]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
RDMA/devices: Use xarray to store the client_data
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
ea6819e1 62#include <uapi/rdma/ib_user_verbs.h>
02d8883f 63#include <rdma/restrack.h>
0ede73bc 64#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 65#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 66
9abb0d1b
LR
67#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
b5231b01
JG
69struct ib_umem_odp;
70
f0626710 71extern struct workqueue_struct *ib_wq;
14d3a3b2 72extern struct workqueue_struct *ib_comp_wq;
f794809a 73extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 74
1da177e4
LT
75union ib_gid {
76 u8 raw[16];
77 struct {
97f52eb4
SH
78 __be64 subnet_prefix;
79 __be64 interface_id;
1da177e4
LT
80 } global;
81};
82
e26be1bf
MS
83extern union ib_gid zgid;
84
b39ffa1d
MB
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
7766a99f 89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
90 IB_GID_TYPE_SIZE
91};
92
7ead4bcb 93#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
94struct ib_gid_attr {
95 struct net_device *ndev;
598ff6ba 96 struct ib_device *device;
b150c386 97 union ib_gid gid;
598ff6ba
PP
98 enum ib_gid_type gid_type;
99 u16 index;
100 u8 port_num;
03db3a2d
MB
101};
102
07ebafba
TT
103enum rdma_node_type {
104 /* IB values map to NodeInfo:NodeType. */
105 RDMA_NODE_IB_CA = 1,
106 RDMA_NODE_IB_SWITCH,
107 RDMA_NODE_IB_ROUTER,
180771a3
UM
108 RDMA_NODE_RNIC,
109 RDMA_NODE_USNIC,
5db5765e 110 RDMA_NODE_USNIC_UDP,
1da177e4
LT
111};
112
a0c1b2a3
EC
113enum {
114 /* set the local administered indication */
115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
116};
117
07ebafba
TT
118enum rdma_transport_type {
119 RDMA_TRANSPORT_IB,
180771a3 120 RDMA_TRANSPORT_IWARP,
248567f7
UM
121 RDMA_TRANSPORT_USNIC,
122 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
123};
124
6b90a6d6
MW
125enum rdma_protocol_type {
126 RDMA_PROTOCOL_IB,
127 RDMA_PROTOCOL_IBOE,
128 RDMA_PROTOCOL_IWARP,
129 RDMA_PROTOCOL_USNIC_UDP
130};
131
8385fd84
RD
132__attribute_const__ enum rdma_transport_type
133rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 134
c865f246
SK
135enum rdma_network_type {
136 RDMA_NETWORK_IB,
137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 RDMA_NETWORK_IPV4,
139 RDMA_NETWORK_IPV6
140};
141
142static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143{
144 if (network_type == RDMA_NETWORK_IPV4 ||
145 network_type == RDMA_NETWORK_IPV6)
146 return IB_GID_TYPE_ROCE_UDP_ENCAP;
147
148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 return IB_GID_TYPE_IB;
150}
151
47ec3866
PP
152static inline enum rdma_network_type
153rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 154{
47ec3866 155 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
156 return RDMA_NETWORK_IB;
157
47ec3866 158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
159 return RDMA_NETWORK_IPV4;
160 else
161 return RDMA_NETWORK_IPV6;
162}
163
a3f5adaf
EC
164enum rdma_link_layer {
165 IB_LINK_LAYER_UNSPECIFIED,
166 IB_LINK_LAYER_INFINIBAND,
167 IB_LINK_LAYER_ETHERNET,
168};
169
1da177e4 170enum ib_device_cap_flags {
7ca0bc53
LR
171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
174 IB_DEVICE_RAW_MULTI = (1 << 3),
175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 180 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
184 IB_DEVICE_SRQ_RESIZE = (1 << 13),
185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
186
187 /*
188 * This device supports a per-device lkey or stag that can be
189 * used without performing a memory registration for the local
190 * memory. Note that ULPs should never check this flag, but
191 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 * which will always contain a usable lkey.
193 */
7ca0bc53 194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 195 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 196 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
197 /*
198 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 * messages and can verify the validity of checksum for
201 * incoming messages. Setting this flag implies that the
202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 */
7ca0bc53
LR
204 IB_DEVICE_UD_IP_CSUM = (1 << 18),
205 IB_DEVICE_UD_TSO = (1 << 19),
206 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
207
208 /*
209 * This device supports the IB "base memory management extension",
210 * which includes support for fast registrations (IB_WR_REG_MR,
211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
212 * also be set by any iWarp device which must support FRs to comply
213 * to the iWarp verbs spec. iWarp devices also support the
214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 * stag.
216 */
7ca0bc53
LR
217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
221 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 223 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
224 /*
225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 * support execution of WQEs that involve synchronization
227 * of I/O operations with single completion queue managed
228 * by hardware.
229 */
78b57f95 230 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
239 /* The device supports padding incoming writes to cacheline. */
240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
241};
242
243enum ib_signature_prot_cap {
244 IB_PROT_T10DIF_TYPE_1 = 1,
245 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
246 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
247};
248
249enum ib_signature_guard_cap {
250 IB_GUARD_T10DIF_CRC = 1,
251 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
252};
253
254enum ib_atomic_cap {
255 IB_ATOMIC_NONE,
256 IB_ATOMIC_HCA,
257 IB_ATOMIC_GLOB
258};
259
860f10a7 260enum ib_odp_general_cap_bits {
25bf14d6
AK
261 IB_ODP_SUPPORT = 1 << 0,
262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
263};
264
265enum ib_odp_transport_cap_bits {
266 IB_ODP_SUPPORT_SEND = 1 << 0,
267 IB_ODP_SUPPORT_RECV = 1 << 1,
268 IB_ODP_SUPPORT_WRITE = 1 << 2,
269 IB_ODP_SUPPORT_READ = 1 << 3,
270 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 271 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
272};
273
274struct ib_odp_caps {
275 uint64_t general_caps;
276 struct {
277 uint32_t rc_odp_caps;
278 uint32_t uc_odp_caps;
279 uint32_t ud_odp_caps;
52a72e2a 280 uint32_t xrc_odp_caps;
860f10a7
SG
281 } per_transport_caps;
282};
283
ccf20562
YH
284struct ib_rss_caps {
285 /* Corresponding bit will be set if qp type from
286 * 'enum ib_qp_type' is supported, e.g.
287 * supported_qpts |= 1 << IB_QPT_UD
288 */
289 u32 supported_qpts;
290 u32 max_rwq_indirection_tables;
291 u32 max_rwq_indirection_table_size;
292};
293
6938fc1e
AK
294enum ib_tm_cap_flags {
295 /* Support tag matching on RC transport */
296 IB_TM_CAP_RC = 1 << 0,
297};
298
78b1beb0 299struct ib_tm_caps {
6938fc1e
AK
300 /* Max size of RNDV header */
301 u32 max_rndv_hdr_size;
302 /* Max number of entries in tag matching list */
303 u32 max_num_tags;
304 /* From enum ib_tm_cap_flags */
305 u32 flags;
306 /* Max number of outstanding list operations */
307 u32 max_ops;
308 /* Max number of SGE in tag matching entry */
309 u32 max_sge;
310};
311
bcf4c1ea
MB
312struct ib_cq_init_attr {
313 unsigned int cqe;
314 int comp_vector;
315 u32 flags;
316};
317
869ddcf8
YC
318enum ib_cq_attr_mask {
319 IB_CQ_MODERATE = 1 << 0,
320};
321
18bd9072
YC
322struct ib_cq_caps {
323 u16 max_cq_moderation_count;
324 u16 max_cq_moderation_period;
325};
326
be934cca
AL
327struct ib_dm_mr_attr {
328 u64 length;
329 u64 offset;
330 u32 access_flags;
331};
332
bee76d7a
AL
333struct ib_dm_alloc_attr {
334 u64 length;
335 u32 alignment;
336 u32 flags;
337};
338
1da177e4
LT
339struct ib_device_attr {
340 u64 fw_ver;
97f52eb4 341 __be64 sys_image_guid;
1da177e4
LT
342 u64 max_mr_size;
343 u64 page_size_cap;
344 u32 vendor_id;
345 u32 vendor_part_id;
346 u32 hw_ver;
347 int max_qp;
348 int max_qp_wr;
fb532d6a 349 u64 device_cap_flags;
33023fb8
SW
350 int max_send_sge;
351 int max_recv_sge;
1da177e4
LT
352 int max_sge_rd;
353 int max_cq;
354 int max_cqe;
355 int max_mr;
356 int max_pd;
357 int max_qp_rd_atom;
358 int max_ee_rd_atom;
359 int max_res_rd_atom;
360 int max_qp_init_rd_atom;
361 int max_ee_init_rd_atom;
362 enum ib_atomic_cap atomic_cap;
5e80ba8f 363 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
364 int max_ee;
365 int max_rdd;
366 int max_mw;
367 int max_raw_ipv6_qp;
368 int max_raw_ethy_qp;
369 int max_mcast_grp;
370 int max_mcast_qp_attach;
371 int max_total_mcast_qp_attach;
372 int max_ah;
373 int max_fmr;
374 int max_map_per_fmr;
375 int max_srq;
376 int max_srq_wr;
377 int max_srq_sge;
00f7ec36 378 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
379 u16 max_pkeys;
380 u8 local_ca_ack_delay;
1b01d335
SG
381 int sig_prot_cap;
382 int sig_guard_cap;
860f10a7 383 struct ib_odp_caps odp_caps;
24306dc6
MB
384 uint64_t timestamp_mask;
385 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
386 struct ib_rss_caps rss_caps;
387 u32 max_wq_type_rq;
ebaaee25 388 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 389 struct ib_tm_caps tm_caps;
18bd9072 390 struct ib_cq_caps cq_caps;
1d8eeb9f 391 u64 max_dm_size;
1da177e4
LT
392};
393
394enum ib_mtu {
395 IB_MTU_256 = 1,
396 IB_MTU_512 = 2,
397 IB_MTU_1024 = 3,
398 IB_MTU_2048 = 4,
399 IB_MTU_4096 = 5
400};
401
402static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
403{
404 switch (mtu) {
405 case IB_MTU_256: return 256;
406 case IB_MTU_512: return 512;
407 case IB_MTU_1024: return 1024;
408 case IB_MTU_2048: return 2048;
409 case IB_MTU_4096: return 4096;
410 default: return -1;
411 }
412}
413
d3f4aadd
AR
414static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
415{
416 if (mtu >= 4096)
417 return IB_MTU_4096;
418 else if (mtu >= 2048)
419 return IB_MTU_2048;
420 else if (mtu >= 1024)
421 return IB_MTU_1024;
422 else if (mtu >= 512)
423 return IB_MTU_512;
424 else
425 return IB_MTU_256;
426}
427
1da177e4
LT
428enum ib_port_state {
429 IB_PORT_NOP = 0,
430 IB_PORT_DOWN = 1,
431 IB_PORT_INIT = 2,
432 IB_PORT_ARMED = 3,
433 IB_PORT_ACTIVE = 4,
434 IB_PORT_ACTIVE_DEFER = 5
435};
436
1da177e4
LT
437enum ib_port_width {
438 IB_WIDTH_1X = 1,
dbabf685 439 IB_WIDTH_2X = 16,
1da177e4
LT
440 IB_WIDTH_4X = 2,
441 IB_WIDTH_8X = 4,
442 IB_WIDTH_12X = 8
443};
444
445static inline int ib_width_enum_to_int(enum ib_port_width width)
446{
447 switch (width) {
448 case IB_WIDTH_1X: return 1;
dbabf685 449 case IB_WIDTH_2X: return 2;
1da177e4
LT
450 case IB_WIDTH_4X: return 4;
451 case IB_WIDTH_8X: return 8;
452 case IB_WIDTH_12X: return 12;
453 default: return -1;
454 }
455}
456
2e96691c
OG
457enum ib_port_speed {
458 IB_SPEED_SDR = 1,
459 IB_SPEED_DDR = 2,
460 IB_SPEED_QDR = 4,
461 IB_SPEED_FDR10 = 8,
462 IB_SPEED_FDR = 16,
12113a35
NO
463 IB_SPEED_EDR = 32,
464 IB_SPEED_HDR = 64
2e96691c
OG
465};
466
b40f4757
CL
467/**
468 * struct rdma_hw_stats
e945130b
MB
469 * @lock - Mutex to protect parallel write access to lifespan and values
470 * of counters, which are 64bits and not guaranteeed to be written
471 * atomicaly on 32bits systems.
b40f4757
CL
472 * @timestamp - Used by the core code to track when the last update was
473 * @lifespan - Used by the core code to determine how old the counters
474 * should be before being updated again. Stored in jiffies, defaults
475 * to 10 milliseconds, drivers can override the default be specifying
476 * their own value during their allocation routine.
477 * @name - Array of pointers to static names used for the counters in
478 * directory.
479 * @num_counters - How many hardware counters there are. If name is
480 * shorter than this number, a kernel oops will result. Driver authors
481 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
482 * in their code to prevent this.
483 * @value - Array of u64 counters that are accessed by the sysfs code and
484 * filled in by the drivers get_stats routine
485 */
486struct rdma_hw_stats {
e945130b 487 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
488 unsigned long timestamp;
489 unsigned long lifespan;
490 const char * const *names;
491 int num_counters;
492 u64 value[];
7f624d02
SW
493};
494
b40f4757
CL
495#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
496/**
497 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
498 * for drivers.
499 * @names - Array of static const char *
500 * @num_counters - How many elements in array
501 * @lifespan - How many milliseconds between updates
502 */
503static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
504 const char * const *names, int num_counters,
505 unsigned long lifespan)
506{
507 struct rdma_hw_stats *stats;
508
509 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
510 GFP_KERNEL);
511 if (!stats)
512 return NULL;
513 stats->names = names;
514 stats->num_counters = num_counters;
515 stats->lifespan = msecs_to_jiffies(lifespan);
516
517 return stats;
518}
519
520
f9b22e35
IW
521/* Define bits for the various functionality this port needs to be supported by
522 * the core.
523 */
524/* Management 0x00000FFF */
525#define RDMA_CORE_CAP_IB_MAD 0x00000001
526#define RDMA_CORE_CAP_IB_SMI 0x00000002
527#define RDMA_CORE_CAP_IB_CM 0x00000004
528#define RDMA_CORE_CAP_IW_CM 0x00000008
529#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 530#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
531
532/* Address format 0x000FF000 */
533#define RDMA_CORE_CAP_AF_IB 0x00001000
534#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 535#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 536#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
537
538/* Protocol 0xFFF00000 */
539#define RDMA_CORE_CAP_PROT_IB 0x00100000
540#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
541#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 542#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 543#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 544#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 545
b02289b3
AK
546#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
547 | RDMA_CORE_CAP_PROT_ROCE \
548 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
549
f9b22e35
IW
550#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
551 | RDMA_CORE_CAP_IB_MAD \
552 | RDMA_CORE_CAP_IB_SMI \
553 | RDMA_CORE_CAP_IB_CM \
554 | RDMA_CORE_CAP_IB_SA \
555 | RDMA_CORE_CAP_AF_IB)
556#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
557 | RDMA_CORE_CAP_IB_MAD \
558 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
559 | RDMA_CORE_CAP_AF_IB \
560 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
561#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
562 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
563 | RDMA_CORE_CAP_IB_MAD \
564 | RDMA_CORE_CAP_IB_CM \
565 | RDMA_CORE_CAP_AF_IB \
566 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
567#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
568 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
569#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
570 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 571
aa773bd4
OG
572#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
573
ce1e055f
OG
574#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
575
1da177e4 576struct ib_port_attr {
fad61ad4 577 u64 subnet_prefix;
1da177e4
LT
578 enum ib_port_state state;
579 enum ib_mtu max_mtu;
580 enum ib_mtu active_mtu;
581 int gid_tbl_len;
2f944c0f
JG
582 unsigned int ip_gids:1;
583 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
584 u32 port_cap_flags;
585 u32 max_msg_sz;
586 u32 bad_pkey_cntr;
587 u32 qkey_viol_cntr;
588 u16 pkey_tbl_len;
db58540b 589 u32 sm_lid;
582faf31 590 u32 lid;
1da177e4
LT
591 u8 lmc;
592 u8 max_vl_num;
593 u8 sm_sl;
594 u8 subnet_timeout;
595 u8 init_type_reply;
596 u8 active_width;
597 u8 active_speed;
598 u8 phys_state;
1e8f43b7 599 u16 port_cap_flags2;
1da177e4
LT
600};
601
602enum ib_device_modify_flags {
c5bcbbb9
RD
603 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
604 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
605};
606
bd99fdea
YS
607#define IB_DEVICE_NODE_DESC_MAX 64
608
1da177e4
LT
609struct ib_device_modify {
610 u64 sys_image_guid;
bd99fdea 611 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
612};
613
614enum ib_port_modify_flags {
615 IB_PORT_SHUTDOWN = 1,
616 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
617 IB_PORT_RESET_QKEY_CNTR = (1<<3),
618 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
619};
620
621struct ib_port_modify {
622 u32 set_port_cap_mask;
623 u32 clr_port_cap_mask;
624 u8 init_type;
625};
626
627enum ib_event_type {
628 IB_EVENT_CQ_ERR,
629 IB_EVENT_QP_FATAL,
630 IB_EVENT_QP_REQ_ERR,
631 IB_EVENT_QP_ACCESS_ERR,
632 IB_EVENT_COMM_EST,
633 IB_EVENT_SQ_DRAINED,
634 IB_EVENT_PATH_MIG,
635 IB_EVENT_PATH_MIG_ERR,
636 IB_EVENT_DEVICE_FATAL,
637 IB_EVENT_PORT_ACTIVE,
638 IB_EVENT_PORT_ERR,
639 IB_EVENT_LID_CHANGE,
640 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
641 IB_EVENT_SM_CHANGE,
642 IB_EVENT_SRQ_ERR,
643 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 644 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
645 IB_EVENT_CLIENT_REREGISTER,
646 IB_EVENT_GID_CHANGE,
f213c052 647 IB_EVENT_WQ_FATAL,
1da177e4
LT
648};
649
db7489e0 650const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 651
1da177e4
LT
652struct ib_event {
653 struct ib_device *device;
654 union {
655 struct ib_cq *cq;
656 struct ib_qp *qp;
d41fcc67 657 struct ib_srq *srq;
f213c052 658 struct ib_wq *wq;
1da177e4
LT
659 u8 port_num;
660 } element;
661 enum ib_event_type event;
662};
663
664struct ib_event_handler {
665 struct ib_device *device;
666 void (*handler)(struct ib_event_handler *, struct ib_event *);
667 struct list_head list;
668};
669
670#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
671 do { \
672 (_ptr)->device = _device; \
673 (_ptr)->handler = _handler; \
674 INIT_LIST_HEAD(&(_ptr)->list); \
675 } while (0)
676
677struct ib_global_route {
8d9ec9ad 678 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
679 union ib_gid dgid;
680 u32 flow_label;
681 u8 sgid_index;
682 u8 hop_limit;
683 u8 traffic_class;
684};
685
513789ed 686struct ib_grh {
97f52eb4
SH
687 __be32 version_tclass_flow;
688 __be16 paylen;
513789ed
HR
689 u8 next_hdr;
690 u8 hop_limit;
691 union ib_gid sgid;
692 union ib_gid dgid;
693};
694
c865f246
SK
695union rdma_network_hdr {
696 struct ib_grh ibgrh;
697 struct {
698 /* The IB spec states that if it's IPv4, the header
699 * is located in the last 20 bytes of the header.
