]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
IB/core: Add CapabilityMask2 to port attributes
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
ea6819e1 62#include <uapi/rdma/ib_user_verbs.h>
02d8883f 63#include <rdma/restrack.h>
0ede73bc 64#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 65#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 66
9abb0d1b
LR
67#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
b5231b01
JG
69struct ib_umem_odp;
70
f0626710 71extern struct workqueue_struct *ib_wq;
14d3a3b2 72extern struct workqueue_struct *ib_comp_wq;
f794809a 73extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 74
1da177e4
LT
75union ib_gid {
76 u8 raw[16];
77 struct {
97f52eb4
SH
78 __be64 subnet_prefix;
79 __be64 interface_id;
1da177e4
LT
80 } global;
81};
82
e26be1bf
MS
83extern union ib_gid zgid;
84
b39ffa1d
MB
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
7766a99f 89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
90 IB_GID_TYPE_SIZE
91};
92
7ead4bcb 93#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
94struct ib_gid_attr {
95 struct net_device *ndev;
598ff6ba 96 struct ib_device *device;
b150c386 97 union ib_gid gid;
598ff6ba
PP
98 enum ib_gid_type gid_type;
99 u16 index;
100 u8 port_num;
03db3a2d
MB
101};
102
07ebafba
TT
103enum rdma_node_type {
104 /* IB values map to NodeInfo:NodeType. */
105 RDMA_NODE_IB_CA = 1,
106 RDMA_NODE_IB_SWITCH,
107 RDMA_NODE_IB_ROUTER,
180771a3
UM
108 RDMA_NODE_RNIC,
109 RDMA_NODE_USNIC,
5db5765e 110 RDMA_NODE_USNIC_UDP,
1da177e4
LT
111};
112
a0c1b2a3
EC
113enum {
114 /* set the local administered indication */
115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
116};
117
07ebafba
TT
118enum rdma_transport_type {
119 RDMA_TRANSPORT_IB,
180771a3 120 RDMA_TRANSPORT_IWARP,
248567f7
UM
121 RDMA_TRANSPORT_USNIC,
122 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
123};
124
6b90a6d6
MW
125enum rdma_protocol_type {
126 RDMA_PROTOCOL_IB,
127 RDMA_PROTOCOL_IBOE,
128 RDMA_PROTOCOL_IWARP,
129 RDMA_PROTOCOL_USNIC_UDP
130};
131
8385fd84
RD
132__attribute_const__ enum rdma_transport_type
133rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 134
c865f246
SK
135enum rdma_network_type {
136 RDMA_NETWORK_IB,
137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 RDMA_NETWORK_IPV4,
139 RDMA_NETWORK_IPV6
140};
141
142static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143{
144 if (network_type == RDMA_NETWORK_IPV4 ||
145 network_type == RDMA_NETWORK_IPV6)
146 return IB_GID_TYPE_ROCE_UDP_ENCAP;
147
148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 return IB_GID_TYPE_IB;
150}
151
47ec3866
PP
152static inline enum rdma_network_type
153rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 154{
47ec3866 155 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
156 return RDMA_NETWORK_IB;
157
47ec3866 158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
159 return RDMA_NETWORK_IPV4;
160 else
161 return RDMA_NETWORK_IPV6;
162}
163
a3f5adaf
EC
164enum rdma_link_layer {
165 IB_LINK_LAYER_UNSPECIFIED,
166 IB_LINK_LAYER_INFINIBAND,
167 IB_LINK_LAYER_ETHERNET,
168};
169
1da177e4 170enum ib_device_cap_flags {
7ca0bc53
LR
171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
174 IB_DEVICE_RAW_MULTI = (1 << 3),
175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 180 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
184 IB_DEVICE_SRQ_RESIZE = (1 << 13),
185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
186
187 /*
188 * This device supports a per-device lkey or stag that can be
189 * used without performing a memory registration for the local
190 * memory. Note that ULPs should never check this flag, but
191 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 * which will always contain a usable lkey.
193 */
7ca0bc53 194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 195 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 196 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
197 /*
198 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 * messages and can verify the validity of checksum for
201 * incoming messages. Setting this flag implies that the
202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 */
7ca0bc53
LR
204 IB_DEVICE_UD_IP_CSUM = (1 << 18),
205 IB_DEVICE_UD_TSO = (1 << 19),
206 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
207
208 /*
209 * This device supports the IB "base memory management extension",
210 * which includes support for fast registrations (IB_WR_REG_MR,
211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
212 * also be set by any iWarp device which must support FRs to comply
213 * to the iWarp verbs spec. iWarp devices also support the
214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 * stag.
216 */
7ca0bc53
LR
217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
221 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 223 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
224 /*
225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 * support execution of WQEs that involve synchronization
227 * of I/O operations with single completion queue managed
228 * by hardware.
229 */
78b57f95 230 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
239 /* The device supports padding incoming writes to cacheline. */
240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
241};
242
243enum ib_signature_prot_cap {
244 IB_PROT_T10DIF_TYPE_1 = 1,
245 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
246 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
247};
248
249enum ib_signature_guard_cap {
250 IB_GUARD_T10DIF_CRC = 1,
251 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
252};
253
254enum ib_atomic_cap {
255 IB_ATOMIC_NONE,
256 IB_ATOMIC_HCA,
257 IB_ATOMIC_GLOB
258};
259
860f10a7 260enum ib_odp_general_cap_bits {
25bf14d6
AK
261 IB_ODP_SUPPORT = 1 << 0,
262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
263};
264
265enum ib_odp_transport_cap_bits {
266 IB_ODP_SUPPORT_SEND = 1 << 0,
267 IB_ODP_SUPPORT_RECV = 1 << 1,
268 IB_ODP_SUPPORT_WRITE = 1 << 2,
269 IB_ODP_SUPPORT_READ = 1 << 3,
270 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
271};
272
273struct ib_odp_caps {
274 uint64_t general_caps;
275 struct {
276 uint32_t rc_odp_caps;
277 uint32_t uc_odp_caps;
278 uint32_t ud_odp_caps;
279 } per_transport_caps;
280};
281
ccf20562
YH
282struct ib_rss_caps {
283 /* Corresponding bit will be set if qp type from
284 * 'enum ib_qp_type' is supported, e.g.
285 * supported_qpts |= 1 << IB_QPT_UD
286 */
287 u32 supported_qpts;
288 u32 max_rwq_indirection_tables;
289 u32 max_rwq_indirection_table_size;
290};
291
6938fc1e
AK
292enum ib_tm_cap_flags {
293 /* Support tag matching on RC transport */
294 IB_TM_CAP_RC = 1 << 0,
295};
296
78b1beb0 297struct ib_tm_caps {
6938fc1e
AK
298 /* Max size of RNDV header */
299 u32 max_rndv_hdr_size;
300 /* Max number of entries in tag matching list */
301 u32 max_num_tags;
302 /* From enum ib_tm_cap_flags */
303 u32 flags;
304 /* Max number of outstanding list operations */
305 u32 max_ops;
306 /* Max number of SGE in tag matching entry */
307 u32 max_sge;
308};
309
bcf4c1ea
MB
310struct ib_cq_init_attr {
311 unsigned int cqe;
312 int comp_vector;
313 u32 flags;
314};
315
869ddcf8
YC
316enum ib_cq_attr_mask {
317 IB_CQ_MODERATE = 1 << 0,
318};
319
18bd9072
YC
320struct ib_cq_caps {
321 u16 max_cq_moderation_count;
322 u16 max_cq_moderation_period;
323};
324
be934cca
AL
325struct ib_dm_mr_attr {
326 u64 length;
327 u64 offset;
328 u32 access_flags;
329};
330
bee76d7a
AL
331struct ib_dm_alloc_attr {
332 u64 length;
333 u32 alignment;
334 u32 flags;
335};
336
1da177e4
LT
337struct ib_device_attr {
338 u64 fw_ver;
97f52eb4 339 __be64 sys_image_guid;
1da177e4
LT
340 u64 max_mr_size;
341 u64 page_size_cap;
342 u32 vendor_id;
343 u32 vendor_part_id;
344 u32 hw_ver;
345 int max_qp;
346 int max_qp_wr;
fb532d6a 347 u64 device_cap_flags;
33023fb8
SW
348 int max_send_sge;
349 int max_recv_sge;
1da177e4
LT
350 int max_sge_rd;
351 int max_cq;
352 int max_cqe;
353 int max_mr;
354 int max_pd;
355 int max_qp_rd_atom;
356 int max_ee_rd_atom;
357 int max_res_rd_atom;
358 int max_qp_init_rd_atom;
359 int max_ee_init_rd_atom;
360 enum ib_atomic_cap atomic_cap;
5e80ba8f 361 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
362 int max_ee;
363 int max_rdd;
364 int max_mw;
365 int max_raw_ipv6_qp;
366 int max_raw_ethy_qp;
367 int max_mcast_grp;
368 int max_mcast_qp_attach;
369 int max_total_mcast_qp_attach;
370 int max_ah;
371 int max_fmr;
372 int max_map_per_fmr;
373 int max_srq;
374 int max_srq_wr;
375 int max_srq_sge;
00f7ec36 376 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
377 u16 max_pkeys;
378 u8 local_ca_ack_delay;
1b01d335
SG
379 int sig_prot_cap;
380 int sig_guard_cap;
860f10a7 381 struct ib_odp_caps odp_caps;
24306dc6
MB
382 uint64_t timestamp_mask;
383 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
384 struct ib_rss_caps rss_caps;
385 u32 max_wq_type_rq;
ebaaee25 386 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 387 struct ib_tm_caps tm_caps;
18bd9072 388 struct ib_cq_caps cq_caps;
1d8eeb9f 389 u64 max_dm_size;
1da177e4
LT
390};
391
392enum ib_mtu {
393 IB_MTU_256 = 1,
394 IB_MTU_512 = 2,
395 IB_MTU_1024 = 3,
396 IB_MTU_2048 = 4,
397 IB_MTU_4096 = 5
398};
399
400static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
401{
402 switch (mtu) {
403 case IB_MTU_256: return 256;
404 case IB_MTU_512: return 512;
405 case IB_MTU_1024: return 1024;
406 case IB_MTU_2048: return 2048;
407 case IB_MTU_4096: return 4096;
408 default: return -1;
409 }
410}
411
d3f4aadd
AR
412static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
413{
414 if (mtu >= 4096)
415 return IB_MTU_4096;
416 else if (mtu >= 2048)
417 return IB_MTU_2048;
418 else if (mtu >= 1024)
419 return IB_MTU_1024;
420 else if (mtu >= 512)
421 return IB_MTU_512;
422 else
423 return IB_MTU_256;
424}
425
1da177e4
LT
426enum ib_port_state {
427 IB_PORT_NOP = 0,
428 IB_PORT_DOWN = 1,
429 IB_PORT_INIT = 2,
430 IB_PORT_ARMED = 3,
431 IB_PORT_ACTIVE = 4,
432 IB_PORT_ACTIVE_DEFER = 5
433};
434
1da177e4
LT
435enum ib_port_width {
436 IB_WIDTH_1X = 1,
437 IB_WIDTH_4X = 2,
438 IB_WIDTH_8X = 4,
439 IB_WIDTH_12X = 8
440};
441
442static inline int ib_width_enum_to_int(enum ib_port_width width)
443{
444 switch (width) {
445 case IB_WIDTH_1X: return 1;
446 case IB_WIDTH_4X: return 4;
447 case IB_WIDTH_8X: return 8;
448 case IB_WIDTH_12X: return 12;
449 default: return -1;
450 }
451}
452
2e96691c
OG
453enum ib_port_speed {
454 IB_SPEED_SDR = 1,
455 IB_SPEED_DDR = 2,
456 IB_SPEED_QDR = 4,
457 IB_SPEED_FDR10 = 8,
458 IB_SPEED_FDR = 16,
12113a35
NO
459 IB_SPEED_EDR = 32,
460 IB_SPEED_HDR = 64
2e96691c
OG
461};
462
b40f4757
CL
463/**
464 * struct rdma_hw_stats
e945130b
MB
465 * @lock - Mutex to protect parallel write access to lifespan and values
466 * of counters, which are 64bits and not guaranteeed to be written
467 * atomicaly on 32bits systems.
b40f4757
CL
468 * @timestamp - Used by the core code to track when the last update was
469 * @lifespan - Used by the core code to determine how old the counters
470 * should be before being updated again. Stored in jiffies, defaults
471 * to 10 milliseconds, drivers can override the default be specifying
472 * their own value during their allocation routine.
473 * @name - Array of pointers to static names used for the counters in
474 * directory.
475 * @num_counters - How many hardware counters there are. If name is
476 * shorter than this number, a kernel oops will result. Driver authors
477 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
478 * in their code to prevent this.
479 * @value - Array of u64 counters that are accessed by the sysfs code and
480 * filled in by the drivers get_stats routine
481 */
482struct rdma_hw_stats {
e945130b 483 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
484 unsigned long timestamp;
485 unsigned long lifespan;
486 const char * const *names;
487 int num_counters;
488 u64 value[];
7f624d02
SW
489};
490
b40f4757
CL
491#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
492/**
493 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
494 * for drivers.
495 * @names - Array of static const char *
496 * @num_counters - How many elements in array
497 * @lifespan - How many milliseconds between updates
498 */
499static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
500 const char * const *names, int num_counters,
501 unsigned long lifespan)
502{
503 struct rdma_hw_stats *stats;
504
505 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
506 GFP_KERNEL);
507 if (!stats)
508 return NULL;
509 stats->names = names;
510 stats->num_counters = num_counters;
511 stats->lifespan = msecs_to_jiffies(lifespan);
512
513 return stats;
514}
515
516
f9b22e35
IW
517/* Define bits for the various functionality this port needs to be supported by
518 * the core.
519 */
520/* Management 0x00000FFF */
521#define RDMA_CORE_CAP_IB_MAD 0x00000001
522#define RDMA_CORE_CAP_IB_SMI 0x00000002
523#define RDMA_CORE_CAP_IB_CM 0x00000004
524#define RDMA_CORE_CAP_IW_CM 0x00000008
525#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 526#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
527
528/* Address format 0x000FF000 */
529#define RDMA_CORE_CAP_AF_IB 0x00001000
530#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 531#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 532#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
533
534/* Protocol 0xFFF00000 */
535#define RDMA_CORE_CAP_PROT_IB 0x00100000
536#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
537#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 538#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 539#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 540#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 541
b02289b3
AK
542#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
543 | RDMA_CORE_CAP_PROT_ROCE \
544 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
545
f9b22e35
IW
546#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
547 | RDMA_CORE_CAP_IB_MAD \
548 | RDMA_CORE_CAP_IB_SMI \
549 | RDMA_CORE_CAP_IB_CM \
550 | RDMA_CORE_CAP_IB_SA \
551 | RDMA_CORE_CAP_AF_IB)
552#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
553 | RDMA_CORE_CAP_IB_MAD \
554 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
555 | RDMA_CORE_CAP_AF_IB \
556 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
557#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
558 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
559 | RDMA_CORE_CAP_IB_MAD \
560 | RDMA_CORE_CAP_IB_CM \
561 | RDMA_CORE_CAP_AF_IB \
562 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
563#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
564 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
565#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
566 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 567
aa773bd4
OG
568#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
569
ce1e055f
OG
570#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
571
1da177e4 572struct ib_port_attr {
fad61ad4 573 u64 subnet_prefix;
1da177e4
LT
574 enum ib_port_state state;
575 enum ib_mtu max_mtu;
576 enum ib_mtu active_mtu;
577 int gid_tbl_len;
2f944c0f
JG
578 unsigned int ip_gids:1;
579 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
580 u32 port_cap_flags;
581 u32 max_msg_sz;
582 u32 bad_pkey_cntr;
583 u32 qkey_viol_cntr;
584 u16 pkey_tbl_len;
db58540b 585 u32 sm_lid;
582faf31 586 u32 lid;
1da177e4
LT
587 u8 lmc;
588 u8 max_vl_num;
589 u8 sm_sl;
590 u8 subnet_timeout;
591 u8 init_type_reply;
592 u8 active_width;
593 u8 active_speed;
594 u8 phys_state;
1e8f43b7 595 u16 port_cap_flags2;
1da177e4
LT
596};
597
598enum ib_device_modify_flags {
c5bcbbb9
RD
599 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
600 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
601};
602
bd99fdea
YS
603#define IB_DEVICE_NODE_DESC_MAX 64
604
1da177e4
LT
605struct ib_device_modify {
606 u64 sys_image_guid;
bd99fdea 607 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
608};
609
610enum ib_port_modify_flags {
611 IB_PORT_SHUTDOWN = 1,
612 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
613 IB_PORT_RESET_QKEY_CNTR = (1<<3),
614 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
615};
616
617struct ib_port_modify {
618 u32 set_port_cap_mask;
619 u32 clr_port_cap_mask;
620 u8 init_type;
621};
622
623enum ib_event_type {
624 IB_EVENT_CQ_ERR,
625 IB_EVENT_QP_FATAL,
626 IB_EVENT_QP_REQ_ERR,
627 IB_EVENT_QP_ACCESS_ERR,
628 IB_EVENT_COMM_EST,
629 IB_EVENT_SQ_DRAINED,
630 IB_EVENT_PATH_MIG,
631 IB_EVENT_PATH_MIG_ERR,
632 IB_EVENT_DEVICE_FATAL,
633 IB_EVENT_PORT_ACTIVE,
634 IB_EVENT_PORT_ERR,
635 IB_EVENT_LID_CHANGE,
636 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
637 IB_EVENT_SM_CHANGE,
638 IB_EVENT_SRQ_ERR,
639 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 640 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
641 IB_EVENT_CLIENT_REREGISTER,
642 IB_EVENT_GID_CHANGE,
f213c052 643 IB_EVENT_WQ_FATAL,
1da177e4
LT
644};
645
db7489e0 646const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 647
1da177e4
LT
648struct ib_event {
649 struct ib_device *device;
650 union {
651 struct ib_cq *cq;
652 struct ib_qp *qp;
d41fcc67 653 struct ib_srq *srq;
f213c052 654 struct ib_wq *wq;
1da177e4
LT
655 u8 port_num;
656 } element;
657 enum ib_event_type event;
658};
659
660struct ib_event_handler {
661 struct ib_device *device;
662 void (*handler)(struct ib_event_handler *, struct ib_event *);
663 struct list_head list;
664};
665
666#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
667 do { \
668 (_ptr)->device = _device; \
669 (_ptr)->handler = _handler; \
670 INIT_LIST_HEAD(&(_ptr)->list); \
671 } while (0)
672
673struct ib_global_route {
8d9ec9ad 674 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
675 union ib_gid dgid;
676 u32 flow_label;
677 u8 sgid_index;
678 u8 hop_limit;
679 u8 traffic_class;
680};
681
513789ed 682struct ib_grh {
97f52eb4
SH
683 __be32 version_tclass_flow;
684 __be16 paylen;
513789ed
HR
685 u8 next_hdr;
686 u8 hop_limit;
687 union ib_gid sgid;
688 union ib_gid dgid;
689};
690
c865f246
SK
691union rdma_network_hdr {
692 struct ib_grh ibgrh;
693 struct {
694 /* The IB spec states that if it's IPv4, the header
695 * is located in the last 20 bytes of the header.
