 /* reserve bits 26-31 for low level drivers' internal use */
1195 IB_SEND_RESERVED_START = (1 << 26),
1196 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1197};
1198
1199struct ib_sge {
1200 u64 addr;
1201 u32 length;
1202 u32 lkey;
1203};
1204
14d3a3b2
CH
1205struct ib_cqe {
1206 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1207};
1208
1da177e4
LT
1209struct ib_send_wr {
1210 struct ib_send_wr *next;
14d3a3b2
CH
1211 union {
1212 u64 wr_id;
1213 struct ib_cqe *wr_cqe;
1214 };
1da177e4
LT
1215 struct ib_sge *sg_list;
1216 int num_sge;
1217 enum ib_wr_opcode opcode;
1218 int send_flags;
0f39cf3d
RD
1219 union {
1220 __be32 imm_data;
1221 u32 invalidate_rkey;
1222 } ex;
1da177e4
LT
1223};
1224
e622f2f4
CH
1225struct ib_rdma_wr {
1226 struct ib_send_wr wr;
1227 u64 remote_addr;
1228 u32 rkey;
1229};
1230
1231static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1232{
1233 return container_of(wr, struct ib_rdma_wr, wr);
1234}
1235
1236struct ib_atomic_wr {
1237 struct ib_send_wr wr;
1238 u64 remote_addr;
1239 u64 compare_add;
1240 u64 swap;
1241 u64 compare_add_mask;
1242 u64 swap_mask;
1243 u32 rkey;
1244};
1245
1246static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1247{
1248 return container_of(wr, struct ib_atomic_wr, wr);
1249}
1250
1251struct ib_ud_wr {
1252 struct ib_send_wr wr;
1253 struct ib_ah *ah;
1254 void *header;
1255 int hlen;
1256 int mss;
1257 u32 remote_qpn;
1258 u32 remote_qkey;
1259 u16 pkey_index; /* valid for GSI only */
1260 u8 port_num; /* valid for DR SMPs on switch only */
1261};
1262
1263static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1264{
1265 return container_of(wr, struct ib_ud_wr, wr);
1266}
1267
4c67e2bf
SG
1268struct ib_reg_wr {
1269 struct ib_send_wr wr;
1270 struct ib_mr *mr;
1271 u32 key;
1272 int access;
1273};
1274
1275static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1276{
1277 return container_of(wr, struct ib_reg_wr, wr);
1278}
1279
e622f2f4
CH
1280struct ib_sig_handover_wr {
1281 struct ib_send_wr wr;
1282 struct ib_sig_attrs *sig_attrs;
1283 struct ib_mr *sig_mr;
1284 int access_flags;
1285 struct ib_sge *prot;
1286};
1287
1288static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1289{
1290 return container_of(wr, struct ib_sig_handover_wr, wr);
1291}
1292
1da177e4
LT
1293struct ib_recv_wr {
1294 struct ib_recv_wr *next;
14d3a3b2
CH
1295 union {
1296 u64 wr_id;
1297 struct ib_cqe *wr_cqe;
1298 };
1da177e4
LT
1299 struct ib_sge *sg_list;
1300 int num_sge;
1301};
1302
1303enum ib_access_flags {
1304 IB_ACCESS_LOCAL_WRITE = 1,
1305 IB_ACCESS_REMOTE_WRITE = (1<<1),
1306 IB_ACCESS_REMOTE_READ = (1<<2),
1307 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1308 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1309 IB_ZERO_BASED = (1<<5),
1310 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1311};
1312
b7d3e0a9
CH
1313/*
1314 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1315 * are hidden here instead of a uapi header!
1316 */
1da177e4
LT
1317enum ib_mr_rereg_flags {
1318 IB_MR_REREG_TRANS = 1,
1319 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1320 IB_MR_REREG_ACCESS = (1<<2),
1321 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1322};
1323
1da177e4
LT
1324struct ib_fmr_attr {
1325 int max_pages;
1326 int max_maps;
d36f34aa 1327 u8 page_shift;
1da177e4
LT
1328};
1329
882214e2
HE
1330struct ib_umem;
1331
e2773c06
RD
1332struct ib_ucontext {
1333 struct ib_device *device;
1334 struct list_head pd_list;
1335 struct list_head mr_list;
1336 struct list_head mw_list;
1337 struct list_head cq_list;
1338 struct list_head qp_list;
1339 struct list_head srq_list;
1340 struct list_head ah_list;
53d0bd1e 1341 struct list_head xrcd_list;
436f2ad0 1342 struct list_head rule_list;
f213c052 1343 struct list_head wq_list;
de019a94 1344 struct list_head rwq_ind_tbl_list;
f7c6a7b5 1345 int closing;
8ada2c1c
SR
1346
1347 struct pid *tgid;
882214e2
HE
1348#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1349 struct rb_root umem_tree;
1350 /*
1351 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1352 * mmu notifiers registration.
1353 */
1354 struct rw_semaphore umem_rwsem;
1355 void (*invalidate_range)(struct ib_umem *umem,
1356 unsigned long start, unsigned long end);
1357
1358 struct mmu_notifier mn;
1359 atomic_t notifier_count;
1360 /* A list of umems that don't have private mmu notifier counters yet. */
1361 struct list_head no_private_counters;
1362 int odp_mrs_count;
1363#endif
e2773c06
RD
1364};
1365
1366struct ib_uobject {
1367 u64 user_handle; /* handle given to us by userspace */
1368 struct ib_ucontext *context; /* associated user context */
9ead190b 1369 void *object; /* containing object */
e2773c06 1370 struct list_head list; /* link to context's list */
b3d636b0 1371 int id; /* index into kernel idr */
9ead190b
RD
1372 struct kref ref;
1373 struct rw_semaphore mutex; /* protects .live */
d144da8c 1374 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1375 int live;
e2773c06
RD
1376};
1377
e2773c06 1378struct ib_udata {
309243ec 1379 const void __user *inbuf;
e2773c06
RD
1380 void __user *outbuf;
1381 size_t inlen;
1382 size_t outlen;
1383};
1384
1da177e4 1385struct ib_pd {
96249d70 1386 u32 local_dma_lkey;
ed082d36 1387 u32 flags;
e2773c06
RD
1388 struct ib_device *device;
1389 struct ib_uobject *uobject;
1390 atomic_t usecnt; /* count all resources */
50d46335 1391
ed082d36
CH
1392 u32 unsafe_global_rkey;
1393
50d46335
CH
1394 /*
1395 * Implementation details of the RDMA core, don't use in drivers:
1396 */
1397 struct ib_mr *__internal_mr;
1da177e4
LT
1398};
1399
59991f94
SH
1400struct ib_xrcd {
1401 struct ib_device *device;
d3d72d90 1402 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1403 struct inode *inode;
d3d72d90
SH
1404
1405 struct mutex tgt_qp_mutex;
1406 struct list_head tgt_qp_list;
59991f94
SH
1407};
1408
1da177e4
LT
1409struct ib_ah {
1410 struct ib_device *device;
1411 struct ib_pd *pd;
e2773c06 1412 struct ib_uobject *uobject;
1da177e4
LT
1413};
1414
1415typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1416
14d3a3b2
CH
1417enum ib_poll_context {
1418 IB_POLL_DIRECT, /* caller context, no hw completions */
1419 IB_POLL_SOFTIRQ, /* poll from softirq context */
1420 IB_POLL_WORKQUEUE, /* poll from workqueue */
1421};
1422
1da177e4 1423struct ib_cq {
e2773c06
RD
1424 struct ib_device *device;
1425 struct ib_uobject *uobject;
1426 ib_comp_handler comp_handler;
1427 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1428 void *cq_context;
e2773c06
RD
1429 int cqe;
1430 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1431 enum ib_poll_context poll_ctx;
1432 struct ib_wc *wc;
1433 union {
1434 struct irq_poll iop;
1435 struct work_struct work;
1436 };
1da177e4
LT
1437};
1438
1439struct ib_srq {
d41fcc67
RD
1440 struct ib_device *device;
1441 struct ib_pd *pd;
1442 struct ib_uobject *uobject;
1443 void (*event_handler)(struct ib_event *, void *);
1444 void *srq_context;
96104eda 1445 enum ib_srq_type srq_type;
1da177e4 1446 atomic_t usecnt;
418d5130
SH
1447
1448 union {
1449 struct {
1450 struct ib_xrcd *xrcd;
1451 struct ib_cq *cq;
1452 u32 srq_num;
1453 } xrc;
1454 } ext;
1da177e4
LT
1455};
1456
5fd251c8
YH
1457enum ib_wq_type {
1458 IB_WQT_RQ
1459};
1460
1461enum ib_wq_state {
1462 IB_WQS_RESET,
1463 IB_WQS_RDY,
1464 IB_WQS_ERR
