]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
RDMA: Add NLDEV_GET_CHARDEV to allow char dev discovery and autoload
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
f6316032
LR
62#include <linux/irqflags.h>
63#include <linux/preempt.h>
ea6819e1 64#include <uapi/rdma/ib_user_verbs.h>
02d8883f 65#include <rdma/restrack.h>
0ede73bc 66#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 67#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 68
9abb0d1b
LR
69#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
70
b5231b01
JG
71struct ib_umem_odp;
72
f0626710 73extern struct workqueue_struct *ib_wq;
14d3a3b2 74extern struct workqueue_struct *ib_comp_wq;
f794809a 75extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 76
923abb9d
GP
77__printf(3, 4) __cold
78void ibdev_printk(const char *level, const struct ib_device *ibdev,
79 const char *format, ...);
80__printf(2, 3) __cold
81void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
82__printf(2, 3) __cold
83void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
84__printf(2, 3) __cold
85void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
86__printf(2, 3) __cold
87void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
88__printf(2, 3) __cold
89void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
90__printf(2, 3) __cold
91void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
92__printf(2, 3) __cold
93void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
94
95#if defined(CONFIG_DYNAMIC_DEBUG)
96#define ibdev_dbg(__dev, format, args...) \
97 dynamic_ibdev_dbg(__dev, format, ##args)
98#elif defined(DEBUG)
99#define ibdev_dbg(__dev, format, args...) \
100 ibdev_printk(KERN_DEBUG, __dev, format, ##args)
101#else
102__printf(2, 3) __cold
103static inline
104void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
105#endif
106
1da177e4
LT
107union ib_gid {
108 u8 raw[16];
109 struct {
97f52eb4
SH
110 __be64 subnet_prefix;
111 __be64 interface_id;
1da177e4
LT
112 } global;
113};
114
e26be1bf
MS
115extern union ib_gid zgid;
116
b39ffa1d
MB
117enum ib_gid_type {
118 /* If link layer is Ethernet, this is RoCE V1 */
119 IB_GID_TYPE_IB = 0,
120 IB_GID_TYPE_ROCE = 0,
7766a99f 121 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
122 IB_GID_TYPE_SIZE
123};
124
7ead4bcb 125#define ROCE_V2_UDP_DPORT 4791
03db3a2d 126struct ib_gid_attr {
943bd984 127 struct net_device __rcu *ndev;
598ff6ba 128 struct ib_device *device;
b150c386 129 union ib_gid gid;
598ff6ba
PP
130 enum ib_gid_type gid_type;
131 u16 index;
132 u8 port_num;
03db3a2d
MB
133};
134
a0c1b2a3
EC
135enum {
136 /* set the local administered indication */
137 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
138};
139
07ebafba
TT
140enum rdma_transport_type {
141 RDMA_TRANSPORT_IB,
180771a3 142 RDMA_TRANSPORT_IWARP,
248567f7 143 RDMA_TRANSPORT_USNIC,
f95be3d2
GP
144 RDMA_TRANSPORT_USNIC_UDP,
145 RDMA_TRANSPORT_UNSPECIFIED,
07ebafba
TT
146};
147
6b90a6d6
MW
148enum rdma_protocol_type {
149 RDMA_PROTOCOL_IB,
150 RDMA_PROTOCOL_IBOE,
151 RDMA_PROTOCOL_IWARP,
152 RDMA_PROTOCOL_USNIC_UDP
153};
154
8385fd84 155__attribute_const__ enum rdma_transport_type
5d60c111 156rdma_node_get_transport(unsigned int node_type);
07ebafba 157
c865f246
SK
158enum rdma_network_type {
159 RDMA_NETWORK_IB,
160 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
161 RDMA_NETWORK_IPV4,
162 RDMA_NETWORK_IPV6
163};
164
165static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
166{
167 if (network_type == RDMA_NETWORK_IPV4 ||
168 network_type == RDMA_NETWORK_IPV6)
169 return IB_GID_TYPE_ROCE_UDP_ENCAP;
170
171 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
172 return IB_GID_TYPE_IB;
173}
174
47ec3866
PP
175static inline enum rdma_network_type
176rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 177{
47ec3866 178 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
179 return RDMA_NETWORK_IB;
180
47ec3866 181 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
182 return RDMA_NETWORK_IPV4;
183 else
184 return RDMA_NETWORK_IPV6;
185}
186
a3f5adaf
EC
187enum rdma_link_layer {
188 IB_LINK_LAYER_UNSPECIFIED,
189 IB_LINK_LAYER_INFINIBAND,
190 IB_LINK_LAYER_ETHERNET,
191};
192
1da177e4 193enum ib_device_cap_flags {
7ca0bc53
LR
194 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
195 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
196 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
197 IB_DEVICE_RAW_MULTI = (1 << 3),
198 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
199 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
200 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
201 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
202 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 203 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
204 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
205 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
206 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
207 IB_DEVICE_SRQ_RESIZE = (1 << 13),
208 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
209
210 /*
211 * This device supports a per-device lkey or stag that can be
212 * used without performing a memory registration for the local
213 * memory. Note that ULPs should never check this flag, but
214 * instead of use the local_dma_lkey flag in the ib_pd structure,
215 * which will always contain a usable lkey.
216 */
7ca0bc53 217 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 218 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 219 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
220 /*
221 * Devices should set IB_DEVICE_UD_IP_SUM if they support
222 * insertion of UDP and TCP checksum on outgoing UD IPoIB
223 * messages and can verify the validity of checksum for
224 * incoming messages. Setting this flag implies that the
225 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
226 */
7ca0bc53
LR
227 IB_DEVICE_UD_IP_CSUM = (1 << 18),
228 IB_DEVICE_UD_TSO = (1 << 19),
229 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
230
231 /*
232 * This device supports the IB "base memory management extension",
233 * which includes support for fast registrations (IB_WR_REG_MR,
234 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
235 * also be set by any iWarp device which must support FRs to comply
236 * to the iWarp verbs spec. iWarp devices also support the
237 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
238 * stag.
239 */
7ca0bc53
LR
240 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
241 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
242 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
243 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
244 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 245 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 246 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
247 /*
248 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
249 * support execution of WQEs that involve synchronization
250 * of I/O operations with single completion queue managed
251 * by hardware.
252 */
78b57f95 253 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
254 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
255 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 256 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 257 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 258 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 259 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 260 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 261 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
262 /* The device supports padding incoming writes to cacheline. */
263 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 264 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
265};
266
267enum ib_signature_prot_cap {
268 IB_PROT_T10DIF_TYPE_1 = 1,
269 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
270 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
271};
272
273enum ib_signature_guard_cap {
274 IB_GUARD_T10DIF_CRC = 1,
275 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
276};
277
278enum ib_atomic_cap {
279 IB_ATOMIC_NONE,
280 IB_ATOMIC_HCA,
281 IB_ATOMIC_GLOB
282};
283
860f10a7 284enum ib_odp_general_cap_bits {
25bf14d6
AK
285 IB_ODP_SUPPORT = 1 << 0,
286 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
287};
288
289enum ib_odp_transport_cap_bits {
290 IB_ODP_SUPPORT_SEND = 1 << 0,
291 IB_ODP_SUPPORT_RECV = 1 << 1,
292 IB_ODP_SUPPORT_WRITE = 1 << 2,
293 IB_ODP_SUPPORT_READ = 1 << 3,
294 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 295 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
296};
297
298struct ib_odp_caps {
299 uint64_t general_caps;
300 struct {
301 uint32_t rc_odp_caps;
302 uint32_t uc_odp_caps;
303 uint32_t ud_odp_caps;
52a72e2a 304 uint32_t xrc_odp_caps;
860f10a7
SG
305 } per_transport_caps;
306};
307
ccf20562
YH
308struct ib_rss_caps {
309 /* Corresponding bit will be set if qp type from
310 * 'enum ib_qp_type' is supported, e.g.
311 * supported_qpts |= 1 << IB_QPT_UD
312 */
313 u32 supported_qpts;
314 u32 max_rwq_indirection_tables;
315 u32 max_rwq_indirection_table_size;
316};
317
6938fc1e
AK
318enum ib_tm_cap_flags {
319 /* Support tag matching on RC transport */
320 IB_TM_CAP_RC = 1 << 0,
321};
322
78b1beb0 323struct ib_tm_caps {
6938fc1e
AK
324 /* Max size of RNDV header */
325 u32 max_rndv_hdr_size;
326 /* Max number of entries in tag matching list */
327 u32 max_num_tags;
328 /* From enum ib_tm_cap_flags */
329 u32 flags;
330 /* Max number of outstanding list operations */
331 u32 max_ops;
332 /* Max number of SGE in tag matching entry */
333 u32 max_sge;
334};
335
bcf4c1ea
MB
336struct ib_cq_init_attr {
337 unsigned int cqe;
338 int comp_vector;
339 u32 flags;
340};
341
869ddcf8
YC
342enum ib_cq_attr_mask {
343 IB_CQ_MODERATE = 1 << 0,
344};
345
18bd9072
YC
346struct ib_cq_caps {
347 u16 max_cq_moderation_count;
348 u16 max_cq_moderation_period;
349};
350
be934cca
AL
351struct ib_dm_mr_attr {
352 u64 length;
353 u64 offset;
354 u32 access_flags;
355};
356
bee76d7a
AL
357struct ib_dm_alloc_attr {
358 u64 length;
359 u32 alignment;
360 u32 flags;
361};
362
1da177e4
LT
363struct ib_device_attr {
364 u64 fw_ver;
97f52eb4 365 __be64 sys_image_guid;
1da177e4
LT
366 u64 max_mr_size;
367 u64 page_size_cap;
368 u32 vendor_id;
369 u32 vendor_part_id;
370 u32 hw_ver;
371 int max_qp;
372 int max_qp_wr;
fb532d6a 373 u64 device_cap_flags;
33023fb8
SW
374 int max_send_sge;
375 int max_recv_sge;
1da177e4
LT
376 int max_sge_rd;
377 int max_cq;
378 int max_cqe;
379 int max_mr;
380 int max_pd;
381 int max_qp_rd_atom;
382 int max_ee_rd_atom;
383 int max_res_rd_atom;
384 int max_qp_init_rd_atom;
385 int max_ee_init_rd_atom;
386 enum ib_atomic_cap atomic_cap;
5e80ba8f 387 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
388 int max_ee;
389 int max_rdd;
390 int max_mw;
391 int max_raw_ipv6_qp;
392 int max_raw_ethy_qp;
393 int max_mcast_grp;
394 int max_mcast_qp_attach;
395 int max_total_mcast_qp_attach;
396 int max_ah;
397 int max_fmr;
398 int max_map_per_fmr;
399 int max_srq;
400 int max_srq_wr;
401 int max_srq_sge;
00f7ec36 402 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
403 u16 max_pkeys;
404 u8 local_ca_ack_delay;
1b01d335
SG
405 int sig_prot_cap;
406 int sig_guard_cap;
860f10a7 407 struct ib_odp_caps odp_caps;
24306dc6
MB
408 uint64_t timestamp_mask;
409 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
410 struct ib_rss_caps rss_caps;
411 u32 max_wq_type_rq;
ebaaee25 412 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 413 struct ib_tm_caps tm_caps;
18bd9072 414 struct ib_cq_caps cq_caps;
1d8eeb9f 415 u64 max_dm_size;
1da177e4
LT
416};
417
418enum ib_mtu {
419 IB_MTU_256 = 1,
420 IB_MTU_512 = 2,
421 IB_MTU_1024 = 3,
422 IB_MTU_2048 = 4,
423 IB_MTU_4096 = 5
424};
425
426static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
427{
428 switch (mtu) {
429 case IB_MTU_256: return 256;
430 case IB_MTU_512: return 512;
431 case IB_MTU_1024: return 1024;
432 case IB_MTU_2048: return 2048;
433 case IB_MTU_4096: return 4096;
434 default: return -1;
435 }
436}
437
d3f4aadd
AR
438static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
439{
440 if (mtu >= 4096)
441 return IB_MTU_4096;
442 else if (mtu >= 2048)
443 return IB_MTU_2048;
444 else if (mtu >= 1024)
445 return IB_MTU_1024;
446 else if (mtu >= 512)
447 return IB_MTU_512;
448 else
449 return IB_MTU_256;
450}
451
1da177e4
LT
452enum ib_port_state {
453 IB_PORT_NOP = 0,
454 IB_PORT_DOWN = 1,
455 IB_PORT_INIT = 2,
456 IB_PORT_ARMED = 3,
457 IB_PORT_ACTIVE = 4,
458 IB_PORT_ACTIVE_DEFER = 5
459};
460
1da177e4
LT
461enum ib_port_width {
462 IB_WIDTH_1X = 1,
dbabf685 463 IB_WIDTH_2X = 16,
1da177e4
LT
464 IB_WIDTH_4X = 2,
465 IB_WIDTH_8X = 4,
466 IB_WIDTH_12X = 8
467};
468
469static inline int ib_width_enum_to_int(enum ib_port_width width)
470{
471 switch (width) {
472 case IB_WIDTH_1X: return 1;
dbabf685 473 case IB_WIDTH_2X: return 2;
1da177e4
LT
474 case IB_WIDTH_4X: return 4;
475 case IB_WIDTH_8X: return 8;
476 case IB_WIDTH_12X: return 12;
477 default: return -1;
478 }
479}
480
2e96691c
OG
481enum ib_port_speed {
482 IB_SPEED_SDR = 1,
483 IB_SPEED_DDR = 2,
484 IB_SPEED_QDR = 4,
485 IB_SPEED_FDR10 = 8,
486 IB_SPEED_FDR = 16,
12113a35
NO
487 IB_SPEED_EDR = 32,
488 IB_SPEED_HDR = 64
2e96691c
OG
489};
490
b40f4757
CL
491/**
492 * struct rdma_hw_stats
e945130b
MB
493 * @lock - Mutex to protect parallel write access to lifespan and values
494 * of counters, which are 64bits and not guaranteeed to be written
495 * atomicaly on 32bits systems.
b40f4757
CL
496 * @timestamp - Used by the core code to track when the last update was
497 * @lifespan - Used by the core code to determine how old the counters
498 * should be before being updated again. Stored in jiffies, defaults
499 * to 10 milliseconds, drivers can override the default be specifying
500 * their own value during their allocation routine.
501 * @name - Array of pointers to static names used for the counters in
502 * directory.
503 * @num_counters - How many hardware counters there are. If name is
504 * shorter than this number, a kernel oops will result. Driver authors
505 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
506 * in their code to prevent this.
507 * @value - Array of u64 counters that are accessed by the sysfs code and
508 * filled in by the drivers get_stats routine
509 */
510struct rdma_hw_stats {
e945130b 511 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
512 unsigned long timestamp;
513 unsigned long lifespan;
514 const char * const *names;
515 int num_counters;
516 u64 value[];
7f624d02
SW
517};
518
b40f4757
CL
519#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
520/**
521 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
522 * for drivers.
523 * @names - Array of static const char *
524 * @num_counters - How many elements in array
525 * @lifespan - How many milliseconds between updates
526 */
527static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
528 const char * const *names, int num_counters,
529 unsigned long lifespan)
530{
531 struct rdma_hw_stats *stats;
532
533 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
534 GFP_KERNEL);
535 if (!stats)
536 return NULL;
537 stats->names = names;
538 stats->num_counters = num_counters;
539 stats->lifespan = msecs_to_jiffies(lifespan);
540
541 return stats;
542}
543
544
f9b22e35
IW
545/* Define bits for the various functionality this port needs to be supported by
546 * the core.
547 */
548/* Management 0x00000FFF */
549#define RDMA_CORE_CAP_IB_MAD 0x00000001
550#define RDMA_CORE_CAP_IB_SMI 0x00000002
551#define RDMA_CORE_CAP_IB_CM 0x00000004
552#define RDMA_CORE_CAP_IW_CM 0x00000008
553#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 554#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
555
556/* Address format 0x000FF000 */
557#define RDMA_CORE_CAP_AF_IB 0x00001000
558#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 559#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 560#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
561
562/* Protocol 0xFFF00000 */
563#define RDMA_CORE_CAP_PROT_IB 0x00100000
564#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
565#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 566#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 567#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 568#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 569
b02289b3
AK
570#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
571 | RDMA_CORE_CAP_PROT_ROCE \
572 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
573
f9b22e35
IW
574#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
575 | RDMA_CORE_CAP_IB_MAD \
576 | RDMA_CORE_CAP_IB_SMI \
577 | RDMA_CORE_CAP_IB_CM \
578 | RDMA_CORE_CAP_IB_SA \
579 | RDMA_CORE_CAP_AF_IB)
580#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
581 | RDMA_CORE_CAP_IB_MAD \
582 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
583 | RDMA_CORE_CAP_AF_IB \
584 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
585#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
586 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
587 | RDMA_CORE_CAP_IB_MAD \
588 | RDMA_CORE_CAP_IB_CM \
589 | RDMA_CORE_CAP_AF_IB \
590 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
591#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
592 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
593#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
594 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 595
aa773bd4
OG
596#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
597
ce1e055f
OG
598#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
599
1da177e4 600struct ib_port_attr {
fad61ad4 601 u64 subnet_prefix;
1da177e4
LT
602 enum ib_port_state state;
603 enum ib_mtu max_mtu;
604 enum ib_mtu active_mtu;
605 int gid_tbl_len;
2f944c0f
JG
606 unsigned int ip_gids:1;
607 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
608 u32 port_cap_flags;
609 u32 max_msg_sz;
610 u32 bad_pkey_cntr;
611 u32 qkey_viol_cntr;
612 u16 pkey_tbl_len;
db58540b 613 u32 sm_lid;
582faf31 614 u32 lid;
1da177e4
LT
615 u8 lmc;
616 u8 max_vl_num;
617 u8 sm_sl;
618 u8 subnet_timeout;
619 u8 init_type_reply;
620 u8 active_width;
621 u8 active_speed;
622 u8 phys_state;
1e8f43b7 623 u16 port_cap_flags2;
1da177e4
LT
624};
625
626enum ib_device_modify_flags {
c5bcbbb9
RD
627 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
628 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
629};
630
bd99fdea
YS
631#define IB_DEVICE_NODE_DESC_MAX 64
632
1da177e4
LT
633struct ib_device_modify {
634 u64 sys_image_guid;
bd99fdea 635 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
636};
637
638enum ib_port_modify_flags {
639 IB_PORT_SHUTDOWN = 1,
640 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
641 IB_PORT_RESET_QKEY_CNTR = (1<<3),
642 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
643};
644
645struct ib_port_modify {
646 u32 set_port_cap_mask;
647 u32 clr_port_cap_mask;
648 u8 init_type;
649};
650
651enum ib_event_type {
652 IB_EVENT_CQ_ERR,
653 IB_EVENT_QP_FATAL,
654 IB_EVENT_QP_REQ_ERR,
655 IB_EVENT_QP_ACCESS_ERR,
656 IB_EVENT_COMM_EST,
657 IB_EVENT_SQ_DRAINED,
658 IB_EVENT_PATH_MIG,
659 IB_EVENT_PATH_MIG_ERR,
660 IB_EVENT_DEVICE_FATAL,
661 IB_EVENT_PORT_ACTIVE,
662 IB_EVENT_PORT_ERR,
663 IB_EVENT_LID_CHANGE,
664 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
665 IB_EVENT_SM_CHANGE,
666 IB_EVENT_SRQ_ERR,
667 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 668 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
669 IB_EVENT_CLIENT_REREGISTER,
670 IB_EVENT_GID_CHANGE,
f213c052 671 IB_EVENT_WQ_FATAL,
1da177e4
LT
672};
673
db7489e0 674const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 675
1da177e4
LT
676struct ib_event {
677 struct ib_device *device;
678 union {
679 struct ib_cq *cq;
680 struct ib_qp *qp;
d41fcc67 681 struct ib_srq *srq;
f213c052 682 struct ib_wq *wq;
1da177e4
LT
683 u8 port_num;
684 } element;
685 enum ib_event_type event;
686};
687
688struct ib_event_handler {
689 struct ib_device *device;
690 void (*handler)(struct ib_event_handler *, struct ib_event *);
691 struct list_head list;
692};
693
694#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
695 do { \
696 (_ptr)->device = _device; \
697 (_ptr)->handler = _handler; \
698 INIT_LIST_HEAD(&(_ptr)->list); \
699 } while (0)
700
701struct ib_global_route {
8d9ec9ad 702 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
703 union ib_gid dgid;
704 u32 flow_label;
705 u8 sgid_index;
706 u8 hop_limit;
707 u8 traffic_class;
708};
709
513789ed 710struct ib_grh {
97f52eb4
SH
711 __be32 version_tclass_flow;
712 __be16 paylen;
513789ed
HR
713 u8 next_hdr;
714 u8 hop_limit;
715 union ib_gid sgid;
716 union ib_gid dgid;
717};
718
c865f246
SK
719union rdma_network_hdr {
720 struct ib_grh ibgrh;
721 struct {
722 /* The IB spec states that if it's IPv4, the header
723 * is located in the last 20 bytes of the header.