696 */
697 u8 reserved[20];
698 struct iphdr roce4grh;
699 };
700};
701
7dafbab3
DH
702#define IB_QPN_MASK 0xFFFFFF
703
1da177e4
LT
704enum {
705 IB_MULTICAST_QPN = 0xffffff
706};
707
f3a7c66b 708#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 709#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 710
1da177e4
LT
711enum ib_ah_flags {
712 IB_AH_GRH = 1
713};
714
bf6a9e31
JM
715enum ib_rate {
716 IB_RATE_PORT_CURRENT = 0,
717 IB_RATE_2_5_GBPS = 2,
718 IB_RATE_5_GBPS = 5,
719 IB_RATE_10_GBPS = 3,
720 IB_RATE_20_GBPS = 6,
721 IB_RATE_30_GBPS = 4,
722 IB_RATE_40_GBPS = 7,
723 IB_RATE_60_GBPS = 8,
724 IB_RATE_80_GBPS = 9,
71eeba16
MA
725 IB_RATE_120_GBPS = 10,
726 IB_RATE_14_GBPS = 11,
727 IB_RATE_56_GBPS = 12,
728 IB_RATE_112_GBPS = 13,
729 IB_RATE_168_GBPS = 14,
730 IB_RATE_25_GBPS = 15,
731 IB_RATE_100_GBPS = 16,
732 IB_RATE_200_GBPS = 17,
733 IB_RATE_300_GBPS = 18
bf6a9e31
JM
734};
735
736/**
737 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
738 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
739 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
740 * @rate: rate to convert.
741 */
8385fd84 742__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 743
71eeba16
MA
744/**
745 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
746 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
747 * @rate: rate to convert.
748 */
8385fd84 749__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 750
17cd3a2d
SG
751
752/**
9bee178b
SG
753 * enum ib_mr_type - memory region type
754 * @IB_MR_TYPE_MEM_REG: memory region that is used for
755 * normal registration
756 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
757 * signature operations (data-integrity
758 * capable regions)
f5aa9159
SG
759 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
760 * register any arbitrary sg lists (without
761 * the normal mr constraints - see
762 * ib_map_mr_sg)
17cd3a2d 763 */
9bee178b
SG
764enum ib_mr_type {
765 IB_MR_TYPE_MEM_REG,
766 IB_MR_TYPE_SIGNATURE,
f5aa9159 767 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
768};
769
1b01d335 770/**
78eda2bb
SG
771 * Signature types
772 * IB_SIG_TYPE_NONE: Unprotected.
773 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 774 */
78eda2bb
SG
775enum ib_signature_type {
776 IB_SIG_TYPE_NONE,
777 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
778};
779
780/**
781 * Signature T10-DIF block-guard types
782 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
783 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
784 */
785enum ib_t10_dif_bg_type {
786 IB_T10DIF_CRC,
787 IB_T10DIF_CSUM
788};
789
790/**
791 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
792 * domain.
1b01d335
SG
793 * @bg_type: T10-DIF block guard type (CRC|CSUM)
794 * @pi_interval: protection information interval.
795 * @bg: seed of guard computation.
796 * @app_tag: application tag of guard block
797 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
798 * @ref_remap: Indicate wethear the reftag increments each block
799 * @app_escape: Indicate to skip block check if apptag=0xffff
800 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
801 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
802 */
803struct ib_t10_dif_domain {
1b01d335
SG
804 enum ib_t10_dif_bg_type bg_type;
805 u16 pi_interval;
806 u16 bg;
807 u16 app_tag;
808 u32 ref_tag;
78eda2bb
SG
809 bool ref_remap;
810 bool app_escape;
811 bool ref_escape;
812 u16 apptag_check_mask;
1b01d335
SG
813};
814
815/**
816 * struct ib_sig_domain - Parameters for signature domain
817 * @sig_type: specific signauture type
818 * @sig: union of all signature domain attributes that may
819 * be used to set domain layout.
820 */
821struct ib_sig_domain {
822 enum ib_signature_type sig_type;
823 union {
824 struct ib_t10_dif_domain dif;
825 } sig;
826};
827
828/**
829 * struct ib_sig_attrs - Parameters for signature handover operation
830 * @check_mask: bitmask for signature byte check (8 bytes)
831 * @mem: memory domain layout desciptor.
832 * @wire: wire domain layout desciptor.
833 */
834struct ib_sig_attrs {
835 u8 check_mask;
836 struct ib_sig_domain mem;
837 struct ib_sig_domain wire;
838};
839
840enum ib_sig_err_type {
841 IB_SIG_BAD_GUARD,
842 IB_SIG_BAD_REFTAG,
843 IB_SIG_BAD_APPTAG,
844};
845
ca24da00
MG
846/**
847 * Signature check masks (8 bytes in total) according to the T10-PI standard:
848 * -------- -------- ------------
849 * | GUARD | APPTAG | REFTAG |
850 * | 2B | 2B | 4B |
851 * -------- -------- ------------
852 */
853enum {
854 IB_SIG_CHECK_GUARD = 0xc0,
855 IB_SIG_CHECK_APPTAG = 0x30,
856 IB_SIG_CHECK_REFTAG = 0x0f,
857};
858
1b01d335
SG
859/**
860 * struct ib_sig_err - signature error descriptor
861 */
862struct ib_sig_err {
863 enum ib_sig_err_type err_type;
864 u32 expected;
865 u32 actual;
866 u64 sig_err_offset;
867 u32 key;
868};
869
870enum ib_mr_status_check {
871 IB_MR_CHECK_SIG_STATUS = 1,
872};
873
874/**
875 * struct ib_mr_status - Memory region status container
876 *
877 * @fail_status: Bitmask of MR checks status. For each
878 * failed check a corresponding status bit is set.
879 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
880 * failure.
881 */
882struct ib_mr_status {
883 u32 fail_status;
884 struct ib_sig_err sig_err;
885};
886
bf6a9e31
JM
887/**
888 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
889 * enum.
890 * @mult: multiple to convert.
891 */
8385fd84 892__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 893
44c58487 894enum rdma_ah_attr_type {
87daac68 895 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
896 RDMA_AH_ATTR_TYPE_IB,
897 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 898 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
899};
900
901struct ib_ah_attr {
902 u16 dlid;
903 u8 src_path_bits;
904};
905
906struct roce_ah_attr {
907 u8 dmac[ETH_ALEN];
908};
909
64b4646e
DC
910struct opa_ah_attr {
911 u32 dlid;
912 u8 src_path_bits;
d98bb7f7 913 bool make_grd;
64b4646e
DC
914};
915
90898850 916struct rdma_ah_attr {
1da177e4 917 struct ib_global_route grh;
1da177e4 918 u8 sl;
1da177e4 919 u8 static_rate;
1da177e4 920 u8 port_num;
44c58487
DC
921 u8 ah_flags;
922 enum rdma_ah_attr_type type;
923 union {
924 struct ib_ah_attr ib;
925 struct roce_ah_attr roce;
64b4646e 926 struct opa_ah_attr opa;
44c58487 927 };
1da177e4
LT
928};
929
930enum ib_wc_status {
931 IB_WC_SUCCESS,
932 IB_WC_LOC_LEN_ERR,
933 IB_WC_LOC_QP_OP_ERR,
934 IB_WC_LOC_EEC_OP_ERR,
935 IB_WC_LOC_PROT_ERR,
936 IB_WC_WR_FLUSH_ERR,
937 IB_WC_MW_BIND_ERR,
938 IB_WC_BAD_RESP_ERR,
939 IB_WC_LOC_ACCESS_ERR,
940 IB_WC_REM_INV_REQ_ERR,
941 IB_WC_REM_ACCESS_ERR,
942 IB_WC_REM_OP_ERR,
943 IB_WC_RETRY_EXC_ERR,
944 IB_WC_RNR_RETRY_EXC_ERR,
945 IB_WC_LOC_RDD_VIOL_ERR,
946 IB_WC_REM_INV_RD_REQ_ERR,
947 IB_WC_REM_ABORT_ERR,
948 IB_WC_INV_EECN_ERR,
949 IB_WC_INV_EEC_STATE_ERR,
950 IB_WC_FATAL_ERR,
951 IB_WC_RESP_TIMEOUT_ERR,
952 IB_WC_GENERAL_ERR
953};
954
db7489e0 955const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 956
1da177e4
LT
957enum ib_wc_opcode {
958 IB_WC_SEND,
959 IB_WC_RDMA_WRITE,
960 IB_WC_RDMA_READ,
961 IB_WC_COMP_SWAP,
962 IB_WC_FETCH_ADD,
c93570f2 963 IB_WC_LSO,
00f7ec36 964 IB_WC_LOCAL_INV,
4c67e2bf 965 IB_WC_REG_MR,
5e80ba8f
VS
966 IB_WC_MASKED_COMP_SWAP,
967 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
968/*
969 * Set value of IB_WC_RECV so consumers can test if a completion is a
970 * receive by testing (opcode & IB_WC_RECV).
971 */
972 IB_WC_RECV = 1 << 7,
973 IB_WC_RECV_RDMA_WITH_IMM
974};
975
976enum ib_wc_flags {
977 IB_WC_GRH = 1,
00f7ec36
SW
978 IB_WC_WITH_IMM = (1<<1),
979 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 980 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
981 IB_WC_WITH_SMAC = (1<<4),
982 IB_WC_WITH_VLAN = (1<<5),
c865f246 983 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
984};
985
986struct ib_wc {
14d3a3b2
CH
987 union {
988 u64 wr_id;
989 struct ib_cqe *wr_cqe;
990 };
1da177e4
LT
991 enum ib_wc_status status;
992 enum ib_wc_opcode opcode;
993 u32 vendor_err;
994 u32 byte_len;
062dbb69 995 struct ib_qp *qp;
00f7ec36
SW
996 union {
997 __be32 imm_data;
998 u32 invalidate_rkey;
999 } ex;
1da177e4 1000 u32 src_qp;
cd2a6e7d 1001 u32 slid;
1da177e4
LT
1002 int wc_flags;
1003 u16 pkey_index;
1da177e4
LT
1004 u8 sl;
1005 u8 dlid_path_bits;
1006 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1007 u8 smac[ETH_ALEN];
1008 u16 vlan_id;
c865f246 1009 u8 network_hdr_type;
1da177e4
LT
1010};
1011
ed23a727
RD
1012enum ib_cq_notify_flags {
1013 IB_CQ_SOLICITED = 1 << 0,
1014 IB_CQ_NEXT_COMP = 1 << 1,
1015 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1016 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1017};
1018
96104eda 1019enum ib_srq_type {
418d5130 1020 IB_SRQT_BASIC,
9c2c8496
AK
1021 IB_SRQT_XRC,
1022 IB_SRQT_TM,
96104eda
SH
1023};
1024
1a56ff6d
AK
1025static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1026{
9c2c8496
AK
1027 return srq_type == IB_SRQT_XRC ||
1028 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1029}
1030
d41fcc67
RD
1031enum ib_srq_attr_mask {
1032 IB_SRQ_MAX_WR = 1 << 0,
1033 IB_SRQ_LIMIT = 1 << 1,
1034};
1035
1036struct ib_srq_attr {
1037 u32 max_wr;
1038 u32 max_sge;
1039 u32 srq_limit;
1040};
1041
1042struct ib_srq_init_attr {
1043 void (*event_handler)(struct ib_event *, void *);
1044 void *srq_context;
1045 struct ib_srq_attr attr;
96104eda 1046 enum ib_srq_type srq_type;
418d5130 1047
1a56ff6d
AK
1048 struct {
1049 struct ib_cq *cq;
1050 union {
1051 struct {
1052 struct ib_xrcd *xrcd;
1053 } xrc;
9c2c8496
AK
1054
1055 struct {
1056 u32 max_num_tags;
1057 } tag_matching;
1a56ff6d 1058 };
418d5130 1059 } ext;
d41fcc67
RD
1060};
1061
1da177e4
LT
1062struct ib_qp_cap {
1063 u32 max_send_wr;
1064 u32 max_recv_wr;
1065 u32 max_send_sge;
1066 u32 max_recv_sge;
1067 u32 max_inline_data;
a060b562
CH
1068
1069 /*
1070 * Maximum number of rdma_rw_ctx structures in flight at a time.
1071 * ib_create_qp() will calculate the right amount of neededed WRs
1072 * and MRs based on this.
1073 */
1074 u32 max_rdma_ctxs;
1da177e4
LT
1075};
1076
1077enum ib_sig_type {
1078 IB_SIGNAL_ALL_WR,
1079 IB_SIGNAL_REQ_WR
1080};
1081
1082enum ib_qp_type {
1083 /*
1084 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1085 * here (and in that order) since the MAD layer uses them as
1086 * indices into a 2-entry table.
1087 */
1088 IB_QPT_SMI,
1089 IB_QPT_GSI,
1090
1091 IB_QPT_RC,
1092 IB_QPT_UC,
1093 IB_QPT_UD,
1094 IB_QPT_RAW_IPV6,
b42b63cf 1095 IB_QPT_RAW_ETHERTYPE,
c938a616 1096 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1097 IB_QPT_XRC_INI = 9,
1098 IB_QPT_XRC_TGT,
0134f16b 1099 IB_QPT_MAX,
8011c1e3 1100 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1101 /* Reserve a range for qp types internal to the low level driver.
1102 * These qp types will not be visible at the IB core layer, so the
1103 * IB_QPT_MAX usages should not be affected in the core layer
1104 */
1105 IB_QPT_RESERVED1 = 0x1000,
1106 IB_QPT_RESERVED2,
1107 IB_QPT_RESERVED3,
1108 IB_QPT_RESERVED4,
1109 IB_QPT_RESERVED5,
1110 IB_QPT_RESERVED6,
1111 IB_QPT_RESERVED7,
1112 IB_QPT_RESERVED8,
1113 IB_QPT_RESERVED9,
1114 IB_QPT_RESERVED10,
1da177e4
LT
1115};
1116
b846f25a 1117enum ib_qp_create_flags {
47ee1b9f
RL
1118 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1119 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1120 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1121 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1122 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1123 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1124 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1125 /* FREE = 1 << 7, */
b531b909 1126 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1127 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1128 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1129 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1130 /* reserve bits 26-31 for low level drivers' internal use */
1131 IB_QP_CREATE_RESERVED_START = 1 << 26,
1132 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1133};
1134
73c40c61
YH
1135/*
1136 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1137 * callback to destroy the passed in QP.
1138 */
1139
1da177e4 1140struct ib_qp_init_attr {
eb93c82e 1141 /* Consumer's event_handler callback must not block */
1da177e4 1142 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1143
1da177e4
LT
1144 void *qp_context;
1145 struct ib_cq *send_cq;
1146 struct ib_cq *recv_cq;
1147 struct ib_srq *srq;
b42b63cf 1148 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1149 struct ib_qp_cap cap;
1150 enum ib_sig_type sq_sig_type;
1151 enum ib_qp_type qp_type;
b56511c1 1152 u32 create_flags;
a060b562
CH
1153
1154 /*
1155 * Only needed for special QP types, or when using the RW API.