700 */
701 u8 reserved[20];
702 struct iphdr roce4grh;
703 };
704};
705
7dafbab3
DH
706#define IB_QPN_MASK 0xFFFFFF
707
1da177e4
LT
708enum {
709 IB_MULTICAST_QPN = 0xffffff
710};
711
f3a7c66b 712#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 713#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 714
1da177e4
LT
715enum ib_ah_flags {
716 IB_AH_GRH = 1
717};
718
bf6a9e31
JM
719enum ib_rate {
720 IB_RATE_PORT_CURRENT = 0,
721 IB_RATE_2_5_GBPS = 2,
722 IB_RATE_5_GBPS = 5,
723 IB_RATE_10_GBPS = 3,
724 IB_RATE_20_GBPS = 6,
725 IB_RATE_30_GBPS = 4,
726 IB_RATE_40_GBPS = 7,
727 IB_RATE_60_GBPS = 8,
728 IB_RATE_80_GBPS = 9,
71eeba16
MA
729 IB_RATE_120_GBPS = 10,
730 IB_RATE_14_GBPS = 11,
731 IB_RATE_56_GBPS = 12,
732 IB_RATE_112_GBPS = 13,
733 IB_RATE_168_GBPS = 14,
734 IB_RATE_25_GBPS = 15,
735 IB_RATE_100_GBPS = 16,
736 IB_RATE_200_GBPS = 17,
a5a5d199
MG
737 IB_RATE_300_GBPS = 18,
738 IB_RATE_28_GBPS = 19,
739 IB_RATE_50_GBPS = 20,
740 IB_RATE_400_GBPS = 21,
741 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
742};
743
744/**
745 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
746 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
747 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
748 * @rate: rate to convert.
749 */
8385fd84 750__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 751
71eeba16
MA
752/**
753 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
754 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
755 * @rate: rate to convert.
756 */
8385fd84 757__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 758
17cd3a2d
SG
759
760/**
9bee178b
SG
761 * enum ib_mr_type - memory region type
762 * @IB_MR_TYPE_MEM_REG: memory region that is used for
763 * normal registration
764 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
765 * signature operations (data-integrity
766 * capable regions)
f5aa9159
SG
767 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
768 * register any arbitrary sg lists (without
769 * the normal mr constraints - see
770 * ib_map_mr_sg)
17cd3a2d 771 */
9bee178b
SG
772enum ib_mr_type {
773 IB_MR_TYPE_MEM_REG,
774 IB_MR_TYPE_SIGNATURE,
f5aa9159 775 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
776};
777
1b01d335 778/**
78eda2bb
SG
779 * Signature types
780 * IB_SIG_TYPE_NONE: Unprotected.
781 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 782 */
78eda2bb
SG
783enum ib_signature_type {
784 IB_SIG_TYPE_NONE,
785 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
786};
787
788/**
789 * Signature T10-DIF block-guard types
790 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
791 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
792 */
793enum ib_t10_dif_bg_type {
794 IB_T10DIF_CRC,
795 IB_T10DIF_CSUM
796};
797
798/**
799 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
800 * domain.
1b01d335
SG
801 * @bg_type: T10-DIF block guard type (CRC|CSUM)
802 * @pi_interval: protection information interval.
803 * @bg: seed of guard computation.
804 * @app_tag: application tag of guard block
805 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
806 * @ref_remap: Indicate wethear the reftag increments each block
807 * @app_escape: Indicate to skip block check if apptag=0xffff
808 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
809 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
810 */
811struct ib_t10_dif_domain {
1b01d335
SG
812 enum ib_t10_dif_bg_type bg_type;
813 u16 pi_interval;
814 u16 bg;
815 u16 app_tag;
816 u32 ref_tag;
78eda2bb
SG
817 bool ref_remap;
818 bool app_escape;
819 bool ref_escape;
820 u16 apptag_check_mask;
1b01d335
SG
821};
822
823/**
824 * struct ib_sig_domain - Parameters for signature domain
825 * @sig_type: specific signauture type
826 * @sig: union of all signature domain attributes that may
827 * be used to set domain layout.
828 */
829struct ib_sig_domain {
830 enum ib_signature_type sig_type;
831 union {
832 struct ib_t10_dif_domain dif;
833 } sig;
834};
835
836/**
837 * struct ib_sig_attrs - Parameters for signature handover operation
838 * @check_mask: bitmask for signature byte check (8 bytes)
839 * @mem: memory domain layout desciptor.
840 * @wire: wire domain layout desciptor.
841 */
842struct ib_sig_attrs {
843 u8 check_mask;
844 struct ib_sig_domain mem;
845 struct ib_sig_domain wire;
846};
847
848enum ib_sig_err_type {
849 IB_SIG_BAD_GUARD,
850 IB_SIG_BAD_REFTAG,
851 IB_SIG_BAD_APPTAG,
852};
853
ca24da00
MG
854/**
855 * Signature check masks (8 bytes in total) according to the T10-PI standard:
856 * -------- -------- ------------
857 * | GUARD | APPTAG | REFTAG |
858 * | 2B | 2B | 4B |
859 * -------- -------- ------------
860 */
861enum {
862 IB_SIG_CHECK_GUARD = 0xc0,
863 IB_SIG_CHECK_APPTAG = 0x30,
864 IB_SIG_CHECK_REFTAG = 0x0f,
865};
866
1b01d335
SG
867/**
868 * struct ib_sig_err - signature error descriptor
869 */
870struct ib_sig_err {
871 enum ib_sig_err_type err_type;
872 u32 expected;
873 u32 actual;
874 u64 sig_err_offset;
875 u32 key;
876};
877
878enum ib_mr_status_check {
879 IB_MR_CHECK_SIG_STATUS = 1,
880};
881
882/**
883 * struct ib_mr_status - Memory region status container
884 *
885 * @fail_status: Bitmask of MR checks status. For each
886 * failed check a corresponding status bit is set.
887 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
888 * failure.
889 */
890struct ib_mr_status {
891 u32 fail_status;
892 struct ib_sig_err sig_err;
893};
894
bf6a9e31
JM
895/**
896 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
897 * enum.
898 * @mult: multiple to convert.
899 */
8385fd84 900__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 901
44c58487 902enum rdma_ah_attr_type {
87daac68 903 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
904 RDMA_AH_ATTR_TYPE_IB,
905 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 906 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
907};
908
909struct ib_ah_attr {
910 u16 dlid;
911 u8 src_path_bits;
912};
913
914struct roce_ah_attr {
915 u8 dmac[ETH_ALEN];
916};
917
64b4646e
DC
918struct opa_ah_attr {
919 u32 dlid;
920 u8 src_path_bits;
d98bb7f7 921 bool make_grd;
64b4646e
DC
922};
923
90898850 924struct rdma_ah_attr {
1da177e4 925 struct ib_global_route grh;
1da177e4 926 u8 sl;
1da177e4 927 u8 static_rate;
1da177e4 928 u8 port_num;
44c58487
DC
929 u8 ah_flags;
930 enum rdma_ah_attr_type type;
931 union {
932 struct ib_ah_attr ib;
933 struct roce_ah_attr roce;
64b4646e 934 struct opa_ah_attr opa;
44c58487 935 };
1da177e4
LT
936};
937
938enum ib_wc_status {
939 IB_WC_SUCCESS,
940 IB_WC_LOC_LEN_ERR,
941 IB_WC_LOC_QP_OP_ERR,
942 IB_WC_LOC_EEC_OP_ERR,
943 IB_WC_LOC_PROT_ERR,
944 IB_WC_WR_FLUSH_ERR,
945 IB_WC_MW_BIND_ERR,
946 IB_WC_BAD_RESP_ERR,
947 IB_WC_LOC_ACCESS_ERR,
948 IB_WC_REM_INV_REQ_ERR,
949 IB_WC_REM_ACCESS_ERR,
950 IB_WC_REM_OP_ERR,
951 IB_WC_RETRY_EXC_ERR,
952 IB_WC_RNR_RETRY_EXC_ERR,
953 IB_WC_LOC_RDD_VIOL_ERR,
954 IB_WC_REM_INV_RD_REQ_ERR,
955 IB_WC_REM_ABORT_ERR,
956 IB_WC_INV_EECN_ERR,
957 IB_WC_INV_EEC_STATE_ERR,
958 IB_WC_FATAL_ERR,
959 IB_WC_RESP_TIMEOUT_ERR,
960 IB_WC_GENERAL_ERR
961};
962
db7489e0 963const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 964
1da177e4
LT
965enum ib_wc_opcode {
966 IB_WC_SEND,
967 IB_WC_RDMA_WRITE,
968 IB_WC_RDMA_READ,
969 IB_WC_COMP_SWAP,
970 IB_WC_FETCH_ADD,
c93570f2 971 IB_WC_LSO,
00f7ec36 972 IB_WC_LOCAL_INV,
4c67e2bf 973 IB_WC_REG_MR,
5e80ba8f
VS
974 IB_WC_MASKED_COMP_SWAP,
975 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
976/*
977 * Set value of IB_WC_RECV so consumers can test if a completion is a
978 * receive by testing (opcode & IB_WC_RECV).
979 */
980 IB_WC_RECV = 1 << 7,
981 IB_WC_RECV_RDMA_WITH_IMM
982};
983
984enum ib_wc_flags {
985 IB_WC_GRH = 1,
00f7ec36
SW
986 IB_WC_WITH_IMM = (1<<1),
987 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 988 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
989 IB_WC_WITH_SMAC = (1<<4),
990 IB_WC_WITH_VLAN = (1<<5),
c865f246 991 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
992};
993
994struct ib_wc {
14d3a3b2
CH
995 union {
996 u64 wr_id;
997 struct ib_cqe *wr_cqe;
998 };
1da177e4
LT
999 enum ib_wc_status status;
1000 enum ib_wc_opcode opcode;
1001 u32 vendor_err;
1002 u32 byte_len;
062dbb69 1003 struct ib_qp *qp;
00f7ec36
SW
1004 union {
1005 __be32 imm_data;
1006 u32 invalidate_rkey;
1007 } ex;
1da177e4 1008 u32 src_qp;
cd2a6e7d 1009 u32 slid;
1da177e4
LT
1010 int wc_flags;
1011 u16 pkey_index;
1da177e4
LT
1012 u8 sl;
1013 u8 dlid_path_bits;
1014 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1015 u8 smac[ETH_ALEN];
1016 u16 vlan_id;
c865f246 1017 u8 network_hdr_type;
1da177e4
LT
1018};
1019
ed23a727
RD
1020enum ib_cq_notify_flags {
1021 IB_CQ_SOLICITED = 1 << 0,
1022 IB_CQ_NEXT_COMP = 1 << 1,
1023 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1024 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1025};
1026
96104eda 1027enum ib_srq_type {
418d5130 1028 IB_SRQT_BASIC,
9c2c8496
AK
1029 IB_SRQT_XRC,
1030 IB_SRQT_TM,
96104eda
SH
1031};
1032
1a56ff6d
AK
1033static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1034{
9c2c8496
AK
1035 return srq_type == IB_SRQT_XRC ||
1036 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1037}
1038
d41fcc67
RD
1039enum ib_srq_attr_mask {
1040 IB_SRQ_MAX_WR = 1 << 0,
1041 IB_SRQ_LIMIT = 1 << 1,
1042};
1043
1044struct ib_srq_attr {
1045 u32 max_wr;
1046 u32 max_sge;
1047 u32 srq_limit;
1048};
1049
1050struct ib_srq_init_attr {
1051 void (*event_handler)(struct ib_event *, void *);
1052 void *srq_context;
1053 struct ib_srq_attr attr;
96104eda 1054 enum ib_srq_type srq_type;
418d5130 1055
1a56ff6d
AK
1056 struct {
1057 struct ib_cq *cq;
1058 union {
1059 struct {
1060 struct ib_xrcd *xrcd;
1061 } xrc;
9c2c8496
AK
1062
1063 struct {
1064 u32 max_num_tags;
1065 } tag_matching;
1a56ff6d 1066 };
418d5130 1067 } ext;
d41fcc67
RD
1068};
1069
1da177e4
LT
1070struct ib_qp_cap {
1071 u32 max_send_wr;
1072 u32 max_recv_wr;
1073 u32 max_send_sge;
1074 u32 max_recv_sge;
1075 u32 max_inline_data;
a060b562
CH
1076
1077 /*
1078 * Maximum number of rdma_rw_ctx structures in flight at a time.
1079 * ib_create_qp() will calculate the right amount of neededed WRs
1080 * and MRs based on this.
1081 */
1082 u32 max_rdma_ctxs;
1da177e4
LT
1083};
1084
1085enum ib_sig_type {
1086 IB_SIGNAL_ALL_WR,
1087 IB_SIGNAL_REQ_WR
1088};
1089
1090enum ib_qp_type {
1091 /*
1092 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1093 * here (and in that order) since the MAD layer uses them as
1094 * indices into a 2-entry table.
1095 */
1096 IB_QPT_SMI,
1097 IB_QPT_GSI,
1098
1099 IB_QPT_RC,
1100 IB_QPT_UC,
1101 IB_QPT_UD,
1102 IB_QPT_RAW_IPV6,
b42b63cf 1103 IB_QPT_RAW_ETHERTYPE,
c938a616 1104 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1105 IB_QPT_XRC_INI = 9,
1106 IB_QPT_XRC_TGT,
0134f16b 1107 IB_QPT_MAX,
8011c1e3 1108 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1109 /* Reserve a range for qp types internal to the low level driver.
1110 * These qp types will not be visible at the IB core layer, so the
1111 * IB_QPT_MAX usages should not be affected in the core layer
1112 */
1113 IB_QPT_RESERVED1 = 0x1000,
1114 IB_QPT_RESERVED2,
1115 IB_QPT_RESERVED3,
1116 IB_QPT_RESERVED4,
1117 IB_QPT_RESERVED5,
1118 IB_QPT_RESERVED6,
1119 IB_QPT_RESERVED7,
1120 IB_QPT_RESERVED8,
1121 IB_QPT_RESERVED9,
1122 IB_QPT_RESERVED10,
1da177e4
LT
1123};
1124
b846f25a 1125enum ib_qp_create_flags {
47ee1b9f
RL
1126 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1127 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1128 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1129 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1130 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1131 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1132 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1133 /* FREE = 1 << 7, */
b531b909 1134 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1135 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1136 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1137 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1138 /* reserve bits 26-31 for low level drivers' internal use */
1139 IB_QP_CREATE_RESERVED_START = 1 << 26,
1140 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1141};
1142
73c40c61
YH
1143/*
1144 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1145 * callback to destroy the passed in QP.
1146 */
1147
1da177e4 1148struct ib_qp_init_attr {
eb93c82e 1149 /* Consumer's event_handler callback must not block */
1da177e4 1150 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1151
1da177e4
LT
1152 void *qp_context;
1153 struct ib_cq *send_cq;
1154 struct ib_cq *recv_cq;
1155 struct ib_srq *srq;
b42b63cf 1156 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1157 struct ib_qp_cap cap;
1158 enum ib_sig_type sq_sig_type;
1159 enum ib_qp_type qp_type;
b56511c1 1160 u32 create_flags;
a060b562
CH
1161
1162 /*
1163 * Only needed for special QP types, or when using the RW API.