724 */
725 u8 reserved[20];
726 struct iphdr roce4grh;
727 };
728};
729
7dafbab3
DH
730#define IB_QPN_MASK 0xFFFFFF
731
1da177e4
LT
732enum {
733 IB_MULTICAST_QPN = 0xffffff
734};
735
f3a7c66b 736#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 737#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 738
1da177e4
LT
739enum ib_ah_flags {
740 IB_AH_GRH = 1
741};
742
bf6a9e31
JM
743enum ib_rate {
744 IB_RATE_PORT_CURRENT = 0,
745 IB_RATE_2_5_GBPS = 2,
746 IB_RATE_5_GBPS = 5,
747 IB_RATE_10_GBPS = 3,
748 IB_RATE_20_GBPS = 6,
749 IB_RATE_30_GBPS = 4,
750 IB_RATE_40_GBPS = 7,
751 IB_RATE_60_GBPS = 8,
752 IB_RATE_80_GBPS = 9,
71eeba16
MA
753 IB_RATE_120_GBPS = 10,
754 IB_RATE_14_GBPS = 11,
755 IB_RATE_56_GBPS = 12,
756 IB_RATE_112_GBPS = 13,
757 IB_RATE_168_GBPS = 14,
758 IB_RATE_25_GBPS = 15,
759 IB_RATE_100_GBPS = 16,
760 IB_RATE_200_GBPS = 17,
a5a5d199
MG
761 IB_RATE_300_GBPS = 18,
762 IB_RATE_28_GBPS = 19,
763 IB_RATE_50_GBPS = 20,
764 IB_RATE_400_GBPS = 21,
765 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
766};
767
768/**
769 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
770 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
771 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
772 * @rate: rate to convert.
773 */
8385fd84 774__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 775
71eeba16
MA
776/**
777 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
778 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
779 * @rate: rate to convert.
780 */
8385fd84 781__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 782
17cd3a2d
SG
783
784/**
9bee178b
SG
785 * enum ib_mr_type - memory region type
786 * @IB_MR_TYPE_MEM_REG: memory region that is used for
787 * normal registration
788 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
789 * signature operations (data-integrity
790 * capable regions)
f5aa9159
SG
791 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
792 * register any arbitrary sg lists (without
793 * the normal mr constraints - see
794 * ib_map_mr_sg)
17cd3a2d 795 */
9bee178b
SG
796enum ib_mr_type {
797 IB_MR_TYPE_MEM_REG,
798 IB_MR_TYPE_SIGNATURE,
f5aa9159 799 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
800};
801
1b01d335 802/**
78eda2bb
SG
803 * Signature types
804 * IB_SIG_TYPE_NONE: Unprotected.
805 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 806 */
78eda2bb
SG
807enum ib_signature_type {
808 IB_SIG_TYPE_NONE,
809 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
810};
811
812/**
813 * Signature T10-DIF block-guard types
814 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
815 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
816 */
817enum ib_t10_dif_bg_type {
818 IB_T10DIF_CRC,
819 IB_T10DIF_CSUM
820};
821
822/**
823 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
824 * domain.
1b01d335
SG
825 * @bg_type: T10-DIF block guard type (CRC|CSUM)
826 * @pi_interval: protection information interval.
827 * @bg: seed of guard computation.
828 * @app_tag: application tag of guard block
829 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
830 * @ref_remap: Indicate wethear the reftag increments each block
831 * @app_escape: Indicate to skip block check if apptag=0xffff
832 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
833 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
834 */
835struct ib_t10_dif_domain {
1b01d335
SG
836 enum ib_t10_dif_bg_type bg_type;
837 u16 pi_interval;
838 u16 bg;
839 u16 app_tag;
840 u32 ref_tag;
78eda2bb
SG
841 bool ref_remap;
842 bool app_escape;
843 bool ref_escape;
844 u16 apptag_check_mask;
1b01d335
SG
845};
846
847/**
848 * struct ib_sig_domain - Parameters for signature domain
849 * @sig_type: specific signauture type
850 * @sig: union of all signature domain attributes that may
851 * be used to set domain layout.
852 */
853struct ib_sig_domain {
854 enum ib_signature_type sig_type;
855 union {
856 struct ib_t10_dif_domain dif;
857 } sig;
858};
859
860/**
861 * struct ib_sig_attrs - Parameters for signature handover operation
862 * @check_mask: bitmask for signature byte check (8 bytes)
863 * @mem: memory domain layout desciptor.
864 * @wire: wire domain layout desciptor.
865 */
866struct ib_sig_attrs {
867 u8 check_mask;
868 struct ib_sig_domain mem;
869 struct ib_sig_domain wire;
870};
871
872enum ib_sig_err_type {
873 IB_SIG_BAD_GUARD,
874 IB_SIG_BAD_REFTAG,
875 IB_SIG_BAD_APPTAG,
876};
877
ca24da00
MG
878/**
879 * Signature check masks (8 bytes in total) according to the T10-PI standard:
880 * -------- -------- ------------
881 * | GUARD | APPTAG | REFTAG |
882 * | 2B | 2B | 4B |
883 * -------- -------- ------------
884 */
885enum {
886 IB_SIG_CHECK_GUARD = 0xc0,
887 IB_SIG_CHECK_APPTAG = 0x30,
888 IB_SIG_CHECK_REFTAG = 0x0f,
889};
890
1b01d335
SG
891/**
892 * struct ib_sig_err - signature error descriptor
893 */
894struct ib_sig_err {
895 enum ib_sig_err_type err_type;
896 u32 expected;
897 u32 actual;
898 u64 sig_err_offset;
899 u32 key;
900};
901
902enum ib_mr_status_check {
903 IB_MR_CHECK_SIG_STATUS = 1,
904};
905
906/**
907 * struct ib_mr_status - Memory region status container
908 *
909 * @fail_status: Bitmask of MR checks status. For each
910 * failed check a corresponding status bit is set.
911 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
912 * failure.
913 */
914struct ib_mr_status {
915 u32 fail_status;
916 struct ib_sig_err sig_err;
917};
918
bf6a9e31
JM
919/**
920 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
921 * enum.
922 * @mult: multiple to convert.
923 */
8385fd84 924__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 925
44c58487 926enum rdma_ah_attr_type {
87daac68 927 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
928 RDMA_AH_ATTR_TYPE_IB,
929 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 930 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
931};
932
933struct ib_ah_attr {
934 u16 dlid;
935 u8 src_path_bits;
936};
937
938struct roce_ah_attr {
939 u8 dmac[ETH_ALEN];
940};
941
64b4646e
DC
942struct opa_ah_attr {
943 u32 dlid;
944 u8 src_path_bits;
d98bb7f7 945 bool make_grd;
64b4646e
DC
946};
947
90898850 948struct rdma_ah_attr {
1da177e4 949 struct ib_global_route grh;
1da177e4 950 u8 sl;
1da177e4 951 u8 static_rate;
1da177e4 952 u8 port_num;
44c58487
DC
953 u8 ah_flags;
954 enum rdma_ah_attr_type type;
955 union {
956 struct ib_ah_attr ib;
957 struct roce_ah_attr roce;
64b4646e 958 struct opa_ah_attr opa;
44c58487 959 };
1da177e4
LT
960};
961
962enum ib_wc_status {
963 IB_WC_SUCCESS,
964 IB_WC_LOC_LEN_ERR,
965 IB_WC_LOC_QP_OP_ERR,
966 IB_WC_LOC_EEC_OP_ERR,
967 IB_WC_LOC_PROT_ERR,
968 IB_WC_WR_FLUSH_ERR,
969 IB_WC_MW_BIND_ERR,
970 IB_WC_BAD_RESP_ERR,
971 IB_WC_LOC_ACCESS_ERR,
972 IB_WC_REM_INV_REQ_ERR,
973 IB_WC_REM_ACCESS_ERR,
974 IB_WC_REM_OP_ERR,
975 IB_WC_RETRY_EXC_ERR,
976 IB_WC_RNR_RETRY_EXC_ERR,
977 IB_WC_LOC_RDD_VIOL_ERR,
978 IB_WC_REM_INV_RD_REQ_ERR,
979 IB_WC_REM_ABORT_ERR,
980 IB_WC_INV_EECN_ERR,
981 IB_WC_INV_EEC_STATE_ERR,
982 IB_WC_FATAL_ERR,
983 IB_WC_RESP_TIMEOUT_ERR,
984 IB_WC_GENERAL_ERR
985};
986
db7489e0 987const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 988
1da177e4
LT
989enum ib_wc_opcode {
990 IB_WC_SEND,
991 IB_WC_RDMA_WRITE,
992 IB_WC_RDMA_READ,
993 IB_WC_COMP_SWAP,
994 IB_WC_FETCH_ADD,
c93570f2 995 IB_WC_LSO,
00f7ec36 996 IB_WC_LOCAL_INV,
4c67e2bf 997 IB_WC_REG_MR,
5e80ba8f
VS
998 IB_WC_MASKED_COMP_SWAP,
999 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
1000/*
1001 * Set value of IB_WC_RECV so consumers can test if a completion is a
1002 * receive by testing (opcode & IB_WC_RECV).
1003 */
1004 IB_WC_RECV = 1 << 7,
1005 IB_WC_RECV_RDMA_WITH_IMM
1006};
1007
1008enum ib_wc_flags {
1009 IB_WC_GRH = 1,
00f7ec36
SW
1010 IB_WC_WITH_IMM = (1<<1),
1011 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 1012 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
1013 IB_WC_WITH_SMAC = (1<<4),
1014 IB_WC_WITH_VLAN = (1<<5),
c865f246 1015 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
1016};
1017
1018struct ib_wc {
14d3a3b2
CH
1019 union {
1020 u64 wr_id;
1021 struct ib_cqe *wr_cqe;
1022 };
1da177e4
LT
1023 enum ib_wc_status status;
1024 enum ib_wc_opcode opcode;
1025 u32 vendor_err;
1026 u32 byte_len;
062dbb69 1027 struct ib_qp *qp;
00f7ec36
SW
1028 union {
1029 __be32 imm_data;
1030 u32 invalidate_rkey;
1031 } ex;
1da177e4 1032 u32 src_qp;
cd2a6e7d 1033 u32 slid;
1da177e4
LT
1034 int wc_flags;
1035 u16 pkey_index;
1da177e4
LT
1036 u8 sl;
1037 u8 dlid_path_bits;
1038 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1039 u8 smac[ETH_ALEN];
1040 u16 vlan_id;
c865f246 1041 u8 network_hdr_type;
1da177e4
LT
1042};
1043
ed23a727
RD
1044enum ib_cq_notify_flags {
1045 IB_CQ_SOLICITED = 1 << 0,
1046 IB_CQ_NEXT_COMP = 1 << 1,
1047 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1048 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1049};
1050
96104eda 1051enum ib_srq_type {
418d5130 1052 IB_SRQT_BASIC,
9c2c8496
AK
1053 IB_SRQT_XRC,
1054 IB_SRQT_TM,
96104eda
SH
1055};
1056
1a56ff6d
AK
1057static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1058{
9c2c8496
AK
1059 return srq_type == IB_SRQT_XRC ||
1060 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1061}
1062
d41fcc67
RD
1063enum ib_srq_attr_mask {
1064 IB_SRQ_MAX_WR = 1 << 0,
1065 IB_SRQ_LIMIT = 1 << 1,
1066};
1067
1068struct ib_srq_attr {
1069 u32 max_wr;
1070 u32 max_sge;
1071 u32 srq_limit;
1072};
1073
1074struct ib_srq_init_attr {
1075 void (*event_handler)(struct ib_event *, void *);
1076 void *srq_context;
1077 struct ib_srq_attr attr;
96104eda 1078 enum ib_srq_type srq_type;
418d5130 1079
1a56ff6d
AK
1080 struct {
1081 struct ib_cq *cq;
1082 union {
1083 struct {
1084 struct ib_xrcd *xrcd;
1085 } xrc;
9c2c8496
AK
1086
1087 struct {
1088 u32 max_num_tags;
1089 } tag_matching;
1a56ff6d 1090 };
418d5130 1091 } ext;
d41fcc67
RD
1092};
1093
1da177e4
LT
1094struct ib_qp_cap {
1095 u32 max_send_wr;
1096 u32 max_recv_wr;
1097 u32 max_send_sge;
1098 u32 max_recv_sge;
1099 u32 max_inline_data;
a060b562
CH
1100
1101 /*
1102 * Maximum number of rdma_rw_ctx structures in flight at a time.
1103 * ib_create_qp() will calculate the right amount of neededed WRs
1104 * and MRs based on this.
1105 */
1106 u32 max_rdma_ctxs;
1da177e4
LT
1107};
1108
1109enum ib_sig_type {
1110 IB_SIGNAL_ALL_WR,
1111 IB_SIGNAL_REQ_WR
1112};
1113
1114enum ib_qp_type {
1115 /*
1116 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1117 * here (and in that order) since the MAD layer uses them as
1118 * indices into a 2-entry table.
1119 */
1120 IB_QPT_SMI,
1121 IB_QPT_GSI,
1122
1123 IB_QPT_RC,
1124 IB_QPT_UC,
1125 IB_QPT_UD,
1126 IB_QPT_RAW_IPV6,
b42b63cf 1127 IB_QPT_RAW_ETHERTYPE,
c938a616 1128 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1129 IB_QPT_XRC_INI = 9,
1130 IB_QPT_XRC_TGT,
0134f16b 1131 IB_QPT_MAX,
8011c1e3 1132 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1133 /* Reserve a range for qp types internal to the low level driver.
1134 * These qp types will not be visible at the IB core layer, so the
1135 * IB_QPT_MAX usages should not be affected in the core layer
1136 */
1137 IB_QPT_RESERVED1 = 0x1000,
1138 IB_QPT_RESERVED2,
1139 IB_QPT_RESERVED3,
1140 IB_QPT_RESERVED4,
1141 IB_QPT_RESERVED5,
1142 IB_QPT_RESERVED6,
1143 IB_QPT_RESERVED7,
1144 IB_QPT_RESERVED8,
1145 IB_QPT_RESERVED9,
1146 IB_QPT_RESERVED10,
1da177e4
LT
1147};
1148
b846f25a 1149enum ib_qp_create_flags {
47ee1b9f
RL
1150 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1151 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1152 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1153 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1154 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1155 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1156 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1157 /* FREE = 1 << 7, */
b531b909 1158 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1159 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1160 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1161 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1162 /* reserve bits 26-31 for low level drivers' internal use */
1163 IB_QP_CREATE_RESERVED_START = 1 << 26,
1164 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1165};
1166
73c40c61
YH
1167/*
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1170 */
1171
1da177e4 1172struct ib_qp_init_attr {
eb93c82e 1173 /* Consumer's event_handler callback must not block */
1da177e4 1174 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1175
1da177e4
LT
1176 void *qp_context;
1177 struct ib_cq *send_cq;
1178 struct ib_cq *recv_cq;
1179 struct ib_srq *srq;
b42b63cf 1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1181 struct ib_qp_cap cap;
1182 enum ib_sig_type sq_sig_type;
1183 enum ib_qp_type qp_type;
b56511c1 1184 u32 create_flags;
a060b562
CH
1185
1186 /*
1187 * Only needed for special QP types, or when using the RW API.