1465};
1466
1467struct ib_wq {
1468 struct ib_device *device;
1469 struct ib_uobject *uobject;
1470 void *wq_context;
1471 void (*event_handler)(struct ib_event *, void *);
1472 struct ib_pd *pd;
1473 struct ib_cq *cq;
1474 u32 wq_num;
1475 enum ib_wq_state state;
1476 enum ib_wq_type wq_type;
1477 atomic_t usecnt;
1478};
1479
1480struct ib_wq_init_attr {
1481 void *wq_context;
1482 enum ib_wq_type wq_type;
1483 u32 max_wr;
1484 u32 max_sge;
1485 struct ib_cq *cq;
1486 void (*event_handler)(struct ib_event *, void *);
1487};
1488
1489enum ib_wq_attr_mask {
1490 IB_WQ_STATE = 1 << 0,
1491 IB_WQ_CUR_STATE = 1 << 1,
1492};
1493
1494struct ib_wq_attr {
1495 enum ib_wq_state wq_state;
1496 enum ib_wq_state curr_wq_state;
1497};
1498
6d39786b
YH
1499struct ib_rwq_ind_table {
1500 struct ib_device *device;
1501 struct ib_uobject *uobject;
1502 atomic_t usecnt;
1503 u32 ind_tbl_num;
1504 u32 log_ind_tbl_size;
1505 struct ib_wq **ind_tbl;
1506};
1507
1508struct ib_rwq_ind_table_init_attr {
1509 u32 log_ind_tbl_size;
1510 /* Each entry is a pointer to Receive Work Queue */
1511 struct ib_wq **ind_tbl;
1512};
1513
632bc3f6
BVA
1514/*
1515 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1516 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1517 */
1da177e4
LT
1518struct ib_qp {
1519 struct ib_device *device;
1520 struct ib_pd *pd;
1521 struct ib_cq *send_cq;
1522 struct ib_cq *recv_cq;
fffb0383
CH
1523 spinlock_t mr_lock;
1524 int mrs_used;
a060b562 1525 struct list_head rdma_mrs;
0e353e34 1526 struct list_head sig_mrs;
1da177e4 1527 struct ib_srq *srq;
b42b63cf 1528 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1529 struct list_head xrcd_list;
fffb0383 1530
319a441d
HHZ
1531 /* count times opened, mcast attaches, flow attaches */
1532 atomic_t usecnt;
0e0ec7e0
SH
1533 struct list_head open_list;
1534 struct ib_qp *real_qp;
e2773c06 1535 struct ib_uobject *uobject;
1da177e4
LT
1536 void (*event_handler)(struct ib_event *, void *);
1537 void *qp_context;
1538 u32 qp_num;
632bc3f6
BVA
1539 u32 max_write_sge;
1540 u32 max_read_sge;
1da177e4 1541 enum ib_qp_type qp_type;
a9017e23 1542 struct ib_rwq_ind_table *rwq_ind_tbl;
1da177e4
LT
1543};
1544
1545struct ib_mr {
e2773c06
RD
1546 struct ib_device *device;
1547 struct ib_pd *pd;
e2773c06
RD
1548 u32 lkey;
1549 u32 rkey;
4c67e2bf
SG
1550 u64 iova;
1551 u32 length;
1552 unsigned int page_size;
d4a85c30 1553 bool need_inval;
fffb0383
CH
1554 union {
1555 struct ib_uobject *uobject; /* user */
1556 struct list_head qp_entry; /* FR */
1557 };
1da177e4
LT
1558};
1559
1560struct ib_mw {
1561 struct ib_device *device;
1562 struct ib_pd *pd;
e2773c06 1563 struct ib_uobject *uobject;
1da177e4 1564 u32 rkey;
7083e42e 1565 enum ib_mw_type type;
1da177e4
LT
1566};
1567
1568struct ib_fmr {
1569 struct ib_device *device;
1570 struct ib_pd *pd;
1571 struct list_head list;
1572 u32 lkey;
1573 u32 rkey;
1574};
1575
319a441d
HHZ
1576/* Supported steering options */
1577enum ib_flow_attr_type {
1578 /* steering according to rule specifications */
1579 IB_FLOW_ATTR_NORMAL = 0x0,
1580 /* default unicast and multicast rule -
1581 * receive all Eth traffic which isn't steered to any QP
1582 */
1583 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1584 /* default multicast rule -
1585 * receive all Eth multicast traffic which isn't steered to any QP
1586 */
1587 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1588 /* sniffer rule - receive all port traffic */
1589 IB_FLOW_ATTR_SNIFFER = 0x3
1590};
1591
1592/* Supported steering header types */
1593enum ib_flow_spec_type {
1594 /* L2 headers*/
1595 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1596 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1597 /* L3 header*/
1598 IB_FLOW_SPEC_IPV4 = 0x30,
4c2aae71 1599 IB_FLOW_SPEC_IPV6 = 0x31,
319a441d
HHZ
1600 /* L4 headers*/
1601 IB_FLOW_SPEC_TCP = 0x40,
0dbf3332
MR
1602 IB_FLOW_SPEC_UDP = 0x41,
1603 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
319a441d 1604};
240ae00e 1605#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1606#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1607
319a441d
HHZ
1608/* Flow steering rule priority is set according to it's domain.
1609 * Lower domain value means higher priority.
1610 */
1611enum ib_flow_domain {
1612 IB_FLOW_DOMAIN_USER,
1613 IB_FLOW_DOMAIN_ETHTOOL,
1614 IB_FLOW_DOMAIN_RFS,
1615 IB_FLOW_DOMAIN_NIC,
1616 IB_FLOW_DOMAIN_NUM /* Must be last */
1617};
1618
a3100a78
MV
1619enum ib_flow_flags {
1620 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1621 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1622};
1623
319a441d
HHZ
1624struct ib_flow_eth_filter {
1625 u8 dst_mac[6];
1626 u8 src_mac[6];
1627 __be16 ether_type;
1628 __be16 vlan_tag;
15dfbd6b
MG
1629 /* Must be last */
1630 u8 real_sz[0];
319a441d
HHZ
1631};
1632
1633struct ib_flow_spec_eth {
1634 enum ib_flow_spec_type type;
1635 u16 size;
1636 struct ib_flow_eth_filter val;
1637 struct ib_flow_eth_filter mask;
1638};
1639
240ae00e
MB
1640struct ib_flow_ib_filter {
1641 __be16 dlid;
1642 __u8 sl;
15dfbd6b
MG
1643 /* Must be last */
1644 u8 real_sz[0];
240ae00e
MB
1645};
1646
1647struct ib_flow_spec_ib {
1648 enum ib_flow_spec_type type;
1649 u16 size;
1650 struct ib_flow_ib_filter val;
1651 struct ib_flow_ib_filter mask;
1652};
1653
989a3a8f
MG
1654/* IPv4 header flags */
1655enum ib_ipv4_flags {
1656 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1657 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1658 last have this flag set */
1659};
1660
319a441d
HHZ
1661struct ib_flow_ipv4_filter {
1662 __be32 src_ip;
1663 __be32 dst_ip;
989a3a8f
MG
1664 u8 proto;
1665 u8 tos;
1666 u8 ttl;
1667 u8 flags;
15dfbd6b
MG
1668 /* Must be last */
1669 u8 real_sz[0];
319a441d
HHZ
1670};
1671
1672struct ib_flow_spec_ipv4 {
1673 enum ib_flow_spec_type type;
1674 u16 size;
1675 struct ib_flow_ipv4_filter val;
1676 struct ib_flow_ipv4_filter mask;
1677};
1678
4c2aae71
MG
1679struct ib_flow_ipv6_filter {
1680 u8 src_ip[16];
1681 u8 dst_ip[16];
a72c6a2b
MG
1682 __be32 flow_label;
1683 u8 next_hdr;
1684 u8 traffic_class;
1685 u8 hop_limit;
15dfbd6b
MG
1686 /* Must be last */
1687 u8 real_sz[0];
4c2aae71
MG
1688};
1689
1690struct ib_flow_spec_ipv6 {
1691 enum ib_flow_spec_type type;
1692 u16 size;
1693 struct ib_flow_ipv6_filter val;
1694 struct ib_flow_ipv6_filter mask;
1695};
1696
319a441d
HHZ
1697struct ib_flow_tcp_udp_filter {
1698 __be16 dst_port;
1699 __be16 src_port;
15dfbd6b
MG
1700 /* Must be last */
1701 u8 real_sz[0];
319a441d
HHZ
1702};
1703
1704struct ib_flow_spec_tcp_udp {
1705 enum ib_flow_spec_type type;
1706 u16 size;
1707 struct ib_flow_tcp_udp_filter val;
1708 struct ib_flow_tcp_udp_filter mask;
1709};
1710
0dbf3332
MR
1711struct ib_flow_tunnel_filter {
1712 __be32 tunnel_id;
1713 u8 real_sz[0];
1714};
1715
1716/* ib_flow_spec_tunnel describes the Vxlan tunnel
1717 * the tunnel_id from val has the vni value
1718 */
1719struct ib_flow_spec_tunnel {
1720 enum ib_flow_spec_type type;
1721 u16 size;
1722 struct ib_flow_tunnel_filter val;
1723 struct ib_flow_tunnel_filter mask;
1724};
1725
319a441d
HHZ
1726union ib_flow_spec {
1727 struct {
1728 enum ib_flow_spec_type type;
1729 u16 size;
1730 };
1731 struct ib_flow_spec_eth eth;
240ae00e 1732 struct ib_flow_spec_ib ib;
319a441d
HHZ
1733 struct ib_flow_spec_ipv4 ipv4;