1156 */
1157 u8 port_num;
a9017e23 1158 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1159 u32 source_qpn;
1da177e4
LT
1160};
1161
0e0ec7e0
SH
1162struct ib_qp_open_attr {
1163 void (*event_handler)(struct ib_event *, void *);
1164 void *qp_context;
1165 u32 qp_num;
1166 enum ib_qp_type qp_type;
1167};
1168
1da177e4
LT
1169enum ib_rnr_timeout {
1170 IB_RNR_TIMER_655_36 = 0,
1171 IB_RNR_TIMER_000_01 = 1,
1172 IB_RNR_TIMER_000_02 = 2,
1173 IB_RNR_TIMER_000_03 = 3,
1174 IB_RNR_TIMER_000_04 = 4,
1175 IB_RNR_TIMER_000_06 = 5,
1176 IB_RNR_TIMER_000_08 = 6,
1177 IB_RNR_TIMER_000_12 = 7,
1178 IB_RNR_TIMER_000_16 = 8,
1179 IB_RNR_TIMER_000_24 = 9,
1180 IB_RNR_TIMER_000_32 = 10,
1181 IB_RNR_TIMER_000_48 = 11,
1182 IB_RNR_TIMER_000_64 = 12,
1183 IB_RNR_TIMER_000_96 = 13,
1184 IB_RNR_TIMER_001_28 = 14,
1185 IB_RNR_TIMER_001_92 = 15,
1186 IB_RNR_TIMER_002_56 = 16,
1187 IB_RNR_TIMER_003_84 = 17,
1188 IB_RNR_TIMER_005_12 = 18,
1189 IB_RNR_TIMER_007_68 = 19,
1190 IB_RNR_TIMER_010_24 = 20,
1191 IB_RNR_TIMER_015_36 = 21,
1192 IB_RNR_TIMER_020_48 = 22,
1193 IB_RNR_TIMER_030_72 = 23,
1194 IB_RNR_TIMER_040_96 = 24,
1195 IB_RNR_TIMER_061_44 = 25,
1196 IB_RNR_TIMER_081_92 = 26,
1197 IB_RNR_TIMER_122_88 = 27,
1198 IB_RNR_TIMER_163_84 = 28,
1199 IB_RNR_TIMER_245_76 = 29,
1200 IB_RNR_TIMER_327_68 = 30,
1201 IB_RNR_TIMER_491_52 = 31
1202};
1203
1204enum ib_qp_attr_mask {
1205 IB_QP_STATE = 1,
1206 IB_QP_CUR_STATE = (1<<1),
1207 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1208 IB_QP_ACCESS_FLAGS = (1<<3),
1209 IB_QP_PKEY_INDEX = (1<<4),
1210 IB_QP_PORT = (1<<5),
1211 IB_QP_QKEY = (1<<6),
1212 IB_QP_AV = (1<<7),
1213 IB_QP_PATH_MTU = (1<<8),
1214 IB_QP_TIMEOUT = (1<<9),
1215 IB_QP_RETRY_CNT = (1<<10),
1216 IB_QP_RNR_RETRY = (1<<11),
1217 IB_QP_RQ_PSN = (1<<12),
1218 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1219 IB_QP_ALT_PATH = (1<<14),
1220 IB_QP_MIN_RNR_TIMER = (1<<15),
1221 IB_QP_SQ_PSN = (1<<16),
1222 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1223 IB_QP_PATH_MIG_STATE = (1<<18),
1224 IB_QP_CAP = (1<<19),
dd5f03be 1225 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1226 IB_QP_RESERVED1 = (1<<21),
1227 IB_QP_RESERVED2 = (1<<22),
1228 IB_QP_RESERVED3 = (1<<23),
1229 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1230 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1231};
1232
1233enum ib_qp_state {
1234 IB_QPS_RESET,
1235 IB_QPS_INIT,
1236 IB_QPS_RTR,
1237 IB_QPS_RTS,
1238 IB_QPS_SQD,
1239 IB_QPS_SQE,
1240 IB_QPS_ERR
1241};
1242
1243enum ib_mig_state {
1244 IB_MIG_MIGRATED,
1245 IB_MIG_REARM,
1246 IB_MIG_ARMED
1247};
1248
7083e42e
SM
1249enum ib_mw_type {
1250 IB_MW_TYPE_1 = 1,
1251 IB_MW_TYPE_2 = 2
1252};
1253
1da177e4
LT
1254struct ib_qp_attr {
1255 enum ib_qp_state qp_state;
1256 enum ib_qp_state cur_qp_state;
1257 enum ib_mtu path_mtu;
1258 enum ib_mig_state path_mig_state;
1259 u32 qkey;
1260 u32 rq_psn;
1261 u32 sq_psn;
1262 u32 dest_qp_num;
1263 int qp_access_flags;
1264 struct ib_qp_cap cap;
90898850
DC
1265 struct rdma_ah_attr ah_attr;
1266 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1267 u16 pkey_index;
1268 u16 alt_pkey_index;
1269 u8 en_sqd_async_notify;
1270 u8 sq_draining;
1271 u8 max_rd_atomic;
1272 u8 max_dest_rd_atomic;
1273 u8 min_rnr_timer;
1274 u8 port_num;
1275 u8 timeout;
1276 u8 retry_cnt;
1277 u8 rnr_retry;
1278 u8 alt_port_num;
1279 u8 alt_timeout;
528e5a1b 1280 u32 rate_limit;
1da177e4
LT
1281};
1282
1283enum ib_wr_opcode {
9a59739b
JG
1284 /* These are shared with userspace */
1285 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1286 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1287 IB_WR_SEND = IB_UVERBS_WR_SEND,
1288 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1289 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1290 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1291 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1292 IB_WR_LSO = IB_UVERBS_WR_TSO,
1293 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1294 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1295 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1296 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1297 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1298 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1299 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1300
1301 /* These are kernel only and can not be issued by userspace */
1302 IB_WR_REG_MR = 0x20,
1b01d335 1303 IB_WR_REG_SIG_MR,
9a59739b 1304
0134f16b
JM
1305 /* reserve values for low level drivers' internal use.
1306 * These values will not be used at all in the ib core layer.
1307 */
1308 IB_WR_RESERVED1 = 0xf0,
1309 IB_WR_RESERVED2,
1310 IB_WR_RESERVED3,
1311 IB_WR_RESERVED4,
1312 IB_WR_RESERVED5,
1313 IB_WR_RESERVED6,
1314 IB_WR_RESERVED7,
1315 IB_WR_RESERVED8,
1316 IB_WR_RESERVED9,
1317 IB_WR_RESERVED10,
1da177e4
LT
1318};
1319
1320enum ib_send_flags {
1321 IB_SEND_FENCE = 1,
1322 IB_SEND_SIGNALED = (1<<1),
1323 IB_SEND_SOLICITED = (1<<2),
e0605d91 1324 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1325 IB_SEND_IP_CSUM = (1<<4),
1326
1327 /* reserve bits 26-31 for low level drivers' internal use */
1328 IB_SEND_RESERVED_START = (1 << 26),
1329 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1330};
1331
1332struct ib_sge {
1333 u64 addr;
1334 u32 length;
1335 u32 lkey;
1336};
1337
14d3a3b2
CH
1338struct ib_cqe {
1339 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1340};
1341
1da177e4
LT
1342struct ib_send_wr {
1343 struct ib_send_wr *next;
14d3a3b2
CH
1344 union {
1345 u64 wr_id;
1346 struct ib_cqe *wr_cqe;
1347 };
1da177e4
LT
1348 struct ib_sge *sg_list;
1349 int num_sge;
1350 enum ib_wr_opcode opcode;
1351 int send_flags;
0f39cf3d
RD
1352 union {
1353 __be32 imm_data;
1354 u32 invalidate_rkey;
1355 } ex;
1da177e4
LT
1356};
1357
e622f2f4
CH
1358struct ib_rdma_wr {
1359 struct ib_send_wr wr;
1360 u64 remote_addr;
1361 u32 rkey;
1362};
1363
f696bf6d 1364static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1365{
1366 return container_of(wr, struct ib_rdma_wr, wr);
1367}
1368
1369struct ib_atomic_wr {
1370 struct ib_send_wr wr;
1371 u64 remote_addr;
1372 u64 compare_add;
1373 u64 swap;
1374 u64 compare_add_mask;
1375 u64 swap_mask;
1376 u32 rkey;
1377};
1378
f696bf6d 1379static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1380{
1381 return container_of(wr, struct ib_atomic_wr, wr);
1382}
1383
1384struct ib_ud_wr {
1385 struct ib_send_wr wr;
1386 struct ib_ah *ah;
1387 void *header;
1388 int hlen;
1389 int mss;
1390 u32 remote_qpn;
1391 u32 remote_qkey;
1392 u16 pkey_index; /* valid for GSI only */
1393 u8 port_num; /* valid for DR SMPs on switch only */
1394};
1395
f696bf6d 1396static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1397{
1398 return container_of(wr, struct ib_ud_wr, wr);
1399}
1400
4c67e2bf
SG
1401struct ib_reg_wr {
1402 struct ib_send_wr wr;
1403 struct ib_mr *mr;
1404 u32 key;
1405 int access;
1406};
1407
f696bf6d 1408static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1409{
1410 return container_of(wr, struct ib_reg_wr, wr);
1411}
1412
e622f2f4
CH
1413struct ib_sig_handover_wr {
1414 struct ib_send_wr wr;
1415 struct ib_sig_attrs *sig_attrs;
1416 struct ib_mr *sig_mr;
1417 int access_flags;
1418 struct ib_sge *prot;
1419};
1420
f696bf6d
BVA
1421static inline const struct ib_sig_handover_wr *
1422sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1423{
1424 return container_of(wr, struct ib_sig_handover_wr, wr);
1425}
1426
1da177e4
LT
1427struct ib_recv_wr {
1428 struct ib_recv_wr *next;
14d3a3b2
CH
1429 union {
1430 u64 wr_id;
1431 struct ib_cqe *wr_cqe;
1432 };
1da177e4
LT
1433 struct ib_sge *sg_list;
1434 int num_sge;
1435};
1436
1437enum ib_access_flags {
4fca0377
JG
1438 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1439 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1440 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1441 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1442 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1443 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1444 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1445 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1446
1447 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1448};
1449
b7d3e0a9
CH
1450/*
1451 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1452 * are hidden here instead of a uapi header!
1453 */
1da177e4
LT
1454enum ib_mr_rereg_flags {
1455 IB_MR_REREG_TRANS = 1,
1456 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1457 IB_MR_REREG_ACCESS = (1<<2),
1458 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1459};
1460
1da177e4
LT
1461struct ib_fmr_attr {
1462 int max_pages;
1463 int max_maps;
d36f34aa 1464 u8 page_shift;
1da177e4
LT
1465};
1466
882214e2
HE
1467struct ib_umem;
1468
38321256 1469enum rdma_remove_reason {
1c77483e
YH
1470 /*
1471 * Userspace requested uobject deletion or initial try
1472 * to remove uobject via cleanup. Call could fail
1473 */
38321256
MB
1474 RDMA_REMOVE_DESTROY,
1475 /* Context deletion. This call should delete the actual object itself */
1476 RDMA_REMOVE_CLOSE,
1477 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1478 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1479 /* uobj is being cleaned-up before being committed */
1480 RDMA_REMOVE_ABORT,
38321256
MB
1481};
1482
43579b5f
PP
1483struct ib_rdmacg_object {
1484#ifdef CONFIG_CGROUP_RDMA
1485 struct rdma_cgroup *cg; /* owner rdma cgroup */
1486#endif
1487};
1488
e2773c06
RD
1489struct ib_ucontext {
1490 struct ib_device *device;
771addf6 1491 struct ib_uverbs_file *ufile;
e951747a
JG
1492 /*
1493 * 'closing' can be read by the driver only during a destroy callback,
1494 * it is set when we are closing the file descriptor and indicates
1495 * that mm_sem may be locked.
1496 */
6ceb6331 1497 bool closing;
8ada2c1c 1498
1c77483e 1499 bool cleanup_retryable;
38321256 1500
882214e2 1501#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
b5231b01 1502 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
882214e2 1503 unsigned long start, unsigned long end);
f27a0d50
JG
1504 struct mutex per_mm_list_lock;
1505 struct list_head per_mm_list;
882214e2 1506#endif
43579b5f
PP
1507
1508 struct ib_rdmacg_object cg_obj;
60615210
LR
1509 /*
1510 * Implementation details of the RDMA core, don't use in drivers:
1511 */
1512 struct rdma_restrack_entry res;
e2773c06
RD
1513};
1514
1515struct ib_uobject {
1516 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1517 /* ufile & ucontext owning this object */
1518 struct ib_uverbs_file *ufile;
1519 /* FIXME, save memory: ufile->context == context */
e2773c06 1520 struct ib_ucontext *context; /* associated user context */
9ead190b 1521 void *object; /* containing object */
e2773c06 1522 struct list_head list; /* link to context's list */
43579b5f 1523 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1524 int id; /* index into kernel idr */
9ead190b 1525 struct kref ref;
38321256 1526 atomic_t usecnt; /* protects exclusive access */
d144da8c 1527 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1528
6b0d08f4 1529 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1530};
1531
e2773c06 1532struct ib_udata {
309243ec 1533 const void __user *inbuf;
e2773c06
RD
1534 void __user *outbuf;
1535 size_t inlen;
1536 size_t outlen;
1537};
1538
1da177e4 1539struct ib_pd {
96249d70 1540 u32 local_dma_lkey;
ed082d36 1541 u32 flags;
e2773c06
RD
1542 struct ib_device *device;
1543 struct ib_uobject *uobject;
1544 atomic_t usecnt; /* count all resources */
50d46335 1545
ed082d36
CH
1546 u32 unsafe_global_rkey;
1547
50d46335
CH
1548 /*
1549 * Implementation details of the RDMA core, don't use in drivers:
1550 */
1551 struct ib_mr *__internal_mr;
02d8883f 1552 struct rdma_restrack_entry res;
1da177e4
LT
1553};
1554
59991f94
SH
1555struct ib_xrcd {
1556 struct ib_device *device;
d3d72d90 1557 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1558 struct inode *inode;
d3d72d90
SH
1559
1560 struct mutex tgt_qp_mutex;
1561 struct list_head tgt_qp_list;
59991f94
SH
1562};
1563
1da177e4
LT
1564struct ib_ah {
1565 struct ib_device *device;
1566 struct ib_pd *pd;
e2773c06 1567 struct ib_uobject *uobject;
1a1f460f 1568 const struct ib_gid_attr *sgid_attr;
44c58487 1569 enum rdma_ah_attr_type type;
1da177e4
LT
1570};
1571
1572typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1573
14d3a3b2 1574enum ib_poll_context {
f794809a
JM
1575 IB_POLL_DIRECT, /* caller context, no hw completions */
1576 IB_POLL_SOFTIRQ, /* poll from softirq context */
1577 IB_POLL_WORKQUEUE, /* poll from workqueue */
1578 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
14d3a3b2
CH
1579};
1580
1da177e4 1581struct ib_cq {
e2773c06
RD
1582 struct ib_device *device;
1583 struct ib_uobject *uobject;
1584 ib_comp_handler comp_handler;
1585 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1586 void *cq_context;
e2773c06
RD
1587 int cqe;
1588 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1589 enum ib_poll_context poll_ctx;
1590 struct ib_wc *wc;
1591 union {
1592 struct irq_poll iop;
1593 struct work_struct work;
1594 };
f794809a 1595 struct workqueue_struct *comp_wq;
02d8883f
LR
1596 /*
1597 * Implementation details of the RDMA core, don't use in drivers:
1598 */
1599 struct rdma_restrack_entry res;
1da177e4
LT
1600};
1601
1602struct ib_srq {
d41fcc67
RD
1603 struct ib_device *device;
1604 struct ib_pd *pd;
1605 struct ib_uobject *uobject;
1606 void (*event_handler)(struct ib_event *, void *);
1607 void *srq_context;
96104eda 1608 enum ib_srq_type srq_type;
1da177e4 1609 atomic_t usecnt;
418d5130 1610
1a56ff6d
AK
1611 struct {
1612 struct ib_cq *cq;
1613 union {
1614 struct {
1615 struct ib_xrcd *xrcd;
1616 u32 srq_num;
1617 } xrc;
1618 };
418d5130 1619 } ext;
1da177e4
LT
1620};
1621
ebaaee25
NO
1622enum ib_raw_packet_caps {
1623 /* Strip cvlan from incoming packet and report it in the matching work
1624 * completion is supported.
1625 */
1626 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1627 /* Scatter FCS field of an incoming packet to host memory is supported.
1628 */
1629 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1630 /* Checksum offloads are supported (for both send and receive). */
1631 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1632 /* When a packet is received for an RQ with no receive WQEs, the
1633 * packet processing is delayed.