1188 */
1189 u8 port_num;
a9017e23 1190 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1191 u32 source_qpn;
1da177e4
LT
1192};
1193
0e0ec7e0
SH
1194struct ib_qp_open_attr {
1195 void (*event_handler)(struct ib_event *, void *);
1196 void *qp_context;
1197 u32 qp_num;
1198 enum ib_qp_type qp_type;
1199};
1200
1da177e4
LT
1201enum ib_rnr_timeout {
1202 IB_RNR_TIMER_655_36 = 0,
1203 IB_RNR_TIMER_000_01 = 1,
1204 IB_RNR_TIMER_000_02 = 2,
1205 IB_RNR_TIMER_000_03 = 3,
1206 IB_RNR_TIMER_000_04 = 4,
1207 IB_RNR_TIMER_000_06 = 5,
1208 IB_RNR_TIMER_000_08 = 6,
1209 IB_RNR_TIMER_000_12 = 7,
1210 IB_RNR_TIMER_000_16 = 8,
1211 IB_RNR_TIMER_000_24 = 9,
1212 IB_RNR_TIMER_000_32 = 10,
1213 IB_RNR_TIMER_000_48 = 11,
1214 IB_RNR_TIMER_000_64 = 12,
1215 IB_RNR_TIMER_000_96 = 13,
1216 IB_RNR_TIMER_001_28 = 14,
1217 IB_RNR_TIMER_001_92 = 15,
1218 IB_RNR_TIMER_002_56 = 16,
1219 IB_RNR_TIMER_003_84 = 17,
1220 IB_RNR_TIMER_005_12 = 18,
1221 IB_RNR_TIMER_007_68 = 19,
1222 IB_RNR_TIMER_010_24 = 20,
1223 IB_RNR_TIMER_015_36 = 21,
1224 IB_RNR_TIMER_020_48 = 22,
1225 IB_RNR_TIMER_030_72 = 23,
1226 IB_RNR_TIMER_040_96 = 24,
1227 IB_RNR_TIMER_061_44 = 25,
1228 IB_RNR_TIMER_081_92 = 26,
1229 IB_RNR_TIMER_122_88 = 27,
1230 IB_RNR_TIMER_163_84 = 28,
1231 IB_RNR_TIMER_245_76 = 29,
1232 IB_RNR_TIMER_327_68 = 30,
1233 IB_RNR_TIMER_491_52 = 31
1234};
1235
1236enum ib_qp_attr_mask {
1237 IB_QP_STATE = 1,
1238 IB_QP_CUR_STATE = (1<<1),
1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1240 IB_QP_ACCESS_FLAGS = (1<<3),
1241 IB_QP_PKEY_INDEX = (1<<4),
1242 IB_QP_PORT = (1<<5),
1243 IB_QP_QKEY = (1<<6),
1244 IB_QP_AV = (1<<7),
1245 IB_QP_PATH_MTU = (1<<8),
1246 IB_QP_TIMEOUT = (1<<9),
1247 IB_QP_RETRY_CNT = (1<<10),
1248 IB_QP_RNR_RETRY = (1<<11),
1249 IB_QP_RQ_PSN = (1<<12),
1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1251 IB_QP_ALT_PATH = (1<<14),
1252 IB_QP_MIN_RNR_TIMER = (1<<15),
1253 IB_QP_SQ_PSN = (1<<16),
1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1255 IB_QP_PATH_MIG_STATE = (1<<18),
1256 IB_QP_CAP = (1<<19),
dd5f03be 1257 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1258 IB_QP_RESERVED1 = (1<<21),
1259 IB_QP_RESERVED2 = (1<<22),
1260 IB_QP_RESERVED3 = (1<<23),
1261 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1262 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1263};
1264
1265enum ib_qp_state {
1266 IB_QPS_RESET,
1267 IB_QPS_INIT,
1268 IB_QPS_RTR,
1269 IB_QPS_RTS,
1270 IB_QPS_SQD,
1271 IB_QPS_SQE,
1272 IB_QPS_ERR
1273};
1274
1275enum ib_mig_state {
1276 IB_MIG_MIGRATED,
1277 IB_MIG_REARM,
1278 IB_MIG_ARMED
1279};
1280
7083e42e
SM
1281enum ib_mw_type {
1282 IB_MW_TYPE_1 = 1,
1283 IB_MW_TYPE_2 = 2
1284};
1285
1da177e4
LT
1286struct ib_qp_attr {
1287 enum ib_qp_state qp_state;
1288 enum ib_qp_state cur_qp_state;
1289 enum ib_mtu path_mtu;
1290 enum ib_mig_state path_mig_state;
1291 u32 qkey;
1292 u32 rq_psn;
1293 u32 sq_psn;
1294 u32 dest_qp_num;
1295 int qp_access_flags;
1296 struct ib_qp_cap cap;
90898850
DC
1297 struct rdma_ah_attr ah_attr;
1298 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1299 u16 pkey_index;
1300 u16 alt_pkey_index;
1301 u8 en_sqd_async_notify;
1302 u8 sq_draining;
1303 u8 max_rd_atomic;
1304 u8 max_dest_rd_atomic;
1305 u8 min_rnr_timer;
1306 u8 port_num;
1307 u8 timeout;
1308 u8 retry_cnt;
1309 u8 rnr_retry;
1310 u8 alt_port_num;
1311 u8 alt_timeout;
528e5a1b 1312 u32 rate_limit;
1da177e4
LT
1313};
1314
1315enum ib_wr_opcode {
9a59739b
JG
1316 /* These are shared with userspace */
1317 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1318 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1319 IB_WR_SEND = IB_UVERBS_WR_SEND,
1320 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1321 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1322 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1323 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1324 IB_WR_LSO = IB_UVERBS_WR_TSO,
1325 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1326 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1327 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1328 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1329 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1330 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1331 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1332
1333 /* These are kernel only and can not be issued by userspace */
1334 IB_WR_REG_MR = 0x20,
1b01d335 1335 IB_WR_REG_SIG_MR,
9a59739b 1336
0134f16b
JM
1337 /* reserve values for low level drivers' internal use.
1338 * These values will not be used at all in the ib core layer.
1339 */
1340 IB_WR_RESERVED1 = 0xf0,
1341 IB_WR_RESERVED2,
1342 IB_WR_RESERVED3,
1343 IB_WR_RESERVED4,
1344 IB_WR_RESERVED5,
1345 IB_WR_RESERVED6,
1346 IB_WR_RESERVED7,
1347 IB_WR_RESERVED8,
1348 IB_WR_RESERVED9,
1349 IB_WR_RESERVED10,
1da177e4
LT
1350};
1351
1352enum ib_send_flags {
1353 IB_SEND_FENCE = 1,
1354 IB_SEND_SIGNALED = (1<<1),
1355 IB_SEND_SOLICITED = (1<<2),
e0605d91 1356 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1357 IB_SEND_IP_CSUM = (1<<4),
1358
1359 /* reserve bits 26-31 for low level drivers' internal use */
1360 IB_SEND_RESERVED_START = (1 << 26),
1361 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1362};
1363
1364struct ib_sge {
1365 u64 addr;
1366 u32 length;
1367 u32 lkey;
1368};
1369
14d3a3b2
CH
1370struct ib_cqe {
1371 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1372};
1373
1da177e4
LT
1374struct ib_send_wr {
1375 struct ib_send_wr *next;
14d3a3b2
CH
1376 union {
1377 u64 wr_id;
1378 struct ib_cqe *wr_cqe;
1379 };
1da177e4
LT
1380 struct ib_sge *sg_list;
1381 int num_sge;
1382 enum ib_wr_opcode opcode;
1383 int send_flags;
0f39cf3d
RD
1384 union {
1385 __be32 imm_data;
1386 u32 invalidate_rkey;
1387 } ex;
1da177e4
LT
1388};
1389
e622f2f4
CH
1390struct ib_rdma_wr {
1391 struct ib_send_wr wr;
1392 u64 remote_addr;
1393 u32 rkey;
1394};
1395
f696bf6d 1396static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1397{
1398 return container_of(wr, struct ib_rdma_wr, wr);
1399}
1400
1401struct ib_atomic_wr {
1402 struct ib_send_wr wr;
1403 u64 remote_addr;
1404 u64 compare_add;
1405 u64 swap;
1406 u64 compare_add_mask;
1407 u64 swap_mask;
1408 u32 rkey;
1409};
1410
f696bf6d 1411static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1412{
1413 return container_of(wr, struct ib_atomic_wr, wr);
1414}
1415
1416struct ib_ud_wr {
1417 struct ib_send_wr wr;
1418 struct ib_ah *ah;
1419 void *header;
1420 int hlen;
1421 int mss;
1422 u32 remote_qpn;
1423 u32 remote_qkey;
1424 u16 pkey_index; /* valid for GSI only */
1425 u8 port_num; /* valid for DR SMPs on switch only */
1426};
1427
f696bf6d 1428static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1429{
1430 return container_of(wr, struct ib_ud_wr, wr);
1431}
1432
4c67e2bf
SG
1433struct ib_reg_wr {
1434 struct ib_send_wr wr;
1435 struct ib_mr *mr;
1436 u32 key;
1437 int access;
1438};
1439
f696bf6d 1440static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1441{
1442 return container_of(wr, struct ib_reg_wr, wr);
1443}
1444
e622f2f4
CH
1445struct ib_sig_handover_wr {
1446 struct ib_send_wr wr;
1447 struct ib_sig_attrs *sig_attrs;
1448 struct ib_mr *sig_mr;
1449 int access_flags;
1450 struct ib_sge *prot;
1451};
1452
f696bf6d
BVA
1453static inline const struct ib_sig_handover_wr *
1454sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1455{
1456 return container_of(wr, struct ib_sig_handover_wr, wr);
1457}
1458
1da177e4
LT
1459struct ib_recv_wr {
1460 struct ib_recv_wr *next;
14d3a3b2
CH
1461 union {
1462 u64 wr_id;
1463 struct ib_cqe *wr_cqe;
1464 };
1da177e4
LT
1465 struct ib_sge *sg_list;
1466 int num_sge;
1467};
1468
1469enum ib_access_flags {
4fca0377
JG
1470 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1471 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1472 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1473 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1474 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1475 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1476 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1477 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1478
1479 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1480};
1481
b7d3e0a9
CH
1482/*
1483 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1484 * are hidden here instead of a uapi header!
1485 */
1da177e4
LT
1486enum ib_mr_rereg_flags {
1487 IB_MR_REREG_TRANS = 1,
1488 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1489 IB_MR_REREG_ACCESS = (1<<2),
1490 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1491};
1492
1da177e4
LT
1493struct ib_fmr_attr {
1494 int max_pages;
1495 int max_maps;
d36f34aa 1496 u8 page_shift;
1da177e4
LT
1497};
1498
882214e2
HE
1499struct ib_umem;
1500
38321256 1501enum rdma_remove_reason {
1c77483e
YH
1502 /*
1503 * Userspace requested uobject deletion or initial try
1504 * to remove uobject via cleanup. Call could fail
1505 */
38321256
MB
1506 RDMA_REMOVE_DESTROY,
1507 /* Context deletion. This call should delete the actual object itself */
1508 RDMA_REMOVE_CLOSE,
1509 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1510 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1511 /* uobj is being cleaned-up before being committed */
1512 RDMA_REMOVE_ABORT,
38321256
MB
1513};
1514
43579b5f
PP
1515struct ib_rdmacg_object {
1516#ifdef CONFIG_CGROUP_RDMA
1517 struct rdma_cgroup *cg; /* owner rdma cgroup */
1518#endif
1519};
1520
e2773c06
RD
1521struct ib_ucontext {
1522 struct ib_device *device;
771addf6 1523 struct ib_uverbs_file *ufile;
e951747a
JG
1524 /*
1525 * 'closing' can be read by the driver only during a destroy callback,
1526 * it is set when we are closing the file descriptor and indicates
1527 * that mm_sem may be locked.
1528 */
6ceb6331 1529 bool closing;
8ada2c1c 1530
1c77483e 1531 bool cleanup_retryable;
38321256 1532
b5231b01 1533 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
882214e2 1534 unsigned long start, unsigned long end);
f27a0d50
JG
1535 struct mutex per_mm_list_lock;
1536 struct list_head per_mm_list;
43579b5f
PP
1537
1538 struct ib_rdmacg_object cg_obj;
60615210
LR
1539 /*
1540 * Implementation details of the RDMA core, don't use in drivers:
1541 */
1542 struct rdma_restrack_entry res;
e2773c06
RD
1543};
1544
1545struct ib_uobject {
1546 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1547 /* ufile & ucontext owning this object */
1548 struct ib_uverbs_file *ufile;
1549 /* FIXME, save memory: ufile->context == context */
e2773c06 1550 struct ib_ucontext *context; /* associated user context */
9ead190b 1551 void *object; /* containing object */
e2773c06 1552 struct list_head list; /* link to context's list */
43579b5f 1553 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1554 int id; /* index into kernel idr */
9ead190b 1555 struct kref ref;
38321256 1556 atomic_t usecnt; /* protects exclusive access */
d144da8c 1557 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1558
6b0d08f4 1559 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1560};
1561
e2773c06 1562struct ib_udata {
309243ec 1563 const void __user *inbuf;
e2773c06
RD
1564 void __user *outbuf;
1565 size_t inlen;
1566 size_t outlen;
1567};
1568
1da177e4 1569struct ib_pd {
96249d70 1570 u32 local_dma_lkey;
ed082d36 1571 u32 flags;
e2773c06
RD
1572 struct ib_device *device;
1573 struct ib_uobject *uobject;
1574 atomic_t usecnt; /* count all resources */
50d46335 1575
ed082d36
CH
1576 u32 unsafe_global_rkey;
1577
50d46335
CH
1578 /*
1579 * Implementation details of the RDMA core, don't use in drivers:
1580 */
1581 struct ib_mr *__internal_mr;
02d8883f 1582 struct rdma_restrack_entry res;
1da177e4
LT
1583};
1584
59991f94
SH
1585struct ib_xrcd {
1586 struct ib_device *device;
d3d72d90 1587 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1588 struct inode *inode;
d3d72d90
SH
1589
1590 struct mutex tgt_qp_mutex;
1591 struct list_head tgt_qp_list;
59991f94
SH
1592};
1593
1da177e4
LT
1594struct ib_ah {
1595 struct ib_device *device;
1596 struct ib_pd *pd;
e2773c06 1597 struct ib_uobject *uobject;
1a1f460f 1598 const struct ib_gid_attr *sgid_attr;
44c58487 1599 enum rdma_ah_attr_type type;
1da177e4
LT
1600};
1601
1602typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1603
14d3a3b2 1604enum ib_poll_context {
f794809a
JM
1605 IB_POLL_DIRECT, /* caller context, no hw completions */
1606 IB_POLL_SOFTIRQ, /* poll from softirq context */
1607 IB_POLL_WORKQUEUE, /* poll from workqueue */
1608 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
14d3a3b2
CH
1609};
1610
1da177e4 1611struct ib_cq {
e2773c06
RD
1612 struct ib_device *device;
1613 struct ib_uobject *uobject;
1614 ib_comp_handler comp_handler;
1615 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1616 void *cq_context;
e2773c06
RD
1617 int cqe;
1618 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1619 enum ib_poll_context poll_ctx;
1620 struct ib_wc *wc;
1621 union {
1622 struct irq_poll iop;
1623 struct work_struct work;
1624 };
f794809a 1625 struct workqueue_struct *comp_wq;
02d8883f
LR
1626 /*
1627 * Implementation details of the RDMA core, don't use in drivers:
1628 */
1629 struct rdma_restrack_entry res;
1da177e4
LT
1630};
1631
1632struct ib_srq {
d41fcc67
RD
1633 struct ib_device *device;
1634 struct ib_pd *pd;
1635 struct ib_uobject *uobject;
1636 void (*event_handler)(struct ib_event *, void *);
1637 void *srq_context;
96104eda 1638 enum ib_srq_type srq_type;
1da177e4 1639 atomic_t usecnt;
418d5130 1640
1a56ff6d
AK
1641 struct {
1642 struct ib_cq *cq;
1643 union {
1644 struct {
1645 struct ib_xrcd *xrcd;
1646 u32 srq_num;
1647 } xrc;
1648 };
418d5130 1649 } ext;
1da177e4
LT
1650};
1651
ebaaee25
NO
1652enum ib_raw_packet_caps {
1653 /* Strip cvlan from incoming packet and report it in the matching work
1654 * completion is supported.
1655 */
1656 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1657 /* Scatter FCS field of an incoming packet to host memory is supported.
1658 */
1659 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1660 /* Checksum offloads are supported (for both send and receive). */
1661 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1662 /* When a packet is received for an RQ with no receive WQEs, the
1663 * packet processing is delayed.
1664 */
1665 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1666};
1667
5fd251c8
YH
1668enum ib_wq_type {
1669 IB_WQT_RQ
1670};
1671
1672enum ib_wq_state {
1673 IB_WQS_RESET,
1674 IB_WQS_RDY,
1675 IB_WQS_ERR
1676};
1677
1678struct ib_wq {
1679 struct ib_device *device;
1680 struct ib_uobject *uobject;
1681 void *wq_context;
1682 void (*event_handler)(struct ib_event *, void *);
1683 struct ib_pd *pd;
1684 struct ib_cq *cq;
1685 u32 wq_num;
1686 enum ib_wq_state state;
1687 enum ib_wq_type wq_type;
1688 atomic_t usecnt;
1689};
1690
10bac72b
NO
1691enum ib_wq_flags {
1692 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1693 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1694 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1695 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1696};
1697
5fd251c8
YH
1698struct ib_wq_init_attr {
1699 void *wq_context;
1700 enum ib_wq_type wq_type;
1701 u32 max_wr;
1702 u32 max_sge;
1703 struct ib_cq *cq;
1704 void (*event_handler)(struct ib_event *, void *);
10bac72b 1705 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1706};
1707
1708enum ib_wq_attr_mask {
10bac72b
NO
1709 IB_WQ_STATE = 1 << 0,
1710 IB_WQ_CUR_STATE = 1 << 1,
1711 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1712};
1713
1714struct ib_wq_attr {
1715 enum ib_wq_state wq_state;
1716 enum ib_wq_state curr_wq_state;
10bac72b
NO
1717 u32 flags; /* Use enum ib_wq_flags */
1718 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1719};
1720
6d39786b
YH
1721struct ib_rwq_ind_table {
1722 struct ib_device *device;
1723 struct ib_uobject *uobject;
1724 atomic_t usecnt;
1725 u32 ind_tbl_num;
1726 u32 log_ind_tbl_size;
1727 struct ib_wq **ind_tbl;
1728};
1729
1730struct ib_rwq_ind_table_init_attr {
1731 u32 log_ind_tbl_size;
1732 /* Each entry is a pointer to Receive Work Queue */
1733 struct ib_wq **ind_tbl;
1734};
1735
d291f1a6
DJ
1736enum port_pkey_state {
1737 IB_PORT_PKEY_NOT_VALID = 0,
1738 IB_PORT_PKEY_VALID = 1,
1739 IB_PORT_PKEY_LISTED = 2,
1740};
1741
1742struct ib_qp_security;
1743
1744struct ib_port_pkey {
1745 enum port_pkey_state state;
1746 u16 pkey_index;
1747 u8 port_num;
1748 struct list_head qp_list;
1749 struct list_head to_error_list;
1750 struct ib_qp_security *sec;
1751};
1752
1753struct ib_ports_pkeys {
1754 struct ib_port_pkey main;
1755 struct ib_port_pkey alt;
1756};
1757
1758struct ib_qp_security {
1759 struct ib_qp *qp;
1760 struct ib_device *dev;
1761 /* Hold this mutex when changing port and pkey settings. */
1762 struct mutex mutex;
1763 struct ib_ports_pkeys *ports_pkeys;
1764 /* A list of all open shared QP handles. Required to enforce security
1765 * properly for all users of a shared QP.