1734 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 1735 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 1736 struct ib_flow_spec_tunnel tunnel;
319a441d
HHZ
1737};
1738
1739struct ib_flow_attr {
1740 enum ib_flow_attr_type type;
1741 u16 size;
1742 u16 priority;
1743 u32 flags;
1744 u8 num_of_specs;
1745 u8 port;
1746 /* Following are the optional layers according to user request
1747 * struct ib_flow_spec_xxx
1748 * struct ib_flow_spec_yyy
1749 */
1750};
1751
1752struct ib_flow {
1753 struct ib_qp *qp;
1754 struct ib_uobject *uobject;
1755};
1756
4cd7c947 1757struct ib_mad_hdr;
1da177e4
LT
1758struct ib_grh;
1759
1760enum ib_process_mad_flags {
1761 IB_MAD_IGNORE_MKEY = 1,
1762 IB_MAD_IGNORE_BKEY = 2,
1763 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1764};
1765
1766enum ib_mad_result {
1767 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1768 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1769 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1770 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1771};
1772
1773#define IB_DEVICE_NAME_MAX 64
1774
1775struct ib_cache {
1776 rwlock_t lock;
1777 struct ib_event_handler event_handler;
1778 struct ib_pkey_cache **pkey_cache;
03db3a2d 1779 struct ib_gid_table **gid_cache;
6fb9cdbf 1780 u8 *lmc_cache;
1da177e4
LT
1781};
1782
9b513090
RC
1783struct ib_dma_mapping_ops {
1784 int (*mapping_error)(struct ib_device *dev,
1785 u64 dma_addr);
1786 u64 (*map_single)(struct ib_device *dev,
1787 void *ptr, size_t size,
1788 enum dma_data_direction direction);
1789 void (*unmap_single)(struct ib_device *dev,
1790 u64 addr, size_t size,
1791 enum dma_data_direction direction);
1792 u64 (*map_page)(struct ib_device *dev,
1793 struct page *page, unsigned long offset,
1794 size_t size,
1795 enum dma_data_direction direction);
1796 void (*unmap_page)(struct ib_device *dev,
1797 u64 addr, size_t size,
1798 enum dma_data_direction direction);
1799 int (*map_sg)(struct ib_device *dev,
1800 struct scatterlist *sg, int nents,
1801 enum dma_data_direction direction);
1802 void (*unmap_sg)(struct ib_device *dev,
1803 struct scatterlist *sg, int nents,
1804 enum dma_data_direction direction);
d9703650
PP
1805 int (*map_sg_attrs)(struct ib_device *dev,
1806 struct scatterlist *sg, int nents,
1807 enum dma_data_direction direction,
1808 unsigned long attrs);
1809 void (*unmap_sg_attrs)(struct ib_device *dev,
1810 struct scatterlist *sg, int nents,
1811 enum dma_data_direction direction,
1812 unsigned long attrs);
9b513090
RC
1813 void (*sync_single_for_cpu)(struct ib_device *dev,
1814 u64 dma_handle,
1815 size_t size,
4deccd6d 1816 enum dma_data_direction dir);
9b513090
RC
1817 void (*sync_single_for_device)(struct ib_device *dev,
1818 u64 dma_handle,
1819 size_t size,
1820 enum dma_data_direction dir);
1821 void *(*alloc_coherent)(struct ib_device *dev,
1822 size_t size,
1823 u64 *dma_handle,
1824 gfp_t flag);
1825 void (*free_coherent)(struct ib_device *dev,
1826 size_t size, void *cpu_addr,
1827 u64 dma_handle);
1828};
1829
07ebafba
TT
1830struct iw_cm_verbs;
1831
7738613e
IW
1832struct ib_port_immutable {
1833 int pkey_tbl_len;
1834 int gid_tbl_len;
f9b22e35 1835 u32 core_cap_flags;
337877a4 1836 u32 max_mad_size;
7738613e
IW
1837};
1838
1da177e4
LT
1839struct ib_device {
1840 struct device *dma_device;
1841
1842 char name[IB_DEVICE_NAME_MAX];
1843
1844 struct list_head event_handler_list;
1845 spinlock_t event_handler_lock;
1846
17a55f79 1847 spinlock_t client_data_lock;
1da177e4 1848 struct list_head core_list;
7c1eb45a
HE
1849 /* Access to the client_data_list is protected by the client_data_lock
1850 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1851 struct list_head client_data_list;
1da177e4
LT
1852
1853 struct ib_cache cache;
7738613e
IW
1854 /**
1855 * port_immutable is indexed by port number
1856 */
1857 struct ib_port_immutable *port_immutable;
1da177e4 1858
f4fd0b22
MT
1859 int num_comp_vectors;
1860
07ebafba
TT
1861 struct iw_cm_verbs *iwcm;
1862
b40f4757
CL
1863 /**
1864 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1865 * driver initialized data. The struct is kfree()'ed by the sysfs
1866 * core when the device is removed. A lifespan of -1 in the return
1867 * struct tells the core to set a default lifespan.
1868 */
1869 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1870 u8 port_num);
1871 /**
1872 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1873 * @index - The index in the value array we wish to have updated, or
1874 * num_counters if we want all stats updated
1875 * Return codes -
1876 * < 0 - Error, no counters updated
1877 * index - Updated the single counter pointed to by index
1878 * num_counters - Updated all counters (will reset the timestamp
1879 * and prevent further calls for lifespan milliseconds)
1880 * Drivers are allowed to update all counters in leiu of just the
1881 * one given in index at their option
1882 */
1883 int (*get_hw_stats)(struct ib_device *device,
1884 struct rdma_hw_stats *stats,
1885 u8 port, int index);
1da177e4 1886 int (*query_device)(struct ib_device *device,
2528e33e
MB
1887 struct ib_device_attr *device_attr,
1888 struct ib_udata *udata);
1da177e4
LT
1889 int (*query_port)(struct ib_device *device,
1890 u8 port_num,
1891 struct ib_port_attr *port_attr);
a3f5adaf
EC
1892 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1893 u8 port_num);
03db3a2d
MB
1894 /* When calling get_netdev, the HW vendor's driver should return the
1895 * net device of device @device at port @port_num or NULL if such
1896 * a net device doesn't exist. The vendor driver should call dev_hold
1897 * on this net device. The HW vendor's device driver must guarantee
1898 * that this function returns NULL before the net device reaches
1899 * NETDEV_UNREGISTER_FINAL state.
1900 */
1901 struct net_device *(*get_netdev)(struct ib_device *device,
1902 u8 port_num);
1da177e4
LT
1903 int (*query_gid)(struct ib_device *device,
1904 u8 port_num, int index,
1905 union ib_gid *gid);
03db3a2d
MB
1906 /* When calling add_gid, the HW vendor's driver should
1907 * add the gid of device @device at gid index @index of
1908 * port @port_num to be @gid. Meta-info of that gid (for example,
1909 * the network device related to this gid is available
1910 * at @attr. @context allows the HW vendor driver to store extra
1911 * information together with a GID entry. The HW vendor may allocate
1912 * memory to contain this information and store it in @context when a
1913 * new GID entry is written to. Params are consistent until the next
1914 * call of add_gid or delete_gid. The function should return 0 on
1915 * success or error otherwise. The function could be called
1916 * concurrently for different ports. This function is only called
1917 * when roce_gid_table is used.
1918 */
1919 int (*add_gid)(struct ib_device *device,
1920 u8 port_num,
1921 unsigned int index,
1922 const union ib_gid *gid,
1923 const struct ib_gid_attr *attr,
1924 void **context);
1925 /* When calling del_gid, the HW vendor's driver should delete the
1926 * gid of device @device at gid index @index of port @port_num.
1927 * Upon the deletion of a GID entry, the HW vendor must free any
1928 * allocated memory. The caller will clear @context afterwards.
1929 * This function is only called when roce_gid_table is used.