1634 */
1635 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1636};
1637
5fd251c8
YH
1638enum ib_wq_type {
1639 IB_WQT_RQ
1640};
1641
1642enum ib_wq_state {
1643 IB_WQS_RESET,
1644 IB_WQS_RDY,
1645 IB_WQS_ERR
1646};
1647
1648struct ib_wq {
1649 struct ib_device *device;
1650 struct ib_uobject *uobject;
1651 void *wq_context;
1652 void (*event_handler)(struct ib_event *, void *);
1653 struct ib_pd *pd;
1654 struct ib_cq *cq;
1655 u32 wq_num;
1656 enum ib_wq_state state;
1657 enum ib_wq_type wq_type;
1658 atomic_t usecnt;
1659};
1660
10bac72b
NO
1661enum ib_wq_flags {
1662 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1663 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1664 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1665 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1666};
1667
5fd251c8
YH
1668struct ib_wq_init_attr {
1669 void *wq_context;
1670 enum ib_wq_type wq_type;
1671 u32 max_wr;
1672 u32 max_sge;
1673 struct ib_cq *cq;
1674 void (*event_handler)(struct ib_event *, void *);
10bac72b 1675 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1676};
1677
1678enum ib_wq_attr_mask {
10bac72b
NO
1679 IB_WQ_STATE = 1 << 0,
1680 IB_WQ_CUR_STATE = 1 << 1,
1681 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1682};
1683
1684struct ib_wq_attr {
1685 enum ib_wq_state wq_state;
1686 enum ib_wq_state curr_wq_state;
10bac72b
NO
1687 u32 flags; /* Use enum ib_wq_flags */
1688 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1689};
1690
6d39786b
YH
1691struct ib_rwq_ind_table {
1692 struct ib_device *device;
1693 struct ib_uobject *uobject;
1694 atomic_t usecnt;
1695 u32 ind_tbl_num;
1696 u32 log_ind_tbl_size;
1697 struct ib_wq **ind_tbl;
1698};
1699
1700struct ib_rwq_ind_table_init_attr {
1701 u32 log_ind_tbl_size;
1702 /* Each entry is a pointer to Receive Work Queue */
1703 struct ib_wq **ind_tbl;
1704};
1705
d291f1a6
DJ
1706enum port_pkey_state {
1707 IB_PORT_PKEY_NOT_VALID = 0,
1708 IB_PORT_PKEY_VALID = 1,
1709 IB_PORT_PKEY_LISTED = 2,
1710};
1711
1712struct ib_qp_security;
1713
1714struct ib_port_pkey {
1715 enum port_pkey_state state;
1716 u16 pkey_index;
1717 u8 port_num;
1718 struct list_head qp_list;
1719 struct list_head to_error_list;
1720 struct ib_qp_security *sec;
1721};
1722
1723struct ib_ports_pkeys {
1724 struct ib_port_pkey main;
1725 struct ib_port_pkey alt;
1726};
1727
1728struct ib_qp_security {
1729 struct ib_qp *qp;
1730 struct ib_device *dev;
1731 /* Hold this mutex when changing port and pkey settings. */
1732 struct mutex mutex;
1733 struct ib_ports_pkeys *ports_pkeys;
1734 /* A list of all open shared QP handles. Required to enforce security
1735 * properly for all users of a shared QP.
1736 */
1737 struct list_head shared_qp_list;
1738 void *security;
1739 bool destroying;
1740 atomic_t error_list_count;
1741 struct completion error_complete;
1742 int error_comps_pending;
1743};
1744
632bc3f6
BVA
1745/*
1746 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1747 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1748 */
1da177e4
LT
1749struct ib_qp {
1750 struct ib_device *device;
1751 struct ib_pd *pd;
1752 struct ib_cq *send_cq;
1753 struct ib_cq *recv_cq;
fffb0383
CH
1754 spinlock_t mr_lock;
1755 int mrs_used;
a060b562 1756 struct list_head rdma_mrs;
0e353e34 1757 struct list_head sig_mrs;
1da177e4 1758 struct ib_srq *srq;
b42b63cf 1759 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1760 struct list_head xrcd_list;
fffb0383 1761
319a441d
HHZ
1762 /* count times opened, mcast attaches, flow attaches */
1763 atomic_t usecnt;
0e0ec7e0
SH
1764 struct list_head open_list;
1765 struct ib_qp *real_qp;
e2773c06 1766 struct ib_uobject *uobject;
1da177e4
LT
1767 void (*event_handler)(struct ib_event *, void *);
1768 void *qp_context;
1a1f460f
JG
1769 /* sgid_attrs associated with the AV's */
1770 const struct ib_gid_attr *av_sgid_attr;
1771 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1772 u32 qp_num;
632bc3f6
BVA
1773 u32 max_write_sge;
1774 u32 max_read_sge;
1da177e4 1775 enum ib_qp_type qp_type;
a9017e23 1776 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1777 struct ib_qp_security *qp_sec;
498ca3c8 1778 u8 port;
02d8883f
LR
1779
1780 /*
1781 * Implementation details of the RDMA core, don't use in drivers:
1782 */
1783 struct rdma_restrack_entry res;
1da177e4
LT
1784};
1785
bee76d7a
AL
1786struct ib_dm {
1787 struct ib_device *device;
1788 u32 length;
1789 u32 flags;
1790 struct ib_uobject *uobject;
1791 atomic_t usecnt;
1792};
1793
1da177e4 1794struct ib_mr {
e2773c06
RD
1795 struct ib_device *device;
1796 struct ib_pd *pd;
e2773c06
RD
1797 u32 lkey;
1798 u32 rkey;
4c67e2bf 1799 u64 iova;
edd31551 1800 u64 length;
4c67e2bf 1801 unsigned int page_size;
d4a85c30 1802 bool need_inval;
fffb0383
CH
1803 union {
1804 struct ib_uobject *uobject; /* user */
1805 struct list_head qp_entry; /* FR */
1806 };
fccec5b8 1807
be934cca
AL
1808 struct ib_dm *dm;
1809
fccec5b8
SW
1810 /*
1811 * Implementation details of the RDMA core, don't use in drivers:
1812 */
1813 struct rdma_restrack_entry res;
1da177e4
LT
1814};
1815
1816struct ib_mw {
1817 struct ib_device *device;
1818 struct ib_pd *pd;
e2773c06 1819 struct ib_uobject *uobject;
1da177e4 1820 u32 rkey;
7083e42e 1821 enum ib_mw_type type;
1da177e4
LT
1822};
1823
1824struct ib_fmr {
1825 struct ib_device *device;
1826 struct ib_pd *pd;
1827 struct list_head list;
1828 u32 lkey;
1829 u32 rkey;
1830};
1831
319a441d
HHZ
1832/* Supported steering options */
1833enum ib_flow_attr_type {
1834 /* steering according to rule specifications */
1835 IB_FLOW_ATTR_NORMAL = 0x0,
1836 /* default unicast and multicast rule -
1837 * receive all Eth traffic which isn't steered to any QP
1838 */
1839 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1840 /* default multicast rule -
1841 * receive all Eth multicast traffic which isn't steered to any QP
1842 */
1843 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1844 /* sniffer rule - receive all port traffic */
1845 IB_FLOW_ATTR_SNIFFER = 0x3
1846};
1847
1848/* Supported steering header types */
1849enum ib_flow_spec_type {
1850 /* L2 headers*/
76bd23b3
MR
1851 IB_FLOW_SPEC_ETH = 0x20,
1852 IB_FLOW_SPEC_IB = 0x22,
319a441d 1853 /* L3 header*/
76bd23b3
MR
1854 IB_FLOW_SPEC_IPV4 = 0x30,
1855 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1856 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1857 /* L4 headers*/
76bd23b3
MR
1858 IB_FLOW_SPEC_TCP = 0x40,
1859 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1860 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1861 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1862 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1863 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1864 /* Actions */
1865 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1866 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1867 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1868 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1869};
240ae00e 1870#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1871#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1872
319a441d
HHZ
1873/* Flow steering rule priority is set according to it's domain.
1874 * Lower domain value means higher priority.
1875 */
1876enum ib_flow_domain {
1877 IB_FLOW_DOMAIN_USER,
1878 IB_FLOW_DOMAIN_ETHTOOL,
1879 IB_FLOW_DOMAIN_RFS,
1880 IB_FLOW_DOMAIN_NIC,
1881 IB_FLOW_DOMAIN_NUM /* Must be last */
1882};
1883
a3100a78
MV
1884enum ib_flow_flags {
1885 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1886 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1887 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1888};
1889
319a441d
HHZ
1890struct ib_flow_eth_filter {
1891 u8 dst_mac[6];
1892 u8 src_mac[6];
1893 __be16 ether_type;
1894 __be16 vlan_tag;
15dfbd6b
MG
1895 /* Must be last */
1896 u8 real_sz[0];
319a441d
HHZ
1897};
1898
1899struct ib_flow_spec_eth {
fbf46860 1900 u32 type;
319a441d
HHZ
1901 u16 size;
1902 struct ib_flow_eth_filter val;
1903 struct ib_flow_eth_filter mask;
1904};
1905
240ae00e
MB
1906struct ib_flow_ib_filter {
1907 __be16 dlid;
1908 __u8 sl;
15dfbd6b
MG
1909 /* Must be last */
1910 u8 real_sz[0];
240ae00e
MB
1911};
1912
1913struct ib_flow_spec_ib {
fbf46860 1914 u32 type;
240ae00e
MB
1915 u16 size;
1916 struct ib_flow_ib_filter val;
1917 struct ib_flow_ib_filter mask;
1918};
1919
989a3a8f
MG
1920/* IPv4 header flags */
1921enum ib_ipv4_flags {
1922 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1923 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1924 last have this flag set */
1925};
1926
319a441d
HHZ
1927struct ib_flow_ipv4_filter {
1928 __be32 src_ip;
1929 __be32 dst_ip;
989a3a8f
MG
1930 u8 proto;
1931 u8 tos;
1932 u8 ttl;
1933 u8 flags;
15dfbd6b
MG
1934 /* Must be last */
1935 u8 real_sz[0];
319a441d
HHZ
1936};
1937
1938struct ib_flow_spec_ipv4 {
fbf46860 1939 u32 type;
319a441d
HHZ
1940 u16 size;
1941 struct ib_flow_ipv4_filter val;
1942 struct ib_flow_ipv4_filter mask;
1943};
1944
4c2aae71
MG
1945struct ib_flow_ipv6_filter {
1946 u8 src_ip[16];
1947 u8 dst_ip[16];
a72c6a2b
MG
1948 __be32 flow_label;
1949 u8 next_hdr;
1950 u8 traffic_class;
1951 u8 hop_limit;
15dfbd6b
MG
1952 /* Must be last */
1953 u8 real_sz[0];
4c2aae71
MG
1954};
1955
1956struct ib_flow_spec_ipv6 {
fbf46860 1957 u32 type;
4c2aae71
MG
1958 u16 size;
1959 struct ib_flow_ipv6_filter val;
1960 struct ib_flow_ipv6_filter mask;
1961};
1962
319a441d
HHZ
1963struct ib_flow_tcp_udp_filter {
1964 __be16 dst_port;
1965 __be16 src_port;
15dfbd6b
MG
1966 /* Must be last */
1967 u8 real_sz[0];
319a441d
HHZ
1968};
1969
1970struct ib_flow_spec_tcp_udp {
fbf46860 1971 u32 type;
319a441d
HHZ
1972 u16 size;
1973 struct ib_flow_tcp_udp_filter val;
1974 struct ib_flow_tcp_udp_filter mask;
1975};
1976
0dbf3332
MR
1977struct ib_flow_tunnel_filter {
1978 __be32 tunnel_id;
1979 u8 real_sz[0];
1980};
1981
1982/* ib_flow_spec_tunnel describes the Vxlan tunnel
1983 * the tunnel_id from val has the vni value
1984 */
1985struct ib_flow_spec_tunnel {
fbf46860 1986 u32 type;
0dbf3332
MR
1987 u16 size;
1988 struct ib_flow_tunnel_filter val;
1989 struct ib_flow_tunnel_filter mask;
1990};
1991
56ab0b38
MB
1992struct ib_flow_esp_filter {
1993 __be32 spi;
1994 __be32 seq;
1995 /* Must be last */
1996 u8 real_sz[0];
1997};
1998
1999struct ib_flow_spec_esp {
2000 u32 type;
2001 u16 size;
2002 struct ib_flow_esp_filter val;
2003 struct ib_flow_esp_filter mask;
2004};
2005
d90e5e50
AL
2006struct ib_flow_gre_filter {
2007 __be16 c_ks_res0_ver;
2008 __be16 protocol;
2009 __be32 key;
2010 /* Must be last */
2011 u8 real_sz[0];
2012};
2013
2014struct ib_flow_spec_gre {
2015 u32 type;
2016 u16 size;
2017 struct ib_flow_gre_filter val;
2018 struct ib_flow_gre_filter mask;
2019};
2020
b04f0f03
AL
2021struct ib_flow_mpls_filter {
2022 __be32 tag;
2023 /* Must be last */
2024 u8 real_sz[0];
2025};
2026
2027struct ib_flow_spec_mpls {
2028 u32 type;
2029 u16 size;
2030 struct ib_flow_mpls_filter val;
2031 struct ib_flow_mpls_filter mask;
2032};
2033
460d0198
MR
2034struct ib_flow_spec_action_tag {
2035 enum ib_flow_spec_type type;
2036 u16 size;
2037 u32 tag_id;
2038};
2039
483a3966
SS
2040struct ib_flow_spec_action_drop {
2041 enum ib_flow_spec_type type;
2042 u16 size;
2043};
2044
9b828441
MB
2045struct ib_flow_spec_action_handle {
2046 enum ib_flow_spec_type type;
2047 u16 size;
2048 struct ib_flow_action *act;
2049};
2050
7eea23a5
RS
2051enum ib_counters_description {
2052 IB_COUNTER_PACKETS,
2053 IB_COUNTER_BYTES,
2054};
2055
2056struct ib_flow_spec_action_count {
2057 enum ib_flow_spec_type type;
2058 u16 size;
2059 struct ib_counters *counters;
2060};
2061
319a441d
HHZ
2062union ib_flow_spec {
2063 struct {
fbf46860 2064 u32 type;
319a441d
HHZ
2065 u16 size;
2066 };
2067 struct ib_flow_spec_eth eth;
240ae00e 2068 struct ib_flow_spec_ib ib;
319a441d
HHZ
2069 struct ib_flow_spec_ipv4 ipv4;
2070 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2071 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2072 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2073 struct ib_flow_spec_esp esp;
d90e5e50 2074 struct ib_flow_spec_gre gre;
b04f0f03 2075 struct ib_flow_spec_mpls mpls;
460d0198 2076 struct ib_flow_spec_action_tag flow_tag;
483a3966 2077 struct ib_flow_spec_action_drop drop;
9b828441 2078 struct ib_flow_spec_action_handle action;
7eea23a5 2079 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2080};
2081
2082struct ib_flow_attr {
2083 enum ib_flow_attr_type type;
2084 u16 size;
2085 u16 priority;
2086 u32 flags;
2087 u8 num_of_specs;
2088 u8 port;
7654cb1b 2089 union ib_flow_spec flows[];
319a441d
HHZ
2090};
2091
2092struct ib_flow {
2093 struct ib_qp *qp;
6cd080a6 2094 struct ib_device *device;
319a441d
HHZ
2095 struct ib_uobject *uobject;
2096};
2097
2eb9beae
MB
2098enum ib_flow_action_type {
2099 IB_FLOW_ACTION_UNSPECIFIED,
2100 IB_FLOW_ACTION_ESP = 1,
2101};
2102
2103struct ib_flow_action_attrs_esp_keymats {
2104 enum ib_uverbs_flow_action_esp_keymat protocol;
2105 union {
2106 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2107 } keymat;
2108};
2109
2110struct ib_flow_action_attrs_esp_replays {
2111 enum ib_uverbs_flow_action_esp_replay protocol;
2112 union {
2113 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2114 } replay;
2115};
2116
2117enum ib_flow_action_attrs_esp_flags {
2118 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2119 * This is done in order to share the same flags between user-space and
2120 * kernel and spare an unnecessary translation.
2121 */
2122
2123 /* Kernel flags */
2124 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2125 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2126};
2127
2128struct ib_flow_spec_list {
2129 struct ib_flow_spec_list *next;
2130 union ib_flow_spec spec;
2131};
2132
2133struct ib_flow_action_attrs_esp {
2134 struct ib_flow_action_attrs_esp_keymats *keymat;
2135 struct ib_flow_action_attrs_esp_replays *replay;
2136 struct ib_flow_spec_list *encap;
2137 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2138 * Value of 0 is a valid value.