1164 */
1165 u8 port_num;
a9017e23 1166 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1167 u32 source_qpn;
1da177e4
LT
1168};
1169
0e0ec7e0
SH
1170struct ib_qp_open_attr {
1171 void (*event_handler)(struct ib_event *, void *);
1172 void *qp_context;
1173 u32 qp_num;
1174 enum ib_qp_type qp_type;
1175};
1176
1da177e4
LT
1177enum ib_rnr_timeout {
1178 IB_RNR_TIMER_655_36 = 0,
1179 IB_RNR_TIMER_000_01 = 1,
1180 IB_RNR_TIMER_000_02 = 2,
1181 IB_RNR_TIMER_000_03 = 3,
1182 IB_RNR_TIMER_000_04 = 4,
1183 IB_RNR_TIMER_000_06 = 5,
1184 IB_RNR_TIMER_000_08 = 6,
1185 IB_RNR_TIMER_000_12 = 7,
1186 IB_RNR_TIMER_000_16 = 8,
1187 IB_RNR_TIMER_000_24 = 9,
1188 IB_RNR_TIMER_000_32 = 10,
1189 IB_RNR_TIMER_000_48 = 11,
1190 IB_RNR_TIMER_000_64 = 12,
1191 IB_RNR_TIMER_000_96 = 13,
1192 IB_RNR_TIMER_001_28 = 14,
1193 IB_RNR_TIMER_001_92 = 15,
1194 IB_RNR_TIMER_002_56 = 16,
1195 IB_RNR_TIMER_003_84 = 17,
1196 IB_RNR_TIMER_005_12 = 18,
1197 IB_RNR_TIMER_007_68 = 19,
1198 IB_RNR_TIMER_010_24 = 20,
1199 IB_RNR_TIMER_015_36 = 21,
1200 IB_RNR_TIMER_020_48 = 22,
1201 IB_RNR_TIMER_030_72 = 23,
1202 IB_RNR_TIMER_040_96 = 24,
1203 IB_RNR_TIMER_061_44 = 25,
1204 IB_RNR_TIMER_081_92 = 26,
1205 IB_RNR_TIMER_122_88 = 27,
1206 IB_RNR_TIMER_163_84 = 28,
1207 IB_RNR_TIMER_245_76 = 29,
1208 IB_RNR_TIMER_327_68 = 30,
1209 IB_RNR_TIMER_491_52 = 31
1210};
1211
1212enum ib_qp_attr_mask {
1213 IB_QP_STATE = 1,
1214 IB_QP_CUR_STATE = (1<<1),
1215 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1216 IB_QP_ACCESS_FLAGS = (1<<3),
1217 IB_QP_PKEY_INDEX = (1<<4),
1218 IB_QP_PORT = (1<<5),
1219 IB_QP_QKEY = (1<<6),
1220 IB_QP_AV = (1<<7),
1221 IB_QP_PATH_MTU = (1<<8),
1222 IB_QP_TIMEOUT = (1<<9),
1223 IB_QP_RETRY_CNT = (1<<10),
1224 IB_QP_RNR_RETRY = (1<<11),
1225 IB_QP_RQ_PSN = (1<<12),
1226 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1227 IB_QP_ALT_PATH = (1<<14),
1228 IB_QP_MIN_RNR_TIMER = (1<<15),
1229 IB_QP_SQ_PSN = (1<<16),
1230 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1231 IB_QP_PATH_MIG_STATE = (1<<18),
1232 IB_QP_CAP = (1<<19),
dd5f03be 1233 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1234 IB_QP_RESERVED1 = (1<<21),
1235 IB_QP_RESERVED2 = (1<<22),
1236 IB_QP_RESERVED3 = (1<<23),
1237 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1238 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1239};
1240
1241enum ib_qp_state {
1242 IB_QPS_RESET,
1243 IB_QPS_INIT,
1244 IB_QPS_RTR,
1245 IB_QPS_RTS,
1246 IB_QPS_SQD,
1247 IB_QPS_SQE,
1248 IB_QPS_ERR
1249};
1250
1251enum ib_mig_state {
1252 IB_MIG_MIGRATED,
1253 IB_MIG_REARM,
1254 IB_MIG_ARMED
1255};
1256
7083e42e
SM
1257enum ib_mw_type {
1258 IB_MW_TYPE_1 = 1,
1259 IB_MW_TYPE_2 = 2
1260};
1261
1da177e4
LT
1262struct ib_qp_attr {
1263 enum ib_qp_state qp_state;
1264 enum ib_qp_state cur_qp_state;
1265 enum ib_mtu path_mtu;
1266 enum ib_mig_state path_mig_state;
1267 u32 qkey;
1268 u32 rq_psn;
1269 u32 sq_psn;
1270 u32 dest_qp_num;
1271 int qp_access_flags;
1272 struct ib_qp_cap cap;
90898850
DC
1273 struct rdma_ah_attr ah_attr;
1274 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1275 u16 pkey_index;
1276 u16 alt_pkey_index;
1277 u8 en_sqd_async_notify;
1278 u8 sq_draining;
1279 u8 max_rd_atomic;
1280 u8 max_dest_rd_atomic;
1281 u8 min_rnr_timer;
1282 u8 port_num;
1283 u8 timeout;
1284 u8 retry_cnt;
1285 u8 rnr_retry;
1286 u8 alt_port_num;
1287 u8 alt_timeout;
528e5a1b 1288 u32 rate_limit;
1da177e4
LT
1289};
1290
1291enum ib_wr_opcode {
9a59739b
JG
1292 /* These are shared with userspace */
1293 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1294 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1295 IB_WR_SEND = IB_UVERBS_WR_SEND,
1296 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1297 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1298 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1299 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1300 IB_WR_LSO = IB_UVERBS_WR_TSO,
1301 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1302 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1303 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1304 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1305 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1306 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1307 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1308
1309 /* These are kernel only and can not be issued by userspace */
1310 IB_WR_REG_MR = 0x20,
1b01d335 1311 IB_WR_REG_SIG_MR,
9a59739b 1312
0134f16b
JM
1313 /* reserve values for low level drivers' internal use.
1314 * These values will not be used at all in the ib core layer.
1315 */
1316 IB_WR_RESERVED1 = 0xf0,
1317 IB_WR_RESERVED2,
1318 IB_WR_RESERVED3,
1319 IB_WR_RESERVED4,
1320 IB_WR_RESERVED5,
1321 IB_WR_RESERVED6,
1322 IB_WR_RESERVED7,
1323 IB_WR_RESERVED8,
1324 IB_WR_RESERVED9,
1325 IB_WR_RESERVED10,
1da177e4
LT
1326};
1327
1328enum ib_send_flags {
1329 IB_SEND_FENCE = 1,
1330 IB_SEND_SIGNALED = (1<<1),
1331 IB_SEND_SOLICITED = (1<<2),
e0605d91 1332 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1333 IB_SEND_IP_CSUM = (1<<4),
1334
1335 /* reserve bits 26-31 for low level drivers' internal use */
1336 IB_SEND_RESERVED_START = (1 << 26),
1337 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1338};
1339
1340struct ib_sge {
1341 u64 addr;
1342 u32 length;
1343 u32 lkey;
1344};
1345
14d3a3b2
CH
1346struct ib_cqe {
1347 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1348};
1349
1da177e4
LT
1350struct ib_send_wr {
1351 struct ib_send_wr *next;
14d3a3b2
CH
1352 union {
1353 u64 wr_id;
1354 struct ib_cqe *wr_cqe;
1355 };
1da177e4
LT
1356 struct ib_sge *sg_list;
1357 int num_sge;
1358 enum ib_wr_opcode opcode;
1359 int send_flags;
0f39cf3d
RD
1360 union {
1361 __be32 imm_data;
1362 u32 invalidate_rkey;
1363 } ex;
1da177e4
LT
1364};
1365
e622f2f4
CH
1366struct ib_rdma_wr {
1367 struct ib_send_wr wr;
1368 u64 remote_addr;
1369 u32 rkey;
1370};
1371
f696bf6d 1372static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1373{
1374 return container_of(wr, struct ib_rdma_wr, wr);
1375}
1376
1377struct ib_atomic_wr {
1378 struct ib_send_wr wr;
1379 u64 remote_addr;
1380 u64 compare_add;
1381 u64 swap;
1382 u64 compare_add_mask;
1383 u64 swap_mask;
1384 u32 rkey;
1385};
1386
f696bf6d 1387static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1388{
1389 return container_of(wr, struct ib_atomic_wr, wr);
1390}
1391
1392struct ib_ud_wr {
1393 struct ib_send_wr wr;
1394 struct ib_ah *ah;
1395 void *header;
1396 int hlen;
1397 int mss;
1398 u32 remote_qpn;
1399 u32 remote_qkey;
1400 u16 pkey_index; /* valid for GSI only */
1401 u8 port_num; /* valid for DR SMPs on switch only */
1402};
1403
f696bf6d 1404static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1405{
1406 return container_of(wr, struct ib_ud_wr, wr);
1407}
1408
4c67e2bf
SG
1409struct ib_reg_wr {
1410 struct ib_send_wr wr;
1411 struct ib_mr *mr;
1412 u32 key;
1413 int access;
1414};
1415
f696bf6d 1416static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1417{
1418 return container_of(wr, struct ib_reg_wr, wr);
1419}
1420
e622f2f4
CH
1421struct ib_sig_handover_wr {
1422 struct ib_send_wr wr;
1423 struct ib_sig_attrs *sig_attrs;
1424 struct ib_mr *sig_mr;
1425 int access_flags;
1426 struct ib_sge *prot;
1427};
1428
f696bf6d
BVA
1429static inline const struct ib_sig_handover_wr *
1430sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1431{
1432 return container_of(wr, struct ib_sig_handover_wr, wr);
1433}
1434
1da177e4
LT
1435struct ib_recv_wr {
1436 struct ib_recv_wr *next;
14d3a3b2
CH
1437 union {
1438 u64 wr_id;
1439 struct ib_cqe *wr_cqe;
1440 };
1da177e4
LT
1441 struct ib_sge *sg_list;
1442 int num_sge;
1443};
1444
1445enum ib_access_flags {
4fca0377
JG
1446 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1447 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1448 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1449 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1450 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1451 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1452 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1453 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1454
1455 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1456};
1457
b7d3e0a9
CH
1458/*
1459 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1460 * are hidden here instead of a uapi header!
1461 */
1da177e4
LT
1462enum ib_mr_rereg_flags {
1463 IB_MR_REREG_TRANS = 1,
1464 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1465 IB_MR_REREG_ACCESS = (1<<2),
1466 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1467};
1468
1da177e4
LT
1469struct ib_fmr_attr {
1470 int max_pages;
1471 int max_maps;
d36f34aa 1472 u8 page_shift;
1da177e4
LT
1473};
1474
882214e2
HE
1475struct ib_umem;
1476
38321256 1477enum rdma_remove_reason {
1c77483e
YH
1478 /*
1479 * Userspace requested uobject deletion or initial try
1480 * to remove uobject via cleanup. Call could fail
1481 */
38321256
MB
1482 RDMA_REMOVE_DESTROY,
1483 /* Context deletion. This call should delete the actual object itself */
1484 RDMA_REMOVE_CLOSE,
1485 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1486 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1487 /* uobj is being cleaned-up before being committed */
1488 RDMA_REMOVE_ABORT,
38321256
MB
1489};
1490
43579b5f
PP
1491struct ib_rdmacg_object {
1492#ifdef CONFIG_CGROUP_RDMA
1493 struct rdma_cgroup *cg; /* owner rdma cgroup */
1494#endif
1495};
1496
e2773c06
RD
1497struct ib_ucontext {
1498 struct ib_device *device;
771addf6 1499 struct ib_uverbs_file *ufile;
e951747a
JG
1500 /*
1501 * 'closing' can be read by the driver only during a destroy callback,
1502 * it is set when we are closing the file descriptor and indicates
1503 * that mm_sem may be locked.
1504 */
6ceb6331 1505 bool closing;
8ada2c1c 1506
1c77483e 1507 bool cleanup_retryable;
38321256 1508
b5231b01 1509 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
882214e2 1510 unsigned long start, unsigned long end);
f27a0d50
JG
1511 struct mutex per_mm_list_lock;
1512 struct list_head per_mm_list;
43579b5f
PP
1513
1514 struct ib_rdmacg_object cg_obj;
60615210
LR
1515 /*
1516 * Implementation details of the RDMA core, don't use in drivers:
1517 */
1518 struct rdma_restrack_entry res;
e2773c06
RD
1519};
1520
1521struct ib_uobject {
1522 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1523 /* ufile & ucontext owning this object */
1524 struct ib_uverbs_file *ufile;
1525 /* FIXME, save memory: ufile->context == context */
e2773c06 1526 struct ib_ucontext *context; /* associated user context */
9ead190b 1527 void *object; /* containing object */
e2773c06 1528 struct list_head list; /* link to context's list */
43579b5f 1529 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1530 int id; /* index into kernel idr */
9ead190b 1531 struct kref ref;
38321256 1532 atomic_t usecnt; /* protects exclusive access */
d144da8c 1533 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1534
6b0d08f4 1535 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1536};
1537
e2773c06 1538struct ib_udata {
309243ec 1539 const void __user *inbuf;
e2773c06
RD
1540 void __user *outbuf;
1541 size_t inlen;
1542 size_t outlen;
1543};
1544
1da177e4 1545struct ib_pd {
96249d70 1546 u32 local_dma_lkey;
ed082d36 1547 u32 flags;
e2773c06
RD
1548 struct ib_device *device;
1549 struct ib_uobject *uobject;
1550 atomic_t usecnt; /* count all resources */
50d46335 1551
ed082d36
CH
1552 u32 unsafe_global_rkey;
1553
50d46335
CH
1554 /*
1555 * Implementation details of the RDMA core, don't use in drivers:
1556 */
1557 struct ib_mr *__internal_mr;
02d8883f 1558 struct rdma_restrack_entry res;
1da177e4
LT
1559};
1560
59991f94
SH
1561struct ib_xrcd {
1562 struct ib_device *device;
d3d72d90 1563 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1564 struct inode *inode;
d3d72d90
SH
1565
1566 struct mutex tgt_qp_mutex;
1567 struct list_head tgt_qp_list;
59991f94
SH
1568};
1569
1da177e4
LT
1570struct ib_ah {
1571 struct ib_device *device;
1572 struct ib_pd *pd;
e2773c06 1573 struct ib_uobject *uobject;
1a1f460f 1574 const struct ib_gid_attr *sgid_attr;
44c58487 1575 enum rdma_ah_attr_type type;
1da177e4
LT
1576};
1577
1578typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1579
14d3a3b2 1580enum ib_poll_context {
f794809a
JM
1581 IB_POLL_DIRECT, /* caller context, no hw completions */
1582 IB_POLL_SOFTIRQ, /* poll from softirq context */
1583 IB_POLL_WORKQUEUE, /* poll from workqueue */
1584 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
14d3a3b2
CH
1585};
1586
1da177e4 1587struct ib_cq {
e2773c06
RD
1588 struct ib_device *device;
1589 struct ib_uobject *uobject;
1590 ib_comp_handler comp_handler;
1591 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1592 void *cq_context;
e2773c06
RD
1593 int cqe;
1594 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1595 enum ib_poll_context poll_ctx;
1596 struct ib_wc *wc;
1597 union {
1598 struct irq_poll iop;
1599 struct work_struct work;
1600 };
f794809a 1601 struct workqueue_struct *comp_wq;
02d8883f
LR
1602 /*
1603 * Implementation details of the RDMA core, don't use in drivers:
1604 */
1605 struct rdma_restrack_entry res;
1da177e4
LT
1606};
1607
1608struct ib_srq {
d41fcc67
RD
1609 struct ib_device *device;
1610 struct ib_pd *pd;
1611 struct ib_uobject *uobject;
1612 void (*event_handler)(struct ib_event *, void *);
1613 void *srq_context;
96104eda 1614 enum ib_srq_type srq_type;
1da177e4 1615 atomic_t usecnt;
418d5130 1616
1a56ff6d
AK
1617 struct {
1618 struct ib_cq *cq;
1619 union {
1620 struct {
1621 struct ib_xrcd *xrcd;
1622 u32 srq_num;
1623 } xrc;
1624 };
418d5130 1625 } ext;
1da177e4
LT
1626};
1627
ebaaee25
NO
1628enum ib_raw_packet_caps {
1629 /* Strip cvlan from incoming packet and report it in the matching work
1630 * completion is supported.
1631 */
1632 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1633 /* Scatter FCS field of an incoming packet to host memory is supported.
1634 */
1635 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1636 /* Checksum offloads are supported (for both send and receive). */
1637 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1638 /* When a packet is received for an RQ with no receive WQEs, the
1639 * packet processing is delayed.