1930 */
1931 int (*del_gid)(struct ib_device *device,
1932 u8 port_num,
1933 unsigned int index,
1934 void **context);
1da177e4
LT
1935 int (*query_pkey)(struct ib_device *device,
1936 u8 port_num, u16 index, u16 *pkey);
1937 int (*modify_device)(struct ib_device *device,
1938 int device_modify_mask,
1939 struct ib_device_modify *device_modify);
1940 int (*modify_port)(struct ib_device *device,
1941 u8 port_num, int port_modify_mask,
1942 struct ib_port_modify *port_modify);
e2773c06
RD
1943 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1944 struct ib_udata *udata);
1945 int (*dealloc_ucontext)(struct ib_ucontext *context);
1946 int (*mmap)(struct ib_ucontext *context,
1947 struct vm_area_struct *vma);
1948 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1949 struct ib_ucontext *context,
1950 struct ib_udata *udata);
1da177e4
LT
1951 int (*dealloc_pd)(struct ib_pd *pd);
1952 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1953 struct ib_ah_attr *ah_attr);
1954 int (*modify_ah)(struct ib_ah *ah,
1955 struct ib_ah_attr *ah_attr);
1956 int (*query_ah)(struct ib_ah *ah,
1957 struct ib_ah_attr *ah_attr);
1958 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1959 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1960 struct ib_srq_init_attr *srq_init_attr,
1961 struct ib_udata *udata);
1962 int (*modify_srq)(struct ib_srq *srq,
1963 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1964 enum ib_srq_attr_mask srq_attr_mask,
1965 struct ib_udata *udata);
d41fcc67
RD
1966 int (*query_srq)(struct ib_srq *srq,
1967 struct ib_srq_attr *srq_attr);
1968 int (*destroy_srq)(struct ib_srq *srq);
1969 int (*post_srq_recv)(struct ib_srq *srq,
1970 struct ib_recv_wr *recv_wr,
1971 struct ib_recv_wr **bad_recv_wr);
1da177e4 1972 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1973 struct ib_qp_init_attr *qp_init_attr,
1974 struct ib_udata *udata);
1da177e4
LT
1975 int (*modify_qp)(struct ib_qp *qp,
1976 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1977 int qp_attr_mask,
1978 struct ib_udata *udata);
1da177e4
LT
1979 int (*query_qp)(struct ib_qp *qp,
1980 struct ib_qp_attr *qp_attr,
1981 int qp_attr_mask,
1982 struct ib_qp_init_attr *qp_init_attr);
1983 int (*destroy_qp)(struct ib_qp *qp);
1984 int (*post_send)(struct ib_qp *qp,
1985 struct ib_send_wr *send_wr,
1986 struct ib_send_wr **bad_send_wr);
1987 int (*post_recv)(struct ib_qp *qp,
1988 struct ib_recv_wr *recv_wr,
1989 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1990 struct ib_cq * (*create_cq)(struct ib_device *device,
1991 const struct ib_cq_init_attr *attr,
e2773c06
RD
1992 struct ib_ucontext *context,
1993 struct ib_udata *udata);
2dd57162
EC
1994 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1995 u16 cq_period);
1da177e4 1996 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1997 int (*resize_cq)(struct ib_cq *cq, int cqe,
1998 struct ib_udata *udata);
1da177e4
LT
1999 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2000 struct ib_wc *wc);
2001 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2002 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2003 enum ib_cq_notify_flags flags);
1da177e4
LT
2004 int (*req_ncomp_notif)(struct ib_cq *cq,
2005 int wc_cnt);
2006 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2007 int mr_access_flags);
e2773c06 2008 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2009 u64 start, u64 length,
2010 u64 virt_addr,
e2773c06
RD
2011 int mr_access_flags,
2012 struct ib_udata *udata);
7e6edb9b
MB
2013 int (*rereg_user_mr)(struct ib_mr *mr,
2014 int flags,
2015 u64 start, u64 length,
2016 u64 virt_addr,
2017 int mr_access_flags,
2018 struct ib_pd *pd,
2019 struct ib_udata *udata);
1da177e4 2020 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2021 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2022 enum ib_mr_type mr_type,
2023 u32 max_num_sg);
4c67e2bf
SG
2024 int (*map_mr_sg)(struct ib_mr *mr,
2025 struct scatterlist *sg,
ff2ba993 2026 int sg_nents,
9aa8b321 2027 unsigned int *sg_offset);
7083e42e 2028 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2029 enum ib_mw_type type,
2030 struct ib_udata *udata);
1da177e4
LT
2031 int (*dealloc_mw)(struct ib_mw *mw);
2032 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2033 int mr_access_flags,
2034 struct ib_fmr_attr *fmr_attr);
2035 int (*map_phys_fmr)(struct ib_fmr *fmr,
2036 u64 *page_list, int list_len,
2037 u64 iova);
2038 int (*unmap_fmr)(struct list_head *fmr_list);
2039 int (*dealloc_fmr)(struct ib_fmr *fmr);
2040 int (*attach_mcast)(struct ib_qp *qp,
2041 union ib_gid *gid,
2042 u16 lid);
2043 int (*detach_mcast)(struct ib_qp *qp,
2044 union ib_gid *gid,
2045 u16 lid);
2046 int (*process_mad)(struct ib_device *device,
2047 int process_mad_flags,
2048 u8 port_num,
a97e2d86
IW
2049 const struct ib_wc *in_wc,
2050 const struct ib_grh *in_grh,
4cd7c947
IW
2051 const struct ib_mad_hdr *in_mad,
2052 size_t in_mad_size,
2053 struct ib_mad_hdr *out_mad,
2054 size_t *out_mad_size,
2055 u16 *out_mad_pkey_index);
59991f94
SH
2056 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2057 struct ib_ucontext *ucontext,
2058 struct ib_udata *udata);
2059 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2060 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2061 struct ib_flow_attr
2062 *flow_attr,
2063 int domain);
2064 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2065 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2066 struct ib_mr_status *mr_status);
036b1063 2067 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2068 void (*drain_rq)(struct ib_qp *qp);
2069 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2070 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2071 int state);
2072 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2073 struct ifla_vf_info *ivf);
2074 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2075 struct ifla_vf_stats *stats);
2076 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2077 int type);
5fd251c8
YH
2078 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2079 struct ib_wq_init_attr *init_attr,
2080 struct ib_udata *udata);
2081 int (*destroy_wq)(struct ib_wq *wq);
2082 int (*modify_wq)(struct ib_wq *wq,
2083 struct ib_wq_attr *attr,
2084 u32 wq_attr_mask,
2085 struct ib_udata *udata);
6d39786b
YH
2086 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2087 struct ib_rwq_ind_table_init_attr *init_attr,
2088 struct ib_udata *udata);
2089 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
9b513090
RC
2090 struct ib_dma_mapping_ops *dma_ops;
2091
e2773c06 2092 struct module *owner;
f4e91eb4 2093 struct device dev;
35be0681 2094 struct kobject *ports_parent;
1da177e4
LT
2095 struct list_head port_list;
2096
2097 enum {
2098 IB_DEV_UNINITIALIZED,
2099 IB_DEV_REGISTERED,
2100 IB_DEV_UNREGISTERED
2101 } reg_state;
2102
274c0891 2103 int uverbs_abi_ver;
17a55f79 2104 u64 uverbs_cmd_mask;
f21519b2 2105 u64 uverbs_ex_cmd_mask;
274c0891 2106
bd99fdea 2107 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2108 __be64 node_guid;
96f15c03 2109 u32 local_dma_lkey;
4139032b 2110 u16 is_switch:1;
1da177e4
LT
2111 u8 node_type;
2112 u8 phys_port_cnt;
3e153a93 2113 struct ib_device_attr attrs;
b40f4757
CL
2114 struct attribute_group *hw_stats_ag;
2115 struct rdma_hw_stats *hw_stats;
7738613e
IW
2116
2117 /**
2118 * The following mandatory functions are used only at device
2119 * registration. Keep functions such as these at the end of this
2120 * structure to avoid cache line misses when accessing struct ib_device
2121 * in fast paths.
2122 */
2123 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
5fa76c20 2124 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
1da177e4
LT
2125};
2126
2127struct ib_client {
2128 char *name;
2129 void (*add) (struct ib_device *);
7c1eb45a 2130 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2131
9268f72d
YK
2132 /* Returns the net_dev belonging to this ib_client and matching the
2133 * given parameters.
2134 * @dev: An RDMA device that the net_dev use for communication.
2135 * @port: A physical port number on the RDMA device.
2136 * @pkey: P_Key that the net_dev uses if applicable.
2137 * @gid: A GID that the net_dev uses to communicate.
2138 * @addr: An IP address the net_dev is configured with.
2139 * @client_data: The device's client data set by ib_set_client_data().
2140 *
2141 * An ib_client that implements a net_dev on top of RDMA devices
2142 * (such as IP over IB) should implement this callback, allowing the
2143 * rdma_cm module to find the right net_dev for a given request.
2144 *
2145 * The caller is responsible for calling dev_put on the returned
2146 * netdev. */
2147 struct net_device *(*get_net_dev_by_params)(
2148 struct ib_device *dev,
2149 u8 port,
2150 u16 pkey,
2151 const union ib_gid *gid,
2152 const struct sockaddr *addr,
2153 void *client_data);
1da177e4
LT
2154 struct list_head list;
2155};
2156
2157struct ib_device *ib_alloc_device(size_t size);
2158void ib_dealloc_device(struct ib_device *device);
2159
5fa76c20
IW
2160void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2161
9a6edb60
RC
2162int ib_register_device(struct ib_device *device,
2163 int (*port_callback)(struct ib_device *,
2164 u8, struct kobject *));
1da177e4
LT
2165void ib_unregister_device(struct ib_device *device);
2166
2167int ib_register_client (struct ib_client *client);
2168void ib_unregister_client(struct ib_client *client);
2169
2170void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2171void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2172 void *data);
2173
e2773c06
RD
2174static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2175{
2176 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2177}
2178
2179static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2180{
43c61165 2181 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2182}
2183
301a721e
MB
2184static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2185 size_t offset,
2186 size_t len)
2187{
2188 const void __user *p = udata->inbuf + offset;
92d27ae6 2189 bool ret;
301a721e
MB
2190 u8 *buf;
2191
2192 if (len > USHRT_MAX)
2193 return false;
2194
92d27ae6
ME
2195 buf = memdup_user(p, len);
2196 if (IS_ERR(buf))
301a721e
MB
2197 return false;
2198
301a721e 2199 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2200 kfree(buf);
2201 return ret;
2202}
2203
8a51866f
RD
2204/**
2205 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2206 * contains all required attributes and no attributes not allowed for
2207 * the given QP state transition.
2208 * @cur_state: Current QP state
2209 * @next_state: Next QP state
2210 * @type: QP type
2211 * @mask: Mask of supplied QP attributes
dd5f03be 2212 * @ll : link layer of port
8a51866f
RD
2213 *
2214 * This function is a helper function that a low-level driver's
2215 * modify_qp method can use to validate the consumer's input. It
2216 * checks that cur_state and next_state are valid QP states, that a
2217 * transition from cur_state to next_state is allowed by the IB spec,
2218 * and that the attribute mask supplied is allowed for the transition.
2219 */
2220int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2221 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2222 enum rdma_link_layer ll);
8a51866f 2223
1da177e4
LT
2224int ib_register_event_handler (struct ib_event_handler *event_handler);
2225int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2226void ib_dispatch_event(struct ib_event *event);
2227
1da177e4
LT
2228int ib_query_port(struct ib_device *device,
2229 u8 port_num, struct ib_port_attr *port_attr);
2230
a3f5adaf
EC
2231enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2232 u8 port_num);
2233
4139032b
HR
2234/**
2235 * rdma_cap_ib_switch - Check if the device is IB switch
2236 * @device: Device to check
2237 *
2238 * Device driver is responsible for setting is_switch bit on
2239 * in ib_device structure at init time.