1766 */
1767 struct list_head shared_qp_list;
1768 void *security;
1769 bool destroying;
1770 atomic_t error_list_count;
1771 struct completion error_complete;
1772 int error_comps_pending;
1773};
1774
632bc3f6
BVA
1775/*
1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1777 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1778 */
1da177e4
LT
1779struct ib_qp {
1780 struct ib_device *device;
1781 struct ib_pd *pd;
1782 struct ib_cq *send_cq;
1783 struct ib_cq *recv_cq;
fffb0383
CH
1784 spinlock_t mr_lock;
1785 int mrs_used;
a060b562 1786 struct list_head rdma_mrs;
0e353e34 1787 struct list_head sig_mrs;
1da177e4 1788 struct ib_srq *srq;
b42b63cf 1789 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1790 struct list_head xrcd_list;
fffb0383 1791
319a441d
HHZ
1792 /* count times opened, mcast attaches, flow attaches */
1793 atomic_t usecnt;
0e0ec7e0
SH
1794 struct list_head open_list;
1795 struct ib_qp *real_qp;
e2773c06 1796 struct ib_uobject *uobject;
1da177e4
LT
1797 void (*event_handler)(struct ib_event *, void *);
1798 void *qp_context;
1a1f460f
JG
1799 /* sgid_attrs associated with the AV's */
1800 const struct ib_gid_attr *av_sgid_attr;
1801 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1802 u32 qp_num;
632bc3f6
BVA
1803 u32 max_write_sge;
1804 u32 max_read_sge;
1da177e4 1805 enum ib_qp_type qp_type;
a9017e23 1806 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1807 struct ib_qp_security *qp_sec;
498ca3c8 1808 u8 port;
02d8883f
LR
1809
1810 /*
1811 * Implementation details of the RDMA core, don't use in drivers:
1812 */
1813 struct rdma_restrack_entry res;
1da177e4
LT
1814};
1815
bee76d7a
AL
1816struct ib_dm {
1817 struct ib_device *device;
1818 u32 length;
1819 u32 flags;
1820 struct ib_uobject *uobject;
1821 atomic_t usecnt;
1822};
1823
1da177e4 1824struct ib_mr {
e2773c06
RD
1825 struct ib_device *device;
1826 struct ib_pd *pd;
e2773c06
RD
1827 u32 lkey;
1828 u32 rkey;
4c67e2bf 1829 u64 iova;
edd31551 1830 u64 length;
4c67e2bf 1831 unsigned int page_size;
d4a85c30 1832 bool need_inval;
fffb0383
CH
1833 union {
1834 struct ib_uobject *uobject; /* user */
1835 struct list_head qp_entry; /* FR */
1836 };
fccec5b8 1837
be934cca
AL
1838 struct ib_dm *dm;
1839
fccec5b8
SW
1840 /*
1841 * Implementation details of the RDMA core, don't use in drivers:
1842 */
1843 struct rdma_restrack_entry res;
1da177e4
LT
1844};
1845
1846struct ib_mw {
1847 struct ib_device *device;
1848 struct ib_pd *pd;
e2773c06 1849 struct ib_uobject *uobject;
1da177e4 1850 u32 rkey;
7083e42e 1851 enum ib_mw_type type;
1da177e4
LT
1852};
1853
1854struct ib_fmr {
1855 struct ib_device *device;
1856 struct ib_pd *pd;
1857 struct list_head list;
1858 u32 lkey;
1859 u32 rkey;
1860};
1861
319a441d
HHZ
1862/* Supported steering options */
1863enum ib_flow_attr_type {
1864 /* steering according to rule specifications */
1865 IB_FLOW_ATTR_NORMAL = 0x0,
1866 /* default unicast and multicast rule -
1867 * receive all Eth traffic which isn't steered to any QP
1868 */
1869 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1870 /* default multicast rule -
1871 * receive all Eth multicast traffic which isn't steered to any QP
1872 */
1873 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1874 /* sniffer rule - receive all port traffic */
1875 IB_FLOW_ATTR_SNIFFER = 0x3
1876};
1877
1878/* Supported steering header types */
1879enum ib_flow_spec_type {
1880 /* L2 headers*/
76bd23b3
MR
1881 IB_FLOW_SPEC_ETH = 0x20,
1882 IB_FLOW_SPEC_IB = 0x22,
319a441d 1883 /* L3 header*/
76bd23b3
MR
1884 IB_FLOW_SPEC_IPV4 = 0x30,
1885 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1886 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1887 /* L4 headers*/
76bd23b3
MR
1888 IB_FLOW_SPEC_TCP = 0x40,
1889 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1890 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1891 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1892 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1893 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1894 /* Actions */
1895 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1896 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1897 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1898 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1899};
240ae00e 1900#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1901#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1902
319a441d
HHZ
1903/* Flow steering rule priority is set according to it's domain.
1904 * Lower domain value means higher priority.
1905 */
1906enum ib_flow_domain {
1907 IB_FLOW_DOMAIN_USER,
1908 IB_FLOW_DOMAIN_ETHTOOL,
1909 IB_FLOW_DOMAIN_RFS,
1910 IB_FLOW_DOMAIN_NIC,
1911 IB_FLOW_DOMAIN_NUM /* Must be last */
1912};
1913
a3100a78
MV
1914enum ib_flow_flags {
1915 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1916 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1917 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1918};
1919
319a441d
HHZ
1920struct ib_flow_eth_filter {
1921 u8 dst_mac[6];
1922 u8 src_mac[6];
1923 __be16 ether_type;
1924 __be16 vlan_tag;
15dfbd6b
MG
1925 /* Must be last */
1926 u8 real_sz[0];
319a441d
HHZ
1927};
1928
1929struct ib_flow_spec_eth {
fbf46860 1930 u32 type;
319a441d
HHZ
1931 u16 size;
1932 struct ib_flow_eth_filter val;
1933 struct ib_flow_eth_filter mask;
1934};
1935
240ae00e
MB
1936struct ib_flow_ib_filter {
1937 __be16 dlid;
1938 __u8 sl;
15dfbd6b
MG
1939 /* Must be last */
1940 u8 real_sz[0];
240ae00e
MB
1941};
1942
1943struct ib_flow_spec_ib {
fbf46860 1944 u32 type;
240ae00e
MB
1945 u16 size;
1946 struct ib_flow_ib_filter val;
1947 struct ib_flow_ib_filter mask;
1948};
1949
989a3a8f
MG
1950/* IPv4 header flags */
1951enum ib_ipv4_flags {
1952 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1953 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1954 last have this flag set */
1955};
1956
319a441d
HHZ
1957struct ib_flow_ipv4_filter {
1958 __be32 src_ip;
1959 __be32 dst_ip;
989a3a8f
MG
1960 u8 proto;
1961 u8 tos;
1962 u8 ttl;
1963 u8 flags;
15dfbd6b
MG
1964 /* Must be last */
1965 u8 real_sz[0];
319a441d
HHZ
1966};
1967
1968struct ib_flow_spec_ipv4 {
fbf46860 1969 u32 type;
319a441d
HHZ
1970 u16 size;
1971 struct ib_flow_ipv4_filter val;
1972 struct ib_flow_ipv4_filter mask;
1973};
1974
4c2aae71
MG
1975struct ib_flow_ipv6_filter {
1976 u8 src_ip[16];
1977 u8 dst_ip[16];
a72c6a2b
MG
1978 __be32 flow_label;
1979 u8 next_hdr;
1980 u8 traffic_class;
1981 u8 hop_limit;
15dfbd6b
MG
1982 /* Must be last */
1983 u8 real_sz[0];
4c2aae71
MG
1984};
1985
1986struct ib_flow_spec_ipv6 {
fbf46860 1987 u32 type;
4c2aae71
MG
1988 u16 size;
1989 struct ib_flow_ipv6_filter val;
1990 struct ib_flow_ipv6_filter mask;
1991};
1992
319a441d
HHZ
1993struct ib_flow_tcp_udp_filter {
1994 __be16 dst_port;
1995 __be16 src_port;
15dfbd6b
MG
1996 /* Must be last */
1997 u8 real_sz[0];
319a441d
HHZ
1998};
1999
2000struct ib_flow_spec_tcp_udp {
fbf46860 2001 u32 type;
319a441d
HHZ
2002 u16 size;
2003 struct ib_flow_tcp_udp_filter val;
2004 struct ib_flow_tcp_udp_filter mask;
2005};
2006
0dbf3332
MR
2007struct ib_flow_tunnel_filter {
2008 __be32 tunnel_id;
2009 u8 real_sz[0];
2010};
2011
2012/* ib_flow_spec_tunnel describes the Vxlan tunnel
2013 * the tunnel_id from val has the vni value
2014 */
2015struct ib_flow_spec_tunnel {
fbf46860 2016 u32 type;
0dbf3332
MR
2017 u16 size;
2018 struct ib_flow_tunnel_filter val;
2019 struct ib_flow_tunnel_filter mask;
2020};
2021
56ab0b38
MB
2022struct ib_flow_esp_filter {
2023 __be32 spi;
2024 __be32 seq;
2025 /* Must be last */
2026 u8 real_sz[0];
2027};
2028
2029struct ib_flow_spec_esp {
2030 u32 type;
2031 u16 size;
2032 struct ib_flow_esp_filter val;
2033 struct ib_flow_esp_filter mask;
2034};
2035
d90e5e50
AL
2036struct ib_flow_gre_filter {
2037 __be16 c_ks_res0_ver;
2038 __be16 protocol;
2039 __be32 key;
2040 /* Must be last */
2041 u8 real_sz[0];
2042};
2043
2044struct ib_flow_spec_gre {
2045 u32 type;
2046 u16 size;
2047 struct ib_flow_gre_filter val;
2048 struct ib_flow_gre_filter mask;
2049};
2050
b04f0f03
AL
2051struct ib_flow_mpls_filter {
2052 __be32 tag;
2053 /* Must be last */
2054 u8 real_sz[0];
2055};
2056
2057struct ib_flow_spec_mpls {
2058 u32 type;
2059 u16 size;
2060 struct ib_flow_mpls_filter val;
2061 struct ib_flow_mpls_filter mask;
2062};
2063
460d0198
MR
2064struct ib_flow_spec_action_tag {
2065 enum ib_flow_spec_type type;
2066 u16 size;
2067 u32 tag_id;
2068};
2069
483a3966
SS
2070struct ib_flow_spec_action_drop {
2071 enum ib_flow_spec_type type;
2072 u16 size;
2073};
2074
9b828441
MB
2075struct ib_flow_spec_action_handle {
2076 enum ib_flow_spec_type type;
2077 u16 size;
2078 struct ib_flow_action *act;
2079};
2080
7eea23a5
RS
2081enum ib_counters_description {
2082 IB_COUNTER_PACKETS,
2083 IB_COUNTER_BYTES,
2084};
2085
2086struct ib_flow_spec_action_count {
2087 enum ib_flow_spec_type type;
2088 u16 size;
2089 struct ib_counters *counters;
2090};
2091
319a441d
HHZ
2092union ib_flow_spec {
2093 struct {
fbf46860 2094 u32 type;
319a441d
HHZ
2095 u16 size;
2096 };
2097 struct ib_flow_spec_eth eth;
240ae00e 2098 struct ib_flow_spec_ib ib;
319a441d
HHZ
2099 struct ib_flow_spec_ipv4 ipv4;
2100 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2101 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2102 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2103 struct ib_flow_spec_esp esp;
d90e5e50 2104 struct ib_flow_spec_gre gre;
b04f0f03 2105 struct ib_flow_spec_mpls mpls;
460d0198 2106 struct ib_flow_spec_action_tag flow_tag;
483a3966 2107 struct ib_flow_spec_action_drop drop;
9b828441 2108 struct ib_flow_spec_action_handle action;
7eea23a5 2109 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2110};
2111
2112struct ib_flow_attr {
2113 enum ib_flow_attr_type type;
2114 u16 size;
2115 u16 priority;
2116 u32 flags;
2117 u8 num_of_specs;
2118 u8 port;
7654cb1b 2119 union ib_flow_spec flows[];
319a441d
HHZ
2120};
2121
2122struct ib_flow {
2123 struct ib_qp *qp;
6cd080a6 2124 struct ib_device *device;
319a441d
HHZ
2125 struct ib_uobject *uobject;
2126};
2127
2eb9beae
MB
2128enum ib_flow_action_type {
2129 IB_FLOW_ACTION_UNSPECIFIED,
2130 IB_FLOW_ACTION_ESP = 1,
2131};
2132
2133struct ib_flow_action_attrs_esp_keymats {
2134 enum ib_uverbs_flow_action_esp_keymat protocol;
2135 union {
2136 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2137 } keymat;
2138};
2139
2140struct ib_flow_action_attrs_esp_replays {
2141 enum ib_uverbs_flow_action_esp_replay protocol;
2142 union {
2143 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2144 } replay;
2145};
2146
2147enum ib_flow_action_attrs_esp_flags {
2148 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2149 * This is done in order to share the same flags between user-space and
2150 * kernel and spare an unnecessary translation.
2151 */
2152
2153 /* Kernel flags */
2154 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2155 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2156};
2157
2158struct ib_flow_spec_list {
2159 struct ib_flow_spec_list *next;
2160 union ib_flow_spec spec;
2161};
2162
2163struct ib_flow_action_attrs_esp {
2164 struct ib_flow_action_attrs_esp_keymats *keymat;
2165 struct ib_flow_action_attrs_esp_replays *replay;
2166 struct ib_flow_spec_list *encap;
2167 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2168 * Value of 0 is a valid value.
2169 */
2170 u32 esn;
2171 u32 spi;
2172 u32 seq;
2173 u32 tfc_pad;
2174 /* Use enum ib_flow_action_attrs_esp_flags */
2175 u64 flags;
2176 u64 hard_limit_pkts;
2177};
2178
2179struct ib_flow_action {
2180 struct ib_device *device;
2181 struct ib_uobject *uobject;
2182 enum ib_flow_action_type type;
2183 atomic_t usecnt;
2184};
2185
4cd7c947 2186struct ib_mad_hdr;
1da177e4
LT
2187struct ib_grh;
2188
2189enum ib_process_mad_flags {
2190 IB_MAD_IGNORE_MKEY = 1,
2191 IB_MAD_IGNORE_BKEY = 2,
2192 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2193};
2194
2195enum ib_mad_result {
2196 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2197 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2198 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2199 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2200};
2201
21d6454a 2202struct ib_port_cache {
883c71fe 2203 u64 subnet_prefix;
21d6454a
JW
2204 struct ib_pkey_cache *pkey;
2205 struct ib_gid_table *gid;
2206 u8 lmc;
2207 enum ib_port_state port_state;
2208};
2209
1da177e4
LT
2210struct ib_cache {
2211 rwlock_t lock;
2212 struct ib_event_handler event_handler;
1da177e4
LT
2213};
2214
7738613e
IW
2215struct ib_port_immutable {
2216 int pkey_tbl_len;
2217 int gid_tbl_len;
f9b22e35 2218 u32 core_cap_flags;
337877a4 2219 u32 max_mad_size;
7738613e
IW
2220};
2221
8ceb1357 2222struct ib_port_data {
324e227e
JG
2223 struct ib_device *ib_dev;
2224
8ceb1357
JG
2225 struct ib_port_immutable immutable;
2226
2227 spinlock_t pkey_list_lock;
2228 struct list_head pkey_list;
8faea9fd
JG
2229
2230 struct ib_port_cache cache;
c2261dd7
JG
2231
2232 spinlock_t netdev_lock;
324e227e
JG
2233 struct net_device __rcu *netdev;
2234 struct hlist_node ndev_hash_link;
8ceb1357
JG
2235};
2236
2fc77572
VN
2237/* rdma netdev type - specifies protocol type */
2238enum rdma_netdev_t {
f0ad83ac
NV
2239 RDMA_NETDEV_OPA_VNIC,
2240 RDMA_NETDEV_IPOIB,
2fc77572
VN
2241};
2242
2243/**
2244 * struct rdma_netdev - rdma netdev
2245 * For cases where netstack interfacing is required.
2246 */
2247struct rdma_netdev {
2248 void *clnt_priv;
2249 struct ib_device *hca;
2250 u8 port_num;
2251
9f49a5b5
JG
2252 /*
2253 * cleanup function must be specified.
2254 * FIXME: This is only used for OPA_VNIC and that usage should be
2255 * removed too.
2256 */
8e959601
NV
2257 void (*free_rdma_netdev)(struct net_device *netdev);
2258
2fc77572
VN
2259 /* control functions */
2260 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2261 /* send packet */
2262 int (*send)(struct net_device *dev, struct sk_buff *skb,
2263 struct ib_ah *address, u32 dqpn);
2264 /* multicast */
2265 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2266 union ib_gid *gid, u16 mlid,
2267 int set_qkey, u32 qkey);
2268 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2269 union ib_gid *gid, u16 mlid);
2fc77572
VN
2270};
2271
f6a8a19b
DD
2272struct rdma_netdev_alloc_params {
2273 size_t sizeof_priv;
2274 unsigned int txqs;
2275 unsigned int rxqs;
2276 void *param;
2277
2278 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2279 struct net_device *netdev, void *param);
2280};
2281
fa9b1802
RS
2282struct ib_counters {
2283 struct ib_device *device;
2284 struct ib_uobject *uobject;
2285 /* num of objects attached */
2286 atomic_t usecnt;
2287};
2288
51d7a538
RS
2289struct ib_counters_read_attr {
2290 u64 *counters_buff;
2291 u32 ncounters;
2292 u32 flags; /* use enum ib_read_counters_flags */
2293};
2294
2eb9beae 2295struct uverbs_attr_bundle;
dd05cb82
KH
2296struct iw_cm_id;
2297struct iw_cm_conn_param;
2eb9beae 2298
30471d4b
LR
2299#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2300 .size_##ib_struct = \
2301 (sizeof(struct drv_struct) + \
2302 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2303 BUILD_BUG_ON_ZERO( \
2304 !__same_type(((struct drv_struct *)NULL)->member, \
2305 struct ib_struct)))
2306
f6316032
LR
2307#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2308 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2309
30471d4b 2310#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2311 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2312
2313#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2314
521ed0d9
KH
2315/**
2316 * struct ib_device_ops - InfiniBand device operations
2317 * This structure defines all the InfiniBand device operations, providers will
2318 * need to define the supported operations, otherwise they will be set to null.