1640 */
1641 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1642};
1643
5fd251c8
YH
1644enum ib_wq_type {
1645 IB_WQT_RQ
1646};
1647
1648enum ib_wq_state {
1649 IB_WQS_RESET,
1650 IB_WQS_RDY,
1651 IB_WQS_ERR
1652};
1653
1654struct ib_wq {
1655 struct ib_device *device;
1656 struct ib_uobject *uobject;
1657 void *wq_context;
1658 void (*event_handler)(struct ib_event *, void *);
1659 struct ib_pd *pd;
1660 struct ib_cq *cq;
1661 u32 wq_num;
1662 enum ib_wq_state state;
1663 enum ib_wq_type wq_type;
1664 atomic_t usecnt;
1665};
1666
10bac72b
NO
1667enum ib_wq_flags {
1668 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1669 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1670 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1671 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1672};
1673
5fd251c8
YH
1674struct ib_wq_init_attr {
1675 void *wq_context;
1676 enum ib_wq_type wq_type;
1677 u32 max_wr;
1678 u32 max_sge;
1679 struct ib_cq *cq;
1680 void (*event_handler)(struct ib_event *, void *);
10bac72b 1681 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1682};
1683
1684enum ib_wq_attr_mask {
10bac72b
NO
1685 IB_WQ_STATE = 1 << 0,
1686 IB_WQ_CUR_STATE = 1 << 1,
1687 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1688};
1689
1690struct ib_wq_attr {
1691 enum ib_wq_state wq_state;
1692 enum ib_wq_state curr_wq_state;
10bac72b
NO
1693 u32 flags; /* Use enum ib_wq_flags */
1694 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1695};
1696
6d39786b
YH
1697struct ib_rwq_ind_table {
1698 struct ib_device *device;
1699 struct ib_uobject *uobject;
1700 atomic_t usecnt;
1701 u32 ind_tbl_num;
1702 u32 log_ind_tbl_size;
1703 struct ib_wq **ind_tbl;
1704};
1705
1706struct ib_rwq_ind_table_init_attr {
1707 u32 log_ind_tbl_size;
1708 /* Each entry is a pointer to Receive Work Queue */
1709 struct ib_wq **ind_tbl;
1710};
1711
d291f1a6
DJ
1712enum port_pkey_state {
1713 IB_PORT_PKEY_NOT_VALID = 0,
1714 IB_PORT_PKEY_VALID = 1,
1715 IB_PORT_PKEY_LISTED = 2,
1716};
1717
1718struct ib_qp_security;
1719
1720struct ib_port_pkey {
1721 enum port_pkey_state state;
1722 u16 pkey_index;
1723 u8 port_num;
1724 struct list_head qp_list;
1725 struct list_head to_error_list;
1726 struct ib_qp_security *sec;
1727};
1728
1729struct ib_ports_pkeys {
1730 struct ib_port_pkey main;
1731 struct ib_port_pkey alt;
1732};
1733
1734struct ib_qp_security {
1735 struct ib_qp *qp;
1736 struct ib_device *dev;
1737 /* Hold this mutex when changing port and pkey settings. */
1738 struct mutex mutex;
1739 struct ib_ports_pkeys *ports_pkeys;
1740 /* A list of all open shared QP handles. Required to enforce security
1741 * properly for all users of a shared QP.
1742 */
1743 struct list_head shared_qp_list;
1744 void *security;
1745 bool destroying;
1746 atomic_t error_list_count;
1747 struct completion error_complete;
1748 int error_comps_pending;
1749};
1750
632bc3f6
BVA
1751/*
1752 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1753 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1754 */
1da177e4
LT
1755struct ib_qp {
1756 struct ib_device *device;
1757 struct ib_pd *pd;
1758 struct ib_cq *send_cq;
1759 struct ib_cq *recv_cq;
fffb0383
CH
1760 spinlock_t mr_lock;
1761 int mrs_used;
a060b562 1762 struct list_head rdma_mrs;
0e353e34 1763 struct list_head sig_mrs;
1da177e4 1764 struct ib_srq *srq;
b42b63cf 1765 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1766 struct list_head xrcd_list;
fffb0383 1767
319a441d
HHZ
1768 /* count times opened, mcast attaches, flow attaches */
1769 atomic_t usecnt;
0e0ec7e0
SH
1770 struct list_head open_list;
1771 struct ib_qp *real_qp;
e2773c06 1772 struct ib_uobject *uobject;
1da177e4
LT
1773 void (*event_handler)(struct ib_event *, void *);
1774 void *qp_context;
1a1f460f
JG
1775 /* sgid_attrs associated with the AV's */
1776 const struct ib_gid_attr *av_sgid_attr;
1777 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1778 u32 qp_num;
632bc3f6
BVA
1779 u32 max_write_sge;
1780 u32 max_read_sge;
1da177e4 1781 enum ib_qp_type qp_type;
a9017e23 1782 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1783 struct ib_qp_security *qp_sec;
498ca3c8 1784 u8 port;
02d8883f
LR
1785
1786 /*
1787 * Implementation details of the RDMA core, don't use in drivers:
1788 */
1789 struct rdma_restrack_entry res;
1da177e4
LT
1790};
1791
bee76d7a
AL
1792struct ib_dm {
1793 struct ib_device *device;
1794 u32 length;
1795 u32 flags;
1796 struct ib_uobject *uobject;
1797 atomic_t usecnt;
1798};
1799
1da177e4 1800struct ib_mr {
e2773c06
RD
1801 struct ib_device *device;
1802 struct ib_pd *pd;
e2773c06
RD
1803 u32 lkey;
1804 u32 rkey;
4c67e2bf 1805 u64 iova;
edd31551 1806 u64 length;
4c67e2bf 1807 unsigned int page_size;
d4a85c30 1808 bool need_inval;
fffb0383
CH
1809 union {
1810 struct ib_uobject *uobject; /* user */
1811 struct list_head qp_entry; /* FR */
1812 };
fccec5b8 1813
be934cca
AL
1814 struct ib_dm *dm;
1815
fccec5b8
SW
1816 /*
1817 * Implementation details of the RDMA core, don't use in drivers:
1818 */
1819 struct rdma_restrack_entry res;
1da177e4
LT
1820};
1821
1822struct ib_mw {
1823 struct ib_device *device;
1824 struct ib_pd *pd;
e2773c06 1825 struct ib_uobject *uobject;
1da177e4 1826 u32 rkey;
7083e42e 1827 enum ib_mw_type type;
1da177e4
LT
1828};
1829
1830struct ib_fmr {
1831 struct ib_device *device;
1832 struct ib_pd *pd;
1833 struct list_head list;
1834 u32 lkey;
1835 u32 rkey;
1836};
1837
319a441d
HHZ
1838/* Supported steering options */
1839enum ib_flow_attr_type {
1840 /* steering according to rule specifications */
1841 IB_FLOW_ATTR_NORMAL = 0x0,
1842 /* default unicast and multicast rule -
1843 * receive all Eth traffic which isn't steered to any QP
1844 */
1845 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1846 /* default multicast rule -
1847 * receive all Eth multicast traffic which isn't steered to any QP
1848 */
1849 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1850 /* sniffer rule - receive all port traffic */
1851 IB_FLOW_ATTR_SNIFFER = 0x3
1852};
1853
1854/* Supported steering header types */
1855enum ib_flow_spec_type {
1856 /* L2 headers*/
76bd23b3
MR
1857 IB_FLOW_SPEC_ETH = 0x20,
1858 IB_FLOW_SPEC_IB = 0x22,
319a441d 1859 /* L3 header*/
76bd23b3
MR
1860 IB_FLOW_SPEC_IPV4 = 0x30,
1861 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1862 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1863 /* L4 headers*/
76bd23b3
MR
1864 IB_FLOW_SPEC_TCP = 0x40,
1865 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1866 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1867 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1868 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1869 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1870 /* Actions */
1871 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1872 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1873 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1874 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1875};
240ae00e 1876#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1877#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1878
319a441d
HHZ
1879/* Flow steering rule priority is set according to it's domain.
1880 * Lower domain value means higher priority.
1881 */
1882enum ib_flow_domain {
1883 IB_FLOW_DOMAIN_USER,
1884 IB_FLOW_DOMAIN_ETHTOOL,
1885 IB_FLOW_DOMAIN_RFS,
1886 IB_FLOW_DOMAIN_NIC,
1887 IB_FLOW_DOMAIN_NUM /* Must be last */
1888};
1889
a3100a78
MV
1890enum ib_flow_flags {
1891 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1892 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1893 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1894};
1895
319a441d
HHZ
1896struct ib_flow_eth_filter {
1897 u8 dst_mac[6];
1898 u8 src_mac[6];
1899 __be16 ether_type;
1900 __be16 vlan_tag;
15dfbd6b
MG
1901 /* Must be last */
1902 u8 real_sz[0];
319a441d
HHZ
1903};
1904
1905struct ib_flow_spec_eth {
fbf46860 1906 u32 type;
319a441d
HHZ
1907 u16 size;
1908 struct ib_flow_eth_filter val;
1909 struct ib_flow_eth_filter mask;
1910};
1911
240ae00e
MB
1912struct ib_flow_ib_filter {
1913 __be16 dlid;
1914 __u8 sl;
15dfbd6b
MG
1915 /* Must be last */
1916 u8 real_sz[0];
240ae00e
MB
1917};
1918
1919struct ib_flow_spec_ib {
fbf46860 1920 u32 type;
240ae00e
MB
1921 u16 size;
1922 struct ib_flow_ib_filter val;
1923 struct ib_flow_ib_filter mask;
1924};
1925
989a3a8f
MG
1926/* IPv4 header flags */
1927enum ib_ipv4_flags {
1928 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1929 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1930 last have this flag set */
1931};
1932
319a441d
HHZ
1933struct ib_flow_ipv4_filter {
1934 __be32 src_ip;
1935 __be32 dst_ip;
989a3a8f
MG
1936 u8 proto;
1937 u8 tos;
1938 u8 ttl;
1939 u8 flags;
15dfbd6b
MG
1940 /* Must be last */
1941 u8 real_sz[0];
319a441d
HHZ
1942};
1943
1944struct ib_flow_spec_ipv4 {
fbf46860 1945 u32 type;
319a441d
HHZ
1946 u16 size;
1947 struct ib_flow_ipv4_filter val;
1948 struct ib_flow_ipv4_filter mask;
1949};
1950
4c2aae71
MG
1951struct ib_flow_ipv6_filter {
1952 u8 src_ip[16];
1953 u8 dst_ip[16];
a72c6a2b
MG
1954 __be32 flow_label;
1955 u8 next_hdr;
1956 u8 traffic_class;
1957 u8 hop_limit;
15dfbd6b
MG
1958 /* Must be last */
1959 u8 real_sz[0];
4c2aae71
MG
1960};
1961
1962struct ib_flow_spec_ipv6 {
fbf46860 1963 u32 type;
4c2aae71
MG
1964 u16 size;
1965 struct ib_flow_ipv6_filter val;
1966 struct ib_flow_ipv6_filter mask;
1967};
1968
319a441d
HHZ
1969struct ib_flow_tcp_udp_filter {
1970 __be16 dst_port;
1971 __be16 src_port;
15dfbd6b
MG
1972 /* Must be last */
1973 u8 real_sz[0];
319a441d
HHZ
1974};
1975
1976struct ib_flow_spec_tcp_udp {
fbf46860 1977 u32 type;
319a441d
HHZ
1978 u16 size;
1979 struct ib_flow_tcp_udp_filter val;
1980 struct ib_flow_tcp_udp_filter mask;
1981};
1982
0dbf3332
MR
1983struct ib_flow_tunnel_filter {
1984 __be32 tunnel_id;
1985 u8 real_sz[0];
1986};
1987
1988/* ib_flow_spec_tunnel describes the Vxlan tunnel
1989 * the tunnel_id from val has the vni value
1990 */
1991struct ib_flow_spec_tunnel {
fbf46860 1992 u32 type;
0dbf3332
MR
1993 u16 size;
1994 struct ib_flow_tunnel_filter val;
1995 struct ib_flow_tunnel_filter mask;
1996};
1997
56ab0b38
MB
1998struct ib_flow_esp_filter {
1999 __be32 spi;
2000 __be32 seq;
2001 /* Must be last */
2002 u8 real_sz[0];
2003};
2004
2005struct ib_flow_spec_esp {
2006 u32 type;
2007 u16 size;
2008 struct ib_flow_esp_filter val;
2009 struct ib_flow_esp_filter mask;
2010};
2011
d90e5e50
AL
2012struct ib_flow_gre_filter {
2013 __be16 c_ks_res0_ver;
2014 __be16 protocol;
2015 __be32 key;
2016 /* Must be last */
2017 u8 real_sz[0];
2018};
2019
2020struct ib_flow_spec_gre {
2021 u32 type;
2022 u16 size;
2023 struct ib_flow_gre_filter val;
2024 struct ib_flow_gre_filter mask;
2025};
2026
b04f0f03
AL
2027struct ib_flow_mpls_filter {
2028 __be32 tag;
2029 /* Must be last */
2030 u8 real_sz[0];
2031};
2032
2033struct ib_flow_spec_mpls {
2034 u32 type;
2035 u16 size;
2036 struct ib_flow_mpls_filter val;
2037 struct ib_flow_mpls_filter mask;
2038};
2039
460d0198
MR
2040struct ib_flow_spec_action_tag {
2041 enum ib_flow_spec_type type;
2042 u16 size;
2043 u32 tag_id;
2044};
2045
483a3966
SS
2046struct ib_flow_spec_action_drop {
2047 enum ib_flow_spec_type type;
2048 u16 size;
2049};
2050
9b828441
MB
2051struct ib_flow_spec_action_handle {
2052 enum ib_flow_spec_type type;
2053 u16 size;
2054 struct ib_flow_action *act;
2055};
2056
7eea23a5
RS
2057enum ib_counters_description {
2058 IB_COUNTER_PACKETS,
2059 IB_COUNTER_BYTES,
2060};
2061
2062struct ib_flow_spec_action_count {
2063 enum ib_flow_spec_type type;
2064 u16 size;
2065 struct ib_counters *counters;
2066};
2067
319a441d
HHZ
2068union ib_flow_spec {
2069 struct {
fbf46860 2070 u32 type;
319a441d
HHZ
2071 u16 size;
2072 };
2073 struct ib_flow_spec_eth eth;
240ae00e 2074 struct ib_flow_spec_ib ib;
319a441d
HHZ
2075 struct ib_flow_spec_ipv4 ipv4;
2076 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2077 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2078 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2079 struct ib_flow_spec_esp esp;
d90e5e50 2080 struct ib_flow_spec_gre gre;
b04f0f03 2081 struct ib_flow_spec_mpls mpls;
460d0198 2082 struct ib_flow_spec_action_tag flow_tag;
483a3966 2083 struct ib_flow_spec_action_drop drop;
9b828441 2084 struct ib_flow_spec_action_handle action;
7eea23a5 2085 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2086};
2087
2088struct ib_flow_attr {
2089 enum ib_flow_attr_type type;
2090 u16 size;
2091 u16 priority;
2092 u32 flags;
2093 u8 num_of_specs;
2094 u8 port;
7654cb1b 2095 union ib_flow_spec flows[];
319a441d
HHZ
2096};
2097
2098struct ib_flow {
2099 struct ib_qp *qp;
6cd080a6 2100 struct ib_device *device;
319a441d
HHZ
2101 struct ib_uobject *uobject;
2102};
2103
2eb9beae
MB
2104enum ib_flow_action_type {
2105 IB_FLOW_ACTION_UNSPECIFIED,
2106 IB_FLOW_ACTION_ESP = 1,
2107};
2108
2109struct ib_flow_action_attrs_esp_keymats {
2110 enum ib_uverbs_flow_action_esp_keymat protocol;
2111 union {
2112 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2113 } keymat;
2114};
2115
2116struct ib_flow_action_attrs_esp_replays {
2117 enum ib_uverbs_flow_action_esp_replay protocol;
2118 union {
2119 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2120 } replay;
2121};
2122
2123enum ib_flow_action_attrs_esp_flags {
2124 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2125 * This is done in order to share the same flags between user-space and
2126 * kernel and spare an unnecessary translation.
2127 */
2128
2129 /* Kernel flags */
2130 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2131 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2132};
2133
2134struct ib_flow_spec_list {
2135 struct ib_flow_spec_list *next;
2136 union ib_flow_spec spec;
2137};
2138
2139struct ib_flow_action_attrs_esp {
2140 struct ib_flow_action_attrs_esp_keymats *keymat;
2141 struct ib_flow_action_attrs_esp_replays *replay;
2142 struct ib_flow_spec_list *encap;
2143 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2144 * Value of 0 is a valid value.