2240 *
2241 * Return: true if the device is IB switch.
2242 */
2243static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2244{
2245 return device->is_switch;
2246}
2247
0cf18d77
IW
2248/**
2249 * rdma_start_port - Return the first valid port number for the device
2250 * specified
2251 *
2252 * @device: Device to be checked
2253 *
2254 * Return start port number
2255 */
2256static inline u8 rdma_start_port(const struct ib_device *device)
2257{
4139032b 2258 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2259}
2260
2261/**
2262 * rdma_end_port - Return the last valid port number for the device
2263 * specified
2264 *
2265 * @device: Device to be checked
2266 *
2267 * Return last port number
2268 */
2269static inline u8 rdma_end_port(const struct ib_device *device)
2270{
4139032b 2271 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2272}
2273
5ede9289 2274static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2275{
f9b22e35 2276 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2277}
2278
5ede9289 2279static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2280{
2281 return device->port_immutable[port_num].core_cap_flags &
2282 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2283}
2284
2285static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2286{
2287 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2288}
2289
2290static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2291{
f9b22e35 2292 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2293}
2294
5ede9289 2295static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2296{
f9b22e35 2297 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2298}
2299
5ede9289 2300static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2301{
7766a99f
MB
2302 return rdma_protocol_ib(device, port_num) ||
2303 rdma_protocol_roce(device, port_num);
de66be94
MW
2304}
2305
c757dea8 2306/**
296ec009 2307 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2308 * Management Datagrams.
296ec009
MW
2309 * @device: Device to check
2310 * @port_num: Port number to check
c757dea8 2311 *
296ec009
MW
2312 * Management Datagrams (MAD) are a required part of the InfiniBand
2313 * specification and are supported on all InfiniBand devices. A slightly
2314 * extended version are also supported on OPA interfaces.
c757dea8 2315 *
296ec009 2316 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2317 */
5ede9289 2318static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2319{
f9b22e35 2320 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2321}
2322
65995fee
IW
2323/**
2324 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2325 * Management Datagrams.
2326 * @device: Device to check
2327 * @port_num: Port number to check
2328 *
2329 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2330 * datagrams with their own versions. These OPA MADs share many but not all of
2331 * the characteristics of InfiniBand MADs.
2332 *
2333 * OPA MADs differ in the following ways:
2334 *
2335 * 1) MADs are variable size up to 2K
2336 * IBTA defined MADs remain fixed at 256 bytes
2337 * 2) OPA SMPs must carry valid PKeys
2338 * 3) OPA SMP packets are a different format
2339 *
2340 * Return: true if the port supports OPA MAD packet formats.
2341 */
2342static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2343{
2344 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2345 == RDMA_CORE_CAP_OPA_MAD;
2346}
2347
29541e3a 2348/**
296ec009
MW
2349 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2350 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2351 * @device: Device to check
2352 * @port_num: Port number to check
29541e3a 2353 *
296ec009
MW
2354 * Each InfiniBand node is required to provide a Subnet Management Agent
2355 * that the subnet manager can access. Prior to the fabric being fully
2356 * configured by the subnet manager, the SMA is accessed via a well known
2357 * interface called the Subnet Management Interface (SMI). This interface
2358 * uses directed route packets to communicate with the SM to get around the
2359 * chicken and egg problem of the SM needing to know what's on the fabric
2360 * in order to configure the fabric, and needing to configure the fabric in
2361 * order to send packets to the devices on the fabric. These directed
2362 * route packets do not need the fabric fully configured in order to reach
2363 * their destination. The SMI is the only method allowed to send
2364 * directed route packets on an InfiniBand fabric.
29541e3a 2365 *
296ec009 2366 * Return: true if the port provides an SMI.
29541e3a 2367 */
5ede9289 2368static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2369{
f9b22e35 2370 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2371}
2372
72219cea
MW
2373/**
2374 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2375 * Communication Manager.
296ec009
MW
2376 * @device: Device to check
2377 * @port_num: Port number to check
72219cea 2378 *
296ec009
MW
2379 * The InfiniBand Communication Manager is one of many pre-defined General
2380 * Service Agents (GSA) that are accessed via the General Service
2381 * Interface (GSI). It's role is to facilitate establishment of connections
2382 * between nodes as well as other management related tasks for established
2383 * connections.
72219cea 2384 *
296ec009
MW
2385 * Return: true if the port supports an IB CM (this does not guarantee that
2386 * a CM is actually running however).
72219cea 2387 */
5ede9289 2388static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2389{
f9b22e35 2390 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2391}
2392
04215330
MW
2393/**
2394 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2395 * Communication Manager.
296ec009
MW
2396 * @device: Device to check
2397 * @port_num: Port number to check
04215330 2398 *
296ec009
MW
2399 * Similar to above, but specific to iWARP connections which have a different
2400 * managment protocol than InfiniBand.
04215330 2401 *
296ec009
MW
2402 * Return: true if the port supports an iWARP CM (this does not guarantee that
2403 * a CM is actually running however).
04215330 2404 */
5ede9289 2405static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2406{
f9b22e35 2407 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2408}
2409
fe53ba2f
MW
2410/**
2411 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2412 * Subnet Administration.
296ec009
MW
2413 * @device: Device to check
2414 * @port_num: Port number to check
fe53ba2f 2415 *
296ec009
MW
2416 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2417 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2418 * fabrics, devices should resolve routes to other hosts by contacting the
2419 * SA to query the proper route.
fe53ba2f 2420 *
296ec009
MW
2421 * Return: true if the port should act as a client to the fabric Subnet
2422 * Administration interface. This does not imply that the SA service is
2423 * running locally.
fe53ba2f 2424 */
5ede9289 2425static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2426{
f9b22e35 2427 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2428}
2429
a31ad3b0
MW
2430/**
2431 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2432 * Multicast.
296ec009
MW
2433 * @device: Device to check
2434 * @port_num: Port number to check
a31ad3b0 2435 *
296ec009
MW
2436 * InfiniBand multicast registration is more complex than normal IPv4 or
2437 * IPv6 multicast registration. Each Host Channel Adapter must register
2438 * with the Subnet Manager when it wishes to join a multicast group. It
2439 * should do so only once regardless of how many queue pairs it subscribes
2440 * to this group. And it should leave the group only after all queue pairs
2441 * attached to the group have been detached.
a31ad3b0 2442 *
296ec009
MW
2443 * Return: true if the port must undertake the additional adminstrative
2444 * overhead of registering/unregistering with the SM and tracking of the
2445 * total number of queue pairs attached to the multicast group.
a31ad3b0 2446 */
5ede9289 2447static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2448{
2449 return rdma_cap_ib_sa(device, port_num);
2450}
2451
30a74ef4
MW
2452/**
2453 * rdma_cap_af_ib - Check if the port of device has the capability
2454 * Native Infiniband Address.
296ec009
MW
2455 * @device: Device to check
2456 * @port_num: Port number to check
30a74ef4 2457 *
296ec009
MW
2458 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2459 * GID. RoCE uses a different mechanism, but still generates a GID via
2460 * a prescribed mechanism and port specific data.
30a74ef4 2461 *
296ec009
MW
2462 * Return: true if the port uses a GID address to identify devices on the
2463 * network.
30a74ef4 2464 */
5ede9289 2465static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2466{
f9b22e35 2467 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2468}
2469
227128fc
MW
2470/**
2471 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2472 * Ethernet Address Handle.
2473 * @device: Device to check
2474 * @port_num: Port number to check
227128fc 2475 *
296ec009
MW
2476 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2477 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2478 * port. Normally, packet headers are generated by the sending host
2479 * adapter, but when sending connectionless datagrams, we must manually
2480 * inject the proper headers for the fabric we are communicating over.
227128fc 2481 *
296ec009
MW
2482 * Return: true if we are running as a RoCE port and must force the
2483 * addition of a Global Route Header built from our Ethernet Address
2484 * Handle into our header list for connectionless packets.
227128fc 2485 */
5ede9289 2486static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2487{
f9b22e35 2488 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2489}
2490
337877a4
IW
2491/**
2492 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2493 *
2494 * @device: Device
2495 * @port_num: Port number
2496 *
2497 * This MAD size includes the MAD headers and MAD payload. No other headers
2498 * are included.
2499 *
2500 * Return the max MAD size required by the Port. Will return 0 if the port
2501 * does not support MADs
2502 */
2503static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2504{
2505 return device->port_immutable[port_num].max_mad_size;
2506}
2507
03db3a2d
MB
2508/**
2509 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2510 * @device: Device to check
2511 * @port_num: Port number to check
2512 *
2513 * RoCE GID table mechanism manages the various GIDs for a device.
2514 *
2515 * NOTE: if allocating the port's GID table has failed, this call will still
2516 * return true, but any RoCE GID table API will fail.
2517 *
2518 * Return: true if the port uses RoCE GID table mechanism in order to manage
2519 * its GIDs.
2520 */
2521static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2522 u8 port_num)
2523{
2524 return rdma_protocol_roce(device, port_num) &&
2525 device->add_gid && device->del_gid;
2526}
2527
002516ed
CH
2528/*
2529 * Check if the device supports READ W/ INVALIDATE.
2530 */
2531static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2532{
2533 /*
2534 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2535 * has support for it yet.