2319 */
2320struct ib_device_ops {
7a154142 2321 struct module *owner;
b9560a41 2322 enum rdma_driver_id driver_id;
72c6ec18 2323 u32 uverbs_abi_ver;
b9560a41 2324
521ed0d9
KH
2325 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2326 const struct ib_send_wr **bad_send_wr);
2327 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2328 const struct ib_recv_wr **bad_recv_wr);
2329 void (*drain_rq)(struct ib_qp *qp);
2330 void (*drain_sq)(struct ib_qp *qp);
2331 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2332 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2333 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2334 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2335 int (*post_srq_recv)(struct ib_srq *srq,
2336 const struct ib_recv_wr *recv_wr,
2337 const struct ib_recv_wr **bad_recv_wr);
2338 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2339 u8 port_num, const struct ib_wc *in_wc,
2340 const struct ib_grh *in_grh,
2341 const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2342 struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2343 u16 *out_mad_pkey_index);
2344 int (*query_device)(struct ib_device *device,
2345 struct ib_device_attr *device_attr,
2346 struct ib_udata *udata);
2347 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2348 struct ib_device_modify *device_modify);
2349 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2350 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2351 int comp_vector);
2352 int (*query_port)(struct ib_device *device, u8 port_num,
2353 struct ib_port_attr *port_attr);
2354 int (*modify_port)(struct ib_device *device, u8 port_num,
2355 int port_modify_mask,
2356 struct ib_port_modify *port_modify);
2357 /**
2358 * The following mandatory functions are used only at device
2359 * registration. Keep functions such as these at the end of this
2360 * structure to avoid cache line misses when accessing struct ib_device
2361 * in fast paths.
2362 */
2363 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2364 struct ib_port_immutable *immutable);
2365 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2366 u8 port_num);
2367 /**
2368 * When calling get_netdev, the HW vendor's driver should return the
2369 * net device of device @device at port @port_num or NULL if such
2370 * a net device doesn't exist. The vendor driver should call dev_hold
2371 * on this net device. The HW vendor's device driver must guarantee
2372 * that this function returns NULL before the net device has finished
2373 * NETDEV_UNREGISTER state.
2374 */
2375 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2376 /**
2377 * rdma netdev operation
2378 *
2379 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2380 * must return -EOPNOTSUPP if it doesn't support the specified type.
2381 */
2382 struct net_device *(*alloc_rdma_netdev)(
2383 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2384 const char *name, unsigned char name_assign_type,
2385 void (*setup)(struct net_device *));
2386
2387 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2388 enum rdma_netdev_t type,
2389 struct rdma_netdev_alloc_params *params);
2390 /**
2391 * query_gid should be return GID value for @device, when @port_num
2392 * link layer is either IB or iWarp. It is no-op if @port_num port
2393 * is RoCE link layer.
2394 */
2395 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2396 union ib_gid *gid);
2397 /**
2398 * When calling add_gid, the HW vendor's driver should add the gid
2399 * of device of port at gid index available at @attr. Meta-info of
2400 * that gid (for example, the network device related to this gid) is
2401 * available at @attr. @context allows the HW vendor driver to store
2402 * extra information together with a GID entry. The HW vendor driver may
2403 * allocate memory to contain this information and store it in @context
2404 * when a new GID entry is written to. Params are consistent until the
2405 * next call of add_gid or delete_gid. The function should return 0 on
2406 * success or error otherwise. The function could be called
2407 * concurrently for different ports. This function is only called when
2408 * roce_gid_table is used.
2409 */
2410 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2411 /**
2412 * When calling del_gid, the HW vendor's driver should delete the
2413 * gid of device @device at gid index gid_index of port port_num
2414 * available in @attr.
2415 * Upon the deletion of a GID entry, the HW vendor must free any
2416 * allocated memory. The caller will clear @context afterwards.
2417 * This function is only called when roce_gid_table is used.
2418 */
2419 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2420 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2421 u16 *pkey);
a2a074ef
LR
2422 int (*alloc_ucontext)(struct ib_ucontext *context,
2423 struct ib_udata *udata);
2424 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9
KH
2425 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2426 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2427 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2428 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
d3456914
LR
2429 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2430 u32 flags, struct ib_udata *udata);
521ed0d9
KH
2431 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2432 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
d3456914 2433 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2434 int (*create_srq)(struct ib_srq *srq,
2435 struct ib_srq_init_attr *srq_init_attr,
2436 struct ib_udata *udata);
521ed0d9
KH
2437 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2438 enum ib_srq_attr_mask srq_attr_mask,
2439 struct ib_udata *udata);
2440 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
68e326de 2441 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
521ed0d9
KH
2442 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2443 struct ib_qp_init_attr *qp_init_attr,
2444 struct ib_udata *udata);
2445 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2446 int qp_attr_mask, struct ib_udata *udata);
2447 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2448 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2449 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
e39afe3d
LR
2450 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2451 struct ib_udata *udata);
521ed0d9 2452 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
a52c8e24 2453 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2454 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2455 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2456 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2457 u64 virt_addr, int mr_access_flags,
2458 struct ib_udata *udata);
2459 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2460 u64 virt_addr, int mr_access_flags,
2461 struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2462 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2463 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
c4367a26 2464 u32 max_num_sg, struct ib_udata *udata);
ad8a4496
MS
2465 int (*advise_mr)(struct ib_pd *pd,
2466 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2467 struct ib_sge *sg_list, u32 num_sge,
2468 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2469 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2470 unsigned int *sg_offset);
2471 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2472 struct ib_mr_status *mr_status);
2473 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2474 struct ib_udata *udata);
2475 int (*dealloc_mw)(struct ib_mw *mw);
2476 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2477 struct ib_fmr_attr *fmr_attr);
2478 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2479 u64 iova);
2480 int (*unmap_fmr)(struct list_head *fmr_list);
2481 int (*dealloc_fmr)(struct ib_fmr *fmr);
2482 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2483 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2484 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
521ed0d9 2485 struct ib_udata *udata);
c4367a26 2486 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2487 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2488 struct ib_flow_attr *flow_attr,
2489 int domain, struct ib_udata *udata);
2490 int (*destroy_flow)(struct ib_flow *flow_id);
2491 struct ib_flow_action *(*create_flow_action_esp)(
2492 struct ib_device *device,
2493 const struct ib_flow_action_attrs_esp *attr,
2494 struct uverbs_attr_bundle *attrs);
2495 int (*destroy_flow_action)(struct ib_flow_action *action);
2496 int (*modify_flow_action_esp)(
2497 struct ib_flow_action *action,
2498 const struct ib_flow_action_attrs_esp *attr,
2499 struct uverbs_attr_bundle *attrs);
2500 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2501 int state);
2502 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2503 struct ifla_vf_info *ivf);
2504 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2505 struct ifla_vf_stats *stats);
2506 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2507 int type);
2508 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2509 struct ib_wq_init_attr *init_attr,
2510 struct ib_udata *udata);
c4367a26 2511 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2512 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2513 u32 wq_attr_mask, struct ib_udata *udata);
2514 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2515 struct ib_device *device,
2516 struct ib_rwq_ind_table_init_attr *init_attr,
2517 struct ib_udata *udata);
2518 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2519 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2520 struct ib_ucontext *context,
2521 struct ib_dm_alloc_attr *attr,
2522 struct uverbs_attr_bundle *attrs);
c4367a26 2523 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2524 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2525 struct ib_dm_mr_attr *attr,
2526 struct uverbs_attr_bundle *attrs);
2527 struct ib_counters *(*create_counters)(
2528 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2529 int (*destroy_counters)(struct ib_counters *counters);
2530 int (*read_counters)(struct ib_counters *counters,
2531 struct ib_counters_read_attr *counters_read_attr,
2532 struct uverbs_attr_bundle *attrs);
2533 /**
2534 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2535 * driver initialized data. The struct is kfree()'ed by the sysfs
2536 * core when the device is removed. A lifespan of -1 in the return
2537 * struct tells the core to set a default lifespan.
2538 */
2539 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2540 u8 port_num);
2541 /**
2542 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2543 * @index - The index in the value array we wish to have updated, or
2544 * num_counters if we want all stats updated
2545 * Return codes -
2546 * < 0 - Error, no counters updated
2547 * index - Updated the single counter pointed to by index
2548 * num_counters - Updated all counters (will reset the timestamp
2549 * and prevent further calls for lifespan milliseconds)
2550 * Drivers are allowed to update all counters in leiu of just the
2551 * one given in index at their option
2552 */
2553 int (*get_hw_stats)(struct ib_device *device,
2554 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2555 /*
2556 * This function is called once for each port when a ib device is
2557 * registered.
2558 */
2559 int (*init_port)(struct ib_device *device, u8 port_num,
2560 struct kobject *port_sysfs);
02da3750
LR
2561 /**
2562 * Allows rdma drivers to add their own restrack attributes.
2563 */
2564 int (*fill_res_entry)(struct sk_buff *msg,
2565 struct rdma_restrack_entry *entry);
21a428a0 2566
d0899892 2567 /* Device lifecycle callbacks */
ca22354b
JG
2568 /*
2569 * Called after the device becomes registered, before clients are
2570 * attached
2571 */
2572 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2573 /*
2574 * This is called as part of ib_dealloc_device().
2575 */
2576 void (*dealloc_driver)(struct ib_device *dev);
2577
dd05cb82
KH
2578 /* iWarp CM callbacks */
2579 void (*iw_add_ref)(struct ib_qp *qp);
2580 void (*iw_rem_ref)(struct ib_qp *qp);
2581 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2582 int (*iw_connect)(struct iw_cm_id *cm_id,
2583 struct iw_cm_conn_param *conn_param);
2584 int (*iw_accept)(struct iw_cm_id *cm_id,
2585 struct iw_cm_conn_param *conn_param);
2586 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2587 u8 pdata_len);
2588 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2589 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2590
d3456914 2591 DECLARE_RDMA_OBJ_SIZE(ib_ah);
e39afe3d 2592 DECLARE_RDMA_OBJ_SIZE(ib_cq);
21a428a0 2593 DECLARE_RDMA_OBJ_SIZE(ib_pd);
68e326de 2594 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2595 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
521ed0d9
KH
2596};
2597
cebe556b
PP
2598struct ib_core_device {
2599 /* device must be the first element in structure until,
2600 * union of ib_core_device and device exists in ib_device.
2601 */
2602 struct device dev;
4e0f7b90 2603 possible_net_t rdma_net;
cebe556b
PP
2604 struct kobject *ports_kobj;
2605 struct list_head port_list;
2606 struct ib_device *owner; /* reach back to owner ib_device */
2607};
41eda65c 2608
cebe556b 2609struct rdma_restrack_root;
1da177e4 2610struct ib_device {
0957c29f
BVA
2611 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2612 struct device *dma_device;
3023a1e9 2613 struct ib_device_ops ops;
1da177e4 2614 char name[IB_DEVICE_NAME_MAX];
324e227e 2615 struct rcu_head rcu_head;
1da177e4
LT
2616
2617 struct list_head event_handler_list;
2618 spinlock_t event_handler_lock;
2619
921eab11 2620 struct rw_semaphore client_data_rwsem;
0df91bb6 2621 struct xarray client_data;
d0899892 2622 struct mutex unregistration_lock;
1da177e4
LT
2623
2624 struct ib_cache cache;
7738613e 2625 /**
8ceb1357 2626 * port_data is indexed by port number
7738613e 2627 */
8ceb1357 2628 struct ib_port_data *port_data;
1da177e4 2629
f4fd0b22
MT
2630 int num_comp_vectors;
2631
cebe556b
PP
2632 union {
2633 struct device dev;
2634 struct ib_core_device coredev;
2635 };
2636
d4122f5a
PP
2637 /* First group for device attributes,
2638 * Second group for driver provided attributes (optional).
2639 * It is NULL terminated array.
2640 */
2641 const struct attribute_group *groups[3];
adee9f3f 2642
17a55f79 2643 u64 uverbs_cmd_mask;
f21519b2 2644 u64 uverbs_ex_cmd_mask;
274c0891 2645
bd99fdea 2646 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2647 __be64 node_guid;
96f15c03 2648 u32 local_dma_lkey;
4139032b 2649 u16 is_switch:1;
6780c4fa
GP
2650 /* Indicates kernel verbs support, should not be used in drivers */
2651 u16 kverbs_provider:1;
1da177e4
LT
2652 u8 node_type;
2653 u8 phys_port_cnt;
3e153a93 2654 struct ib_device_attr attrs;
b40f4757
CL
2655 struct attribute_group *hw_stats_ag;
2656 struct rdma_hw_stats *hw_stats;
7738613e 2657
43579b5f
PP
2658#ifdef CONFIG_CGROUP_RDMA
2659 struct rdmacg_device cg_device;
2660#endif
2661
ecc82c53 2662 u32 index;
41eda65c 2663 struct rdma_restrack_root *res;
ecc82c53 2664
0cbf432d 2665 const struct uapi_definition *driver_def;
d79af724 2666
01b67117 2667 /*
d79af724
JG
2668 * Positive refcount indicates that the device is currently
2669 * registered and cannot be unregistered.
01b67117
PP
2670 */
2671 refcount_t refcount;
2672 struct completion unreg_completion;
d0899892 2673 struct work_struct unregistration_work;
3856ec4b
SW
2674
2675 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2676
2677 /* Protects compat_devs xarray modifications */
2678 struct mutex compat_devs_mutex;
2679 /* Maintains compat devices for each net namespace */
2680 struct xarray compat_devs;
dd05cb82
KH
2681
2682 /* Used by iWarp CM */
2683 char iw_ifname[IFNAMSIZ];
2684 u32 iw_driver_flags;
1da177e4
LT
2685};
2686
0e2d00eb 2687struct ib_client_nl_info;
1da177e4 2688struct ib_client {
e59178d8 2689 const char *name;
1da177e4 2690 void (*add) (struct ib_device *);
7c1eb45a 2691 void (*remove)(struct ib_device *, void *client_data);
0e2d00eb
JG
2692 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2693 struct ib_client_nl_info *res);
2694 int (*get_global_nl_info)(struct ib_client_nl_info *res);
1da177e4 2695
9268f72d
YK
2696 /* Returns the net_dev belonging to this ib_client and matching the
2697 * given parameters.
2698 * @dev: An RDMA device that the net_dev use for communication.
2699 * @port: A physical port number on the RDMA device.
2700 * @pkey: P_Key that the net_dev uses if applicable.
2701 * @gid: A GID that the net_dev uses to communicate.
2702 * @addr: An IP address the net_dev is configured with.
2703 * @client_data: The device's client data set by ib_set_client_data().
2704 *
2705 * An ib_client that implements a net_dev on top of RDMA devices
2706 * (such as IP over IB) should implement this callback, allowing the
2707 * rdma_cm module to find the right net_dev for a given request.
2708 *
2709 * The caller is responsible for calling dev_put on the returned
2710 * netdev. */
2711 struct net_device *(*get_net_dev_by_params)(
2712 struct ib_device *dev,
2713 u8 port,
2714 u16 pkey,
2715 const union ib_gid *gid,
2716 const struct sockaddr *addr,
2717 void *client_data);
1da177e4 2718 struct list_head list;
e59178d8 2719 u32 client_id;
6780c4fa
GP
2720
2721 /* kverbs are not required by the client */
2722 u8 no_kverbs_req:1;
1da177e4
LT
2723};
2724
a808273a
SS
2725/*
2726 * IB block DMA iterator
2727 *
2728 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2729 * to a HW supported page size.
2730 */
2731struct ib_block_iter {
2732 /* internal states */
2733 struct scatterlist *__sg; /* sg holding the current aligned block */
2734 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2735 unsigned int __sg_nents; /* number of SG entries */
2736 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2737 unsigned int __pg_bit; /* alignment of current block */
2738};
2739
459cc69f
LR
2740struct ib_device *_ib_alloc_device(size_t size);
2741#define ib_alloc_device(drv_struct, member) \
2742 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2743 BUILD_BUG_ON_ZERO(offsetof( \
2744 struct drv_struct, member))), \
2745 struct drv_struct, member)
2746
1da177e4
LT
2747void ib_dealloc_device(struct ib_device *device);
2748
9abb0d1b 2749void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2750
ea4baf7f 2751int ib_register_device(struct ib_device *device, const char *name);
1da177e4 2752void ib_unregister_device(struct ib_device *device);
d0899892
JG
2753void ib_unregister_driver(enum rdma_driver_id driver_id);
2754void ib_unregister_device_and_put(struct ib_device *device);
2755void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2756
2757int ib_register_client (struct ib_client *client);
2758void ib_unregister_client(struct ib_client *client);
2759
a808273a
SS
2760void __rdma_block_iter_start(struct ib_block_iter *biter,
2761 struct scatterlist *sglist,
2762 unsigned int nents,
2763 unsigned long pgsz);
2764bool __rdma_block_iter_next(struct ib_block_iter *biter);
2765
2766/**
2767 * rdma_block_iter_dma_address - get the aligned dma address of the current
2768 * block held by the block iterator.
2769 * @biter: block iterator holding the memory block
2770 */
2771static inline dma_addr_t
2772rdma_block_iter_dma_address(struct ib_block_iter *biter)
2773{
2774 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2775}
2776
2777/**
2778 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2779 * @sglist: sglist to iterate over
2780 * @biter: block iterator holding the memory block
2781 * @nents: maximum number of sg entries to iterate over
2782 * @pgsz: best HW supported page size to use
2783 *
2784 * Callers may use rdma_block_iter_dma_address() to get each
2785 * blocks aligned DMA address.
2786 */
2787#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2788 for (__rdma_block_iter_start(biter, sglist, nents, \
2789 pgsz); \
2790 __rdma_block_iter_next(biter);)
2791
0df91bb6
JG
2792/**
2793 * ib_get_client_data - Get IB client context
2794 * @device:Device to get context for
2795 * @client:Client to get context for
2796 *
2797 * ib_get_client_data() returns the client context data set with
2798 * ib_set_client_data(). This can only be called while the client is
2799 * registered to the device, once the ib_client remove() callback returns this
2800 * cannot be called.
2801 */
2802static inline void *ib_get_client_data(struct ib_device *device,
2803 struct ib_client *client)
2804{
2805 return xa_load(&device->client_data, client->client_id);
2806}
1da177e4
LT
2807void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2808 void *data);
521ed0d9
KH
2809void ib_set_device_ops(struct ib_device *device,
2810 const struct ib_device_ops *ops);
1da177e4 2811
5f9794dc
JG
2812#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2813int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2814 unsigned long pfn, unsigned long size, pgprot_t prot);
5f9794dc
JG
2815#else
2816static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2817 struct vm_area_struct *vma,
2818 unsigned long pfn, unsigned long size,
2819 pgprot_t prot)
2820{
2821 return -EINVAL;
2822}
5f9794dc
JG
2823#endif
2824
e2773c06
RD
2825static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2826{
2827 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2828}
2829
2830static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2831{
43c61165 2832 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2833}
2834
c66db311
MB
2835static inline bool ib_is_buffer_cleared(const void __user *p,
2836 size_t len)
301a721e 2837{
92d27ae6 2838 bool ret;
301a721e
MB
2839 u8 *buf;
2840
2841 if (len > USHRT_MAX)
2842 return false;
2843
92d27ae6
ME
2844 buf = memdup_user(p, len);
2845 if (IS_ERR(buf))
301a721e
MB
2846 return false;
2847
301a721e 2848 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2849 kfree(buf);
2850 return ret;
2851}
2852
c66db311
MB
2853static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2854 size_t offset,
2855 size_t len)
2856{
2857 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2858}
2859
1c77483e
YH
2860/**
2861 * ib_is_destroy_retryable - Check whether the uobject destruction
2862 * is retryable.