2139 */
2140 u32 esn;
2141 u32 spi;
2142 u32 seq;
2143 u32 tfc_pad;
2144 /* Use enum ib_flow_action_attrs_esp_flags */
2145 u64 flags;
2146 u64 hard_limit_pkts;
2147};
2148
2149struct ib_flow_action {
2150 struct ib_device *device;
2151 struct ib_uobject *uobject;
2152 enum ib_flow_action_type type;
2153 atomic_t usecnt;
2154};
2155
4cd7c947 2156struct ib_mad_hdr;
1da177e4
LT
2157struct ib_grh;
2158
2159enum ib_process_mad_flags {
2160 IB_MAD_IGNORE_MKEY = 1,
2161 IB_MAD_IGNORE_BKEY = 2,
2162 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2163};
2164
2165enum ib_mad_result {
2166 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2167 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2168 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2169 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2170};
2171
21d6454a 2172struct ib_port_cache {
883c71fe 2173 u64 subnet_prefix;
21d6454a
JW
2174 struct ib_pkey_cache *pkey;
2175 struct ib_gid_table *gid;
2176 u8 lmc;
2177 enum ib_port_state port_state;
2178};
2179
1da177e4
LT
2180struct ib_cache {
2181 rwlock_t lock;
2182 struct ib_event_handler event_handler;
21d6454a 2183 struct ib_port_cache *ports;
1da177e4
LT
2184};
2185
07ebafba
TT
2186struct iw_cm_verbs;
2187
7738613e
IW
2188struct ib_port_immutable {
2189 int pkey_tbl_len;
2190 int gid_tbl_len;
f9b22e35 2191 u32 core_cap_flags;
337877a4 2192 u32 max_mad_size;
7738613e
IW
2193};
2194
2fc77572
VN
2195/* rdma netdev type - specifies protocol type */
2196enum rdma_netdev_t {
f0ad83ac
NV
2197 RDMA_NETDEV_OPA_VNIC,
2198 RDMA_NETDEV_IPOIB,
2fc77572
VN
2199};
2200
2201/**
2202 * struct rdma_netdev - rdma netdev
2203 * For cases where netstack interfacing is required.
2204 */
2205struct rdma_netdev {
2206 void *clnt_priv;
2207 struct ib_device *hca;
2208 u8 port_num;
2209
9f49a5b5
JG
2210 /*
2211 * cleanup function must be specified.
2212 * FIXME: This is only used for OPA_VNIC and that usage should be
2213 * removed too.
2214 */
8e959601
NV
2215 void (*free_rdma_netdev)(struct net_device *netdev);
2216
2fc77572
VN
2217 /* control functions */
2218 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2219 /* send packet */
2220 int (*send)(struct net_device *dev, struct sk_buff *skb,
2221 struct ib_ah *address, u32 dqpn);
2222 /* multicast */
2223 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2224 union ib_gid *gid, u16 mlid,
2225 int set_qkey, u32 qkey);
2226 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2227 union ib_gid *gid, u16 mlid);
2fc77572
VN
2228};
2229
f6a8a19b
DD
2230struct rdma_netdev_alloc_params {
2231 size_t sizeof_priv;
2232 unsigned int txqs;
2233 unsigned int rxqs;
2234 void *param;
2235
2236 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2237 struct net_device *netdev, void *param);
2238};
2239
d291f1a6
DJ
2240struct ib_port_pkey_list {
2241 /* Lock to hold while modifying the list. */
2242 spinlock_t list_lock;
2243 struct list_head pkey_list;
2244};
2245
fa9b1802
RS
2246struct ib_counters {
2247 struct ib_device *device;
2248 struct ib_uobject *uobject;
2249 /* num of objects attached */
2250 atomic_t usecnt;
2251};
2252
51d7a538
RS
2253struct ib_counters_read_attr {
2254 u64 *counters_buff;
2255 u32 ncounters;
2256 u32 flags; /* use enum ib_read_counters_flags */
2257};
2258
2eb9beae
MB
2259struct uverbs_attr_bundle;
2260
1da177e4 2261struct ib_device {
0957c29f
BVA
2262 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2263 struct device *dma_device;
2264
1da177e4
LT
2265 char name[IB_DEVICE_NAME_MAX];
2266
2267 struct list_head event_handler_list;
2268 spinlock_t event_handler_lock;
2269
e1f540c3 2270 rwlock_t client_data_lock;
1da177e4 2271 struct list_head core_list;
7c1eb45a 2272 /* Access to the client_data_list is protected by the client_data_lock
e1f540c3
PP
2273 * rwlock and the lists_rwsem read-write semaphore
2274 */
1da177e4 2275 struct list_head client_data_list;
1da177e4
LT
2276
2277 struct ib_cache cache;
7738613e
IW
2278 /**
2279 * port_immutable is indexed by port number
2280 */
2281 struct ib_port_immutable *port_immutable;
1da177e4 2282
f4fd0b22
MT
2283 int num_comp_vectors;
2284
d291f1a6
DJ
2285 struct ib_port_pkey_list *port_pkey_list;
2286
07ebafba
TT
2287 struct iw_cm_verbs *iwcm;
2288
b40f4757
CL
2289 /**
2290 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2291 * driver initialized data. The struct is kfree()'ed by the sysfs
2292 * core when the device is removed. A lifespan of -1 in the return
2293 * struct tells the core to set a default lifespan.
2294 */
2295 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2296 u8 port_num);
2297 /**
2298 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2299 * @index - The index in the value array we wish to have updated, or
2300 * num_counters if we want all stats updated
2301 * Return codes -
2302 * < 0 - Error, no counters updated
2303 * index - Updated the single counter pointed to by index
2304 * num_counters - Updated all counters (will reset the timestamp
2305 * and prevent further calls for lifespan milliseconds)
ce1fd6bf 2306 * Drivers are allowed to update all counters in lieu of just the
b40f4757
CL
2307 * one given in index at their option
2308 */
2309 int (*get_hw_stats)(struct ib_device *device,
2310 struct rdma_hw_stats *stats,
2311 u8 port, int index);
1da177e4 2312 int (*query_device)(struct ib_device *device,
2528e33e
MB
2313 struct ib_device_attr *device_attr,
2314 struct ib_udata *udata);
1da177e4
LT
2315 int (*query_port)(struct ib_device *device,
2316 u8 port_num,
2317 struct ib_port_attr *port_attr);
a3f5adaf
EC
2318 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2319 u8 port_num);
03db3a2d
MB
2320 /* When calling get_netdev, the HW vendor's driver should return the
2321 * net device of device @device at port @port_num or NULL if such
2322 * a net device doesn't exist. The vendor driver should call dev_hold
2323 * on this net device. The HW vendor's device driver must guarantee
070f2d7e
KT
2324 * that this function returns NULL before the net device has finished
2325 * NETDEV_UNREGISTER state.
03db3a2d
MB
2326 */
2327 struct net_device *(*get_netdev)(struct ib_device *device,
2328 u8 port_num);
72e1ff0f
PP
2329 /* query_gid should be return GID value for @device, when @port_num
2330 * link layer is either IB or iWarp. It is no-op if @port_num port
2331 * is RoCE link layer.
2332 */
1da177e4
LT
2333 int (*query_gid)(struct ib_device *device,
2334 u8 port_num, int index,
2335 union ib_gid *gid);
414448d2
PP
2336 /* When calling add_gid, the HW vendor's driver should add the gid
2337 * of device of port at gid index available at @attr. Meta-info of
2338 * that gid (for example, the network device related to this gid) is
2339 * available at @attr. @context allows the HW vendor driver to store
2340 * extra information together with a GID entry. The HW vendor driver may
2341 * allocate memory to contain this information and store it in @context
2342 * when a new GID entry is written to. Params are consistent until the
2343 * next call of add_gid or delete_gid. The function should return 0 on
03db3a2d 2344 * success or error otherwise. The function could be called
414448d2
PP
2345 * concurrently for different ports. This function is only called when
2346 * roce_gid_table is used.
03db3a2d 2347 */
f4df9a7c 2348 int (*add_gid)(const struct ib_gid_attr *attr,
03db3a2d
MB
2349 void **context);
2350 /* When calling del_gid, the HW vendor's driver should delete the
414448d2
PP
2351 * gid of device @device at gid index gid_index of port port_num
2352 * available in @attr.
03db3a2d
MB
2353 * Upon the deletion of a GID entry, the HW vendor must free any
2354 * allocated memory. The caller will clear @context afterwards.
2355 * This function is only called when roce_gid_table is used.
2356 */
414448d2 2357 int (*del_gid)(const struct ib_gid_attr *attr,
03db3a2d 2358 void **context);
1da177e4
LT
2359 int (*query_pkey)(struct ib_device *device,
2360 u8 port_num, u16 index, u16 *pkey);
2361 int (*modify_device)(struct ib_device *device,
2362 int device_modify_mask,
2363 struct ib_device_modify *device_modify);
2364 int (*modify_port)(struct ib_device *device,
2365 u8 port_num, int port_modify_mask,
2366 struct ib_port_modify *port_modify);
e2773c06
RD
2367 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2368 struct ib_udata *udata);
2369 int (*dealloc_ucontext)(struct ib_ucontext *context);
2370 int (*mmap)(struct ib_ucontext *context,
2371 struct vm_area_struct *vma);
2372 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2373 struct ib_ucontext *context,
2374 struct ib_udata *udata);
1da177e4
LT
2375 int (*dealloc_pd)(struct ib_pd *pd);
2376 struct ib_ah * (*create_ah)(struct ib_pd *pd,
90898850 2377 struct rdma_ah_attr *ah_attr,
477864c8 2378 struct ib_udata *udata);
1da177e4 2379 int (*modify_ah)(struct ib_ah *ah,
90898850 2380 struct rdma_ah_attr *ah_attr);
1da177e4 2381 int (*query_ah)(struct ib_ah *ah,
90898850 2382 struct rdma_ah_attr *ah_attr);
1da177e4 2383 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2384 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2385 struct ib_srq_init_attr *srq_init_attr,
2386 struct ib_udata *udata);
2387 int (*modify_srq)(struct ib_srq *srq,
2388 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2389 enum ib_srq_attr_mask srq_attr_mask,
2390 struct ib_udata *udata);
d41fcc67
RD
2391 int (*query_srq)(struct ib_srq *srq,
2392 struct ib_srq_attr *srq_attr);
2393 int (*destroy_srq)(struct ib_srq *srq);
2394 int (*post_srq_recv)(struct ib_srq *srq,
d34ac5cd
BVA
2395 const struct ib_recv_wr *recv_wr,
2396 const struct ib_recv_wr **bad_recv_wr);
1da177e4 2397 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2398 struct ib_qp_init_attr *qp_init_attr,
2399 struct ib_udata *udata);
1da177e4
LT
2400 int (*modify_qp)(struct ib_qp *qp,
2401 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2402 int qp_attr_mask,
2403 struct ib_udata *udata);
1da177e4
LT
2404 int (*query_qp)(struct ib_qp *qp,
2405 struct ib_qp_attr *qp_attr,
2406 int qp_attr_mask,
2407 struct ib_qp_init_attr *qp_init_attr);
2408 int (*destroy_qp)(struct ib_qp *qp);
2409 int (*post_send)(struct ib_qp *qp,
d34ac5cd
BVA
2410 const struct ib_send_wr *send_wr,
2411 const struct ib_send_wr **bad_send_wr);
1da177e4 2412 int (*post_recv)(struct ib_qp *qp,
d34ac5cd
BVA
2413 const struct ib_recv_wr *recv_wr,
2414 const struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2415 struct ib_cq * (*create_cq)(struct ib_device *device,
2416 const struct ib_cq_init_attr *attr,
e2773c06
RD
2417 struct ib_ucontext *context,
2418 struct ib_udata *udata);
2dd57162
EC
2419 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2420 u16 cq_period);
1da177e4 2421 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2422 int (*resize_cq)(struct ib_cq *cq, int cqe,
2423 struct ib_udata *udata);
1da177e4
LT
2424 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2425 struct ib_wc *wc);
2426 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2427 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2428 enum ib_cq_notify_flags flags);
1da177e4
LT
2429 int (*req_ncomp_notif)(struct ib_cq *cq,
2430 int wc_cnt);
2431 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2432 int mr_access_flags);
e2773c06 2433 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2434 u64 start, u64 length,
2435 u64 virt_addr,
e2773c06
RD
2436 int mr_access_flags,
2437 struct ib_udata *udata);
7e6edb9b
MB
2438 int (*rereg_user_mr)(struct ib_mr *mr,
2439 int flags,
2440 u64 start, u64 length,
2441 u64 virt_addr,
2442 int mr_access_flags,
2443 struct ib_pd *pd,
2444 struct ib_udata *udata);
1da177e4 2445 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2446 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2447 enum ib_mr_type mr_type,
2448 u32 max_num_sg);
4c67e2bf
SG
2449 int (*map_mr_sg)(struct ib_mr *mr,
2450 struct scatterlist *sg,
ff2ba993 2451 int sg_nents,
9aa8b321 2452 unsigned int *sg_offset);
7083e42e 2453 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2454 enum ib_mw_type type,
2455 struct ib_udata *udata);
1da177e4
LT
2456 int (*dealloc_mw)(struct ib_mw *mw);
2457 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2458 int mr_access_flags,
2459 struct ib_fmr_attr *fmr_attr);
2460 int (*map_phys_fmr)(struct ib_fmr *fmr,
2461 u64 *page_list, int list_len,
2462 u64 iova);
2463 int (*unmap_fmr)(struct list_head *fmr_list);
2464 int (*dealloc_fmr)(struct ib_fmr *fmr);
2465 int (*attach_mcast)(struct ib_qp *qp,
2466 union ib_gid *gid,
2467 u16 lid);
2468 int (*detach_mcast)(struct ib_qp *qp,
2469 union ib_gid *gid,
2470 u16 lid);
2471 int (*process_mad)(struct ib_device *device,
2472 int process_mad_flags,
2473 u8 port_num,
a97e2d86
IW
2474 const struct ib_wc *in_wc,
2475 const struct ib_grh *in_grh,
4cd7c947
IW
2476 const struct ib_mad_hdr *in_mad,
2477 size_t in_mad_size,
2478 struct ib_mad_hdr *out_mad,
2479 size_t *out_mad_size,
2480 u16 *out_mad_pkey_index);
59991f94
SH
2481 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2482 struct ib_ucontext *ucontext,
2483 struct ib_udata *udata);
2484 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2485 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2486 struct ib_flow_attr
2487 *flow_attr,
59082a32
MB
2488 int domain,
2489 struct ib_udata *udata);
319a441d 2490 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2491 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2492 struct ib_mr_status *mr_status);
036b1063 2493 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2494 void (*drain_rq)(struct ib_qp *qp);
2495 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2496 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2497 int state);
2498 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2499 struct ifla_vf_info *ivf);
2500 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2501 struct ifla_vf_stats *stats);
2502 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2503 int type);
5fd251c8
YH
2504 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2505 struct ib_wq_init_attr *init_attr,
2506 struct ib_udata *udata);
2507 int (*destroy_wq)(struct ib_wq *wq);
2508 int (*modify_wq)(struct ib_wq *wq,
2509 struct ib_wq_attr *attr,
2510 u32 wq_attr_mask,
2511 struct ib_udata *udata);
6d39786b
YH
2512 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2513 struct ib_rwq_ind_table_init_attr *init_attr,
2514 struct ib_udata *udata);
2515 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2eb9beae
MB
2516 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device,
2517 const struct ib_flow_action_attrs_esp *attr,
2518 struct uverbs_attr_bundle *attrs);
2519 int (*destroy_flow_action)(struct ib_flow_action *action);
7d12f8d5
MB
2520 int (*modify_flow_action_esp)(struct ib_flow_action *action,
2521 const struct ib_flow_action_attrs_esp *attr,
2522 struct uverbs_attr_bundle *attrs);
bee76d7a
AL
2523 struct ib_dm * (*alloc_dm)(struct ib_device *device,
2524 struct ib_ucontext *context,
2525 struct ib_dm_alloc_attr *attr,
2526 struct uverbs_attr_bundle *attrs);
2527 int (*dealloc_dm)(struct ib_dm *dm);
be934cca
AL
2528 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2529 struct ib_dm_mr_attr *attr,
2530 struct uverbs_attr_bundle *attrs);
fa9b1802
RS
2531 struct ib_counters * (*create_counters)(struct ib_device *device,
2532 struct uverbs_attr_bundle *attrs);
2533 int (*destroy_counters)(struct ib_counters *counters);
51d7a538
RS
2534 int (*read_counters)(struct ib_counters *counters,
2535 struct ib_counters_read_attr *counters_read_attr,
2536 struct uverbs_attr_bundle *attrs);
fa9b1802 2537
2fc77572 2538 /**
8e959601 2539 * rdma netdev operation
2fc77572 2540 *
f6a8a19b
DD
2541 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2542 * must return -EOPNOTSUPP if it doesn't support the specified type.
2fc77572
VN
2543 */
2544 struct net_device *(*alloc_rdma_netdev)(
2545 struct ib_device *device,
2546 u8 port_num,
2547 enum rdma_netdev_t type,
2548 const char *name,
2549 unsigned char name_assign_type,
2550 void (*setup)(struct net_device *));
9b513090 2551
f6a8a19b
DD
2552 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2553 enum rdma_netdev_t type,
2554 struct rdma_netdev_alloc_params *params);
2555
e2773c06 2556 struct module *owner;
f4e91eb4 2557 struct device dev;
d4122f5a
PP
2558 /* First group for device attributes,
2559 * Second group for driver provided attributes (optional).