2145 */
2146 u32 esn;
2147 u32 spi;
2148 u32 seq;
2149 u32 tfc_pad;
2150 /* Use enum ib_flow_action_attrs_esp_flags */
2151 u64 flags;
2152 u64 hard_limit_pkts;
2153};
2154
2155struct ib_flow_action {
2156 struct ib_device *device;
2157 struct ib_uobject *uobject;
2158 enum ib_flow_action_type type;
2159 atomic_t usecnt;
2160};
2161
4cd7c947 2162struct ib_mad_hdr;
1da177e4
LT
2163struct ib_grh;
2164
2165enum ib_process_mad_flags {
2166 IB_MAD_IGNORE_MKEY = 1,
2167 IB_MAD_IGNORE_BKEY = 2,
2168 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2169};
2170
2171enum ib_mad_result {
2172 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2173 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2174 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2175 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2176};
2177
21d6454a 2178struct ib_port_cache {
883c71fe 2179 u64 subnet_prefix;
21d6454a
JW
2180 struct ib_pkey_cache *pkey;
2181 struct ib_gid_table *gid;
2182 u8 lmc;
2183 enum ib_port_state port_state;
2184};
2185
1da177e4
LT
2186struct ib_cache {
2187 rwlock_t lock;
2188 struct ib_event_handler event_handler;
21d6454a 2189 struct ib_port_cache *ports;
1da177e4
LT
2190};
2191
07ebafba
TT
2192struct iw_cm_verbs;
2193
7738613e
IW
2194struct ib_port_immutable {
2195 int pkey_tbl_len;
2196 int gid_tbl_len;
f9b22e35 2197 u32 core_cap_flags;
337877a4 2198 u32 max_mad_size;
7738613e
IW
2199};
2200
2fc77572
VN
2201/* rdma netdev type - specifies protocol type */
2202enum rdma_netdev_t {
f0ad83ac
NV
2203 RDMA_NETDEV_OPA_VNIC,
2204 RDMA_NETDEV_IPOIB,
2fc77572
VN
2205};
2206
2207/**
2208 * struct rdma_netdev - rdma netdev
2209 * For cases where netstack interfacing is required.
2210 */
2211struct rdma_netdev {
2212 void *clnt_priv;
2213 struct ib_device *hca;
2214 u8 port_num;
2215
9f49a5b5
JG
2216 /*
2217 * cleanup function must be specified.
2218 * FIXME: This is only used for OPA_VNIC and that usage should be
2219 * removed too.
2220 */
8e959601
NV
2221 void (*free_rdma_netdev)(struct net_device *netdev);
2222
2fc77572
VN
2223 /* control functions */
2224 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2225 /* send packet */
2226 int (*send)(struct net_device *dev, struct sk_buff *skb,
2227 struct ib_ah *address, u32 dqpn);
2228 /* multicast */
2229 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2230 union ib_gid *gid, u16 mlid,
2231 int set_qkey, u32 qkey);
2232 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2233 union ib_gid *gid, u16 mlid);
2fc77572
VN
2234};
2235
f6a8a19b
DD
2236struct rdma_netdev_alloc_params {
2237 size_t sizeof_priv;
2238 unsigned int txqs;
2239 unsigned int rxqs;
2240 void *param;
2241
2242 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2243 struct net_device *netdev, void *param);
2244};
2245
d291f1a6
DJ
2246struct ib_port_pkey_list {
2247 /* Lock to hold while modifying the list. */
2248 spinlock_t list_lock;
2249 struct list_head pkey_list;
2250};
2251
fa9b1802
RS
2252struct ib_counters {
2253 struct ib_device *device;
2254 struct ib_uobject *uobject;
2255 /* num of objects attached */
2256 atomic_t usecnt;
2257};
2258
51d7a538
RS
2259struct ib_counters_read_attr {
2260 u64 *counters_buff;
2261 u32 ncounters;
2262 u32 flags; /* use enum ib_read_counters_flags */
2263};
2264
2eb9beae
MB
2265struct uverbs_attr_bundle;
2266
30471d4b
LR
2267#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2268 .size_##ib_struct = \
2269 (sizeof(struct drv_struct) + \
2270 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2271 BUILD_BUG_ON_ZERO( \
2272 !__same_type(((struct drv_struct *)NULL)->member, \
2273 struct ib_struct)))
2274
2275#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2276 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, GFP_KERNEL))
2277
2278#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2279
521ed0d9
KH
2280/**
2281 * struct ib_device_ops - InfiniBand device operations
2282 * This structure defines all the InfiniBand device operations, providers will
2283 * need to define the supported operations, otherwise they will be set to null.
2284 */
2285struct ib_device_ops {
2286 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2287 const struct ib_send_wr **bad_send_wr);
2288 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2289 const struct ib_recv_wr **bad_recv_wr);
2290 void (*drain_rq)(struct ib_qp *qp);
2291 void (*drain_sq)(struct ib_qp *qp);
2292 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2293 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2294 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2295 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2296 int (*post_srq_recv)(struct ib_srq *srq,
2297 const struct ib_recv_wr *recv_wr,
2298 const struct ib_recv_wr **bad_recv_wr);
2299 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2300 u8 port_num, const struct ib_wc *in_wc,
2301 const struct ib_grh *in_grh,
2302 const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2303 struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2304 u16 *out_mad_pkey_index);
2305 int (*query_device)(struct ib_device *device,
2306 struct ib_device_attr *device_attr,
2307 struct ib_udata *udata);
2308 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2309 struct ib_device_modify *device_modify);
2310 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2311 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2312 int comp_vector);
2313 int (*query_port)(struct ib_device *device, u8 port_num,
2314 struct ib_port_attr *port_attr);
2315 int (*modify_port)(struct ib_device *device, u8 port_num,
2316 int port_modify_mask,
2317 struct ib_port_modify *port_modify);
2318 /**
2319 * The following mandatory functions are used only at device
2320 * registration. Keep functions such as these at the end of this
2321 * structure to avoid cache line misses when accessing struct ib_device
2322 * in fast paths.
2323 */
2324 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2325 struct ib_port_immutable *immutable);
2326 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2327 u8 port_num);
2328 /**
2329 * When calling get_netdev, the HW vendor's driver should return the
2330 * net device of device @device at port @port_num or NULL if such
2331 * a net device doesn't exist. The vendor driver should call dev_hold
2332 * on this net device. The HW vendor's device driver must guarantee
2333 * that this function returns NULL before the net device has finished
2334 * NETDEV_UNREGISTER state.
2335 */
2336 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2337 /**
2338 * rdma netdev operation
2339 *
2340 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2341 * must return -EOPNOTSUPP if it doesn't support the specified type.
2342 */
2343 struct net_device *(*alloc_rdma_netdev)(
2344 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2345 const char *name, unsigned char name_assign_type,
2346 void (*setup)(struct net_device *));
2347
2348 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2349 enum rdma_netdev_t type,
2350 struct rdma_netdev_alloc_params *params);
2351 /**
2352 * query_gid should be return GID value for @device, when @port_num
2353 * link layer is either IB or iWarp. It is no-op if @port_num port
2354 * is RoCE link layer.
2355 */
2356 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2357 union ib_gid *gid);
2358 /**
2359 * When calling add_gid, the HW vendor's driver should add the gid
2360 * of device of port at gid index available at @attr. Meta-info of
2361 * that gid (for example, the network device related to this gid) is
2362 * available at @attr. @context allows the HW vendor driver to store
2363 * extra information together with a GID entry. The HW vendor driver may
2364 * allocate memory to contain this information and store it in @context
2365 * when a new GID entry is written to. Params are consistent until the
2366 * next call of add_gid or delete_gid. The function should return 0 on
2367 * success or error otherwise. The function could be called
2368 * concurrently for different ports. This function is only called when
2369 * roce_gid_table is used.
2370 */
2371 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2372 /**
2373 * When calling del_gid, the HW vendor's driver should delete the
2374 * gid of device @device at gid index gid_index of port port_num
2375 * available in @attr.
2376 * Upon the deletion of a GID entry, the HW vendor must free any
2377 * allocated memory. The caller will clear @context afterwards.
2378 * This function is only called when roce_gid_table is used.
2379 */
2380 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2381 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2382 u16 *pkey);
2383 struct ib_ucontext *(*alloc_ucontext)(struct ib_device *device,
2384 struct ib_udata *udata);
2385 int (*dealloc_ucontext)(struct ib_ucontext *context);
2386 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2387 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
21a428a0
LR
2388 int (*alloc_pd)(struct ib_pd *pd, struct ib_ucontext *context,
2389 struct ib_udata *udata);
2390 void (*dealloc_pd)(struct ib_pd *pd);
521ed0d9 2391 struct ib_ah *(*create_ah)(struct ib_pd *pd,
b090c4e3 2392 struct rdma_ah_attr *ah_attr, u32 flags,
521ed0d9
KH
2393 struct ib_udata *udata);
2394 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2395 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2553ba21 2396 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
521ed0d9
KH
2397 struct ib_srq *(*create_srq)(struct ib_pd *pd,
2398 struct ib_srq_init_attr *srq_init_attr,
2399 struct ib_udata *udata);
2400 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2401 enum ib_srq_attr_mask srq_attr_mask,
2402 struct ib_udata *udata);
2403 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2404 int (*destroy_srq)(struct ib_srq *srq);
2405 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2406 struct ib_qp_init_attr *qp_init_attr,
2407 struct ib_udata *udata);
2408 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2409 int qp_attr_mask, struct ib_udata *udata);
2410 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2411 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2412 int (*destroy_qp)(struct ib_qp *qp);
2413 struct ib_cq *(*create_cq)(struct ib_device *device,
2414 const struct ib_cq_init_attr *attr,
2415 struct ib_ucontext *context,
2416 struct ib_udata *udata);
2417 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2418 int (*destroy_cq)(struct ib_cq *cq);
2419 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2420 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2421 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2422 u64 virt_addr, int mr_access_flags,
2423 struct ib_udata *udata);
2424 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2425 u64 virt_addr, int mr_access_flags,
2426 struct ib_pd *pd, struct ib_udata *udata);
2427 int (*dereg_mr)(struct ib_mr *mr);
2428 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2429 u32 max_num_sg);
ad8a4496
MS
2430 int (*advise_mr)(struct ib_pd *pd,
2431 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2432 struct ib_sge *sg_list, u32 num_sge,
2433 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2434 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2435 unsigned int *sg_offset);
2436 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2437 struct ib_mr_status *mr_status);
2438 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2439 struct ib_udata *udata);
2440 int (*dealloc_mw)(struct ib_mw *mw);
2441 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2442 struct ib_fmr_attr *fmr_attr);
2443 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2444 u64 iova);
2445 int (*unmap_fmr)(struct list_head *fmr_list);
2446 int (*dealloc_fmr)(struct ib_fmr *fmr);
2447 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2448 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2449 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2450 struct ib_ucontext *ucontext,
2451 struct ib_udata *udata);
2452 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2453 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2454 struct ib_flow_attr *flow_attr,
2455 int domain, struct ib_udata *udata);
2456 int (*destroy_flow)(struct ib_flow *flow_id);
2457 struct ib_flow_action *(*create_flow_action_esp)(
2458 struct ib_device *device,
2459 const struct ib_flow_action_attrs_esp *attr,
2460 struct uverbs_attr_bundle *attrs);
2461 int (*destroy_flow_action)(struct ib_flow_action *action);
2462 int (*modify_flow_action_esp)(
2463 struct ib_flow_action *action,
2464 const struct ib_flow_action_attrs_esp *attr,
2465 struct uverbs_attr_bundle *attrs);
2466 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2467 int state);
2468 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2469 struct ifla_vf_info *ivf);
2470 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2471 struct ifla_vf_stats *stats);
2472 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2473 int type);
2474 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2475 struct ib_wq_init_attr *init_attr,
2476 struct ib_udata *udata);
2477 int (*destroy_wq)(struct ib_wq *wq);
2478 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2479 u32 wq_attr_mask, struct ib_udata *udata);
2480 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2481 struct ib_device *device,
2482 struct ib_rwq_ind_table_init_attr *init_attr,
2483 struct ib_udata *udata);
2484 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2485 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2486 struct ib_ucontext *context,
2487 struct ib_dm_alloc_attr *attr,
2488 struct uverbs_attr_bundle *attrs);
2489 int (*dealloc_dm)(struct ib_dm *dm);
2490 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2491 struct ib_dm_mr_attr *attr,
2492 struct uverbs_attr_bundle *attrs);
2493 struct ib_counters *(*create_counters)(
2494 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2495 int (*destroy_counters)(struct ib_counters *counters);
2496 int (*read_counters)(struct ib_counters *counters,
2497 struct ib_counters_read_attr *counters_read_attr,
2498 struct uverbs_attr_bundle *attrs);
2499 /**
2500 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2501 * driver initialized data. The struct is kfree()'ed by the sysfs
2502 * core when the device is removed. A lifespan of -1 in the return
2503 * struct tells the core to set a default lifespan.
2504 */
2505 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2506 u8 port_num);
2507 /**
2508 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2509 * @index - The index in the value array we wish to have updated, or
2510 * num_counters if we want all stats updated
2511 * Return codes -
2512 * < 0 - Error, no counters updated
2513 * index - Updated the single counter pointed to by index
2514 * num_counters - Updated all counters (will reset the timestamp
2515 * and prevent further calls for lifespan milliseconds)
2516 * Drivers are allowed to update all counters in leiu of just the
2517 * one given in index at their option
2518 */
2519 int (*get_hw_stats)(struct ib_device *device,
2520 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2521 /*
2522 * This function is called once for each port when a ib device is
2523 * registered.
2524 */
2525 int (*init_port)(struct ib_device *device, u8 port_num,
2526 struct kobject *port_sysfs);
02da3750
LR
2527 /**
2528 * Allows rdma drivers to add their own restrack attributes.
2529 */
2530 int (*fill_res_entry)(struct sk_buff *msg,
2531 struct rdma_restrack_entry *entry);
21a428a0
LR
2532
2533 DECLARE_RDMA_OBJ_SIZE(ib_pd);
521ed0d9
KH
2534};
2535
1da177e4 2536struct ib_device {
0957c29f
BVA
2537 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2538 struct device *dma_device;
3023a1e9 2539 struct ib_device_ops ops;
1da177e4
LT
2540 char name[IB_DEVICE_NAME_MAX];
2541
2542 struct list_head event_handler_list;
2543 spinlock_t event_handler_lock;
2544
0df91bb6 2545 struct xarray client_data;
1da177e4
LT
2546
2547 struct ib_cache cache;
7738613e
IW
2548 /**
2549 * port_immutable is indexed by port number
2550 */
2551 struct ib_port_immutable *port_immutable;
1da177e4 2552
f4fd0b22
MT
2553 int num_comp_vectors;
2554
d291f1a6
DJ
2555 struct ib_port_pkey_list *port_pkey_list;
2556
07ebafba
TT
2557 struct iw_cm_verbs *iwcm;
2558
e2773c06 2559 struct module *owner;
f4e91eb4 2560 struct device dev;
d4122f5a
PP
2561 /* First group for device attributes,
2562 * Second group for driver provided attributes (optional).
2563 * It is NULL terminated array.
2564 */
2565 const struct attribute_group *groups[3];
adee9f3f 2566
1ae4cfa0 2567 struct kobject *ports_kobj;
1da177e4
LT
2568 struct list_head port_list;
2569
274c0891 2570 int uverbs_abi_ver;
17a55f79 2571 u64 uverbs_cmd_mask;
f21519b2 2572 u64 uverbs_ex_cmd_mask;
274c0891 2573
bd99fdea 2574 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2575 __be64 node_guid;
96f15c03 2576 u32 local_dma_lkey;
4139032b 2577 u16 is_switch:1;
6780c4fa
GP
2578 /* Indicates kernel verbs support, should not be used in drivers */
2579 u16 kverbs_provider:1;
1da177e4
LT
2580 u8 node_type;
2581 u8 phys_port_cnt;
3e153a93 2582 struct ib_device_attr attrs;
b40f4757
CL
2583 struct attribute_group *hw_stats_ag;
2584 struct rdma_hw_stats *hw_stats;
7738613e 2585
43579b5f
PP
2586#ifdef CONFIG_CGROUP_RDMA
2587 struct rdmacg_device cg_device;
2588#endif
2589
ecc82c53 2590 u32 index;
02d8883f
LR
2591 /*
2592 * Implementation details of the RDMA core, don't use in drivers
2593 */
2594 struct rdma_restrack_root res;
ecc82c53 2595
0cbf432d 2596 const struct uapi_definition *driver_def;
0ede73bc 2597 enum rdma_driver_id driver_id;
d79af724 2598
01b67117 2599 /*
d79af724
JG
2600 * Positive refcount indicates that the device is currently
2601 * registered and cannot be unregistered.
01b67117
PP
2602 */
2603 refcount_t refcount;
2604 struct completion unreg_completion;
1da177e4
LT
2605};
2606
2607struct ib_client {
e59178d8 2608 const char *name;
1da177e4 2609 void (*add) (struct ib_device *);
7c1eb45a 2610 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2611
9268f72d
YK
2612 /* Returns the net_dev belonging to this ib_client and matching the
2613 * given parameters.
2614 * @dev: An RDMA device that the net_dev use for communication.
2615 * @port: A physical port number on the RDMA device.
2616 * @pkey: P_Key that the net_dev uses if applicable.
2617 * @gid: A GID that the net_dev uses to communicate.
2618 * @addr: An IP address the net_dev is configured with.
2619 * @client_data: The device's client data set by ib_set_client_data().
2620 *
2621 * An ib_client that implements a net_dev on top of RDMA devices
2622 * (such as IP over IB) should implement this callback, allowing the
2623 * rdma_cm module to find the right net_dev for a given request.