2536 */
2537 return rdma_protocol_iwarp(dev, port_num);
2538}
2539
1da177e4 2540int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2541 u8 port_num, int index, union ib_gid *gid,
2542 struct ib_gid_attr *attr);
1da177e4 2543
50174a7f
EC
2544int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2545 int state);
2546int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2547 struct ifla_vf_info *info);
2548int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2549 struct ifla_vf_stats *stats);
2550int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2551 int type);
2552
1da177e4
LT
2553int ib_query_pkey(struct ib_device *device,
2554 u8 port_num, u16 index, u16 *pkey);
2555
2556int ib_modify_device(struct ib_device *device,
2557 int device_modify_mask,
2558 struct ib_device_modify *device_modify);
2559
2560int ib_modify_port(struct ib_device *device,
2561 u8 port_num, int port_modify_mask,
2562 struct ib_port_modify *port_modify);
2563
5eb620c8 2564int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2565 enum ib_gid_type gid_type, struct net_device *ndev,
2566 u8 *port_num, u16 *index);
5eb620c8
YE
2567
2568int ib_find_pkey(struct ib_device *device,
2569 u8 port_num, u16 pkey, u16 *index);
2570
ed082d36
CH
2571enum ib_pd_flags {
2572 /*
2573 * Create a memory registration for all memory in the system and place
2574 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2575 * ULPs to avoid the overhead of dynamic MRs.
2576 *
2577 * This flag is generally considered unsafe and must only be used in
2578 * extremly trusted environments. Every use of it will log a warning
2579 * in the kernel log.
2580 */
2581 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2582};
1da177e4 2583
ed082d36
CH
2584struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2585 const char *caller);
2586#define ib_alloc_pd(device, flags) \
2587 __ib_alloc_pd((device), (flags), __func__)
7dd78647 2588void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2589
2590/**
2591 * ib_create_ah - Creates an address handle for the given address vector.
2592 * @pd: The protection domain associated with the address handle.
2593 * @ah_attr: The attributes of the address vector.
2594 *
2595 * The address handle is used to reference a local or global destination
2596 * in all UD QP post sends.
2597 */
2598struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2599
850d8fd7
MS
2600/**
2601 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2602 * work completion.
2603 * @hdr: the L3 header to parse
2604 * @net_type: type of header to parse
2605 * @sgid: place to store source gid
2606 * @dgid: place to store destination gid
2607 */
2608int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2609 enum rdma_network_type net_type,
2610 union ib_gid *sgid, union ib_gid *dgid);
2611
2612/**
2613 * ib_get_rdma_header_version - Get the header version
2614 * @hdr: the L3 header to parse
2615 */
2616int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2617
4e00d694
SH
2618/**
2619 * ib_init_ah_from_wc - Initializes address handle attributes from a
2620 * work completion.
2621 * @device: Device on which the received message arrived.
2622 * @port_num: Port on which the received message arrived.
2623 * @wc: Work completion associated with the received message.
2624 * @grh: References the received global route header. This parameter is
2625 * ignored unless the work completion indicates that the GRH is valid.
2626 * @ah_attr: Returned attributes that can be used when creating an address
2627 * handle for replying to the message.
2628 */
73cdaaee
IW
2629int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2630 const struct ib_wc *wc, const struct ib_grh *grh,
2631 struct ib_ah_attr *ah_attr);
4e00d694 2632
513789ed
HR
2633/**
2634 * ib_create_ah_from_wc - Creates an address handle associated with the
2635 * sender of the specified work completion.
2636 * @pd: The protection domain associated with the address handle.
2637 * @wc: Work completion information associated with a received message.
2638 * @grh: References the received global route header. This parameter is
2639 * ignored unless the work completion indicates that the GRH is valid.
2640 * @port_num: The outbound port number to associate with the address.
2641 *
2642 * The address handle is used to reference a local or global destination
2643 * in all UD QP post sends.
2644 */
73cdaaee
IW
2645struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2646 const struct ib_grh *grh, u8 port_num);
513789ed 2647
1da177e4
LT
2648/**
2649 * ib_modify_ah - Modifies the address vector associated with an address
2650 * handle.
2651 * @ah: The address handle to modify.
2652 * @ah_attr: The new address vector attributes to associate with the
2653 * address handle.
2654 */
2655int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2656
2657/**
2658 * ib_query_ah - Queries the address vector associated with an address
2659 * handle.
2660 * @ah: The address handle to query.
2661 * @ah_attr: The address vector attributes associated with the address
2662 * handle.
2663 */
2664int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2665
2666/**
2667 * ib_destroy_ah - Destroys an address handle.
2668 * @ah: The address handle to destroy.
2669 */
2670int ib_destroy_ah(struct ib_ah *ah);
2671
d41fcc67
RD
2672/**
2673 * ib_create_srq - Creates a SRQ associated with the specified protection
2674 * domain.
2675 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2676 * @srq_init_attr: A list of initial attributes required to create the
2677 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2678 * the actual capabilities of the created SRQ.
d41fcc67
RD
2679 *
2680 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2681 * requested size of the SRQ, and set to the actual values allocated
2682 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2683 * will always be at least as large as the requested values.
2684 */
2685struct ib_srq *ib_create_srq(struct ib_pd *pd,
2686 struct ib_srq_init_attr *srq_init_attr);
2687
2688/**
2689 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2690 * @srq: The SRQ to modify.
2691 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2692 * the current values of selected SRQ attributes are returned.
2693 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2694 * are being modified.
2695 *
2696 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2697 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2698 * the number of receives queued drops below the limit.
2699 */
2700int ib_modify_srq(struct ib_srq *srq,
2701 struct ib_srq_attr *srq_attr,
2702 enum ib_srq_attr_mask srq_attr_mask);
2703
2704/**
2705 * ib_query_srq - Returns the attribute list and current values for the
2706 * specified SRQ.
2707 * @srq: The SRQ to query.
2708 * @srq_attr: The attributes of the specified SRQ.
2709 */
2710int ib_query_srq(struct ib_srq *srq,
2711 struct ib_srq_attr *srq_attr);
2712
2713/**
2714 * ib_destroy_srq - Destroys the specified SRQ.
2715 * @srq: The SRQ to destroy.
2716 */
2717int ib_destroy_srq(struct ib_srq *srq);
2718
2719/**
2720 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2721 * @srq: The SRQ to post the work request on.
2722 * @recv_wr: A list of work requests to post on the receive queue.
2723 * @bad_recv_wr: On an immediate failure, this parameter will reference
2724 * the work request that failed to be posted on the QP.
2725 */
2726static inline int ib_post_srq_recv(struct ib_srq *srq,
2727 struct ib_recv_wr *recv_wr,
2728 struct ib_recv_wr **bad_recv_wr)
2729{
2730 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2731}
2732
1da177e4
LT
2733/**
2734 * ib_create_qp - Creates a QP associated with the specified protection
2735 * domain.
2736 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2737 * @qp_init_attr: A list of initial attributes required to create the
2738 * QP. If QP creation succeeds, then the attributes are updated to
2739 * the actual capabilities of the created QP.
1da177e4
LT
2740 */
2741struct ib_qp *ib_create_qp(struct ib_pd *pd,
2742 struct ib_qp_init_attr *qp_init_attr);
2743
2744/**
2745 * ib_modify_qp - Modifies the attributes for the specified QP and then
2746 * transitions the QP to the given state.
2747 * @qp: The QP to modify.
2748 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2749 * the current values of selected QP attributes are returned.
2750 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2751 * are being modified.
2752 */
2753int ib_modify_qp(struct ib_qp *qp,
2754 struct ib_qp_attr *qp_attr,
2755 int qp_attr_mask);
2756
2757/**
2758 * ib_query_qp - Returns the attribute list and current values for the
2759 * specified QP.
2760 * @qp: The QP to query.
2761 * @qp_attr: The attributes of the specified QP.
2762 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2763 * @qp_init_attr: Additional attributes of the selected QP.
2764 *
2765 * The qp_attr_mask may be used to limit the query to gathering only the
2766 * selected attributes.
2767 */
2768int ib_query_qp(struct ib_qp *qp,
2769 struct ib_qp_attr *qp_attr,
2770 int qp_attr_mask,
2771 struct ib_qp_init_attr *qp_init_attr);
2772
2773/**
2774 * ib_destroy_qp - Destroys the specified QP.
2775 * @qp: The QP to destroy.
2776 */
2777int ib_destroy_qp(struct ib_qp *qp);
2778
d3d72d90 2779/**
0e0ec7e0
SH
2780 * ib_open_qp - Obtain a reference to an existing sharable QP.
2781 * @xrcd - XRC domain
2782 * @qp_open_attr: Attributes identifying the QP to open.
2783 *
2784 * Returns a reference to a sharable QP.
2785 */
2786struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2787 struct ib_qp_open_attr *qp_open_attr);
2788
2789/**
2790 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2791 * @qp: The QP handle to release
2792 *
0e0ec7e0
SH
2793 * The opened QP handle is released by the caller. The underlying
2794 * shared QP is not destroyed until all internal references are released.
d3d72d90 2795 */
0e0ec7e0 2796int ib_close_qp(struct ib_qp *qp);
d3d72d90 2797
1da177e4
LT
2798/**
2799 * ib_post_send - Posts a list of work requests to the send queue of
2800 * the specified QP.
2801 * @qp: The QP to post the work request on.
2802 * @send_wr: A list of work requests to post on the send queue.
2803 * @bad_send_wr: On an immediate failure, this parameter will reference
2804 * the work request that failed to be posted on the QP.
55464d46
BVA
2805 *
2806 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2807 * error is returned, the QP state shall not be affected,
2808 * ib_post_send() will return an immediate error after queueing any
2809 * earlier work requests in the list.