2560 * It is NULL terminated array.
2561 */
2562 const struct attribute_group *groups[3];
adee9f3f 2563
1ae4cfa0 2564 struct kobject *ports_kobj;
1da177e4
LT
2565 struct list_head port_list;
2566
2567 enum {
2568 IB_DEV_UNINITIALIZED,
2569 IB_DEV_REGISTERED,
2570 IB_DEV_UNREGISTERED
2571 } reg_state;
2572
274c0891 2573 int uverbs_abi_ver;
17a55f79 2574 u64 uverbs_cmd_mask;
f21519b2 2575 u64 uverbs_ex_cmd_mask;
274c0891 2576
bd99fdea 2577 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2578 __be64 node_guid;
96f15c03 2579 u32 local_dma_lkey;
4139032b 2580 u16 is_switch:1;
1da177e4
LT
2581 u8 node_type;
2582 u8 phys_port_cnt;
3e153a93 2583 struct ib_device_attr attrs;
b40f4757
CL
2584 struct attribute_group *hw_stats_ag;
2585 struct rdma_hw_stats *hw_stats;
7738613e 2586
43579b5f
PP
2587#ifdef CONFIG_CGROUP_RDMA
2588 struct rdmacg_device cg_device;
2589#endif
2590
ecc82c53 2591 u32 index;
02d8883f
LR
2592 /*
2593 * Implementation details of the RDMA core, don't use in drivers
2594 */
2595 struct rdma_restrack_root res;
ecc82c53 2596
7738613e
IW
2597 /**
2598 * The following mandatory functions are used only at device
2599 * registration. Keep functions such as these at the end of this
2600 * structure to avoid cache line misses when accessing struct ib_device
2601 * in fast paths.
2602 */
2603 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
9abb0d1b 2604 void (*get_dev_fw_str)(struct ib_device *, char *str);
c66cd353
SG
2605 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2606 int comp_vector);
fac9658c 2607
0cbf432d 2608 const struct uapi_definition *driver_def;
0ede73bc 2609 enum rdma_driver_id driver_id;
01b67117
PP
2610 /*
2611 * Provides synchronization between device unregistration and netlink
2612 * commands on a device. To be used only by core.
2613 */
2614 refcount_t refcount;
2615 struct completion unreg_completion;
1da177e4
LT
2616};
2617
2618struct ib_client {
2619 char *name;
2620 void (*add) (struct ib_device *);
7c1eb45a 2621 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2622
9268f72d
YK
2623 /* Returns the net_dev belonging to this ib_client and matching the
2624 * given parameters.
2625 * @dev: An RDMA device that the net_dev use for communication.
2626 * @port: A physical port number on the RDMA device.
2627 * @pkey: P_Key that the net_dev uses if applicable.
2628 * @gid: A GID that the net_dev uses to communicate.
2629 * @addr: An IP address the net_dev is configured with.
2630 * @client_data: The device's client data set by ib_set_client_data().
2631 *
2632 * An ib_client that implements a net_dev on top of RDMA devices
2633 * (such as IP over IB) should implement this callback, allowing the
2634 * rdma_cm module to find the right net_dev for a given request.
2635 *
2636 * The caller is responsible for calling dev_put on the returned
2637 * netdev. */
2638 struct net_device *(*get_net_dev_by_params)(
2639 struct ib_device *dev,
2640 u8 port,
2641 u16 pkey,
2642 const union ib_gid *gid,
2643 const struct sockaddr *addr,
2644 void *client_data);
1da177e4
LT
2645 struct list_head list;
2646};
2647
2648struct ib_device *ib_alloc_device(size_t size);
2649void ib_dealloc_device(struct ib_device *device);
2650
9abb0d1b 2651void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2652
e349f858
JG
2653int ib_register_device(struct ib_device *device, const char *name,
2654 int (*port_callback)(struct ib_device *, u8,
2655 struct kobject *));
1da177e4
LT
2656void ib_unregister_device(struct ib_device *device);
2657
2658int ib_register_client (struct ib_client *client);
2659void ib_unregister_client(struct ib_client *client);
2660
2661void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2662void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2663 void *data);
2664
5f9794dc
JG
2665#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2666int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2667 unsigned long pfn, unsigned long size, pgprot_t prot);
2668int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2669 struct vm_area_struct *vma, struct page *page,
2670 unsigned long size);
2671#else
2672static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2673 struct vm_area_struct *vma,
2674 unsigned long pfn, unsigned long size,
2675 pgprot_t prot)
2676{
2677 return -EINVAL;
2678}
2679static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2680 struct vm_area_struct *vma, struct page *page,
2681 unsigned long size)
2682{
2683 return -EINVAL;
2684}
2685#endif
2686
e2773c06
RD
2687static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2688{
2689 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2690}
2691
2692static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2693{
43c61165 2694 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2695}
2696
c66db311
MB
2697static inline bool ib_is_buffer_cleared(const void __user *p,
2698 size_t len)
301a721e 2699{
92d27ae6 2700 bool ret;
301a721e
MB
2701 u8 *buf;
2702
2703 if (len > USHRT_MAX)
2704 return false;
2705
92d27ae6
ME
2706 buf = memdup_user(p, len);
2707 if (IS_ERR(buf))
301a721e
MB
2708 return false;
2709
301a721e 2710 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2711 kfree(buf);
2712 return ret;
2713}
2714
c66db311
MB
2715static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2716 size_t offset,
2717 size_t len)
2718{
2719 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2720}
2721
1c77483e
YH
2722/**
2723 * ib_is_destroy_retryable - Check whether the uobject destruction
2724 * is retryable.
2725 * @ret: The initial destruction return code
2726 * @why: remove reason
2727 * @uobj: The uobject that is destroyed
2728 *
2729 * This function is a helper function that IB layer and low-level drivers
2730 * can use to consider whether the destruction of the given uobject is
2731 * retry-able.
2732 * It checks the original return code, if it wasn't success the destruction
2733 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2734 * the remove reason. (i.e. why).
2735 * Must be called with the object locked for destroy.
2736 */
2737static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2738 struct ib_uobject *uobj)
2739{
2740 return ret && (why == RDMA_REMOVE_DESTROY ||
2741 uobj->context->cleanup_retryable);
2742}
2743
2744/**
2745 * ib_destroy_usecnt - Called during destruction to check the usecnt
2746 * @usecnt: The usecnt atomic
2747 * @why: remove reason
2748 * @uobj: The uobject that is destroyed
2749 *
2750 * Non-zero usecnts will block destruction unless destruction was triggered by
2751 * a ucontext cleanup.
2752 */
2753static inline int ib_destroy_usecnt(atomic_t *usecnt,
2754 enum rdma_remove_reason why,
2755 struct ib_uobject *uobj)
2756{
2757 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2758 return -EBUSY;
2759 return 0;
2760}
2761
8a51866f
RD
2762/**
2763 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2764 * contains all required attributes and no attributes not allowed for
2765 * the given QP state transition.
2766 * @cur_state: Current QP state
2767 * @next_state: Next QP state
2768 * @type: QP type
2769 * @mask: Mask of supplied QP attributes
2770 *
2771 * This function is a helper function that a low-level driver's
2772 * modify_qp method can use to validate the consumer's input. It
2773 * checks that cur_state and next_state are valid QP states, that a
2774 * transition from cur_state to next_state is allowed by the IB spec,
2775 * and that the attribute mask supplied is allowed for the transition.
2776 */
19b1f540 2777bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2778 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2779
dcc9881e
LR
2780void ib_register_event_handler(struct ib_event_handler *event_handler);
2781void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2782void ib_dispatch_event(struct ib_event *event);
2783
1da177e4
LT
2784int ib_query_port(struct ib_device *device,
2785 u8 port_num, struct ib_port_attr *port_attr);
2786
a3f5adaf
EC
2787enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2788 u8 port_num);
2789
4139032b
HR
2790/**
2791 * rdma_cap_ib_switch - Check if the device is IB switch
2792 * @device: Device to check
2793 *
2794 * Device driver is responsible for setting is_switch bit on
2795 * in ib_device structure at init time.
2796 *
2797 * Return: true if the device is IB switch.
2798 */
2799static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2800{
2801 return device->is_switch;
2802}
2803
0cf18d77
IW
2804/**
2805 * rdma_start_port - Return the first valid port number for the device
2806 * specified
2807 *
2808 * @device: Device to be checked
2809 *
2810 * Return start port number
2811 */
2812static inline u8 rdma_start_port(const struct ib_device *device)
2813{
4139032b 2814 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2815}
2816
2817/**
2818 * rdma_end_port - Return the last valid port number for the device
2819 * specified
2820 *
2821 * @device: Device to be checked
2822 *
2823 * Return last port number
2824 */
2825static inline u8 rdma_end_port(const struct ib_device *device)
2826{
4139032b 2827 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2828}
2829
24dc831b
YS
2830static inline int rdma_is_port_valid(const struct ib_device *device,
2831 unsigned int port)
2832{
2833 return (port >= rdma_start_port(device) &&
2834 port <= rdma_end_port(device));
2835}
2836
b02289b3
AK
2837static inline bool rdma_is_grh_required(const struct ib_device *device,
2838 u8 port_num)
2839{
2840 return device->port_immutable[port_num].core_cap_flags &
2841 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2842}
2843
5ede9289 2844static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2845{
f9b22e35 2846 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2847}
2848
5ede9289 2849static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2850{
2851 return device->port_immutable[port_num].core_cap_flags &
2852 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2853}
2854
2855static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2856{
2857 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2858}
2859
2860static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2861{
f9b22e35 2862 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2863}
2864
5ede9289 2865static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2866{
f9b22e35 2867 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2868}
2869
5ede9289 2870static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2871{
7766a99f
MB
2872 return rdma_protocol_ib(device, port_num) ||
2873 rdma_protocol_roce(device, port_num);
de66be94
MW
2874}
2875
aa773bd4
OG
2876static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2877{
2878 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2879}
2880
ce1e055f
OG
2881static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2882{
2883 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2884}
2885
c757dea8 2886/**
296ec009 2887 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2888 * Management Datagrams.
296ec009
MW
2889 * @device: Device to check
2890 * @port_num: Port number to check
c757dea8 2891 *
296ec009
MW
2892 * Management Datagrams (MAD) are a required part of the InfiniBand
2893 * specification and are supported on all InfiniBand devices. A slightly
2894 * extended version are also supported on OPA interfaces.
c757dea8 2895 *
296ec009 2896 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2897 */
5ede9289 2898static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2899{
f9b22e35 2900 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2901}
2902
65995fee
IW
2903/**
2904 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2905 * Management Datagrams.
2906 * @device: Device to check
2907 * @port_num: Port number to check
2908 *
2909 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2910 * datagrams with their own versions. These OPA MADs share many but not all of
2911 * the characteristics of InfiniBand MADs.
2912 *
2913 * OPA MADs differ in the following ways:
2914 *
2915 * 1) MADs are variable size up to 2K
2916 * IBTA defined MADs remain fixed at 256 bytes
2917 * 2) OPA SMPs must carry valid PKeys
2918 * 3) OPA SMP packets are a different format
2919 *
2920 * Return: true if the port supports OPA MAD packet formats.
2921 */
2922static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2923{
2924 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2925 == RDMA_CORE_CAP_OPA_MAD;
2926}
2927
29541e3a 2928/**
296ec009
MW
2929 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2930 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2931 * @device: Device to check
2932 * @port_num: Port number to check
29541e3a 2933 *
296ec009
MW
2934 * Each InfiniBand node is required to provide a Subnet Management Agent
2935 * that the subnet manager can access. Prior to the fabric being fully
2936 * configured by the subnet manager, the SMA is accessed via a well known
2937 * interface called the Subnet Management Interface (SMI). This interface
2938 * uses directed route packets to communicate with the SM to get around the
2939 * chicken and egg problem of the SM needing to know what's on the fabric
2940 * in order to configure the fabric, and needing to configure the fabric in
2941 * order to send packets to the devices on the fabric. These directed
2942 * route packets do not need the fabric fully configured in order to reach
2943 * their destination. The SMI is the only method allowed to send
2944 * directed route packets on an InfiniBand fabric.
29541e3a 2945 *
296ec009 2946 * Return: true if the port provides an SMI.
29541e3a 2947 */
5ede9289 2948static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2949{
f9b22e35 2950 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2951}
2952
72219cea
MW
2953/**
2954 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2955 * Communication Manager.
296ec009
MW
2956 * @device: Device to check
2957 * @port_num: Port number to check
72219cea 2958 *
296ec009
MW
2959 * The InfiniBand Communication Manager is one of many pre-defined General
2960 * Service Agents (GSA) that are accessed via the General Service
2961 * Interface (GSI). It's role is to facilitate establishment of connections
2962 * between nodes as well as other management related tasks for established
2963 * connections.
72219cea 2964 *
296ec009
MW
2965 * Return: true if the port supports an IB CM (this does not guarantee that
2966 * a CM is actually running however).
72219cea 2967 */
5ede9289 2968static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2969{
f9b22e35 2970 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2971}
2972
04215330
MW
2973/**
2974 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2975 * Communication Manager.
296ec009
MW
2976 * @device: Device to check
2977 * @port_num: Port number to check
04215330 2978 *
296ec009
MW
2979 * Similar to above, but specific to iWARP connections which have a different
2980 * managment protocol than InfiniBand.
04215330 2981 *
296ec009
MW
2982 * Return: true if the port supports an iWARP CM (this does not guarantee that
2983 * a CM is actually running however).
04215330 2984 */
5ede9289 2985static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2986{
f9b22e35 2987 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2988}
2989
fe53ba2f
MW
2990/**
2991 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2992 * Subnet Administration.
296ec009
MW
2993 * @device: Device to check
2994 * @port_num: Port number to check
fe53ba2f 2995 *
296ec009
MW
2996 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2997 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2998 * fabrics, devices should resolve routes to other hosts by contacting the
2999 * SA to query the proper route.
fe53ba2f 3000 *
296ec009
MW
3001 * Return: true if the port should act as a client to the fabric Subnet
3002 * Administration interface. This does not imply that the SA service is
3003 * running locally.
fe53ba2f 3004 */
5ede9289 3005static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3006{
f9b22e35 3007 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3008}
3009
a31ad3b0
MW
3010/**
3011 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3012 * Multicast.
296ec009
MW
3013 * @device: Device to check
3014 * @port_num: Port number to check
a31ad3b0 3015 *
296ec009
MW
3016 * InfiniBand multicast registration is more complex than normal IPv4 or
3017 * IPv6 multicast registration. Each Host Channel Adapter must register
3018 * with the Subnet Manager when it wishes to join a multicast group. It
3019 * should do so only once regardless of how many queue pairs it subscribes
3020 * to this group. And it should leave the group only after all queue pairs
3021 * attached to the group have been detached.
a31ad3b0 3022 *
296ec009
MW
3023 * Return: true if the port must undertake the additional adminstrative
3024 * overhead of registering/unregistering with the SM and tracking of the
3025 * total number of queue pairs attached to the multicast group.
a31ad3b0 3026 */
5ede9289 3027static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3028{
3029 return rdma_cap_ib_sa(device, port_num);
3030}
3031
30a74ef4
MW
3032/**
3033 * rdma_cap_af_ib - Check if the port of device has the capability
3034 * Native Infiniband Address.
296ec009
MW
3035 * @device: Device to check
3036 * @port_num: Port number to check
30a74ef4 3037 *
296ec009
MW
3038 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3039 * GID. RoCE uses a different mechanism, but still generates a GID via
3040 * a prescribed mechanism and port specific data.
30a74ef4 3041 *
296ec009
MW
3042 * Return: true if the port uses a GID address to identify devices on the
3043 * network.
30a74ef4 3044 */
5ede9289 3045static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3046{
f9b22e35 3047 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3048}
3049
227128fc
MW
3050/**
3051 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3052 * Ethernet Address Handle.
3053 * @device: Device to check
3054 * @port_num: Port number to check
227128fc 3055 *
296ec009
MW
3056 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3057 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3058 * port. Normally, packet headers are generated by the sending host
3059 * adapter, but when sending connectionless datagrams, we must manually
3060 * inject the proper headers for the fabric we are communicating over.
227128fc 3061 *
296ec009
MW
3062 * Return: true if we are running as a RoCE port and must force the
3063 * addition of a Global Route Header built from our Ethernet Address
3064 * Handle into our header list for connectionless packets.
227128fc 3065 */
5ede9289 3066static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3067{
f9b22e35 3068 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3069}
3070
94d595c5
DC
3071/**
3072 * rdma_cap_opa_ah - Check if the port of device supports
3073 * OPA Address handles
3074 * @device: Device to check
3075 * @port_num: Port number to check
3076 *
3077 * Return: true if we are running on an OPA device which supports
3078 * the extended OPA addressing.