2624 *
2625 * The caller is responsible for calling dev_put on the returned
2626 * netdev. */
2627 struct net_device *(*get_net_dev_by_params)(
2628 struct ib_device *dev,
2629 u8 port,
2630 u16 pkey,
2631 const union ib_gid *gid,
2632 const struct sockaddr *addr,
2633 void *client_data);
1da177e4 2634 struct list_head list;
e59178d8 2635 u32 client_id;
6780c4fa
GP
2636
2637 /* kverbs are not required by the client */
2638 u8 no_kverbs_req:1;
1da177e4
LT
2639};
2640
459cc69f
LR
2641struct ib_device *_ib_alloc_device(size_t size);
2642#define ib_alloc_device(drv_struct, member) \
2643 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2644 BUILD_BUG_ON_ZERO(offsetof( \
2645 struct drv_struct, member))), \
2646 struct drv_struct, member)
2647
1da177e4
LT
2648void ib_dealloc_device(struct ib_device *device);
2649
9abb0d1b 2650void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2651
ea4baf7f 2652int ib_register_device(struct ib_device *device, const char *name);
1da177e4
LT
2653void ib_unregister_device(struct ib_device *device);
2654
2655int ib_register_client (struct ib_client *client);
2656void ib_unregister_client(struct ib_client *client);
2657
0df91bb6
JG
2658/**
2659 * ib_get_client_data - Get IB client context
2660 * @device:Device to get context for
2661 * @client:Client to get context for
2662 *
2663 * ib_get_client_data() returns the client context data set with
2664 * ib_set_client_data(). This can only be called while the client is
2665 * registered to the device, once the ib_client remove() callback returns this
2666 * cannot be called.
2667 */
2668static inline void *ib_get_client_data(struct ib_device *device,
2669 struct ib_client *client)
2670{
2671 return xa_load(&device->client_data, client->client_id);
2672}
1da177e4
LT
2673void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2674 void *data);
521ed0d9
KH
2675void ib_set_device_ops(struct ib_device *device,
2676 const struct ib_device_ops *ops);
1da177e4 2677
5f9794dc
JG
2678#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2679int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2680 unsigned long pfn, unsigned long size, pgprot_t prot);
2681int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2682 struct vm_area_struct *vma, struct page *page,
2683 unsigned long size);
2684#else
2685static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2686 struct vm_area_struct *vma,
2687 unsigned long pfn, unsigned long size,
2688 pgprot_t prot)
2689{
2690 return -EINVAL;
2691}
2692static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2693 struct vm_area_struct *vma, struct page *page,
2694 unsigned long size)
2695{
2696 return -EINVAL;
2697}
2698#endif
2699
e2773c06
RD
2700static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2701{
2702 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2703}
2704
2705static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2706{
43c61165 2707 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2708}
2709
c66db311
MB
2710static inline bool ib_is_buffer_cleared(const void __user *p,
2711 size_t len)
301a721e 2712{
92d27ae6 2713 bool ret;
301a721e
MB
2714 u8 *buf;
2715
2716 if (len > USHRT_MAX)
2717 return false;
2718
92d27ae6
ME
2719 buf = memdup_user(p, len);
2720 if (IS_ERR(buf))
301a721e
MB
2721 return false;
2722
301a721e 2723 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2724 kfree(buf);
2725 return ret;
2726}
2727
c66db311
MB
2728static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2729 size_t offset,
2730 size_t len)
2731{
2732 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2733}
2734
1c77483e
YH
2735/**
2736 * ib_is_destroy_retryable - Check whether the uobject destruction
2737 * is retryable.
2738 * @ret: The initial destruction return code
2739 * @why: remove reason
2740 * @uobj: The uobject that is destroyed
2741 *
2742 * This function is a helper function that IB layer and low-level drivers
2743 * can use to consider whether the destruction of the given uobject is
2744 * retry-able.
2745 * It checks the original return code, if it wasn't success the destruction
2746 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2747 * the remove reason. (i.e. why).
2748 * Must be called with the object locked for destroy.
2749 */
2750static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2751 struct ib_uobject *uobj)
2752{
2753 return ret && (why == RDMA_REMOVE_DESTROY ||
2754 uobj->context->cleanup_retryable);
2755}
2756
2757/**
2758 * ib_destroy_usecnt - Called during destruction to check the usecnt
2759 * @usecnt: The usecnt atomic
2760 * @why: remove reason
2761 * @uobj: The uobject that is destroyed
2762 *
2763 * Non-zero usecnts will block destruction unless destruction was triggered by
2764 * a ucontext cleanup.
2765 */
2766static inline int ib_destroy_usecnt(atomic_t *usecnt,
2767 enum rdma_remove_reason why,
2768 struct ib_uobject *uobj)
2769{
2770 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2771 return -EBUSY;
2772 return 0;
2773}
2774
8a51866f
RD
2775/**
2776 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2777 * contains all required attributes and no attributes not allowed for
2778 * the given QP state transition.
2779 * @cur_state: Current QP state
2780 * @next_state: Next QP state
2781 * @type: QP type
2782 * @mask: Mask of supplied QP attributes
2783 *
2784 * This function is a helper function that a low-level driver's
2785 * modify_qp method can use to validate the consumer's input. It
2786 * checks that cur_state and next_state are valid QP states, that a
2787 * transition from cur_state to next_state is allowed by the IB spec,
2788 * and that the attribute mask supplied is allowed for the transition.
2789 */
19b1f540 2790bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2791 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2792
dcc9881e
LR
2793void ib_register_event_handler(struct ib_event_handler *event_handler);
2794void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2795void ib_dispatch_event(struct ib_event *event);
2796
1da177e4
LT
2797int ib_query_port(struct ib_device *device,
2798 u8 port_num, struct ib_port_attr *port_attr);
2799
a3f5adaf
EC
2800enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2801 u8 port_num);
2802
4139032b
HR
2803/**
2804 * rdma_cap_ib_switch - Check if the device is IB switch
2805 * @device: Device to check
2806 *
2807 * Device driver is responsible for setting is_switch bit on
2808 * in ib_device structure at init time.
2809 *
2810 * Return: true if the device is IB switch.
2811 */
2812static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2813{
2814 return device->is_switch;
2815}
2816
0cf18d77
IW
2817/**
2818 * rdma_start_port - Return the first valid port number for the device
2819 * specified
2820 *
2821 * @device: Device to be checked
2822 *
2823 * Return start port number
2824 */
2825static inline u8 rdma_start_port(const struct ib_device *device)
2826{
4139032b 2827 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2828}
2829
2830/**
2831 * rdma_end_port - Return the last valid port number for the device
2832 * specified
2833 *
2834 * @device: Device to be checked
2835 *
2836 * Return last port number
2837 */
2838static inline u8 rdma_end_port(const struct ib_device *device)
2839{
4139032b 2840 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2841}
2842
24dc831b
YS
2843static inline int rdma_is_port_valid(const struct ib_device *device,
2844 unsigned int port)
2845{
2846 return (port >= rdma_start_port(device) &&
2847 port <= rdma_end_port(device));
2848}
2849
b02289b3
AK
2850static inline bool rdma_is_grh_required(const struct ib_device *device,
2851 u8 port_num)
2852{
2853 return device->port_immutable[port_num].core_cap_flags &
2854 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2855}
2856
5ede9289 2857static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2858{
f9b22e35 2859 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2860}
2861
5ede9289 2862static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2863{
2864 return device->port_immutable[port_num].core_cap_flags &
2865 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2866}
2867
2868static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2869{
2870 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2871}
2872
2873static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2874{
f9b22e35 2875 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2876}
2877
5ede9289 2878static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2879{
f9b22e35 2880 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2881}
2882
5ede9289 2883static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2884{
7766a99f
MB
2885 return rdma_protocol_ib(device, port_num) ||
2886 rdma_protocol_roce(device, port_num);
de66be94
MW
2887}
2888
aa773bd4
OG
2889static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2890{
2891 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2892}
2893
ce1e055f
OG
2894static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2895{
2896 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2897}
2898
c757dea8 2899/**
296ec009 2900 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2901 * Management Datagrams.
296ec009
MW
2902 * @device: Device to check
2903 * @port_num: Port number to check
c757dea8 2904 *
296ec009
MW
2905 * Management Datagrams (MAD) are a required part of the InfiniBand
2906 * specification and are supported on all InfiniBand devices. A slightly
2907 * extended version are also supported on OPA interfaces.
c757dea8 2908 *
296ec009 2909 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2910 */
5ede9289 2911static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2912{
f9b22e35 2913 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2914}
2915
65995fee
IW
2916/**
2917 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2918 * Management Datagrams.
2919 * @device: Device to check
2920 * @port_num: Port number to check
2921 *
2922 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2923 * datagrams with their own versions. These OPA MADs share many but not all of
2924 * the characteristics of InfiniBand MADs.
2925 *
2926 * OPA MADs differ in the following ways:
2927 *
2928 * 1) MADs are variable size up to 2K
2929 * IBTA defined MADs remain fixed at 256 bytes
2930 * 2) OPA SMPs must carry valid PKeys
2931 * 3) OPA SMP packets are a different format
2932 *
2933 * Return: true if the port supports OPA MAD packet formats.
2934 */
2935static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2936{
2937 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2938 == RDMA_CORE_CAP_OPA_MAD;
2939}
2940
29541e3a 2941/**
296ec009
MW
2942 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2943 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2944 * @device: Device to check
2945 * @port_num: Port number to check
29541e3a 2946 *
296ec009
MW
2947 * Each InfiniBand node is required to provide a Subnet Management Agent
2948 * that the subnet manager can access. Prior to the fabric being fully
2949 * configured by the subnet manager, the SMA is accessed via a well known
2950 * interface called the Subnet Management Interface (SMI). This interface
2951 * uses directed route packets to communicate with the SM to get around the
2952 * chicken and egg problem of the SM needing to know what's on the fabric
2953 * in order to configure the fabric, and needing to configure the fabric in
2954 * order to send packets to the devices on the fabric. These directed
2955 * route packets do not need the fabric fully configured in order to reach
2956 * their destination. The SMI is the only method allowed to send
2957 * directed route packets on an InfiniBand fabric.
29541e3a 2958 *
296ec009 2959 * Return: true if the port provides an SMI.
29541e3a 2960 */
5ede9289 2961static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2962{
f9b22e35 2963 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2964}
2965
72219cea
MW
2966/**
2967 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2968 * Communication Manager.
296ec009
MW
2969 * @device: Device to check
2970 * @port_num: Port number to check
72219cea 2971 *
296ec009
MW
2972 * The InfiniBand Communication Manager is one of many pre-defined General
2973 * Service Agents (GSA) that are accessed via the General Service
2974 * Interface (GSI). It's role is to facilitate establishment of connections
2975 * between nodes as well as other management related tasks for established
2976 * connections.
72219cea 2977 *
296ec009
MW
2978 * Return: true if the port supports an IB CM (this does not guarantee that
2979 * a CM is actually running however).
72219cea 2980 */
5ede9289 2981static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2982{
f9b22e35 2983 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2984}
2985
04215330
MW
2986/**
2987 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2988 * Communication Manager.
296ec009
MW
2989 * @device: Device to check
2990 * @port_num: Port number to check
04215330 2991 *
296ec009
MW
2992 * Similar to above, but specific to iWARP connections which have a different
2993 * managment protocol than InfiniBand.
04215330 2994 *
296ec009
MW
2995 * Return: true if the port supports an iWARP CM (this does not guarantee that
2996 * a CM is actually running however).
04215330 2997 */
5ede9289 2998static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2999{
f9b22e35 3000 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
3001}
3002
fe53ba2f
MW
3003/**
3004 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3005 * Subnet Administration.
296ec009
MW
3006 * @device: Device to check
3007 * @port_num: Port number to check
fe53ba2f 3008 *
296ec009
MW
3009 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3010 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3011 * fabrics, devices should resolve routes to other hosts by contacting the
3012 * SA to query the proper route.
fe53ba2f 3013 *
296ec009
MW
3014 * Return: true if the port should act as a client to the fabric Subnet
3015 * Administration interface. This does not imply that the SA service is
3016 * running locally.
fe53ba2f 3017 */
5ede9289 3018static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3019{
f9b22e35 3020 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3021}
3022
a31ad3b0
MW
3023/**
3024 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3025 * Multicast.
296ec009
MW
3026 * @device: Device to check
3027 * @port_num: Port number to check
a31ad3b0 3028 *
296ec009
MW
3029 * InfiniBand multicast registration is more complex than normal IPv4 or
3030 * IPv6 multicast registration. Each Host Channel Adapter must register
3031 * with the Subnet Manager when it wishes to join a multicast group. It
3032 * should do so only once regardless of how many queue pairs it subscribes
3033 * to this group. And it should leave the group only after all queue pairs
3034 * attached to the group have been detached.
a31ad3b0 3035 *
296ec009
MW
3036 * Return: true if the port must undertake the additional adminstrative
3037 * overhead of registering/unregistering with the SM and tracking of the
3038 * total number of queue pairs attached to the multicast group.
a31ad3b0 3039 */
5ede9289 3040static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3041{
3042 return rdma_cap_ib_sa(device, port_num);
3043}
3044
30a74ef4
MW
3045/**
3046 * rdma_cap_af_ib - Check if the port of device has the capability
3047 * Native Infiniband Address.
296ec009
MW
3048 * @device: Device to check
3049 * @port_num: Port number to check
30a74ef4 3050 *
296ec009
MW
3051 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3052 * GID. RoCE uses a different mechanism, but still generates a GID via
3053 * a prescribed mechanism and port specific data.
30a74ef4 3054 *
296ec009
MW
3055 * Return: true if the port uses a GID address to identify devices on the
3056 * network.
30a74ef4 3057 */
5ede9289 3058static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3059{
f9b22e35 3060 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3061}
3062
227128fc
MW
3063/**
3064 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3065 * Ethernet Address Handle.
3066 * @device: Device to check
3067 * @port_num: Port number to check
227128fc 3068 *
296ec009
MW
3069 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3070 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3071 * port. Normally, packet headers are generated by the sending host
3072 * adapter, but when sending connectionless datagrams, we must manually
3073 * inject the proper headers for the fabric we are communicating over.
227128fc 3074 *
296ec009
MW
3075 * Return: true if we are running as a RoCE port and must force the
3076 * addition of a Global Route Header built from our Ethernet Address
3077 * Handle into our header list for connectionless packets.
227128fc 3078 */
5ede9289 3079static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3080{
f9b22e35 3081 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3082}
3083
94d595c5
DC
3084/**
3085 * rdma_cap_opa_ah - Check if the port of device supports
3086 * OPA Address handles
3087 * @device: Device to check
3088 * @port_num: Port number to check
3089 *
3090 * Return: true if we are running on an OPA device which supports
3091 * the extended OPA addressing.
3092 */
3093static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3094{
3095 return (device->port_immutable[port_num].core_cap_flags &
3096 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3097}
3098
337877a4
IW
3099/**
3100 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3101 *
3102 * @device: Device
3103 * @port_num: Port number
3104 *
3105 * This MAD size includes the MAD headers and MAD payload. No other headers
3106 * are included.
3107 *
3108 * Return the max MAD size required by the Port. Will return 0 if the port
3109 * does not support MADs
3110 */
3111static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3112{
3113 return device->port_immutable[port_num].max_mad_size;
3114}
3115
03db3a2d
MB
3116/**
3117 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3118 * @device: Device to check
3119 * @port_num: Port number to check
3120 *
3121 * RoCE GID table mechanism manages the various GIDs for a device.
3122 *
3123 * NOTE: if allocating the port's GID table has failed, this call will still
3124 * return true, but any RoCE GID table API will fail.
3125 *
3126 * Return: true if the port uses RoCE GID table mechanism in order to manage
3127 * its GIDs.
3128 */
3129static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3130 u8 port_num)
3131{
3132 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3133 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3134}
3135
002516ed
CH
3136/*
3137 * Check if the device supports READ W/ INVALIDATE.
3138 */
3139static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3140{
3141 /*
3142 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3143 * has support for it yet.
3144 */
3145 return rdma_protocol_iwarp(dev, port_num);
3146}
3147
50174a7f
EC
3148int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3149 int state);
3150int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3151 struct ifla_vf_info *info);
3152int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3153 struct ifla_vf_stats *stats);
3154int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3155 int type);
3156
1da177e4
LT
3157int ib_query_pkey(struct ib_device *device,
3158 u8 port_num, u16 index, u16 *pkey);
3159
3160int ib_modify_device(struct ib_device *device,
3161 int device_modify_mask,
3162 struct ib_device_modify *device_modify);
3163
3164int ib_modify_port(struct ib_device *device,
3165 u8 port_num, int port_modify_mask,
3166 struct ib_port_modify *port_modify);
3167
5eb620c8 3168int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3169 u8 *port_num, u16 *index);
5eb620c8
YE
3170
3171int ib_find_pkey(struct ib_device *device,
3172 u8 port_num, u16 pkey, u16 *index);
3173
ed082d36
CH
3174enum ib_pd_flags {
3175 /*
3176 * Create a memory registration for all memory in the system and place
3177 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3178 * ULPs to avoid the overhead of dynamic MRs.
3179 *
3180 * This flag is generally considered unsafe and must only be used in
3181 * extremly trusted environments. Every use of it will log a warning
3182 * in the kernel log.
3183 */
3184 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3185};
1da177e4 3186
ed082d36
CH
3187struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3188 const char *caller);
3189#define ib_alloc_pd(device, flags) \
e4496447 3190 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
7dd78647 3191void ib_dealloc_pd(struct ib_pd *pd);
1da177e4 3192
b090c4e3
GP
3193enum rdma_create_ah_flags {
3194 /* In a sleepable context */
3195 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3196};
3197
1da177e4 3198/**
0a18cfe4 3199 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3200 * @pd: The protection domain associated with the address handle.