1da177e4
LT
2810 */
2811static inline int ib_post_send(struct ib_qp *qp,
2812 struct ib_send_wr *send_wr,
2813 struct ib_send_wr **bad_send_wr)
2814{
2815 return qp->device->post_send(qp, send_wr, bad_send_wr);
2816}
2817
2818/**
2819 * ib_post_recv - Posts a list of work requests to the receive queue of
2820 * the specified QP.
2821 * @qp: The QP to post the work request on.
2822 * @recv_wr: A list of work requests to post on the receive queue.
2823 * @bad_recv_wr: On an immediate failure, this parameter will reference
2824 * the work request that failed to be posted on the QP.
2825 */
2826static inline int ib_post_recv(struct ib_qp *qp,
2827 struct ib_recv_wr *recv_wr,
2828 struct ib_recv_wr **bad_recv_wr)
2829{
2830 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2831}
2832
14d3a3b2
CH
2833struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2834 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2835void ib_free_cq(struct ib_cq *cq);
2836int ib_process_cq_direct(struct ib_cq *cq, int budget);
2837
1da177e4
LT
2838/**
2839 * ib_create_cq - Creates a CQ on the specified device.
2840 * @device: The device on which to create the CQ.
2841 * @comp_handler: A user-specified callback that is invoked when a
2842 * completion event occurs on the CQ.
2843 * @event_handler: A user-specified callback that is invoked when an
2844 * asynchronous event not associated with a completion occurs on the CQ.
2845 * @cq_context: Context associated with the CQ returned to the user via
2846 * the associated completion and event handlers.
8e37210b 2847 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2848 *
2849 * Users can examine the cq structure to determine the actual CQ size.
2850 */
2851struct ib_cq *ib_create_cq(struct ib_device *device,
2852 ib_comp_handler comp_handler,
2853 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2854 void *cq_context,
2855 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2856
2857/**
2858 * ib_resize_cq - Modifies the capacity of the CQ.
2859 * @cq: The CQ to resize.
2860 * @cqe: The minimum size of the CQ.
2861 *
2862 * Users can examine the cq structure to determine the actual CQ size.
2863 */
2864int ib_resize_cq(struct ib_cq *cq, int cqe);
2865
2dd57162
EC
2866/**
2867 * ib_modify_cq - Modifies moderation params of the CQ
2868 * @cq: The CQ to modify.
2869 * @cq_count: number of CQEs that will trigger an event
2870 * @cq_period: max period of time in usec before triggering an event
2871 *
2872 */
2873int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2874
1da177e4
LT
2875/**
2876 * ib_destroy_cq - Destroys the specified CQ.
2877 * @cq: The CQ to destroy.
2878 */
2879int ib_destroy_cq(struct ib_cq *cq);
2880
2881/**
2882 * ib_poll_cq - poll a CQ for completion(s)
2883 * @cq:the CQ being polled
2884 * @num_entries:maximum number of completions to return
2885 * @wc:array of at least @num_entries &struct ib_wc where completions
2886 * will be returned
2887 *
2888 * Poll a CQ for (possibly multiple) completions. If the return value
2889 * is < 0, an error occurred. If the return value is >= 0, it is the
2890 * number of completions returned. If the return value is
2891 * non-negative and < num_entries, then the CQ was emptied.
2892 */
2893static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2894 struct ib_wc *wc)
2895{
2896 return cq->device->poll_cq(cq, num_entries, wc);
2897}
2898
2899/**
2900 * ib_peek_cq - Returns the number of unreaped completions currently
2901 * on the specified CQ.
2902 * @cq: The CQ to peek.
2903 * @wc_cnt: A minimum number of unreaped completions to check for.
2904 *
2905 * If the number of unreaped completions is greater than or equal to wc_cnt,
2906 * this function returns wc_cnt, otherwise, it returns the actual number of
2907 * unreaped completions.
2908 */
2909int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2910
2911/**
2912 * ib_req_notify_cq - Request completion notification on a CQ.
2913 * @cq: The CQ to generate an event for.
ed23a727
RD
2914 * @flags:
2915 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2916 * to request an event on the next solicited event or next work
2917 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2918 * may also be |ed in to request a hint about missed events, as
2919 * described below.
2920 *
2921 * Return Value:
2922 * < 0 means an error occurred while requesting notification
2923 * == 0 means notification was requested successfully, and if
2924 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2925 * were missed and it is safe to wait for another event. In
2926 * this case is it guaranteed that any work completions added
2927 * to the CQ since the last CQ poll will trigger a completion
2928 * notification event.
2929 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2930 * in. It means that the consumer must poll the CQ again to
2931 * make sure it is empty to avoid missing an event because of a
2932 * race between requesting notification and an entry being
2933 * added to the CQ. This return value means it is possible
2934 * (but not guaranteed) that a work completion has been added
2935 * to the CQ since the last poll without triggering a
2936 * completion notification event.
1da177e4
LT
2937 */
2938static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2939 enum ib_cq_notify_flags flags)
1da177e4 2940{
ed23a727 2941 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2942}
2943
2944/**
2945 * ib_req_ncomp_notif - Request completion notification when there are
2946 * at least the specified number of unreaped completions on the CQ.
2947 * @cq: The CQ to generate an event for.
2948 * @wc_cnt: The number of unreaped completions that should be on the
2949 * CQ before an event is generated.
2950 */
2951static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2952{
2953 return cq->device->req_ncomp_notif ?
2954 cq->device->req_ncomp_notif(cq, wc_cnt) :
2955 -ENOSYS;
2956}
2957
9b513090
RC
2958/**
2959 * ib_dma_mapping_error - check a DMA addr for error
2960 * @dev: The device for which the dma_addr was created
2961 * @dma_addr: The DMA address to check
2962 */
2963static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2964{
d1998ef3
BC
2965 if (dev->dma_ops)
2966 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2967 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2968}
2969
2970/**
2971 * ib_dma_map_single - Map a kernel virtual address to DMA address
2972 * @dev: The device for which the dma_addr is to be created
2973 * @cpu_addr: The kernel virtual address
2974 * @size: The size of the region in bytes
2975 * @direction: The direction of the DMA
2976 */
2977static inline u64 ib_dma_map_single(struct ib_device *dev,
2978 void *cpu_addr, size_t size,
2979 enum dma_data_direction direction)
2980{
d1998ef3
BC
2981 if (dev->dma_ops)
2982 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2983 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2984}
2985
2986/**
2987 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2988 * @dev: The device for which the DMA address was created
2989 * @addr: The DMA address
2990 * @size: The size of the region in bytes
2991 * @direction: The direction of the DMA
2992 */
2993static inline void ib_dma_unmap_single(struct ib_device *dev,
2994 u64 addr, size_t size,
2995 enum dma_data_direction direction)
2996{
d1998ef3
BC
2997 if (dev->dma_ops)
2998 dev->dma_ops->unmap_single(dev, addr, size, direction);
2999 else
9b513090
RC
3000 dma_unmap_single(dev->dma_device, addr, size, direction);
3001}
3002
cb9fbc5c
AK
3003static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3004 void *cpu_addr, size_t size,
3005 enum dma_data_direction direction,
00085f1e 3006 unsigned long dma_attrs)
cb9fbc5c
AK
3007{
3008 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
00085f1e 3009 direction, dma_attrs);
cb9fbc5c
AK
3010}
3011
3012static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3013 u64 addr, size_t size,
3014 enum dma_data_direction direction,
00085f1e 3015 unsigned long dma_attrs)
cb9fbc5c
AK
3016{
3017 return dma_unmap_single_attrs(dev->dma_device, addr, size,
00085f1e 3018 direction, dma_attrs);
cb9fbc5c
AK
3019}
3020
9b513090
RC
3021/**
3022 * ib_dma_map_page - Map a physical page to DMA address
3023 * @dev: The device for which the dma_addr is to be created
3024 * @page: The page to be mapped
3025 * @offset: The offset within the page
3026 * @size: The size of the region in bytes
3027 * @direction: The direction of the DMA
3028 */
3029static inline u64 ib_dma_map_page(struct ib_device *dev,
3030 struct page *page,
3031 unsigned long offset,
3032 size_t size,
3033 enum dma_data_direction direction)
3034{
d1998ef3
BC
3035 if (dev->dma_ops)
3036 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3037 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3038}
3039
3040/**
3041 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3042 * @dev: The device for which the DMA address was created
3043 * @addr: The DMA address
3044 * @size: The size of the region in bytes
3045 * @direction: The direction of the DMA
3046 */
3047static inline void ib_dma_unmap_page(struct ib_device *dev,
3048 u64 addr, size_t size,
3049 enum dma_data_direction direction)
3050{
d1998ef3
BC
3051 if (dev->dma_ops)
3052 dev->dma_ops->unmap_page(dev, addr, size, direction);
3053 else
9b513090
RC
3054 dma_unmap_page(dev->dma_device, addr, size, direction);
3055}
3056
3057/**
3058 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3059 * @dev: The device for which the DMA addresses are to be created
3060 * @sg: The array of scatter/gather entries
3061 * @nents: The number of scatter/gather entries
3062 * @direction: The direction of the DMA
3063 */
3064static inline int ib_dma_map_sg(struct ib_device *dev,
3065 struct scatterlist *sg, int nents,
3066 enum dma_data_direction direction)
3067{
d1998ef3
BC
3068 if (dev->dma_ops)
3069 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3070 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3071}
3072
3073/**
3074 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3075 * @dev: The device for which the DMA addresses were created
3076 * @sg: The array of scatter/gather entries
3077 * @nents: The number of scatter/gather entries
3078 * @direction: The direction of the DMA
3079 */
3080static inline void ib_dma_unmap_sg(struct ib_device *dev,
3081 struct scatterlist *sg, int nents,
3082 enum dma_data_direction direction)
3083{
d1998ef3
BC
3084 if (dev->dma_ops)
3085 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3086 else
9b513090
RC
3087 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3088}