3079 */
3080static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3081{
3082 return (device->port_immutable[port_num].core_cap_flags &
3083 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3084}
3085
337877a4
IW
3086/**
3087 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3088 *
3089 * @device: Device
3090 * @port_num: Port number
3091 *
3092 * This MAD size includes the MAD headers and MAD payload. No other headers
3093 * are included.
3094 *
3095 * Return the max MAD size required by the Port. Will return 0 if the port
3096 * does not support MADs
3097 */
3098static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3099{
3100 return device->port_immutable[port_num].max_mad_size;
3101}
3102
03db3a2d
MB
3103/**
3104 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3105 * @device: Device to check
3106 * @port_num: Port number to check
3107 *
3108 * RoCE GID table mechanism manages the various GIDs for a device.
3109 *
3110 * NOTE: if allocating the port's GID table has failed, this call will still
3111 * return true, but any RoCE GID table API will fail.
3112 *
3113 * Return: true if the port uses RoCE GID table mechanism in order to manage
3114 * its GIDs.
3115 */
3116static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3117 u8 port_num)
3118{
3119 return rdma_protocol_roce(device, port_num) &&
3120 device->add_gid && device->del_gid;
3121}
3122
002516ed
CH
3123/*
3124 * Check if the device supports READ W/ INVALIDATE.
3125 */
3126static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3127{
3128 /*
3129 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3130 * has support for it yet.
3131 */
3132 return rdma_protocol_iwarp(dev, port_num);
3133}
3134
50174a7f
EC
3135int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3136 int state);
3137int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3138 struct ifla_vf_info *info);
3139int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3140 struct ifla_vf_stats *stats);
3141int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3142 int type);
3143
1da177e4
LT
3144int ib_query_pkey(struct ib_device *device,
3145 u8 port_num, u16 index, u16 *pkey);
3146
3147int ib_modify_device(struct ib_device *device,
3148 int device_modify_mask,
3149 struct ib_device_modify *device_modify);
3150
3151int ib_modify_port(struct ib_device *device,
3152 u8 port_num, int port_modify_mask,
3153 struct ib_port_modify *port_modify);
3154
5eb620c8 3155int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3156 u8 *port_num, u16 *index);
5eb620c8
YE
3157
3158int ib_find_pkey(struct ib_device *device,
3159 u8 port_num, u16 pkey, u16 *index);
3160
ed082d36
CH
3161enum ib_pd_flags {
3162 /*
3163 * Create a memory registration for all memory in the system and place
3164 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3165 * ULPs to avoid the overhead of dynamic MRs.
3166 *
3167 * This flag is generally considered unsafe and must only be used in
3168 * extremly trusted environments. Every use of it will log a warning
3169 * in the kernel log.
3170 */
3171 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3172};
1da177e4 3173
ed082d36
CH
3174struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3175 const char *caller);
3176#define ib_alloc_pd(device, flags) \
e4496447 3177 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
7dd78647 3178void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
3179
3180/**
0a18cfe4 3181 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3182 * @pd: The protection domain associated with the address handle.
3183 * @ah_attr: The attributes of the address vector.
3184 *
3185 * The address handle is used to reference a local or global destination
3186 * in all UD QP post sends.
3187 */
0a18cfe4 3188struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 3189
5cda6587
PP
3190/**
3191 * rdma_create_user_ah - Creates an address handle for the given address vector.
3192 * It resolves destination mac address for ah attribute of RoCE type.
3193 * @pd: The protection domain associated with the address handle.
3194 * @ah_attr: The attributes of the address vector.
3195 * @udata: pointer to user's input output buffer information need by
3196 * provider driver.
3197 *
3198 * It returns 0 on success and returns appropriate error code on error.
3199 * The address handle is used to reference a local or global destination
3200 * in all UD QP post sends.
3201 */
3202struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3203 struct rdma_ah_attr *ah_attr,
3204 struct ib_udata *udata);
850d8fd7
MS
3205/**
3206 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3207 * work completion.
3208 * @hdr: the L3 header to parse
3209 * @net_type: type of header to parse
3210 * @sgid: place to store source gid
3211 * @dgid: place to store destination gid
3212 */
3213int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3214 enum rdma_network_type net_type,
3215 union ib_gid *sgid, union ib_gid *dgid);
3216
3217/**
3218 * ib_get_rdma_header_version - Get the header version
3219 * @hdr: the L3 header to parse
3220 */
3221int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3222
4e00d694 3223/**
f6bdb142 3224 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3225 * work completion.
3226 * @device: Device on which the received message arrived.
3227 * @port_num: Port on which the received message arrived.
3228 * @wc: Work completion associated with the received message.
3229 * @grh: References the received global route header. This parameter is
3230 * ignored unless the work completion indicates that the GRH is valid.
3231 * @ah_attr: Returned attributes that can be used when creating an address
3232 * handle for replying to the message.
b7403217
PP
3233 * When ib_init_ah_attr_from_wc() returns success,
3234 * (a) for IB link layer it optionally contains a reference to SGID attribute
3235 * when GRH is present for IB link layer.
3236 * (b) for RoCE link layer it contains a reference to SGID attribute.
3237 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3238 * attributes which are initialized using ib_init_ah_attr_from_wc().
3239 *
4e00d694 3240 */
f6bdb142
PP
3241int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3242 const struct ib_wc *wc, const struct ib_grh *grh,
3243 struct rdma_ah_attr *ah_attr);
4e00d694 3244
513789ed
HR
3245/**
3246 * ib_create_ah_from_wc - Creates an address handle associated with the
3247 * sender of the specified work completion.
3248 * @pd: The protection domain associated with the address handle.
3249 * @wc: Work completion information associated with a received message.
3250 * @grh: References the received global route header. This parameter is
3251 * ignored unless the work completion indicates that the GRH is valid.
3252 * @port_num: The outbound port number to associate with the address.
3253 *
3254 * The address handle is used to reference a local or global destination
3255 * in all UD QP post sends.
3256 */
73cdaaee
IW
3257struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3258 const struct ib_grh *grh, u8 port_num);
513789ed 3259
1da177e4 3260/**
67b985b6 3261 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3262 * handle.
3263 * @ah: The address handle to modify.
3264 * @ah_attr: The new address vector attributes to associate with the
3265 * address handle.
3266 */
67b985b6 3267int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3268
3269/**
bfbfd661 3270 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3271 * handle.
3272 * @ah: The address handle to query.
3273 * @ah_attr: The address vector attributes associated with the address
3274 * handle.
3275 */
bfbfd661 3276int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3277
3278/**
36523159 3279 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
3280 * @ah: The address handle to destroy.
3281 */
36523159 3282int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 3283
d41fcc67
RD
3284/**
3285 * ib_create_srq - Creates a SRQ associated with the specified protection
3286 * domain.
3287 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3288 * @srq_init_attr: A list of initial attributes required to create the
3289 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3290 * the actual capabilities of the created SRQ.
d41fcc67
RD
3291 *
3292 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3293 * requested size of the SRQ, and set to the actual values allocated
3294 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3295 * will always be at least as large as the requested values.
3296 */
3297struct ib_srq *ib_create_srq(struct ib_pd *pd,
3298 struct ib_srq_init_attr *srq_init_attr);
3299
3300/**
3301 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3302 * @srq: The SRQ to modify.
3303 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3304 * the current values of selected SRQ attributes are returned.
3305 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3306 * are being modified.
3307 *
3308 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3309 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3310 * the number of receives queued drops below the limit.
3311 */
3312int ib_modify_srq(struct ib_srq *srq,
3313 struct ib_srq_attr *srq_attr,
3314 enum ib_srq_attr_mask srq_attr_mask);
3315
3316/**
3317 * ib_query_srq - Returns the attribute list and current values for the
3318 * specified SRQ.
3319 * @srq: The SRQ to query.
3320 * @srq_attr: The attributes of the specified SRQ.
3321 */
3322int ib_query_srq(struct ib_srq *srq,
3323 struct ib_srq_attr *srq_attr);
3324
3325/**
3326 * ib_destroy_srq - Destroys the specified SRQ.
3327 * @srq: The SRQ to destroy.
3328 */
3329int ib_destroy_srq(struct ib_srq *srq);
3330
3331/**
3332 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3333 * @srq: The SRQ to post the work request on.
3334 * @recv_wr: A list of work requests to post on the receive queue.
3335 * @bad_recv_wr: On an immediate failure, this parameter will reference
3336 * the work request that failed to be posted on the QP.
3337 */
3338static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3339 const struct ib_recv_wr *recv_wr,
3340 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3341{
d34ac5cd 3342 const struct ib_recv_wr *dummy;
bb039a87
BVA
3343
3344 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy);
d41fcc67
RD
3345}
3346
1da177e4
LT
3347/**
3348 * ib_create_qp - Creates a QP associated with the specified protection
3349 * domain.
3350 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3351 * @qp_init_attr: A list of initial attributes required to create the
3352 * QP. If QP creation succeeds, then the attributes are updated to
3353 * the actual capabilities of the created QP.
1da177e4
LT
3354 */
3355struct ib_qp *ib_create_qp(struct ib_pd *pd,
3356 struct ib_qp_init_attr *qp_init_attr);
3357
a512c2fb
PP
3358/**
3359 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3360 * @qp: The QP to modify.
3361 * @attr: On input, specifies the QP attributes to modify. On output,
3362 * the current values of selected QP attributes are returned.
3363 * @attr_mask: A bit-mask used to specify which attributes of the QP
3364 * are being modified.
3365 * @udata: pointer to user's input output buffer information
3366 * are being modified.
3367 * It returns 0 on success and returns appropriate error code on error.
3368 */
3369int ib_modify_qp_with_udata(struct ib_qp *qp,
3370 struct ib_qp_attr *attr,
3371 int attr_mask,
3372 struct ib_udata *udata);
3373
1da177e4
LT
3374/**
3375 * ib_modify_qp - Modifies the attributes for the specified QP and then
3376 * transitions the QP to the given state.
3377 * @qp: The QP to modify.
3378 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3379 * the current values of selected QP attributes are returned.
3380 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3381 * are being modified.
3382 */
3383int ib_modify_qp(struct ib_qp *qp,
3384 struct ib_qp_attr *qp_attr,
3385 int qp_attr_mask);
3386
3387/**
3388 * ib_query_qp - Returns the attribute list and current values for the
3389 * specified QP.
3390 * @qp: The QP to query.
3391 * @qp_attr: The attributes of the specified QP.
3392 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3393 * @qp_init_attr: Additional attributes of the selected QP.
3394 *
3395 * The qp_attr_mask may be used to limit the query to gathering only the
3396 * selected attributes.
3397 */
3398int ib_query_qp(struct ib_qp *qp,
3399 struct ib_qp_attr *qp_attr,
3400 int qp_attr_mask,
3401 struct ib_qp_init_attr *qp_init_attr);
3402
3403/**
3404 * ib_destroy_qp - Destroys the specified QP.
3405 * @qp: The QP to destroy.
3406 */
3407int ib_destroy_qp(struct ib_qp *qp);
3408
d3d72d90 3409/**
0e0ec7e0
SH
3410 * ib_open_qp - Obtain a reference to an existing sharable QP.
3411 * @xrcd - XRC domain
3412 * @qp_open_attr: Attributes identifying the QP to open.
3413 *
3414 * Returns a reference to a sharable QP.
3415 */
3416struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3417 struct ib_qp_open_attr *qp_open_attr);
3418
3419/**
3420 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3421 * @qp: The QP handle to release
3422 *
0e0ec7e0
SH
3423 * The opened QP handle is released by the caller. The underlying
3424 * shared QP is not destroyed until all internal references are released.
d3d72d90 3425 */
0e0ec7e0 3426int ib_close_qp(struct ib_qp *qp);
d3d72d90 3427
1da177e4
LT
3428/**
3429 * ib_post_send - Posts a list of work requests to the send queue of
3430 * the specified QP.
3431 * @qp: The QP to post the work request on.
3432 * @send_wr: A list of work requests to post on the send queue.
3433 * @bad_send_wr: On an immediate failure, this parameter will reference
3434 * the work request that failed to be posted on the QP.
55464d46
BVA
3435 *
3436 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3437 * error is returned, the QP state shall not be affected,
3438 * ib_post_send() will return an immediate error after queueing any
3439 * earlier work requests in the list.
1da177e4
LT
3440 */
3441static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3442 const struct ib_send_wr *send_wr,
3443 const struct ib_send_wr **bad_send_wr)
1da177e4 3444{
d34ac5cd 3445 const struct ib_send_wr *dummy;
bb039a87
BVA
3446
3447 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3448}
3449
3450/**
3451 * ib_post_recv - Posts a list of work requests to the receive queue of
3452 * the specified QP.
3453 * @qp: The QP to post the work request on.
3454 * @recv_wr: A list of work requests to post on the receive queue.
3455 * @bad_recv_wr: On an immediate failure, this parameter will reference
3456 * the work request that failed to be posted on the QP.
3457 */
3458static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3459 const struct ib_recv_wr *recv_wr,
3460 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3461{
d34ac5cd 3462 const struct ib_recv_wr *dummy;
bb039a87
BVA
3463
3464 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3465}
3466
f66c8ba4
LR
3467struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3468 int nr_cqe, int comp_vector,
3469 enum ib_poll_context poll_ctx, const char *caller);
3470#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3471 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3472
14d3a3b2
CH
3473void ib_free_cq(struct ib_cq *cq);
3474int ib_process_cq_direct(struct ib_cq *cq, int budget);
3475
1da177e4
LT
3476/**
3477 * ib_create_cq - Creates a CQ on the specified device.
3478 * @device: The device on which to create the CQ.
3479 * @comp_handler: A user-specified callback that is invoked when a
3480 * completion event occurs on the CQ.
3481 * @event_handler: A user-specified callback that is invoked when an
3482 * asynchronous event not associated with a completion occurs on the CQ.
3483 * @cq_context: Context associated with the CQ returned to the user via
3484 * the associated completion and event handlers.
8e37210b 3485 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3486 *
3487 * Users can examine the cq structure to determine the actual CQ size.
3488 */
7350cdd0
BP
3489struct ib_cq *__ib_create_cq(struct ib_device *device,
3490 ib_comp_handler comp_handler,
3491 void (*event_handler)(struct ib_event *, void *),
3492 void *cq_context,
3493 const struct ib_cq_init_attr *cq_attr,
3494 const char *caller);
3495#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3496 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3497
3498/**
3499 * ib_resize_cq - Modifies the capacity of the CQ.
3500 * @cq: The CQ to resize.
3501 * @cqe: The minimum size of the CQ.
3502 *
3503 * Users can examine the cq structure to determine the actual CQ size.
3504 */
3505int ib_resize_cq(struct ib_cq *cq, int cqe);
3506
2dd57162 3507/**
4190b4e9 3508 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3509 * @cq: The CQ to modify.
3510 * @cq_count: number of CQEs that will trigger an event
3511 * @cq_period: max period of time in usec before triggering an event
3512 *
3513 */
4190b4e9 3514int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3515
1da177e4
LT
3516/**
3517 * ib_destroy_cq - Destroys the specified CQ.
3518 * @cq: The CQ to destroy.
3519 */
3520int ib_destroy_cq(struct ib_cq *cq);
3521
3522/**
3523 * ib_poll_cq - poll a CQ for completion(s)
3524 * @cq:the CQ being polled
3525 * @num_entries:maximum number of completions to return
3526 * @wc:array of at least @num_entries &struct ib_wc where completions
3527 * will be returned
3528 *
3529 * Poll a CQ for (possibly multiple) completions. If the return value
3530 * is < 0, an error occurred. If the return value is >= 0, it is the
3531 * number of completions returned. If the return value is
3532 * non-negative and < num_entries, then the CQ was emptied.
3533 */
3534static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3535 struct ib_wc *wc)
3536{
3537 return cq->device->poll_cq(cq, num_entries, wc);
3538}
3539
1da177e4
LT
3540/**
3541 * ib_req_notify_cq - Request completion notification on a CQ.
3542 * @cq: The CQ to generate an event for.
ed23a727
RD
3543 * @flags:
3544 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3545 * to request an event on the next solicited event or next work
3546 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3547 * may also be |ed in to request a hint about missed events, as
3548 * described below.
3549 *
3550 * Return Value:
3551 * < 0 means an error occurred while requesting notification
3552 * == 0 means notification was requested successfully, and if
3553 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3554 * were missed and it is safe to wait for another event. In
3555 * this case is it guaranteed that any work completions added
3556 * to the CQ since the last CQ poll will trigger a completion
3557 * notification event.
3558 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3559 * in. It means that the consumer must poll the CQ again to
3560 * make sure it is empty to avoid missing an event because of a
3561 * race between requesting notification and an entry being
3562 * added to the CQ. This return value means it is possible
3563 * (but not guaranteed) that a work completion has been added
3564 * to the CQ since the last poll without triggering a
3565 * completion notification event.
1da177e4
LT
3566 */
3567static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3568 enum ib_cq_notify_flags flags)
1da177e4 3569{
ed23a727 3570 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3571}
3572
3573/**
3574 * ib_req_ncomp_notif - Request completion notification when there are
3575 * at least the specified number of unreaped completions on the CQ.