2863 * @ret: The initial destruction return code
2864 * @why: remove reason
2865 * @uobj: The uobject that is destroyed
2866 *
2867 * This function is a helper function that IB layer and low-level drivers
2868 * can use to consider whether the destruction of the given uobject is
2869 * retry-able.
2870 * It checks the original return code, if it wasn't success the destruction
2871 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2872 * the remove reason. (i.e. why).
2873 * Must be called with the object locked for destroy.
2874 */
2875static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2876 struct ib_uobject *uobj)
2877{
2878 return ret && (why == RDMA_REMOVE_DESTROY ||
2879 uobj->context->cleanup_retryable);
2880}
2881
2882/**
2883 * ib_destroy_usecnt - Called during destruction to check the usecnt
2884 * @usecnt: The usecnt atomic
2885 * @why: remove reason
2886 * @uobj: The uobject that is destroyed
2887 *
2888 * Non-zero usecnts will block destruction unless destruction was triggered by
2889 * a ucontext cleanup.
2890 */
2891static inline int ib_destroy_usecnt(atomic_t *usecnt,
2892 enum rdma_remove_reason why,
2893 struct ib_uobject *uobj)
2894{
2895 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2896 return -EBUSY;
2897 return 0;
2898}
2899
8a51866f
RD
2900/**
2901 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2902 * contains all required attributes and no attributes not allowed for
2903 * the given QP state transition.
2904 * @cur_state: Current QP state
2905 * @next_state: Next QP state
2906 * @type: QP type
2907 * @mask: Mask of supplied QP attributes
2908 *
2909 * This function is a helper function that a low-level driver's
2910 * modify_qp method can use to validate the consumer's input. It
2911 * checks that cur_state and next_state are valid QP states, that a
2912 * transition from cur_state to next_state is allowed by the IB spec,
2913 * and that the attribute mask supplied is allowed for the transition.
2914 */
19b1f540 2915bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2916 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2917
dcc9881e
LR
2918void ib_register_event_handler(struct ib_event_handler *event_handler);
2919void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2920void ib_dispatch_event(struct ib_event *event);
2921
1da177e4
LT
2922int ib_query_port(struct ib_device *device,
2923 u8 port_num, struct ib_port_attr *port_attr);
2924
a3f5adaf
EC
2925enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2926 u8 port_num);
2927
4139032b
HR
2928/**
2929 * rdma_cap_ib_switch - Check if the device is IB switch
2930 * @device: Device to check
2931 *
2932 * Device driver is responsible for setting is_switch bit on
2933 * in ib_device structure at init time.
2934 *
2935 * Return: true if the device is IB switch.
2936 */
2937static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2938{
2939 return device->is_switch;
2940}
2941
0cf18d77
IW
2942/**
2943 * rdma_start_port - Return the first valid port number for the device
2944 * specified
2945 *
2946 * @device: Device to be checked
2947 *
2948 * Return start port number
2949 */
2950static inline u8 rdma_start_port(const struct ib_device *device)
2951{
4139032b 2952 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2953}
2954
ea1075ed
JG
2955/**
2956 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2957 * @device - The struct ib_device * to iterate over
2958 * @iter - The unsigned int to store the port number
2959 */
2960#define rdma_for_each_port(device, iter) \
2961 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
2962 unsigned int, iter))); \
2963 iter <= rdma_end_port(device); (iter)++)
2964
0cf18d77
IW
2965/**
2966 * rdma_end_port - Return the last valid port number for the device
2967 * specified
2968 *
2969 * @device: Device to be checked
2970 *
2971 * Return last port number
2972 */
2973static inline u8 rdma_end_port(const struct ib_device *device)
2974{
4139032b 2975 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2976}
2977
24dc831b
YS
2978static inline int rdma_is_port_valid(const struct ib_device *device,
2979 unsigned int port)
2980{
2981 return (port >= rdma_start_port(device) &&
2982 port <= rdma_end_port(device));
2983}
2984
b02289b3
AK
2985static inline bool rdma_is_grh_required(const struct ib_device *device,
2986 u8 port_num)
2987{
8ceb1357
JG
2988 return device->port_data[port_num].immutable.core_cap_flags &
2989 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
2990}
2991
5ede9289 2992static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2993{
8ceb1357
JG
2994 return device->port_data[port_num].immutable.core_cap_flags &
2995 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2996}
2997
5ede9289 2998static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f 2999{
8ceb1357
JG
3000 return device->port_data[port_num].immutable.core_cap_flags &
3001 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
3002}
3003
3004static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3005{
8ceb1357
JG
3006 return device->port_data[port_num].immutable.core_cap_flags &
3007 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
3008}
3009
3010static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 3011{
8ceb1357
JG
3012 return device->port_data[port_num].immutable.core_cap_flags &
3013 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
3014}
3015
5ede9289 3016static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 3017{
8ceb1357
JG
3018 return device->port_data[port_num].immutable.core_cap_flags &
3019 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
3020}
3021
5ede9289 3022static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 3023{
7766a99f
MB
3024 return rdma_protocol_ib(device, port_num) ||
3025 rdma_protocol_roce(device, port_num);
de66be94
MW
3026}
3027
aa773bd4
OG
3028static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3029{
8ceb1357
JG
3030 return device->port_data[port_num].immutable.core_cap_flags &
3031 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
3032}
3033
ce1e055f
OG
3034static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3035{
8ceb1357
JG
3036 return device->port_data[port_num].immutable.core_cap_flags &
3037 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
3038}
3039
c757dea8 3040/**
296ec009 3041 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 3042 * Management Datagrams.
296ec009
MW
3043 * @device: Device to check
3044 * @port_num: Port number to check
c757dea8 3045 *
296ec009
MW
3046 * Management Datagrams (MAD) are a required part of the InfiniBand
3047 * specification and are supported on all InfiniBand devices. A slightly
3048 * extended version are also supported on OPA interfaces.
c757dea8 3049 *
296ec009 3050 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3051 */
5ede9289 3052static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 3053{
8ceb1357
JG
3054 return device->port_data[port_num].immutable.core_cap_flags &
3055 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3056}
3057
65995fee
IW
3058/**
3059 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3060 * Management Datagrams.
3061 * @device: Device to check
3062 * @port_num: Port number to check
3063 *
3064 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3065 * datagrams with their own versions. These OPA MADs share many but not all of
3066 * the characteristics of InfiniBand MADs.
3067 *
3068 * OPA MADs differ in the following ways:
3069 *
3070 * 1) MADs are variable size up to 2K
3071 * IBTA defined MADs remain fixed at 256 bytes
3072 * 2) OPA SMPs must carry valid PKeys
3073 * 3) OPA SMP packets are a different format
3074 *
3075 * Return: true if the port supports OPA MAD packet formats.
3076 */
3077static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3078{
d3243da8
LR
3079 return device->port_data[port_num].immutable.core_cap_flags &
3080 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3081}
3082
29541e3a 3083/**
296ec009
MW
3084 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3085 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3086 * @device: Device to check
3087 * @port_num: Port number to check
29541e3a 3088 *
296ec009
MW
3089 * Each InfiniBand node is required to provide a Subnet Management Agent
3090 * that the subnet manager can access. Prior to the fabric being fully
3091 * configured by the subnet manager, the SMA is accessed via a well known
3092 * interface called the Subnet Management Interface (SMI). This interface
3093 * uses directed route packets to communicate with the SM to get around the
3094 * chicken and egg problem of the SM needing to know what's on the fabric
3095 * in order to configure the fabric, and needing to configure the fabric in
3096 * order to send packets to the devices on the fabric. These directed
3097 * route packets do not need the fabric fully configured in order to reach
3098 * their destination. The SMI is the only method allowed to send
3099 * directed route packets on an InfiniBand fabric.
29541e3a 3100 *
296ec009 3101 * Return: true if the port provides an SMI.
29541e3a 3102 */
5ede9289 3103static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 3104{
8ceb1357
JG
3105 return device->port_data[port_num].immutable.core_cap_flags &
3106 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3107}
3108
72219cea
MW
3109/**
3110 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3111 * Communication Manager.
296ec009
MW
3112 * @device: Device to check
3113 * @port_num: Port number to check
72219cea 3114 *
296ec009
MW
3115 * The InfiniBand Communication Manager is one of many pre-defined General
3116 * Service Agents (GSA) that are accessed via the General Service
3117 * Interface (GSI). It's role is to facilitate establishment of connections
3118 * between nodes as well as other management related tasks for established
3119 * connections.
72219cea 3120 *
296ec009
MW
3121 * Return: true if the port supports an IB CM (this does not guarantee that
3122 * a CM is actually running however).
72219cea 3123 */
5ede9289 3124static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 3125{
8ceb1357
JG
3126 return device->port_data[port_num].immutable.core_cap_flags &
3127 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3128}
3129
04215330
MW
3130/**
3131 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3132 * Communication Manager.
296ec009
MW
3133 * @device: Device to check
3134 * @port_num: Port number to check
04215330 3135 *
296ec009
MW
3136 * Similar to above, but specific to iWARP connections which have a different
3137 * managment protocol than InfiniBand.
04215330 3138 *
296ec009
MW
3139 * Return: true if the port supports an iWARP CM (this does not guarantee that
3140 * a CM is actually running however).
04215330 3141 */
5ede9289 3142static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 3143{
8ceb1357
JG
3144 return device->port_data[port_num].immutable.core_cap_flags &
3145 RDMA_CORE_CAP_IW_CM;
04215330
MW
3146}
3147
fe53ba2f
MW
3148/**
3149 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3150 * Subnet Administration.
296ec009
MW
3151 * @device: Device to check
3152 * @port_num: Port number to check
fe53ba2f 3153 *
296ec009
MW
3154 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3155 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3156 * fabrics, devices should resolve routes to other hosts by contacting the
3157 * SA to query the proper route.
fe53ba2f 3158 *
296ec009
MW
3159 * Return: true if the port should act as a client to the fabric Subnet
3160 * Administration interface. This does not imply that the SA service is
3161 * running locally.
fe53ba2f 3162 */
5ede9289 3163static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3164{
8ceb1357
JG
3165 return device->port_data[port_num].immutable.core_cap_flags &
3166 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3167}
3168
a31ad3b0
MW
3169/**
3170 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3171 * Multicast.
296ec009
MW
3172 * @device: Device to check
3173 * @port_num: Port number to check
a31ad3b0 3174 *
296ec009
MW
3175 * InfiniBand multicast registration is more complex than normal IPv4 or
3176 * IPv6 multicast registration. Each Host Channel Adapter must register
3177 * with the Subnet Manager when it wishes to join a multicast group. It
3178 * should do so only once regardless of how many queue pairs it subscribes
3179 * to this group. And it should leave the group only after all queue pairs
3180 * attached to the group have been detached.
a31ad3b0 3181 *
296ec009
MW
3182 * Return: true if the port must undertake the additional adminstrative
3183 * overhead of registering/unregistering with the SM and tracking of the
3184 * total number of queue pairs attached to the multicast group.
a31ad3b0 3185 */
5ede9289 3186static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3187{
3188 return rdma_cap_ib_sa(device, port_num);
3189}
3190
30a74ef4
MW
3191/**
3192 * rdma_cap_af_ib - Check if the port of device has the capability
3193 * Native Infiniband Address.
296ec009
MW
3194 * @device: Device to check
3195 * @port_num: Port number to check
30a74ef4 3196 *
296ec009
MW
3197 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3198 * GID. RoCE uses a different mechanism, but still generates a GID via
3199 * a prescribed mechanism and port specific data.
30a74ef4 3200 *
296ec009
MW
3201 * Return: true if the port uses a GID address to identify devices on the
3202 * network.
30a74ef4 3203 */
5ede9289 3204static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3205{
8ceb1357
JG
3206 return device->port_data[port_num].immutable.core_cap_flags &
3207 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3208}
3209
227128fc
MW
3210/**
3211 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3212 * Ethernet Address Handle.
3213 * @device: Device to check
3214 * @port_num: Port number to check
227128fc 3215 *
296ec009
MW
3216 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3217 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3218 * port. Normally, packet headers are generated by the sending host
3219 * adapter, but when sending connectionless datagrams, we must manually
3220 * inject the proper headers for the fabric we are communicating over.
227128fc 3221 *
296ec009
MW
3222 * Return: true if we are running as a RoCE port and must force the
3223 * addition of a Global Route Header built from our Ethernet Address
3224 * Handle into our header list for connectionless packets.
227128fc 3225 */
5ede9289 3226static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3227{
8ceb1357
JG
3228 return device->port_data[port_num].immutable.core_cap_flags &
3229 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3230}
3231
94d595c5
DC
3232/**
3233 * rdma_cap_opa_ah - Check if the port of device supports
3234 * OPA Address handles
3235 * @device: Device to check
3236 * @port_num: Port number to check
3237 *
3238 * Return: true if we are running on an OPA device which supports
3239 * the extended OPA addressing.
3240 */
3241static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3242{
8ceb1357 3243 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3244 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3245}
3246
337877a4
IW
3247/**
3248 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3249 *
3250 * @device: Device
3251 * @port_num: Port number
3252 *
3253 * This MAD size includes the MAD headers and MAD payload. No other headers
3254 * are included.
3255 *
3256 * Return the max MAD size required by the Port. Will return 0 if the port
3257 * does not support MADs
3258 */
3259static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3260{
8ceb1357 3261 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3262}
3263
03db3a2d
MB
3264/**
3265 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3266 * @device: Device to check
3267 * @port_num: Port number to check
3268 *
3269 * RoCE GID table mechanism manages the various GIDs for a device.
3270 *
3271 * NOTE: if allocating the port's GID table has failed, this call will still
3272 * return true, but any RoCE GID table API will fail.
3273 *
3274 * Return: true if the port uses RoCE GID table mechanism in order to manage
3275 * its GIDs.
3276 */
3277static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3278 u8 port_num)
3279{
3280 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3281 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3282}
3283
002516ed
CH
3284/*
3285 * Check if the device supports READ W/ INVALIDATE.
3286 */
3287static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3288{
3289 /*
3290 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3291 * has support for it yet.
3292 */
3293 return rdma_protocol_iwarp(dev, port_num);
3294}
3295
4a353399
SS
3296/**
3297 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3298 *
3299 * @addr: address
3300 * @pgsz_bitmap: bitmap of HW supported page sizes
3301 */
3302static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3303 unsigned long pgsz_bitmap)
3304{
3305 unsigned long align;
3306 unsigned long pgsz;
3307
3308 align = addr & -addr;
3309
3310 /* Find page bit such that addr is aligned to the highest supported
3311 * HW page size
3312 */
3313 pgsz = pgsz_bitmap & ~(-align << 1);
3314 if (!pgsz)
3315 return __ffs(pgsz_bitmap);
3316
3317 return __fls(pgsz);
3318}
3319
50174a7f
EC
3320int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3321 int state);
3322int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3323 struct ifla_vf_info *info);
3324int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3325 struct ifla_vf_stats *stats);
3326int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3327 int type);
3328
1da177e4
LT
3329int ib_query_pkey(struct ib_device *device,
3330 u8 port_num, u16 index, u16 *pkey);
3331
3332int ib_modify_device(struct ib_device *device,
3333 int device_modify_mask,
3334 struct ib_device_modify *device_modify);
3335
3336int ib_modify_port(struct ib_device *device,
3337 u8 port_num, int port_modify_mask,
3338 struct ib_port_modify *port_modify);
3339
5eb620c8 3340int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3341 u8 *port_num, u16 *index);
5eb620c8
YE
3342
3343int ib_find_pkey(struct ib_device *device,
3344 u8 port_num, u16 pkey, u16 *index);
3345
ed082d36
CH
3346enum ib_pd_flags {
3347 /*
3348 * Create a memory registration for all memory in the system and place
3349 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3350 * ULPs to avoid the overhead of dynamic MRs.
3351 *
3352 * This flag is generally considered unsafe and must only be used in
3353 * extremly trusted environments. Every use of it will log a warning
3354 * in the kernel log.
3355 */
3356 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3357};
1da177e4 3358
ed082d36
CH
3359struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3360 const char *caller);
c4367a26 3361
ed082d36 3362#define ib_alloc_pd(device, flags) \
e4496447 3363 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26
SR
3364
3365/**
3366 * ib_dealloc_pd_user - Deallocate kernel/user PD
3367 * @pd: The protection domain
3368 * @udata: Valid user data or NULL for kernel objects
3369 */
3370void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3371
3372/**
3373 * ib_dealloc_pd - Deallocate kernel PD
3374 * @pd: The protection domain
3375 *
3376 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3377 */
3378static inline void ib_dealloc_pd(struct ib_pd *pd)
3379{
3380 ib_dealloc_pd_user(pd, NULL);
3381}
1da177e4 3382
b090c4e3
GP
3383enum rdma_create_ah_flags {
3384 /* In a sleepable context */
3385 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3386};
3387
1da177e4 3388/**
0a18cfe4 3389 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3390 * @pd: The protection domain associated with the address handle.
3391 * @ah_attr: The attributes of the address vector.
b090c4e3 3392 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3393 *
3394 * The address handle is used to reference a local or global destination
3395 * in all UD QP post sends.
3396 */
b090c4e3
GP
3397struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3398 u32 flags);
1da177e4 3399
5cda6587
PP
3400/**
3401 * rdma_create_user_ah - Creates an address handle for the given address vector.
3402 * It resolves destination mac address for ah attribute of RoCE type.
3403 * @pd: The protection domain associated with the address handle.
3404 * @ah_attr: The attributes of the address vector.
3405 * @udata: pointer to user's input output buffer information need by
3406 * provider driver.
3407 *
3408 * It returns 0 on success and returns appropriate error code on error.
3409 * The address handle is used to reference a local or global destination
3410 * in all UD QP post sends.
3411 */
3412struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3413 struct rdma_ah_attr *ah_attr,
3414 struct ib_udata *udata);
850d8fd7
MS
3415/**
3416 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3417 * work completion.
3418 * @hdr: the L3 header to parse
3419 * @net_type: type of header to parse
3420 * @sgid: place to store source gid
3421 * @dgid: place to store destination gid
3422 */
3423int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3424 enum rdma_network_type net_type,
3425 union ib_gid *sgid, union ib_gid *dgid);
3426
3427/**
3428 * ib_get_rdma_header_version - Get the header version
3429 * @hdr: the L3 header to parse
3430 */
3431int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3432
4e00d694 3433/**
f6bdb142 3434 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3435 * work completion.
3436 * @device: Device on which the received message arrived.
3437 * @port_num: Port on which the received message arrived.
3438 * @wc: Work completion associated with the received message.