3201 * @ah_attr: The attributes of the address vector.
b090c4e3 3202 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3203 *
3204 * The address handle is used to reference a local or global destination
3205 * in all UD QP post sends.
3206 */
b090c4e3
GP
3207struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3208 u32 flags);
1da177e4 3209
5cda6587
PP
3210/**
3211 * rdma_create_user_ah - Creates an address handle for the given address vector.
3212 * It resolves destination mac address for ah attribute of RoCE type.
3213 * @pd: The protection domain associated with the address handle.
3214 * @ah_attr: The attributes of the address vector.
3215 * @udata: pointer to user's input output buffer information need by
3216 * provider driver.
3217 *
3218 * It returns 0 on success and returns appropriate error code on error.
3219 * The address handle is used to reference a local or global destination
3220 * in all UD QP post sends.
3221 */
3222struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3223 struct rdma_ah_attr *ah_attr,
3224 struct ib_udata *udata);
850d8fd7
MS
3225/**
3226 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3227 * work completion.
3228 * @hdr: the L3 header to parse
3229 * @net_type: type of header to parse
3230 * @sgid: place to store source gid
3231 * @dgid: place to store destination gid
3232 */
3233int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3234 enum rdma_network_type net_type,
3235 union ib_gid *sgid, union ib_gid *dgid);
3236
3237/**
3238 * ib_get_rdma_header_version - Get the header version
3239 * @hdr: the L3 header to parse
3240 */
3241int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3242
4e00d694 3243/**
f6bdb142 3244 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3245 * work completion.
3246 * @device: Device on which the received message arrived.
3247 * @port_num: Port on which the received message arrived.
3248 * @wc: Work completion associated with the received message.
3249 * @grh: References the received global route header. This parameter is
3250 * ignored unless the work completion indicates that the GRH is valid.
3251 * @ah_attr: Returned attributes that can be used when creating an address
3252 * handle for replying to the message.
b7403217
PP
3253 * When ib_init_ah_attr_from_wc() returns success,
3254 * (a) for IB link layer it optionally contains a reference to SGID attribute
3255 * when GRH is present for IB link layer.
3256 * (b) for RoCE link layer it contains a reference to SGID attribute.
3257 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3258 * attributes which are initialized using ib_init_ah_attr_from_wc().
3259 *
4e00d694 3260 */
f6bdb142
PP
3261int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3262 const struct ib_wc *wc, const struct ib_grh *grh,
3263 struct rdma_ah_attr *ah_attr);
4e00d694 3264
513789ed
HR
3265/**
3266 * ib_create_ah_from_wc - Creates an address handle associated with the
3267 * sender of the specified work completion.
3268 * @pd: The protection domain associated with the address handle.
3269 * @wc: Work completion information associated with a received message.
3270 * @grh: References the received global route header. This parameter is
3271 * ignored unless the work completion indicates that the GRH is valid.
3272 * @port_num: The outbound port number to associate with the address.
3273 *
3274 * The address handle is used to reference a local or global destination
3275 * in all UD QP post sends.
3276 */
73cdaaee
IW
3277struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3278 const struct ib_grh *grh, u8 port_num);
513789ed 3279
1da177e4 3280/**
67b985b6 3281 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3282 * handle.
3283 * @ah: The address handle to modify.
3284 * @ah_attr: The new address vector attributes to associate with the
3285 * address handle.
3286 */
67b985b6 3287int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3288
3289/**
bfbfd661 3290 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3291 * handle.
3292 * @ah: The address handle to query.
3293 * @ah_attr: The address vector attributes associated with the address
3294 * handle.
3295 */
bfbfd661 3296int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3297
2553ba21
GP
3298enum rdma_destroy_ah_flags {
3299 /* In a sleepable context */
3300 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3301};
3302
1da177e4 3303/**
36523159 3304 * rdma_destroy_ah - Destroys an address handle.
1da177e4 3305 * @ah: The address handle to destroy.
2553ba21 3306 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
1da177e4 3307 */
2553ba21 3308int rdma_destroy_ah(struct ib_ah *ah, u32 flags);
1da177e4 3309
d41fcc67
RD
3310/**
3311 * ib_create_srq - Creates a SRQ associated with the specified protection
3312 * domain.
3313 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3314 * @srq_init_attr: A list of initial attributes required to create the
3315 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3316 * the actual capabilities of the created SRQ.
d41fcc67
RD
3317 *
3318 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3319 * requested size of the SRQ, and set to the actual values allocated
3320 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3321 * will always be at least as large as the requested values.
3322 */
3323struct ib_srq *ib_create_srq(struct ib_pd *pd,
3324 struct ib_srq_init_attr *srq_init_attr);
3325
3326/**
3327 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3328 * @srq: The SRQ to modify.
3329 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3330 * the current values of selected SRQ attributes are returned.
3331 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3332 * are being modified.
3333 *
3334 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3335 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3336 * the number of receives queued drops below the limit.
3337 */
3338int ib_modify_srq(struct ib_srq *srq,
3339 struct ib_srq_attr *srq_attr,
3340 enum ib_srq_attr_mask srq_attr_mask);
3341
3342/**
3343 * ib_query_srq - Returns the attribute list and current values for the
3344 * specified SRQ.
3345 * @srq: The SRQ to query.
3346 * @srq_attr: The attributes of the specified SRQ.
3347 */
3348int ib_query_srq(struct ib_srq *srq,
3349 struct ib_srq_attr *srq_attr);
3350
3351/**
3352 * ib_destroy_srq - Destroys the specified SRQ.
3353 * @srq: The SRQ to destroy.
3354 */
3355int ib_destroy_srq(struct ib_srq *srq);
3356
3357/**
3358 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3359 * @srq: The SRQ to post the work request on.
3360 * @recv_wr: A list of work requests to post on the receive queue.
3361 * @bad_recv_wr: On an immediate failure, this parameter will reference
3362 * the work request that failed to be posted on the QP.
3363 */
3364static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3365 const struct ib_recv_wr *recv_wr,
3366 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3367{
d34ac5cd 3368 const struct ib_recv_wr *dummy;
bb039a87 3369
3023a1e9
KH
3370 return srq->device->ops.post_srq_recv(srq, recv_wr,
3371 bad_recv_wr ? : &dummy);
d41fcc67
RD
3372}
3373
1da177e4
LT
3374/**
3375 * ib_create_qp - Creates a QP associated with the specified protection
3376 * domain.
3377 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3378 * @qp_init_attr: A list of initial attributes required to create the
3379 * QP. If QP creation succeeds, then the attributes are updated to
3380 * the actual capabilities of the created QP.
1da177e4
LT
3381 */
3382struct ib_qp *ib_create_qp(struct ib_pd *pd,
3383 struct ib_qp_init_attr *qp_init_attr);
3384
a512c2fb
PP
3385/**
3386 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3387 * @qp: The QP to modify.
3388 * @attr: On input, specifies the QP attributes to modify. On output,
3389 * the current values of selected QP attributes are returned.
3390 * @attr_mask: A bit-mask used to specify which attributes of the QP
3391 * are being modified.
3392 * @udata: pointer to user's input output buffer information
3393 * are being modified.
3394 * It returns 0 on success and returns appropriate error code on error.
3395 */
3396int ib_modify_qp_with_udata(struct ib_qp *qp,
3397 struct ib_qp_attr *attr,
3398 int attr_mask,
3399 struct ib_udata *udata);
3400
1da177e4
LT
3401/**
3402 * ib_modify_qp - Modifies the attributes for the specified QP and then
3403 * transitions the QP to the given state.
3404 * @qp: The QP to modify.
3405 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3406 * the current values of selected QP attributes are returned.
3407 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3408 * are being modified.
3409 */
3410int ib_modify_qp(struct ib_qp *qp,
3411 struct ib_qp_attr *qp_attr,
3412 int qp_attr_mask);
3413
3414/**
3415 * ib_query_qp - Returns the attribute list and current values for the
3416 * specified QP.
3417 * @qp: The QP to query.
3418 * @qp_attr: The attributes of the specified QP.
3419 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3420 * @qp_init_attr: Additional attributes of the selected QP.
3421 *
3422 * The qp_attr_mask may be used to limit the query to gathering only the
3423 * selected attributes.
3424 */
3425int ib_query_qp(struct ib_qp *qp,
3426 struct ib_qp_attr *qp_attr,
3427 int qp_attr_mask,
3428 struct ib_qp_init_attr *qp_init_attr);
3429
3430/**
3431 * ib_destroy_qp - Destroys the specified QP.
3432 * @qp: The QP to destroy.
3433 */
3434int ib_destroy_qp(struct ib_qp *qp);
3435
d3d72d90 3436/**
0e0ec7e0
SH
3437 * ib_open_qp - Obtain a reference to an existing sharable QP.
3438 * @xrcd - XRC domain
3439 * @qp_open_attr: Attributes identifying the QP to open.
3440 *
3441 * Returns a reference to a sharable QP.
3442 */
3443struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3444 struct ib_qp_open_attr *qp_open_attr);
3445
3446/**
3447 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3448 * @qp: The QP handle to release
3449 *
0e0ec7e0
SH
3450 * The opened QP handle is released by the caller. The underlying
3451 * shared QP is not destroyed until all internal references are released.
d3d72d90 3452 */
0e0ec7e0 3453int ib_close_qp(struct ib_qp *qp);
d3d72d90 3454
1da177e4
LT
3455/**
3456 * ib_post_send - Posts a list of work requests to the send queue of
3457 * the specified QP.
3458 * @qp: The QP to post the work request on.
3459 * @send_wr: A list of work requests to post on the send queue.
3460 * @bad_send_wr: On an immediate failure, this parameter will reference
3461 * the work request that failed to be posted on the QP.
55464d46
BVA
3462 *
3463 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3464 * error is returned, the QP state shall not be affected,
3465 * ib_post_send() will return an immediate error after queueing any
3466 * earlier work requests in the list.
1da177e4
LT
3467 */
3468static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3469 const struct ib_send_wr *send_wr,
3470 const struct ib_send_wr **bad_send_wr)
1da177e4 3471{
d34ac5cd 3472 const struct ib_send_wr *dummy;
bb039a87 3473
3023a1e9 3474 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3475}
3476
3477/**
3478 * ib_post_recv - Posts a list of work requests to the receive queue of
3479 * the specified QP.
3480 * @qp: The QP to post the work request on.
3481 * @recv_wr: A list of work requests to post on the receive queue.
3482 * @bad_recv_wr: On an immediate failure, this parameter will reference
3483 * the work request that failed to be posted on the QP.
3484 */
3485static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3486 const struct ib_recv_wr *recv_wr,
3487 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3488{
d34ac5cd 3489 const struct ib_recv_wr *dummy;
bb039a87 3490
3023a1e9 3491 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3492}
3493
f66c8ba4
LR
3494struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3495 int nr_cqe, int comp_vector,
3496 enum ib_poll_context poll_ctx, const char *caller);
3497#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3498 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3499
14d3a3b2
CH
3500void ib_free_cq(struct ib_cq *cq);
3501int ib_process_cq_direct(struct ib_cq *cq, int budget);
3502
1da177e4
LT
3503/**
3504 * ib_create_cq - Creates a CQ on the specified device.
3505 * @device: The device on which to create the CQ.
3506 * @comp_handler: A user-specified callback that is invoked when a
3507 * completion event occurs on the CQ.
3508 * @event_handler: A user-specified callback that is invoked when an
3509 * asynchronous event not associated with a completion occurs on the CQ.
3510 * @cq_context: Context associated with the CQ returned to the user via
3511 * the associated completion and event handlers.
8e37210b 3512 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3513 *
3514 * Users can examine the cq structure to determine the actual CQ size.
3515 */
7350cdd0
BP
3516struct ib_cq *__ib_create_cq(struct ib_device *device,
3517 ib_comp_handler comp_handler,
3518 void (*event_handler)(struct ib_event *, void *),
3519 void *cq_context,
3520 const struct ib_cq_init_attr *cq_attr,
3521 const char *caller);
3522#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3523 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3524
3525/**
3526 * ib_resize_cq - Modifies the capacity of the CQ.
3527 * @cq: The CQ to resize.
3528 * @cqe: The minimum size of the CQ.
3529 *
3530 * Users can examine the cq structure to determine the actual CQ size.
3531 */
3532int ib_resize_cq(struct ib_cq *cq, int cqe);
3533
2dd57162 3534/**
4190b4e9 3535 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3536 * @cq: The CQ to modify.
3537 * @cq_count: number of CQEs that will trigger an event
3538 * @cq_period: max period of time in usec before triggering an event
3539 *
3540 */
4190b4e9 3541int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3542
1da177e4
LT
3543/**
3544 * ib_destroy_cq - Destroys the specified CQ.
3545 * @cq: The CQ to destroy.
3546 */
3547int ib_destroy_cq(struct ib_cq *cq);
3548
3549/**
3550 * ib_poll_cq - poll a CQ for completion(s)
3551 * @cq:the CQ being polled
3552 * @num_entries:maximum number of completions to return
3553 * @wc:array of at least @num_entries &struct ib_wc where completions
3554 * will be returned
3555 *
3556 * Poll a CQ for (possibly multiple) completions. If the return value
3557 * is < 0, an error occurred. If the return value is >= 0, it is the
3558 * number of completions returned. If the return value is
3559 * non-negative and < num_entries, then the CQ was emptied.
3560 */
3561static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3562 struct ib_wc *wc)
3563{
3023a1e9 3564 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3565}
3566
1da177e4
LT
3567/**
3568 * ib_req_notify_cq - Request completion notification on a CQ.
3569 * @cq: The CQ to generate an event for.
ed23a727
RD
3570 * @flags:
3571 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3572 * to request an event on the next solicited event or next work
3573 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3574 * may also be |ed in to request a hint about missed events, as
3575 * described below.
3576 *
3577 * Return Value:
3578 * < 0 means an error occurred while requesting notification
3579 * == 0 means notification was requested successfully, and if
3580 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3581 * were missed and it is safe to wait for another event. In
3582 * this case is it guaranteed that any work completions added
3583 * to the CQ since the last CQ poll will trigger a completion
3584 * notification event.
3585 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3586 * in. It means that the consumer must poll the CQ again to
3587 * make sure it is empty to avoid missing an event because of a
3588 * race between requesting notification and an entry being
3589 * added to the CQ. This return value means it is possible
3590 * (but not guaranteed) that a work completion has been added
3591 * to the CQ since the last poll without triggering a
3592 * completion notification event.
1da177e4
LT
3593 */
3594static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3595 enum ib_cq_notify_flags flags)
1da177e4 3596{
3023a1e9 3597 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
3598}
3599
3600/**
3601 * ib_req_ncomp_notif - Request completion notification when there are
3602 * at least the specified number of unreaped completions on the CQ.
3603 * @cq: The CQ to generate an event for.
3604 * @wc_cnt: The number of unreaped completions that should be on the
3605 * CQ before an event is generated.
3606 */
3607static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3608{
3023a1e9
KH
3609 return cq->device->ops.req_ncomp_notif ?
3610 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
3611 -ENOSYS;
3612}
3613
9b513090
RC
3614/**
3615 * ib_dma_mapping_error - check a DMA addr for error
3616 * @dev: The device for which the dma_addr was created
3617 * @dma_addr: The DMA address to check
3618 */
3619static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3620{
0957c29f 3621 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3622}
3623
3624/**
3625 * ib_dma_map_single - Map a kernel virtual address to DMA address
3626 * @dev: The device for which the dma_addr is to be created
3627 * @cpu_addr: The kernel virtual address
3628 * @size: The size of the region in bytes
3629 * @direction: The direction of the DMA
3630 */
3631static inline u64 ib_dma_map_single(struct ib_device *dev,
3632 void *cpu_addr, size_t size,
3633 enum dma_data_direction direction)
3634{
0957c29f 3635 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3636}
3637
3638/**
3639 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3640 * @dev: The device for which the DMA address was created
3641 * @addr: The DMA address
3642 * @size: The size of the region in bytes
3643 * @direction: The direction of the DMA
3644 */
3645static inline void ib_dma_unmap_single(struct ib_device *dev,
3646 u64 addr, size_t size,
3647 enum dma_data_direction direction)
3648{
0957c29f 3649 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3650}
3651
9b513090
RC
3652/**
3653 * ib_dma_map_page - Map a physical page to DMA address
3654 * @dev: The device for which the dma_addr is to be created
3655 * @page: The page to be mapped
3656 * @offset: The offset within the page
3657 * @size: The size of the region in bytes
3658 * @direction: The direction of the DMA
3659 */
3660static inline u64 ib_dma_map_page(struct ib_device *dev,
3661 struct page *page,
3662 unsigned long offset,
3663 size_t size,
3664 enum dma_data_direction direction)
3665{
0957c29f 3666 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3667}
3668
3669/**
3670 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3671 * @dev: The device for which the DMA address was created
3672 * @addr: The DMA address
3673 * @size: The size of the region in bytes
3674 * @direction: The direction of the DMA
3675 */
3676static inline void ib_dma_unmap_page(struct ib_device *dev,
3677 u64 addr, size_t size,
3678 enum dma_data_direction direction)
3679{
0957c29f 3680 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3681}
3682
3683/**
3684 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3685 * @dev: The device for which the DMA addresses are to be created
3686 * @sg: The array of scatter/gather entries
3687 * @nents: The number of scatter/gather entries
3688 * @direction: The direction of the DMA
3689 */
3690static inline int ib_dma_map_sg(struct ib_device *dev,
3691 struct scatterlist *sg, int nents,
3692 enum dma_data_direction direction)
3693{
0957c29f 3694 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3695}
3696
3697/**
3698 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3699 * @dev: The device for which the DMA addresses were created
3700 * @sg: The array of scatter/gather entries
3701 * @nents: The number of scatter/gather entries
3702 * @direction: The direction of the DMA
3703 */
3704static inline void ib_dma_unmap_sg(struct ib_device *dev,
3705 struct scatterlist *sg, int nents,
3706 enum dma_data_direction direction)
3707{
0957c29f 3708 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3709}
3710
cb9fbc5c
AK
3711static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3712 struct scatterlist *sg, int nents,
3713 enum dma_data_direction direction,
00085f1e 3714 unsigned long dma_attrs)
cb9fbc5c 3715{
0957c29f
BVA
3716 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3717 dma_attrs);
cb9fbc5c
AK
3718}
3719
3720static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3721 struct scatterlist *sg, int nents,
3722 enum dma_data_direction direction,
00085f1e 3723 unsigned long dma_attrs)
cb9fbc5c 3724{
0957c29f 3725 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3726}
9b513090 3727
0b5cb330
BVA
3728/**
3729 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
3730 * @dev: The device to query
3731 *
3732 * The returned value represents a size in bytes.