3089
cb9fbc5c
AK
3090static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3091 struct scatterlist *sg, int nents,
3092 enum dma_data_direction direction,
00085f1e 3093 unsigned long dma_attrs)
cb9fbc5c 3094{
d9703650
PP
3095 if (dev->dma_ops)
3096 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3097 dma_attrs);
3098 else
3099 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3100 dma_attrs);
cb9fbc5c
AK
3101}
3102
3103static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3104 struct scatterlist *sg, int nents,
3105 enum dma_data_direction direction,
00085f1e 3106 unsigned long dma_attrs)
cb9fbc5c 3107{
d9703650
PP
3108 if (dev->dma_ops)
3109 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3110 dma_attrs);
3111 else
3112 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3113 dma_attrs);
cb9fbc5c 3114}
9b513090
RC
3115/**
3116 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3117 * @dev: The device for which the DMA addresses were created
3118 * @sg: The scatter/gather entry
ea58a595
MM
3119 *
3120 * Note: this function is obsolete. To do: change all occurrences of
3121 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3122 */
3123static inline u64 ib_sg_dma_address(struct ib_device *dev,
3124 struct scatterlist *sg)
3125{
d1998ef3 3126 return sg_dma_address(sg);
9b513090
RC
3127}
3128
3129/**
3130 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3131 * @dev: The device for which the DMA addresses were created
3132 * @sg: The scatter/gather entry
ea58a595
MM
3133 *
3134 * Note: this function is obsolete. To do: change all occurrences of
3135 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3136 */
3137static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3138 struct scatterlist *sg)
3139{
d1998ef3 3140 return sg_dma_len(sg);
9b513090
RC
3141}
3142
3143/**
3144 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3145 * @dev: The device for which the DMA address was created
3146 * @addr: The DMA address
3147 * @size: The size of the region in bytes
3148 * @dir: The direction of the DMA
3149 */
3150static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3151 u64 addr,
3152 size_t size,
3153 enum dma_data_direction dir)
3154{
d1998ef3
BC
3155 if (dev->dma_ops)
3156 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3157 else
9b513090
RC
3158 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3159}
3160
3161/**
3162 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3163 * @dev: The device for which the DMA address was created
3164 * @addr: The DMA address
3165 * @size: The size of the region in bytes
3166 * @dir: The direction of the DMA
3167 */
3168static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3169 u64 addr,
3170 size_t size,
3171 enum dma_data_direction dir)
3172{
d1998ef3
BC
3173 if (dev->dma_ops)
3174 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3175 else
9b513090
RC
3176 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3177}
3178
3179/**
3180 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3181 * @dev: The device for which the DMA address is requested
3182 * @size: The size of the region to allocate in bytes
3183 * @dma_handle: A pointer for returning the DMA address of the region
3184 * @flag: memory allocator flags
3185 */
3186static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3187 size_t size,
3188 u64 *dma_handle,
3189 gfp_t flag)
3190{
d1998ef3
BC
3191 if (dev->dma_ops)
3192 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
3193 else {
3194 dma_addr_t handle;
3195 void *ret;
3196
3197 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3198 *dma_handle = handle;
3199 return ret;
3200 }
9b513090
RC
3201}
3202
3203/**
3204 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3205 * @dev: The device for which the DMA addresses were allocated
3206 * @size: The size of the region
3207 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3208 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3209 */
3210static inline void ib_dma_free_coherent(struct ib_device *dev,
3211 size_t size, void *cpu_addr,
3212 u64 dma_handle)
3213{
d1998ef3
BC
3214 if (dev->dma_ops)
3215 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3216 else
9b513090
RC
3217 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3218}
3219
1da177e4
LT
3220/**
3221 * ib_dereg_mr - Deregisters a memory region and removes it from the
3222 * HCA translation table.
3223 * @mr: The memory region to deregister.
7083e42e
SM
3224 *
3225 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3226 */
3227int ib_dereg_mr(struct ib_mr *mr);
3228
9bee178b
SG
3229struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3230 enum ib_mr_type mr_type,
3231 u32 max_num_sg);
00f7ec36 3232
00f7ec36
SW
3233/**
3234 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3235 * R_Key and L_Key.
3236 * @mr - struct ib_mr pointer to be updated.
3237 * @newkey - new key to be used.
3238 */
3239static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3240{
3241 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3242 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3243}
3244
7083e42e
SM
3245/**
3246 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3247 * for calculating a new rkey for type 2 memory windows.
3248 * @rkey - the rkey to increment.
3249 */
3250static inline u32 ib_inc_rkey(u32 rkey)
3251{
3252 const u32 mask = 0x000000ff;
3253 return ((rkey + 1) & mask) | (rkey & ~mask);
3254}
3255
1da177e4
LT
3256/**
3257 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3258 * @pd: The protection domain associated with the unmapped region.
3259 * @mr_access_flags: Specifies the memory access rights.
3260 * @fmr_attr: Attributes of the unmapped region.
3261 *
3262 * A fast memory region must be mapped before it can be used as part of
3263 * a work request.
3264 */
3265struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3266 int mr_access_flags,
3267 struct ib_fmr_attr *fmr_attr);
3268
3269/**
3270 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3271 * @fmr: The fast memory region to associate with the pages.
3272 * @page_list: An array of physical pages to map to the fast memory region.
3273 * @list_len: The number of pages in page_list.
3274 * @iova: The I/O virtual address to use with the mapped region.
3275 */
3276static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3277 u64 *page_list, int list_len,
3278 u64 iova)
3279{
3280 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3281}
3282
3283/**
3284 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3285 * @fmr_list: A linked list of fast memory regions to unmap.
3286 */
3287int ib_unmap_fmr(struct list_head *fmr_list);
3288
3289/**
3290 * ib_dealloc_fmr - Deallocates a fast memory region.
3291 * @fmr: The fast memory region to deallocate.
3292 */
3293int ib_dealloc_fmr(struct ib_fmr *fmr);
3294
3295/**
3296 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3297 * @qp: QP to attach to the multicast group. The QP must be type
3298 * IB_QPT_UD.
3299 * @gid: Multicast group GID.
3300 * @lid: Multicast group LID in host byte order.
3301 *
3302 * In order to send and receive multicast packets, subnet
3303 * administration must have created the multicast group and configured
3304 * the fabric appropriately. The port associated with the specified
3305 * QP must also be a member of the multicast group.
3306 */
3307int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3308
3309/**
3310 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3311 * @qp: QP to detach from the multicast group.
3312 * @gid: Multicast group GID.
3313 * @lid: Multicast group LID in host byte order.
3314 */
3315int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3316
59991f94
SH
3317/**
3318 * ib_alloc_xrcd - Allocates an XRC domain.
3319 * @device: The device on which to allocate the XRC domain.
3320 */
3321struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3322
3323/**
3324 * ib_dealloc_xrcd - Deallocates an XRC domain.
3325 * @xrcd: The XRC domain to deallocate.
3326 */
3327int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3328
319a441d
HHZ
3329struct ib_flow *ib_create_flow(struct ib_qp *qp,
3330 struct ib_flow_attr *flow_attr, int domain);
3331int ib_destroy_flow(struct ib_flow *flow_id);
3332
1c636f80
EC
3333static inline int ib_check_mr_access(int flags)
3334{
3335 /*
3336 * Local write permission is required if remote write or
3337 * remote atomic permission is also requested.
3338 */
3339 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3340 !(flags & IB_ACCESS_LOCAL_WRITE))
3341 return -EINVAL;
3342
3343 return 0;
3344}
3345
1b01d335
SG
3346/**
3347 * ib_check_mr_status: lightweight check of MR status.
3348 * This routine may provide status checks on a selected
3349 * ib_mr. first use is for signature status check.
3350 *
3351 * @mr: A memory region.
3352 * @check_mask: Bitmask of which checks to perform from
3353 * ib_mr_status_check enumeration.
3354 * @mr_status: The container of relevant status checks.
3355 * failed checks will be indicated in the status bitmask
3356 * and the relevant info shall be in the error item.
3357 */
3358int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3359 struct ib_mr_status *mr_status);
3360
9268f72d
YK
3361struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3362 u16 pkey, const union ib_gid *gid,
3363 const struct sockaddr *addr);
5fd251c8
YH
3364struct ib_wq *ib_create_wq(struct ib_pd *pd,
3365 struct ib_wq_init_attr *init_attr);
3366int ib_destroy_wq(struct ib_wq *wq);
3367int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3368 u32 wq_attr_mask);
6d39786b
YH
3369struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3370 struct ib_rwq_ind_table_init_attr*
3371 wq_ind_table_init_attr);
3372int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3373
ff2ba993 3374int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3375 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3376
3377static inline int
ff2ba993 3378ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3379 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3380{
3381 int n;
3382
ff2ba993 3383 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3384 mr->iova = 0;
3385
3386 return n;
3387}
3388
ff2ba993 3389int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3390 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3391
765d6774
SW
3392void ib_drain_rq(struct ib_qp *qp);
3393void ib_drain_sq(struct ib_qp *qp);
3394void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3395
1da177e4 3396#endif /* IB_VERBS_H */