3439 * @grh: References the received global route header. This parameter is
3440 * ignored unless the work completion indicates that the GRH is valid.
3441 * @ah_attr: Returned attributes that can be used when creating an address
3442 * handle for replying to the message.
b7403217
PP
3443 * When ib_init_ah_attr_from_wc() returns success,
3444 * (a) for IB link layer it optionally contains a reference to SGID attribute
3445 * when GRH is present for IB link layer.
3446 * (b) for RoCE link layer it contains a reference to SGID attribute.
3447 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3448 * attributes which are initialized using ib_init_ah_attr_from_wc().
3449 *
4e00d694 3450 */
f6bdb142
PP
3451int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3452 const struct ib_wc *wc, const struct ib_grh *grh,
3453 struct rdma_ah_attr *ah_attr);
4e00d694 3454
513789ed
HR
3455/**
3456 * ib_create_ah_from_wc - Creates an address handle associated with the
3457 * sender of the specified work completion.
3458 * @pd: The protection domain associated with the address handle.
3459 * @wc: Work completion information associated with a received message.
3460 * @grh: References the received global route header. This parameter is
3461 * ignored unless the work completion indicates that the GRH is valid.
3462 * @port_num: The outbound port number to associate with the address.
3463 *
3464 * The address handle is used to reference a local or global destination
3465 * in all UD QP post sends.
3466 */
73cdaaee
IW
3467struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3468 const struct ib_grh *grh, u8 port_num);
513789ed 3469
1da177e4 3470/**
67b985b6 3471 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3472 * handle.
3473 * @ah: The address handle to modify.
3474 * @ah_attr: The new address vector attributes to associate with the
3475 * address handle.
3476 */
67b985b6 3477int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3478
3479/**
bfbfd661 3480 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3481 * handle.
3482 * @ah: The address handle to query.
3483 * @ah_attr: The address vector attributes associated with the address
3484 * handle.
3485 */
bfbfd661 3486int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3487
2553ba21
GP
3488enum rdma_destroy_ah_flags {
3489 /* In a sleepable context */
3490 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3491};
3492
1da177e4 3493/**
c4367a26 3494 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3495 * @ah: The address handle to destroy.
2553ba21 3496 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3497 * @udata: Valid user data or NULL for kernel objects
1da177e4 3498 */
c4367a26
SR
3499int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3500
3501/**
3502 * rdma_destroy_ah - Destroys an kernel address handle.
3503 * @ah: The address handle to destroy.
3504 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3505 *
3506 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3507 */
3508static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3509{
3510 return rdma_destroy_ah_user(ah, flags, NULL);
3511}
1da177e4 3512
d41fcc67
RD
3513/**
3514 * ib_create_srq - Creates a SRQ associated with the specified protection
3515 * domain.
3516 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3517 * @srq_init_attr: A list of initial attributes required to create the
3518 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3519 * the actual capabilities of the created SRQ.
d41fcc67
RD
3520 *
3521 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3522 * requested size of the SRQ, and set to the actual values allocated
3523 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3524 * will always be at least as large as the requested values.
3525 */
3526struct ib_srq *ib_create_srq(struct ib_pd *pd,
3527 struct ib_srq_init_attr *srq_init_attr);
3528
3529/**
3530 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3531 * @srq: The SRQ to modify.
3532 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3533 * the current values of selected SRQ attributes are returned.
3534 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3535 * are being modified.
3536 *
3537 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3538 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3539 * the number of receives queued drops below the limit.
3540 */
3541int ib_modify_srq(struct ib_srq *srq,
3542 struct ib_srq_attr *srq_attr,
3543 enum ib_srq_attr_mask srq_attr_mask);
3544
3545/**
3546 * ib_query_srq - Returns the attribute list and current values for the
3547 * specified SRQ.
3548 * @srq: The SRQ to query.
3549 * @srq_attr: The attributes of the specified SRQ.
3550 */
3551int ib_query_srq(struct ib_srq *srq,
3552 struct ib_srq_attr *srq_attr);
3553
3554/**
c4367a26
SR
3555 * ib_destroy_srq_user - Destroys the specified SRQ.
3556 * @srq: The SRQ to destroy.
3557 * @udata: Valid user data or NULL for kernel objects
3558 */
3559int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3560
3561/**
3562 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3563 * @srq: The SRQ to destroy.
c4367a26
SR
3564 *
3565 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3566 */
c4367a26
SR
3567static inline int ib_destroy_srq(struct ib_srq *srq)
3568{
3569 return ib_destroy_srq_user(srq, NULL);
3570}
d41fcc67
RD
3571
3572/**
3573 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3574 * @srq: The SRQ to post the work request on.
3575 * @recv_wr: A list of work requests to post on the receive queue.
3576 * @bad_recv_wr: On an immediate failure, this parameter will reference
3577 * the work request that failed to be posted on the QP.
3578 */
3579static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3580 const struct ib_recv_wr *recv_wr,
3581 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3582{
d34ac5cd 3583 const struct ib_recv_wr *dummy;
bb039a87 3584
3023a1e9
KH
3585 return srq->device->ops.post_srq_recv(srq, recv_wr,
3586 bad_recv_wr ? : &dummy);
d41fcc67
RD
3587}
3588
1da177e4 3589/**
c4367a26 3590 * ib_create_qp_user - Creates a QP associated with the specified protection
1da177e4
LT
3591 * domain.
3592 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3593 * @qp_init_attr: A list of initial attributes required to create the
3594 * QP. If QP creation succeeds, then the attributes are updated to
3595 * the actual capabilities of the created QP.
c4367a26 3596 * @udata: Valid user data or NULL for kernel objects
1da177e4 3597 */
c4367a26
SR
3598struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3599 struct ib_qp_init_attr *qp_init_attr,
3600 struct ib_udata *udata);
3601
3602/**
3603 * ib_create_qp - Creates a kernel QP associated with the specified protection
3604 * domain.
3605 * @pd: The protection domain associated with the QP.
3606 * @qp_init_attr: A list of initial attributes required to create the
3607 * QP. If QP creation succeeds, then the attributes are updated to
3608 * the actual capabilities of the created QP.
3609 * @udata: Valid user data or NULL for kernel objects
3610 *
3611 * NOTE: for user qp use ib_create_qp_user with valid udata!
3612 */
3613static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3614 struct ib_qp_init_attr *qp_init_attr)
3615{
3616 return ib_create_qp_user(pd, qp_init_attr, NULL);
3617}
1da177e4 3618
a512c2fb
PP
3619/**
3620 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3621 * @qp: The QP to modify.
3622 * @attr: On input, specifies the QP attributes to modify. On output,
3623 * the current values of selected QP attributes are returned.
3624 * @attr_mask: A bit-mask used to specify which attributes of the QP
3625 * are being modified.
3626 * @udata: pointer to user's input output buffer information
3627 * are being modified.
3628 * It returns 0 on success and returns appropriate error code on error.
3629 */
3630int ib_modify_qp_with_udata(struct ib_qp *qp,
3631 struct ib_qp_attr *attr,
3632 int attr_mask,
3633 struct ib_udata *udata);
3634
1da177e4
LT
3635/**
3636 * ib_modify_qp - Modifies the attributes for the specified QP and then
3637 * transitions the QP to the given state.
3638 * @qp: The QP to modify.
3639 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3640 * the current values of selected QP attributes are returned.
3641 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3642 * are being modified.
3643 */
3644int ib_modify_qp(struct ib_qp *qp,
3645 struct ib_qp_attr *qp_attr,
3646 int qp_attr_mask);
3647
3648/**
3649 * ib_query_qp - Returns the attribute list and current values for the
3650 * specified QP.
3651 * @qp: The QP to query.
3652 * @qp_attr: The attributes of the specified QP.
3653 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3654 * @qp_init_attr: Additional attributes of the selected QP.
3655 *
3656 * The qp_attr_mask may be used to limit the query to gathering only the
3657 * selected attributes.
3658 */
3659int ib_query_qp(struct ib_qp *qp,
3660 struct ib_qp_attr *qp_attr,
3661 int qp_attr_mask,
3662 struct ib_qp_init_attr *qp_init_attr);
3663
3664/**
3665 * ib_destroy_qp - Destroys the specified QP.
3666 * @qp: The QP to destroy.
c4367a26 3667 * @udata: Valid udata or NULL for kernel objects
1da177e4 3668 */
c4367a26
SR
3669int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3670
3671/**
3672 * ib_destroy_qp - Destroys the specified kernel QP.
3673 * @qp: The QP to destroy.
3674 *
3675 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3676 */
3677static inline int ib_destroy_qp(struct ib_qp *qp)
3678{
3679 return ib_destroy_qp_user(qp, NULL);
3680}
1da177e4 3681
d3d72d90 3682/**
0e0ec7e0
SH
3683 * ib_open_qp - Obtain a reference to an existing sharable QP.
3684 * @xrcd - XRC domain
3685 * @qp_open_attr: Attributes identifying the QP to open.
3686 *
3687 * Returns a reference to a sharable QP.
3688 */
3689struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3690 struct ib_qp_open_attr *qp_open_attr);
3691
3692/**
3693 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3694 * @qp: The QP handle to release
3695 *
0e0ec7e0
SH
3696 * The opened QP handle is released by the caller. The underlying
3697 * shared QP is not destroyed until all internal references are released.
d3d72d90 3698 */
0e0ec7e0 3699int ib_close_qp(struct ib_qp *qp);
d3d72d90 3700
1da177e4
LT
3701/**
3702 * ib_post_send - Posts a list of work requests to the send queue of
3703 * the specified QP.
3704 * @qp: The QP to post the work request on.
3705 * @send_wr: A list of work requests to post on the send queue.
3706 * @bad_send_wr: On an immediate failure, this parameter will reference
3707 * the work request that failed to be posted on the QP.
55464d46
BVA
3708 *
3709 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3710 * error is returned, the QP state shall not be affected,
3711 * ib_post_send() will return an immediate error after queueing any
3712 * earlier work requests in the list.
1da177e4
LT
3713 */
3714static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3715 const struct ib_send_wr *send_wr,
3716 const struct ib_send_wr **bad_send_wr)
1da177e4 3717{
d34ac5cd 3718 const struct ib_send_wr *dummy;
bb039a87 3719
3023a1e9 3720 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3721}
3722
3723/**
3724 * ib_post_recv - Posts a list of work requests to the receive queue of
3725 * the specified QP.
3726 * @qp: The QP to post the work request on.
3727 * @recv_wr: A list of work requests to post on the receive queue.
3728 * @bad_recv_wr: On an immediate failure, this parameter will reference
3729 * the work request that failed to be posted on the QP.
3730 */
3731static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3732 const struct ib_recv_wr *recv_wr,
3733 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3734{
d34ac5cd 3735 const struct ib_recv_wr *dummy;
bb039a87 3736
3023a1e9 3737 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3738}
3739
c4367a26
SR
3740struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3741 int nr_cqe, int comp_vector,
3742 enum ib_poll_context poll_ctx,
3743 const char *caller, struct ib_udata *udata);
3744
3745/**
3746 * ib_alloc_cq_user: Allocate kernel/user CQ
3747 * @dev: The IB device
3748 * @private: Private data attached to the CQE
3749 * @nr_cqe: Number of CQEs in the CQ
3750 * @comp_vector: Completion vector used for the IRQs
3751 * @poll_ctx: Context used for polling the CQ
3752 * @udata: Valid user data or NULL for kernel objects
3753 */
3754static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3755 void *private, int nr_cqe,
3756 int comp_vector,
3757 enum ib_poll_context poll_ctx,
3758 struct ib_udata *udata)
3759{
3760 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3761 KBUILD_MODNAME, udata);
3762}
3763
3764/**
3765 * ib_alloc_cq: Allocate kernel CQ
3766 * @dev: The IB device
3767 * @private: Private data attached to the CQE
3768 * @nr_cqe: Number of CQEs in the CQ
3769 * @comp_vector: Completion vector used for the IRQs
3770 * @poll_ctx: Context used for polling the CQ
3771 *
3772 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3773 */
3774static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3775 int nr_cqe, int comp_vector,
3776 enum ib_poll_context poll_ctx)
3777{
3778 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3779 NULL);
3780}
3781
3782/**
3783 * ib_free_cq_user - Free kernel/user CQ
3784 * @cq: The CQ to free
3785 * @udata: Valid user data or NULL for kernel objects
3786 */
3787void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3788
3789/**
3790 * ib_free_cq - Free kernel CQ
3791 * @cq: The CQ to free
3792 *
3793 * NOTE: for user cq use ib_free_cq_user with valid udata!
3794 */
3795static inline void ib_free_cq(struct ib_cq *cq)
3796{
3797 ib_free_cq_user(cq, NULL);
3798}
f66c8ba4 3799
14d3a3b2
CH
3800int ib_process_cq_direct(struct ib_cq *cq, int budget);
3801
1da177e4
LT
3802/**
3803 * ib_create_cq - Creates a CQ on the specified device.
3804 * @device: The device on which to create the CQ.
3805 * @comp_handler: A user-specified callback that is invoked when a
3806 * completion event occurs on the CQ.
3807 * @event_handler: A user-specified callback that is invoked when an
3808 * asynchronous event not associated with a completion occurs on the CQ.
3809 * @cq_context: Context associated with the CQ returned to the user via
3810 * the associated completion and event handlers.
8e37210b 3811 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3812 *
3813 * Users can examine the cq structure to determine the actual CQ size.
3814 */
7350cdd0
BP
3815struct ib_cq *__ib_create_cq(struct ib_device *device,
3816 ib_comp_handler comp_handler,
3817 void (*event_handler)(struct ib_event *, void *),
3818 void *cq_context,
3819 const struct ib_cq_init_attr *cq_attr,
3820 const char *caller);
3821#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3822 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3823
3824/**
3825 * ib_resize_cq - Modifies the capacity of the CQ.
3826 * @cq: The CQ to resize.
3827 * @cqe: The minimum size of the CQ.
3828 *
3829 * Users can examine the cq structure to determine the actual CQ size.
3830 */
3831int ib_resize_cq(struct ib_cq *cq, int cqe);
3832
2dd57162 3833/**
4190b4e9 3834 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3835 * @cq: The CQ to modify.
3836 * @cq_count: number of CQEs that will trigger an event
3837 * @cq_period: max period of time in usec before triggering an event
3838 *
3839 */
4190b4e9 3840int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3841
1da177e4 3842/**
c4367a26 3843 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3844 * @cq: The CQ to destroy.
c4367a26 3845 * @udata: Valid user data or NULL for kernel objects
1da177e4 3846 */
c4367a26
SR
3847int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3848
3849/**
3850 * ib_destroy_cq - Destroys the specified kernel CQ.
3851 * @cq: The CQ to destroy.
3852 *
3853 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3854 */
890ac8d9 3855static inline void ib_destroy_cq(struct ib_cq *cq)
c4367a26 3856{
890ac8d9 3857 ib_destroy_cq_user(cq, NULL);
c4367a26 3858}
1da177e4
LT
3859
3860/**
3861 * ib_poll_cq - poll a CQ for completion(s)
3862 * @cq:the CQ being polled
3863 * @num_entries:maximum number of completions to return
3864 * @wc:array of at least @num_entries &struct ib_wc where completions
3865 * will be returned
3866 *
3867 * Poll a CQ for (possibly multiple) completions. If the return value
3868 * is < 0, an error occurred. If the return value is >= 0, it is the
3869 * number of completions returned. If the return value is
3870 * non-negative and < num_entries, then the CQ was emptied.
3871 */
3872static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3873 struct ib_wc *wc)
3874{
3023a1e9 3875 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3876}
3877
1da177e4
LT
3878/**
3879 * ib_req_notify_cq - Request completion notification on a CQ.
3880 * @cq: The CQ to generate an event for.
ed23a727
RD
3881 * @flags:
3882 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3883 * to request an event on the next solicited event or next work
3884 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3885 * may also be |ed in to request a hint about missed events, as
3886 * described below.
3887 *
3888 * Return Value:
3889 * < 0 means an error occurred while requesting notification
3890 * == 0 means notification was requested successfully, and if
3891 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3892 * were missed and it is safe to wait for another event. In
3893 * this case is it guaranteed that any work completions added
3894 * to the CQ since the last CQ poll will trigger a completion
3895 * notification event.
3896 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3897 * in. It means that the consumer must poll the CQ again to
3898 * make sure it is empty to avoid missing an event because of a
3899 * race between requesting notification and an entry being
3900 * added to the CQ. This return value means it is possible
3901 * (but not guaranteed) that a work completion has been added
3902 * to the CQ since the last poll without triggering a
3903 * completion notification event.
1da177e4
LT
3904 */
3905static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3906 enum ib_cq_notify_flags flags)
1da177e4 3907{
3023a1e9 3908 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
3909}
3910
3911/**
3912 * ib_req_ncomp_notif - Request completion notification when there are
3913 * at least the specified number of unreaped completions on the CQ.
3914 * @cq: The CQ to generate an event for.
3915 * @wc_cnt: The number of unreaped completions that should be on the
3916 * CQ before an event is generated.
3917 */
3918static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3919{
3023a1e9
KH
3920 return cq->device->ops.req_ncomp_notif ?