3733 */
3734static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
3735{
3736 struct device_dma_parameters *p = dev->dma_device->dma_parms;
3737
3738 return p ? p->max_segment_size : UINT_MAX;
3739}
3740
9b513090
RC
3741/**
3742 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3743 * @dev: The device for which the DMA address was created
3744 * @addr: The DMA address
3745 * @size: The size of the region in bytes
3746 * @dir: The direction of the DMA
3747 */
3748static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3749 u64 addr,
3750 size_t size,
3751 enum dma_data_direction dir)
3752{
0957c29f 3753 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3754}
3755
3756/**
3757 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3758 * @dev: The device for which the DMA address was created
3759 * @addr: The DMA address
3760 * @size: The size of the region in bytes
3761 * @dir: The direction of the DMA
3762 */
3763static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3764 u64 addr,
3765 size_t size,
3766 enum dma_data_direction dir)
3767{
0957c29f 3768 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3769}
3770
3771/**
3772 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3773 * @dev: The device for which the DMA address is requested
3774 * @size: The size of the region to allocate in bytes
3775 * @dma_handle: A pointer for returning the DMA address of the region
3776 * @flag: memory allocator flags
3777 */
3778static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3779 size_t size,
d43dbacf 3780 dma_addr_t *dma_handle,
9b513090
RC
3781 gfp_t flag)
3782{
0957c29f 3783 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3784}
3785
3786/**
3787 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3788 * @dev: The device for which the DMA addresses were allocated
3789 * @size: The size of the region
3790 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3791 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3792 */
3793static inline void ib_dma_free_coherent(struct ib_device *dev,
3794 size_t size, void *cpu_addr,
d43dbacf 3795 dma_addr_t dma_handle)
9b513090 3796{
0957c29f 3797 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3798}
3799
1da177e4
LT
3800/**
3801 * ib_dereg_mr - Deregisters a memory region and removes it from the
3802 * HCA translation table.
3803 * @mr: The memory region to deregister.
7083e42e
SM
3804 *
3805 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3806 */
3807int ib_dereg_mr(struct ib_mr *mr);
3808
9bee178b
SG
3809struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3810 enum ib_mr_type mr_type,
3811 u32 max_num_sg);
00f7ec36 3812
00f7ec36
SW
3813/**
3814 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3815 * R_Key and L_Key.
3816 * @mr - struct ib_mr pointer to be updated.
3817 * @newkey - new key to be used.
3818 */
3819static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3820{
3821 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3822 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3823}
3824
7083e42e
SM
3825/**
3826 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3827 * for calculating a new rkey for type 2 memory windows.
3828 * @rkey - the rkey to increment.
3829 */
3830static inline u32 ib_inc_rkey(u32 rkey)
3831{
3832 const u32 mask = 0x000000ff;
3833 return ((rkey + 1) & mask) | (rkey & ~mask);
3834}
3835
1da177e4
LT
3836/**
3837 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3838 * @pd: The protection domain associated with the unmapped region.
3839 * @mr_access_flags: Specifies the memory access rights.
3840 * @fmr_attr: Attributes of the unmapped region.
3841 *
3842 * A fast memory region must be mapped before it can be used as part of
3843 * a work request.
3844 */
3845struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3846 int mr_access_flags,
3847 struct ib_fmr_attr *fmr_attr);
3848
3849/**
3850 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3851 * @fmr: The fast memory region to associate with the pages.
3852 * @page_list: An array of physical pages to map to the fast memory region.
3853 * @list_len: The number of pages in page_list.
3854 * @iova: The I/O virtual address to use with the mapped region.
3855 */
3856static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3857 u64 *page_list, int list_len,
3858 u64 iova)
3859{
3023a1e9 3860 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
1da177e4
LT
3861}
3862
3863/**
3864 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3865 * @fmr_list: A linked list of fast memory regions to unmap.
3866 */
3867int ib_unmap_fmr(struct list_head *fmr_list);
3868
3869/**
3870 * ib_dealloc_fmr - Deallocates a fast memory region.
3871 * @fmr: The fast memory region to deallocate.
3872 */
3873int ib_dealloc_fmr(struct ib_fmr *fmr);
3874
3875/**
3876 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3877 * @qp: QP to attach to the multicast group. The QP must be type
3878 * IB_QPT_UD.
3879 * @gid: Multicast group GID.
3880 * @lid: Multicast group LID in host byte order.
3881 *
3882 * In order to send and receive multicast packets, subnet
3883 * administration must have created the multicast group and configured
3884 * the fabric appropriately. The port associated with the specified
3885 * QP must also be a member of the multicast group.
3886 */
3887int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3888
3889/**
3890 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3891 * @qp: QP to detach from the multicast group.
3892 * @gid: Multicast group GID.
3893 * @lid: Multicast group LID in host byte order.
3894 */
3895int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3896
59991f94
SH
3897/**
3898 * ib_alloc_xrcd - Allocates an XRC domain.
3899 * @device: The device on which to allocate the XRC domain.
f66c8ba4 3900 * @caller: Module name for kernel consumers
59991f94 3901 */
f66c8ba4
LR
3902struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3903#define ib_alloc_xrcd(device) \
3904 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
3905
3906/**
3907 * ib_dealloc_xrcd - Deallocates an XRC domain.
3908 * @xrcd: The XRC domain to deallocate.
3909 */
3910int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3911
1c636f80
EC
3912static inline int ib_check_mr_access(int flags)
3913{
3914 /*
3915 * Local write permission is required if remote write or
3916 * remote atomic permission is also requested.
3917 */
3918 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3919 !(flags & IB_ACCESS_LOCAL_WRITE))
3920 return -EINVAL;
3921
3922 return 0;
3923}
3924
08bb558a
JM
3925static inline bool ib_access_writable(int access_flags)
3926{
3927 /*
3928 * We have writable memory backing the MR if any of the following
3929 * access flags are set. "Local write" and "remote write" obviously
3930 * require write access. "Remote atomic" can do things like fetch and
3931 * add, which will modify memory, and "MW bind" can change permissions
3932 * by binding a window.
3933 */
3934 return access_flags &
3935 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3936 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3937}
3938
1b01d335
SG
3939/**
3940 * ib_check_mr_status: lightweight check of MR status.
3941 * This routine may provide status checks on a selected
3942 * ib_mr. first use is for signature status check.
3943 *
3944 * @mr: A memory region.
3945 * @check_mask: Bitmask of which checks to perform from
3946 * ib_mr_status_check enumeration.
3947 * @mr_status: The container of relevant status checks.
3948 * failed checks will be indicated in the status bitmask
3949 * and the relevant info shall be in the error item.
3950 */
3951int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3952 struct ib_mr_status *mr_status);
3953
d79af724
JG
3954/**
3955 * ib_device_try_get: Hold a registration lock
3956 * device: The device to lock
3957 *
3958 * A device under an active registration lock cannot become unregistered. It
3959 * is only possible to obtain a registration lock on a device that is fully
3960 * registered, otherwise this function returns false.
3961 *
3962 * The registration lock is only necessary for actions which require the
3963 * device to still be registered. Uses that only require the device pointer to
3964 * be valid should use get_device(&ibdev->dev) to hold the memory.
3965 *
3966 */
3967static inline bool ib_device_try_get(struct ib_device *dev)
3968{
3969 return refcount_inc_not_zero(&dev->refcount);
3970}
3971
3972void ib_device_put(struct ib_device *device);
9268f72d
YK
3973struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3974 u16 pkey, const union ib_gid *gid,
3975 const struct sockaddr *addr);
5fd251c8
YH
3976struct ib_wq *ib_create_wq(struct ib_pd *pd,
3977 struct ib_wq_init_attr *init_attr);
3978int ib_destroy_wq(struct ib_wq *wq);
3979int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3980 u32 wq_attr_mask);
6d39786b
YH
3981struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3982 struct ib_rwq_ind_table_init_attr*
3983 wq_ind_table_init_attr);
3984int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3985
ff2ba993 3986int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3987 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3988
3989static inline int
ff2ba993 3990ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3991 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3992{
3993 int n;
3994
ff2ba993 3995 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3996 mr->iova = 0;
3997
3998 return n;
3999}
4000
ff2ba993 4001int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4002 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4003
765d6774
SW
4004void ib_drain_rq(struct ib_qp *qp);
4005void ib_drain_sq(struct ib_qp *qp);
4006void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4007
d4186194 4008int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4009
4010static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4011{
44c58487
DC
4012 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4013 return attr->roce.dmac;
4014 return NULL;
2224c47a
DC
4015}
4016
64b4646e 4017static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4018{
44c58487 4019 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4020 attr->ib.dlid = (u16)dlid;
4021 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4022 attr->opa.dlid = dlid;
2224c47a
DC
4023}
4024
64b4646e 4025static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4026{
44c58487
DC
4027 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4028 return attr->ib.dlid;
64b4646e
DC
4029 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4030 return attr->opa.dlid;
44c58487 4031 return 0;
2224c47a
DC
4032}
4033
4034static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4035{
4036 attr->sl = sl;
4037}
4038
4039static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4040{
4041 return attr->sl;
4042}
4043
4044static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4045 u8 src_path_bits)
4046{
44c58487
DC
4047 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4048 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4049 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4050 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4051}
4052
4053static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4054{
44c58487
DC
4055 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4056 return attr->ib.src_path_bits;
64b4646e
DC
4057 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4058 return attr->opa.src_path_bits;
44c58487 4059 return 0;
2224c47a
DC
4060}
4061
d98bb7f7
DH
4062static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4063 bool make_grd)
4064{
4065 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4066 attr->opa.make_grd = make_grd;
4067}
4068
4069static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4070{
4071 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4072 return attr->opa.make_grd;
4073 return false;
4074}
4075
2224c47a
DC
4076static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4077{
4078 attr->port_num = port_num;
4079}
4080
4081static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4082{
4083 return attr->port_num;
4084}
4085
4086static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4087 u8 static_rate)
4088{
4089 attr->static_rate = static_rate;
4090}
4091
4092static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4093{
4094 return attr->static_rate;
4095}
4096
4097static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4098 enum ib_ah_flags flag)
4099{
4100 attr->ah_flags = flag;
4101}
4102
4103static inline enum ib_ah_flags
4104 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4105{
4106 return attr->ah_flags;
4107}
4108
4109static inline const struct ib_global_route
4110 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4111{
4112 return &attr->grh;
4113}
4114
4115/*To retrieve and modify the grh */
4116static inline struct ib_global_route
4117 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4118{
4119 return &attr->grh;
4120}
4121
4122static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4123{
4124 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4125
4126 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4127}
4128
4129static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4130 __be64 prefix)
4131{
4132 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4133
4134 grh->dgid.global.subnet_prefix = prefix;
4135}
4136
4137static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4138 __be64 if_id)
4139{
4140 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4141
4142 grh->dgid.global.interface_id = if_id;
4143}
4144
4145static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4146 union ib_gid *dgid, u32 flow_label,
4147 u8 sgid_index, u8 hop_limit,
4148 u8 traffic_class)
4149{
4150 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4151
4152 attr->ah_flags = IB_AH_GRH;
4153 if (dgid)
4154 grh->dgid = *dgid;
4155 grh->flow_label = flow_label;
4156 grh->sgid_index = sgid_index;
4157 grh->hop_limit = hop_limit;
4158 grh->traffic_class = traffic_class;
8d9ec9ad 4159 grh->sgid_attr = NULL;
2224c47a 4160}
44c58487 4161
8d9ec9ad
JG
4162void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4163void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4164 u32 flow_label, u8 hop_limit, u8 traffic_class,
4165 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4166void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4167 const struct rdma_ah_attr *src);
4168void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4169 const struct rdma_ah_attr *new);
4170void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4171
87daac68
DH
4172/**
4173 * rdma_ah_find_type - Return address handle type.
4174 *
4175 * @dev: Device to be checked
4176 * @port_num: Port number
4177 */
44c58487 4178static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4179 u8 port_num)
44c58487 4180{
a6532e71 4181 if (rdma_protocol_roce(dev, port_num))
44c58487 4182 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4183 if (rdma_protocol_ib(dev, port_num)) {
4184 if (rdma_cap_opa_ah(dev, port_num))
4185 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4186 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4187 }
4188
4189 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4190}
7db20ecd 4191
62ede777
HD
4192/**
4193 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4194 * In the current implementation the only way to get
4195 * get the 32bit lid is from other sources for OPA.
4196 * For IB, lids will always be 16bits so cast the
4197 * value accordingly.
4198 *
4199 * @lid: A 32bit LID
4200 */
4201static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4202{
62ede777
HD
4203 WARN_ON_ONCE(lid & 0xFFFF0000);
4204 return (u16)lid;
7db20ecd
HD
4205}
4206
62ede777
HD
4207/**
4208 * ib_lid_be16 - Return lid in 16bit BE encoding.
4209 *
4210 * @lid: A 32bit LID
4211 */
4212static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4213{
62ede777
HD
4214 WARN_ON_ONCE(lid & 0xFFFF0000);
4215 return cpu_to_be16((u16)lid);
7db20ecd 4216}
32043830 4217
c66cd353
SG
4218/**
4219 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4220 * vector
4221 * @device: the rdma device
4222 * @comp_vector: index of completion vector
4223 *
4224 * Returns NULL on failure, otherwise a corresponding cpu map of the
4225 * completion vector (returns all-cpus map if the device driver doesn't
4226 * implement get_vector_affinity).
4227 */
4228static inline const struct cpumask *
4229ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4230{
4231 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4232 !device->ops.get_vector_affinity)
c66cd353
SG
4233 return NULL;
4234
3023a1e9 4235 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4236
4237}
4238
32f69e4b
DJ
4239/**
4240 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4241 * and add their gids, as needed, to the relevant RoCE devices.
4242 *
4243 * @device: the rdma device
4244 */
4245void rdma_roce_rescan_device(struct ib_device *ibdev);
4246
8313c10f 4247struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4248
b0ea0fa5 4249struct ib_ucontext *rdma_get_ucontext(struct ib_udata *udata);
15a1b4be
JG
4250
4251int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4252
4253struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4254 enum rdma_netdev_t type, const char *name,
4255 unsigned char name_assign_type,
4256 void (*setup)(struct net_device *));
5d6b0cb3
DD
4257
4258int rdma_init_netdev(struct ib_device *device, u8 port_num,
4259 enum rdma_netdev_t type, const char *name,
4260 unsigned char name_assign_type,
4261 void (*setup)(struct net_device *),
4262 struct net_device *netdev);
4263
d4122f5a
PP
4264/**
4265 * rdma_set_device_sysfs_group - Set device attributes group to have
4266 * driver specific sysfs entries at
4267 * for infiniband class.
4268 *
4269 * @device: device pointer for which attributes to be created
4270 * @group: Pointer to group which should be added when device
4271 * is registered with sysfs.
4272 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4273 * group per device to have sysfs attributes.
4274 *
4275 * NOTE: New drivers should not make use of this API; instead new device
4276 * parameter should be exposed via netlink command. This API and mechanism
4277 * exist only for existing drivers.
4278 */
4279static inline void
4280rdma_set_device_sysfs_group(struct ib_device *dev,
4281 const struct attribute_group *group)
4282{
4283 dev->groups[1] = group;
4284}
4285
54747231
PP
4286/**
4287 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4288 *
4289 * @device: device pointer for which ib_device pointer to retrieve
4290 *
4291 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4292 *
4293 */
4294static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4295{
4296 return container_of(device, struct ib_device, dev);
4297}
4298
4299/**
4300 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4301 * ib_device holder structure from device pointer.
4302 *
4303 * NOTE: New drivers should not make use of this API; This API is only for
4304 * existing drivers who have exposed sysfs entries using
4305 * rdma_set_device_sysfs_group().
4306 */
4307#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4308 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
1da177e4 4309#endif /* IB_VERBS_H */