3921 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
3922 -ENOSYS;
3923}
3924
9b513090
RC
3925/**
3926 * ib_dma_mapping_error - check a DMA addr for error
3927 * @dev: The device for which the dma_addr was created
3928 * @dma_addr: The DMA address to check
3929 */
3930static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3931{
0957c29f 3932 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3933}
3934
3935/**
3936 * ib_dma_map_single - Map a kernel virtual address to DMA address
3937 * @dev: The device for which the dma_addr is to be created
3938 * @cpu_addr: The kernel virtual address
3939 * @size: The size of the region in bytes
3940 * @direction: The direction of the DMA
3941 */
3942static inline u64 ib_dma_map_single(struct ib_device *dev,
3943 void *cpu_addr, size_t size,
3944 enum dma_data_direction direction)
3945{
0957c29f 3946 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3947}
3948
3949/**
3950 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3951 * @dev: The device for which the DMA address was created
3952 * @addr: The DMA address
3953 * @size: The size of the region in bytes
3954 * @direction: The direction of the DMA
3955 */
3956static inline void ib_dma_unmap_single(struct ib_device *dev,
3957 u64 addr, size_t size,
3958 enum dma_data_direction direction)
3959{
0957c29f 3960 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3961}
3962
9b513090
RC
3963/**
3964 * ib_dma_map_page - Map a physical page to DMA address
3965 * @dev: The device for which the dma_addr is to be created
3966 * @page: The page to be mapped
3967 * @offset: The offset within the page
3968 * @size: The size of the region in bytes
3969 * @direction: The direction of the DMA
3970 */
3971static inline u64 ib_dma_map_page(struct ib_device *dev,
3972 struct page *page,
3973 unsigned long offset,
3974 size_t size,
3975 enum dma_data_direction direction)
3976{
0957c29f 3977 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3978}
3979
3980/**
3981 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3982 * @dev: The device for which the DMA address was created
3983 * @addr: The DMA address
3984 * @size: The size of the region in bytes
3985 * @direction: The direction of the DMA
3986 */
3987static inline void ib_dma_unmap_page(struct ib_device *dev,
3988 u64 addr, size_t size,
3989 enum dma_data_direction direction)
3990{
0957c29f 3991 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3992}
3993
3994/**
3995 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3996 * @dev: The device for which the DMA addresses are to be created
3997 * @sg: The array of scatter/gather entries
3998 * @nents: The number of scatter/gather entries
3999 * @direction: The direction of the DMA
4000 */
4001static inline int ib_dma_map_sg(struct ib_device *dev,
4002 struct scatterlist *sg, int nents,
4003 enum dma_data_direction direction)
4004{
0957c29f 4005 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4006}
4007
4008/**
4009 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4010 * @dev: The device for which the DMA addresses were created
4011 * @sg: The array of scatter/gather entries
4012 * @nents: The number of scatter/gather entries
4013 * @direction: The direction of the DMA
4014 */
4015static inline void ib_dma_unmap_sg(struct ib_device *dev,
4016 struct scatterlist *sg, int nents,
4017 enum dma_data_direction direction)
4018{
0957c29f 4019 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4020}
4021
cb9fbc5c
AK
4022static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4023 struct scatterlist *sg, int nents,
4024 enum dma_data_direction direction,
00085f1e 4025 unsigned long dma_attrs)
cb9fbc5c 4026{
0957c29f
BVA
4027 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4028 dma_attrs);
cb9fbc5c
AK
4029}
4030
4031static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4032 struct scatterlist *sg, int nents,
4033 enum dma_data_direction direction,
00085f1e 4034 unsigned long dma_attrs)
cb9fbc5c 4035{
0957c29f 4036 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 4037}
9b513090 4038
0b5cb330
BVA
4039/**
4040 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4041 * @dev: The device to query
4042 *
4043 * The returned value represents a size in bytes.
4044 */
4045static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4046{
4047 struct device_dma_parameters *p = dev->dma_device->dma_parms;
4048
4049 return p ? p->max_segment_size : UINT_MAX;
4050}
4051
9b513090
RC
4052/**
4053 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4054 * @dev: The device for which the DMA address was created
4055 * @addr: The DMA address
4056 * @size: The size of the region in bytes
4057 * @dir: The direction of the DMA
4058 */
4059static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4060 u64 addr,
4061 size_t size,
4062 enum dma_data_direction dir)
4063{
0957c29f 4064 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
4065}
4066
4067/**
4068 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4069 * @dev: The device for which the DMA address was created
4070 * @addr: The DMA address
4071 * @size: The size of the region in bytes
4072 * @dir: The direction of the DMA
4073 */
4074static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4075 u64 addr,
4076 size_t size,
4077 enum dma_data_direction dir)
4078{
0957c29f 4079 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4080}
4081
4082/**
4083 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4084 * @dev: The device for which the DMA address is requested
4085 * @size: The size of the region to allocate in bytes
4086 * @dma_handle: A pointer for returning the DMA address of the region
4087 * @flag: memory allocator flags
4088 */
4089static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4090 size_t size,
d43dbacf 4091 dma_addr_t *dma_handle,
9b513090
RC
4092 gfp_t flag)
4093{
0957c29f 4094 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
4095}
4096
4097/**
4098 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4099 * @dev: The device for which the DMA addresses were allocated
4100 * @size: The size of the region
4101 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4102 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4103 */
4104static inline void ib_dma_free_coherent(struct ib_device *dev,
4105 size_t size, void *cpu_addr,
d43dbacf 4106 dma_addr_t dma_handle)
9b513090 4107{
0957c29f 4108 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
4109}
4110
1da177e4 4111/**
c4367a26
SR
4112 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4113 * HCA translation table.
4114 * @mr: The memory region to deregister.
4115 * @udata: Valid user data or NULL for kernel object
4116 *
4117 * This function can fail, if the memory region has memory windows bound to it.
4118 */
4119int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4120
4121/**
4122 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4123 * HCA translation table.
4124 * @mr: The memory region to deregister.
7083e42e
SM
4125 *
4126 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4127 *
4128 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4129 */
c4367a26
SR
4130static inline int ib_dereg_mr(struct ib_mr *mr)
4131{
4132 return ib_dereg_mr_user(mr, NULL);
4133}
4134
4135struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4136 u32 max_num_sg, struct ib_udata *udata);
1da177e4 4137
c4367a26
SR
4138static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4139 enum ib_mr_type mr_type, u32 max_num_sg)
4140{
4141 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4142}
00f7ec36 4143
00f7ec36
SW
4144/**
4145 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4146 * R_Key and L_Key.
4147 * @mr - struct ib_mr pointer to be updated.
4148 * @newkey - new key to be used.
4149 */
4150static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4151{
4152 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4153 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4154}
4155
7083e42e
SM
4156/**
4157 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4158 * for calculating a new rkey for type 2 memory windows.
4159 * @rkey - the rkey to increment.
4160 */
4161static inline u32 ib_inc_rkey(u32 rkey)
4162{
4163 const u32 mask = 0x000000ff;
4164 return ((rkey + 1) & mask) | (rkey & ~mask);
4165}
4166
1da177e4
LT
4167/**
4168 * ib_alloc_fmr - Allocates a unmapped fast memory region.
4169 * @pd: The protection domain associated with the unmapped region.
4170 * @mr_access_flags: Specifies the memory access rights.
4171 * @fmr_attr: Attributes of the unmapped region.
4172 *
4173 * A fast memory region must be mapped before it can be used as part of
4174 * a work request.
4175 */
4176struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4177 int mr_access_flags,
4178 struct ib_fmr_attr *fmr_attr);
4179
4180/**
4181 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4182 * @fmr: The fast memory region to associate with the pages.
4183 * @page_list: An array of physical pages to map to the fast memory region.
4184 * @list_len: The number of pages in page_list.
4185 * @iova: The I/O virtual address to use with the mapped region.
4186 */
4187static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4188 u64 *page_list, int list_len,
4189 u64 iova)
4190{
3023a1e9 4191 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
1da177e4
LT
4192}
4193
4194/**
4195 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4196 * @fmr_list: A linked list of fast memory regions to unmap.
4197 */
4198int ib_unmap_fmr(struct list_head *fmr_list);
4199
4200/**
4201 * ib_dealloc_fmr - Deallocates a fast memory region.
4202 * @fmr: The fast memory region to deallocate.
4203 */
4204int ib_dealloc_fmr(struct ib_fmr *fmr);
4205
4206/**
4207 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4208 * @qp: QP to attach to the multicast group. The QP must be type
4209 * IB_QPT_UD.
4210 * @gid: Multicast group GID.
4211 * @lid: Multicast group LID in host byte order.
4212 *
4213 * In order to send and receive multicast packets, subnet
4214 * administration must have created the multicast group and configured
4215 * the fabric appropriately. The port associated with the specified
4216 * QP must also be a member of the multicast group.
4217 */
4218int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4219
4220/**
4221 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4222 * @qp: QP to detach from the multicast group.
4223 * @gid: Multicast group GID.
4224 * @lid: Multicast group LID in host byte order.
4225 */
4226int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4227
59991f94
SH
4228/**
4229 * ib_alloc_xrcd - Allocates an XRC domain.
4230 * @device: The device on which to allocate the XRC domain.
f66c8ba4 4231 * @caller: Module name for kernel consumers
59991f94 4232 */
f66c8ba4
LR
4233struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4234#define ib_alloc_xrcd(device) \
4235 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
4236
4237/**
4238 * ib_dealloc_xrcd - Deallocates an XRC domain.
4239 * @xrcd: The XRC domain to deallocate.
c4367a26 4240 * @udata: Valid user data or NULL for kernel object
59991f94 4241 */
c4367a26 4242int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4243
1c636f80
EC
4244static inline int ib_check_mr_access(int flags)
4245{
4246 /*
4247 * Local write permission is required if remote write or
4248 * remote atomic permission is also requested.
4249 */
4250 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4251 !(flags & IB_ACCESS_LOCAL_WRITE))
4252 return -EINVAL;
4253
4254 return 0;
4255}
4256
08bb558a
JM
4257static inline bool ib_access_writable(int access_flags)
4258{
4259 /*
4260 * We have writable memory backing the MR if any of the following
4261 * access flags are set. "Local write" and "remote write" obviously
4262 * require write access. "Remote atomic" can do things like fetch and
4263 * add, which will modify memory, and "MW bind" can change permissions
4264 * by binding a window.
4265 */
4266 return access_flags &
4267 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4268 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4269}
4270
1b01d335
SG
4271/**
4272 * ib_check_mr_status: lightweight check of MR status.
4273 * This routine may provide status checks on a selected
4274 * ib_mr. first use is for signature status check.
4275 *
4276 * @mr: A memory region.
4277 * @check_mask: Bitmask of which checks to perform from
4278 * ib_mr_status_check enumeration.
4279 * @mr_status: The container of relevant status checks.
4280 * failed checks will be indicated in the status bitmask
4281 * and the relevant info shall be in the error item.
4282 */
4283int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4284 struct ib_mr_status *mr_status);
4285
d79af724
JG
4286/**
4287 * ib_device_try_get: Hold a registration lock
4288 * device: The device to lock
4289 *
4290 * A device under an active registration lock cannot become unregistered. It
4291 * is only possible to obtain a registration lock on a device that is fully
4292 * registered, otherwise this function returns false.
4293 *
4294 * The registration lock is only necessary for actions which require the
4295 * device to still be registered. Uses that only require the device pointer to
4296 * be valid should use get_device(&ibdev->dev) to hold the memory.
4297 *
4298 */
4299static inline bool ib_device_try_get(struct ib_device *dev)
4300{
4301 return refcount_inc_not_zero(&dev->refcount);
4302}
4303
4304void ib_device_put(struct ib_device *device);
324e227e
JG
4305struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4306 enum rdma_driver_id driver_id);
4307struct ib_device *ib_device_get_by_name(const char *name,
4308 enum rdma_driver_id driver_id);
9268f72d
YK
4309struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4310 u16 pkey, const union ib_gid *gid,
4311 const struct sockaddr *addr);
c2261dd7
JG
4312int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4313 unsigned int port);
4314struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4315
5fd251c8
YH
4316struct ib_wq *ib_create_wq(struct ib_pd *pd,
4317 struct ib_wq_init_attr *init_attr);
c4367a26 4318int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
5fd251c8
YH
4319int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4320 u32 wq_attr_mask);
6d39786b
YH
4321struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4322 struct ib_rwq_ind_table_init_attr*
4323 wq_ind_table_init_attr);
4324int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 4325
ff2ba993 4326int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4327 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
4328
4329static inline int
ff2ba993 4330ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4331 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4332{
4333 int n;
4334
ff2ba993 4335 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4336 mr->iova = 0;
4337
4338 return n;
4339}
4340
ff2ba993 4341int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4342 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4343
765d6774
SW
4344void ib_drain_rq(struct ib_qp *qp);
4345void ib_drain_sq(struct ib_qp *qp);
4346void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4347
d4186194 4348int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4349
4350static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4351{
44c58487
DC
4352 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4353 return attr->roce.dmac;
4354 return NULL;
2224c47a
DC
4355}
4356
64b4646e 4357static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4358{
44c58487 4359 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4360 attr->ib.dlid = (u16)dlid;
4361 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4362 attr->opa.dlid = dlid;
2224c47a
DC
4363}
4364
64b4646e 4365static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4366{
44c58487
DC
4367 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4368 return attr->ib.dlid;
64b4646e
DC
4369 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4370 return attr->opa.dlid;
44c58487 4371 return 0;
2224c47a
DC
4372}
4373
4374static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4375{
4376 attr->sl = sl;
4377}
4378
4379static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4380{
4381 return attr->sl;
4382}
4383
4384static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4385 u8 src_path_bits)
4386{
44c58487
DC
4387 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4388 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4389 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4390 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4391}
4392
4393static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4394{
44c58487
DC
4395 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4396 return attr->ib.src_path_bits;
64b4646e
DC
4397 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4398 return attr->opa.src_path_bits;
44c58487 4399 return 0;
2224c47a
DC
4400}
4401
d98bb7f7
DH
4402static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4403 bool make_grd)
4404{
4405 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4406 attr->opa.make_grd = make_grd;
4407}
4408
4409static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4410{
4411 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4412 return attr->opa.make_grd;
4413 return false;
4414}
4415
2224c47a
DC
4416static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4417{
4418 attr->port_num = port_num;
4419}
4420
4421static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4422{
4423 return attr->port_num;
4424}
4425
4426static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4427 u8 static_rate)
4428{
4429 attr->static_rate = static_rate;
4430}
4431
4432static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4433{
4434 return attr->static_rate;
4435}
4436
4437static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4438 enum ib_ah_flags flag)
4439{
4440 attr->ah_flags = flag;
4441}
4442
4443static inline enum ib_ah_flags
4444 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4445{
4446 return attr->ah_flags;
4447}
4448
4449static inline const struct ib_global_route
4450 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4451{
4452 return &attr->grh;
4453}
4454
4455/*To retrieve and modify the grh */
4456static inline struct ib_global_route
4457 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4458{
4459 return &attr->grh;
4460}
4461
4462static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4463{
4464 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4465
4466 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4467}
4468
4469static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4470 __be64 prefix)
4471{
4472 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4473
4474 grh->dgid.global.subnet_prefix = prefix;
4475}
4476
4477static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4478 __be64 if_id)
4479{
4480 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4481
4482 grh->dgid.global.interface_id = if_id;
4483}
4484
4485static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4486 union ib_gid *dgid, u32 flow_label,
4487 u8 sgid_index, u8 hop_limit,
4488 u8 traffic_class)
4489{
4490 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4491
4492 attr->ah_flags = IB_AH_GRH;
4493 if (dgid)
4494 grh->dgid = *dgid;
4495 grh->flow_label = flow_label;
4496 grh->sgid_index = sgid_index;
4497 grh->hop_limit = hop_limit;
4498 grh->traffic_class = traffic_class;
8d9ec9ad 4499 grh->sgid_attr = NULL;
2224c47a 4500}
44c58487 4501
8d9ec9ad
JG
4502void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4503void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4504 u32 flow_label, u8 hop_limit, u8 traffic_class,
4505 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4506void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4507 const struct rdma_ah_attr *src);
4508void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4509 const struct rdma_ah_attr *new);
4510void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4511
87daac68
DH
4512/**
4513 * rdma_ah_find_type - Return address handle type.
4514 *
4515 * @dev: Device to be checked
4516 * @port_num: Port number
4517 */
44c58487 4518static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4519 u8 port_num)
44c58487 4520{
a6532e71 4521 if (rdma_protocol_roce(dev, port_num))
44c58487 4522 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4523 if (rdma_protocol_ib(dev, port_num)) {
4524 if (rdma_cap_opa_ah(dev, port_num))
4525 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4526 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4527 }
4528
4529 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4530}
7db20ecd 4531
62ede777
HD
4532/**
4533 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4534 * In the current implementation the only way to get
4535 * get the 32bit lid is from other sources for OPA.
4536 * For IB, lids will always be 16bits so cast the
4537 * value accordingly.
4538 *
4539 * @lid: A 32bit LID
4540 */
4541static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4542{
62ede777
HD
4543 WARN_ON_ONCE(lid & 0xFFFF0000);
4544 return (u16)lid;
7db20ecd
HD
4545}
4546
62ede777
HD
4547/**
4548 * ib_lid_be16 - Return lid in 16bit BE encoding.
4549 *
4550 * @lid: A 32bit LID
4551 */
4552static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4553{
62ede777
HD
4554 WARN_ON_ONCE(lid & 0xFFFF0000);
4555 return cpu_to_be16((u16)lid);
7db20ecd 4556}
32043830 4557
c66cd353
SG
4558/**
4559 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4560 * vector
4561 * @device: the rdma device
4562 * @comp_vector: index of completion vector
4563 *
4564 * Returns NULL on failure, otherwise a corresponding cpu map of the
4565 * completion vector (returns all-cpus map if the device driver doesn't
4566 * implement get_vector_affinity).
4567 */
4568static inline const struct cpumask *
4569ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4570{
4571 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4572 !device->ops.get_vector_affinity)
c66cd353
SG
4573 return NULL;
4574
3023a1e9 4575 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4576
4577}
4578
32f69e4b
DJ
4579/**
4580 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4581 * and add their gids, as needed, to the relevant RoCE devices.
4582 *
4583 * @device: the rdma device
4584 */
4585void rdma_roce_rescan_device(struct ib_device *ibdev);
4586
8313c10f 4587struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4588
15a1b4be 4589int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4590
4591struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4592 enum rdma_netdev_t type, const char *name,
4593 unsigned char name_assign_type,
4594 void (*setup)(struct net_device *));
5d6b0cb3
DD
4595
4596int rdma_init_netdev(struct ib_device *device, u8 port_num,
4597 enum rdma_netdev_t type, const char *name,
4598 unsigned char name_assign_type,
4599 void (*setup)(struct net_device *),
4600 struct net_device *netdev);
4601
d4122f5a
PP
4602/**
4603 * rdma_set_device_sysfs_group - Set device attributes group to have
4604 * driver specific sysfs entries at
4605 * for infiniband class.
4606 *
4607 * @device: device pointer for which attributes to be created
4608 * @group: Pointer to group which should be added when device
4609 * is registered with sysfs.
4610 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4611 * group per device to have sysfs attributes.
4612 *
4613 * NOTE: New drivers should not make use of this API; instead new device
4614 * parameter should be exposed via netlink command. This API and mechanism
4615 * exist only for existing drivers.
4616 */
4617static inline void
4618rdma_set_device_sysfs_group(struct ib_device *dev,
4619 const struct attribute_group *group)
4620{
4621 dev->groups[1] = group;
4622}
4623
54747231
PP
4624/**
4625 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4626 *
4627 * @device: device pointer for which ib_device pointer to retrieve
4628 *
4629 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4630 *
4631 */
4632static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4633{
cebe556b
PP
4634 struct ib_core_device *coredev =
4635 container_of(device, struct ib_core_device, dev);
4636
4637 return coredev->owner;
54747231
PP
4638}
4639
4640/**
4641 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4642 * ib_device holder structure from device pointer.
4643 *
4644 * NOTE: New drivers should not make use of this API; This API is only for
4645 * existing drivers who have exposed sysfs entries using
4646 * rdma_set_device_sysfs_group().
4647 */
4648#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4649 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4650
4651bool rdma_dev_access_netns(const struct ib_device *device,
4652 const struct net *net);
1da177e4 4653#endif /* IB_VERBS_H */