3576 * @cq: The CQ to generate an event for.
3577 * @wc_cnt: The number of unreaped completions that should be on the
3578 * CQ before an event is generated.
3579 */
3580static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3581{
3582 return cq->device->req_ncomp_notif ?
3583 cq->device->req_ncomp_notif(cq, wc_cnt) :
3584 -ENOSYS;
3585}
3586
9b513090
RC
3587/**
3588 * ib_dma_mapping_error - check a DMA addr for error
3589 * @dev: The device for which the dma_addr was created
3590 * @dma_addr: The DMA address to check
3591 */
3592static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3593{
0957c29f 3594 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3595}
3596
3597/**
3598 * ib_dma_map_single - Map a kernel virtual address to DMA address
3599 * @dev: The device for which the dma_addr is to be created
3600 * @cpu_addr: The kernel virtual address
3601 * @size: The size of the region in bytes
3602 * @direction: The direction of the DMA
3603 */
3604static inline u64 ib_dma_map_single(struct ib_device *dev,
3605 void *cpu_addr, size_t size,
3606 enum dma_data_direction direction)
3607{
0957c29f 3608 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3609}
3610
3611/**
3612 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3613 * @dev: The device for which the DMA address was created
3614 * @addr: The DMA address
3615 * @size: The size of the region in bytes
3616 * @direction: The direction of the DMA
3617 */
3618static inline void ib_dma_unmap_single(struct ib_device *dev,
3619 u64 addr, size_t size,
3620 enum dma_data_direction direction)
3621{
0957c29f 3622 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3623}
3624
9b513090
RC
3625/**
3626 * ib_dma_map_page - Map a physical page to DMA address
3627 * @dev: The device for which the dma_addr is to be created
3628 * @page: The page to be mapped
3629 * @offset: The offset within the page
3630 * @size: The size of the region in bytes
3631 * @direction: The direction of the DMA
3632 */
3633static inline u64 ib_dma_map_page(struct ib_device *dev,
3634 struct page *page,
3635 unsigned long offset,
3636 size_t size,
3637 enum dma_data_direction direction)
3638{
0957c29f 3639 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3640}
3641
3642/**
3643 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3644 * @dev: The device for which the DMA address was created
3645 * @addr: The DMA address
3646 * @size: The size of the region in bytes
3647 * @direction: The direction of the DMA
3648 */
3649static inline void ib_dma_unmap_page(struct ib_device *dev,
3650 u64 addr, size_t size,
3651 enum dma_data_direction direction)
3652{
0957c29f 3653 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3654}
3655
3656/**
3657 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3658 * @dev: The device for which the DMA addresses are to be created
3659 * @sg: The array of scatter/gather entries
3660 * @nents: The number of scatter/gather entries
3661 * @direction: The direction of the DMA
3662 */
3663static inline int ib_dma_map_sg(struct ib_device *dev,
3664 struct scatterlist *sg, int nents,
3665 enum dma_data_direction direction)
3666{
0957c29f 3667 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3668}
3669
3670/**
3671 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3672 * @dev: The device for which the DMA addresses were created
3673 * @sg: The array of scatter/gather entries
3674 * @nents: The number of scatter/gather entries
3675 * @direction: The direction of the DMA
3676 */
3677static inline void ib_dma_unmap_sg(struct ib_device *dev,
3678 struct scatterlist *sg, int nents,
3679 enum dma_data_direction direction)
3680{
0957c29f 3681 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3682}
3683
cb9fbc5c
AK
3684static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3685 struct scatterlist *sg, int nents,
3686 enum dma_data_direction direction,
00085f1e 3687 unsigned long dma_attrs)
cb9fbc5c 3688{
0957c29f
BVA
3689 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3690 dma_attrs);
cb9fbc5c
AK
3691}
3692
3693static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3694 struct scatterlist *sg, int nents,
3695 enum dma_data_direction direction,
00085f1e 3696 unsigned long dma_attrs)
cb9fbc5c 3697{
0957c29f 3698 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3699}
9b513090
RC
3700/**
3701 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3702 * @dev: The device for which the DMA addresses were created
3703 * @sg: The scatter/gather entry
ea58a595
MM
3704 *
3705 * Note: this function is obsolete. To do: change all occurrences of
3706 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3707 */
3708static inline u64 ib_sg_dma_address(struct ib_device *dev,
3709 struct scatterlist *sg)
3710{
d1998ef3 3711 return sg_dma_address(sg);
9b513090
RC
3712}
3713
3714/**
3715 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3716 * @dev: The device for which the DMA addresses were created
3717 * @sg: The scatter/gather entry
ea58a595
MM
3718 *
3719 * Note: this function is obsolete. To do: change all occurrences of
3720 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3721 */
3722static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3723 struct scatterlist *sg)
3724{
d1998ef3 3725 return sg_dma_len(sg);
9b513090
RC
3726}
3727
3728/**
3729 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3730 * @dev: The device for which the DMA address was created
3731 * @addr: The DMA address
3732 * @size: The size of the region in bytes
3733 * @dir: The direction of the DMA
3734 */
3735static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3736 u64 addr,
3737 size_t size,
3738 enum dma_data_direction dir)
3739{
0957c29f 3740 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3741}
3742
3743/**
3744 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3745 * @dev: The device for which the DMA address was created
3746 * @addr: The DMA address
3747 * @size: The size of the region in bytes
3748 * @dir: The direction of the DMA
3749 */
3750static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3751 u64 addr,
3752 size_t size,
3753 enum dma_data_direction dir)
3754{
0957c29f 3755 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3756}
3757
3758/**
3759 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3760 * @dev: The device for which the DMA address is requested
3761 * @size: The size of the region to allocate in bytes
3762 * @dma_handle: A pointer for returning the DMA address of the region
3763 * @flag: memory allocator flags
3764 */
3765static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3766 size_t size,
d43dbacf 3767 dma_addr_t *dma_handle,
9b513090
RC
3768 gfp_t flag)
3769{
0957c29f 3770 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3771}
3772
3773/**
3774 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3775 * @dev: The device for which the DMA addresses were allocated
3776 * @size: The size of the region
3777 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3778 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3779 */
3780static inline void ib_dma_free_coherent(struct ib_device *dev,
3781 size_t size, void *cpu_addr,
d43dbacf 3782 dma_addr_t dma_handle)
9b513090 3783{
0957c29f 3784 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3785}
3786
1da177e4
LT
3787/**
3788 * ib_dereg_mr - Deregisters a memory region and removes it from the
3789 * HCA translation table.
3790 * @mr: The memory region to deregister.
7083e42e
SM
3791 *
3792 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3793 */
3794int ib_dereg_mr(struct ib_mr *mr);
3795
9bee178b
SG
3796struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3797 enum ib_mr_type mr_type,
3798 u32 max_num_sg);
00f7ec36 3799
00f7ec36
SW
3800/**
3801 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3802 * R_Key and L_Key.
3803 * @mr - struct ib_mr pointer to be updated.
3804 * @newkey - new key to be used.
3805 */
3806static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3807{
3808 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3809 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3810}
3811
7083e42e
SM
3812/**
3813 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3814 * for calculating a new rkey for type 2 memory windows.
3815 * @rkey - the rkey to increment.
3816 */
3817static inline u32 ib_inc_rkey(u32 rkey)
3818{
3819 const u32 mask = 0x000000ff;
3820 return ((rkey + 1) & mask) | (rkey & ~mask);
3821}
3822
1da177e4
LT
3823/**
3824 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3825 * @pd: The protection domain associated with the unmapped region.
3826 * @mr_access_flags: Specifies the memory access rights.
3827 * @fmr_attr: Attributes of the unmapped region.
3828 *
3829 * A fast memory region must be mapped before it can be used as part of
3830 * a work request.
3831 */
3832struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3833 int mr_access_flags,
3834 struct ib_fmr_attr *fmr_attr);
3835
3836/**
3837 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3838 * @fmr: The fast memory region to associate with the pages.
3839 * @page_list: An array of physical pages to map to the fast memory region.
3840 * @list_len: The number of pages in page_list.
3841 * @iova: The I/O virtual address to use with the mapped region.
3842 */
3843static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3844 u64 *page_list, int list_len,
3845 u64 iova)
3846{
3847 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3848}
3849
3850/**
3851 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3852 * @fmr_list: A linked list of fast memory regions to unmap.
3853 */
3854int ib_unmap_fmr(struct list_head *fmr_list);
3855
3856/**
3857 * ib_dealloc_fmr - Deallocates a fast memory region.
3858 * @fmr: The fast memory region to deallocate.
3859 */
3860int ib_dealloc_fmr(struct ib_fmr *fmr);
3861
3862/**
3863 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3864 * @qp: QP to attach to the multicast group. The QP must be type
3865 * IB_QPT_UD.
3866 * @gid: Multicast group GID.
3867 * @lid: Multicast group LID in host byte order.
3868 *
3869 * In order to send and receive multicast packets, subnet
3870 * administration must have created the multicast group and configured
3871 * the fabric appropriately. The port associated with the specified
3872 * QP must also be a member of the multicast group.
3873 */
3874int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3875
3876/**
3877 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3878 * @qp: QP to detach from the multicast group.
3879 * @gid: Multicast group GID.
3880 * @lid: Multicast group LID in host byte order.
3881 */
3882int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3883
59991f94
SH
3884/**
3885 * ib_alloc_xrcd - Allocates an XRC domain.
3886 * @device: The device on which to allocate the XRC domain.
f66c8ba4 3887 * @caller: Module name for kernel consumers
59991f94 3888 */
f66c8ba4
LR
3889struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3890#define ib_alloc_xrcd(device) \
3891 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
3892
3893/**
3894 * ib_dealloc_xrcd - Deallocates an XRC domain.
3895 * @xrcd: The XRC domain to deallocate.
3896 */
3897int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3898
1c636f80
EC
3899static inline int ib_check_mr_access(int flags)
3900{
3901 /*
3902 * Local write permission is required if remote write or
3903 * remote atomic permission is also requested.
3904 */
3905 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3906 !(flags & IB_ACCESS_LOCAL_WRITE))
3907 return -EINVAL;
3908
3909 return 0;
3910}
3911
08bb558a
JM
3912static inline bool ib_access_writable(int access_flags)
3913{
3914 /*
3915 * We have writable memory backing the MR if any of the following
3916 * access flags are set. "Local write" and "remote write" obviously
3917 * require write access. "Remote atomic" can do things like fetch and
3918 * add, which will modify memory, and "MW bind" can change permissions
3919 * by binding a window.
3920 */
3921 return access_flags &
3922 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3923 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3924}
3925
1b01d335
SG
3926/**
3927 * ib_check_mr_status: lightweight check of MR status.
3928 * This routine may provide status checks on a selected
3929 * ib_mr. first use is for signature status check.
3930 *
3931 * @mr: A memory region.
3932 * @check_mask: Bitmask of which checks to perform from
3933 * ib_mr_status_check enumeration.
3934 * @mr_status: The container of relevant status checks.
3935 * failed checks will be indicated in the status bitmask
3936 * and the relevant info shall be in the error item.
3937 */
3938int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3939 struct ib_mr_status *mr_status);
3940
9268f72d
YK
3941struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3942 u16 pkey, const union ib_gid *gid,
3943 const struct sockaddr *addr);
5fd251c8
YH
3944struct ib_wq *ib_create_wq(struct ib_pd *pd,
3945 struct ib_wq_init_attr *init_attr);
3946int ib_destroy_wq(struct ib_wq *wq);
3947int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3948 u32 wq_attr_mask);
6d39786b
YH
3949struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3950 struct ib_rwq_ind_table_init_attr*
3951 wq_ind_table_init_attr);
3952int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3953
ff2ba993 3954int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3955 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3956
3957static inline int
ff2ba993 3958ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3959 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3960{
3961 int n;
3962
ff2ba993 3963 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3964 mr->iova = 0;
3965
3966 return n;
3967}
3968
ff2ba993 3969int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3970 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3971
765d6774
SW
3972void ib_drain_rq(struct ib_qp *qp);
3973void ib_drain_sq(struct ib_qp *qp);
3974void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3975
d4186194 3976int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3977
3978static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3979{
44c58487
DC
3980 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3981 return attr->roce.dmac;
3982 return NULL;
2224c47a
DC
3983}
3984
64b4646e 3985static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3986{
44c58487 3987 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3988 attr->ib.dlid = (u16)dlid;
3989 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3990 attr->opa.dlid = dlid;
2224c47a
DC
3991}
3992
64b4646e 3993static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3994{
44c58487
DC
3995 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3996 return attr->ib.dlid;
64b4646e
DC
3997 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3998 return attr->opa.dlid;
44c58487 3999 return 0;
2224c47a
DC
4000}
4001
4002static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4003{
4004 attr->sl = sl;
4005}
4006
4007static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4008{
4009 return attr->sl;
4010}
4011
4012static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4013 u8 src_path_bits)
4014{
44c58487
DC
4015 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4016 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4017 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4018 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4019}
4020
4021static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4022{
44c58487
DC
4023 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4024 return attr->ib.src_path_bits;
64b4646e
DC
4025 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4026 return attr->opa.src_path_bits;
44c58487 4027 return 0;
2224c47a
DC
4028}
4029
d98bb7f7
DH
4030static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4031 bool make_grd)
4032{
4033 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4034 attr->opa.make_grd = make_grd;
4035}
4036
4037static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4038{
4039 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4040 return attr->opa.make_grd;
4041 return false;
4042}
4043
2224c47a
DC
4044static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4045{
4046 attr->port_num = port_num;
4047}
4048
4049static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4050{
4051 return attr->port_num;
4052}
4053
4054static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4055 u8 static_rate)
4056{
4057 attr->static_rate = static_rate;
4058}
4059
4060static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4061{
4062 return attr->static_rate;
4063}
4064
4065static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4066 enum ib_ah_flags flag)
4067{
4068 attr->ah_flags = flag;
4069}
4070
4071static inline enum ib_ah_flags
4072 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4073{
4074 return attr->ah_flags;
4075}
4076
4077static inline const struct ib_global_route
4078 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4079{
4080 return &attr->grh;
4081}
4082
4083/*To retrieve and modify the grh */
4084static inline struct ib_global_route
4085 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4086{
4087 return &attr->grh;
4088}
4089
4090static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4091{
4092 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4093
4094 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4095}
4096
4097static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4098 __be64 prefix)
4099{
4100 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4101
4102 grh->dgid.global.subnet_prefix = prefix;
4103}
4104
4105static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4106 __be64 if_id)
4107{
4108 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4109
4110 grh->dgid.global.interface_id = if_id;
4111}
4112
4113static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4114 union ib_gid *dgid, u32 flow_label,
4115 u8 sgid_index, u8 hop_limit,
4116 u8 traffic_class)
4117{
4118 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4119
4120 attr->ah_flags = IB_AH_GRH;
4121 if (dgid)
4122 grh->dgid = *dgid;
4123 grh->flow_label = flow_label;
4124 grh->sgid_index = sgid_index;
4125 grh->hop_limit = hop_limit;
4126 grh->traffic_class = traffic_class;
8d9ec9ad 4127 grh->sgid_attr = NULL;
2224c47a 4128}
44c58487 4129
8d9ec9ad
JG
4130void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4131void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4132 u32 flow_label, u8 hop_limit, u8 traffic_class,
4133 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4134void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4135 const struct rdma_ah_attr *src);
4136void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4137 const struct rdma_ah_attr *new);
4138void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4139
87daac68
DH
4140/**
4141 * rdma_ah_find_type - Return address handle type.
4142 *
4143 * @dev: Device to be checked
4144 * @port_num: Port number
4145 */
44c58487 4146static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4147 u8 port_num)
44c58487 4148{
a6532e71 4149 if (rdma_protocol_roce(dev, port_num))
44c58487 4150 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4151 if (rdma_protocol_ib(dev, port_num)) {
4152 if (rdma_cap_opa_ah(dev, port_num))
4153 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4154 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4155 }
4156
4157 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4158}
7db20ecd 4159
62ede777
HD
4160/**
4161 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4162 * In the current implementation the only way to get
4163 * get the 32bit lid is from other sources for OPA.
4164 * For IB, lids will always be 16bits so cast the
4165 * value accordingly.
4166 *
4167 * @lid: A 32bit LID
4168 */
4169static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4170{
62ede777
HD
4171 WARN_ON_ONCE(lid & 0xFFFF0000);
4172 return (u16)lid;
7db20ecd
HD
4173}
4174
62ede777
HD
4175/**
4176 * ib_lid_be16 - Return lid in 16bit BE encoding.
4177 *
4178 * @lid: A 32bit LID
4179 */
4180static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4181{
62ede777
HD
4182 WARN_ON_ONCE(lid & 0xFFFF0000);
4183 return cpu_to_be16((u16)lid);
7db20ecd 4184}
32043830 4185
c66cd353
SG
4186/**
4187 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4188 * vector
4189 * @device: the rdma device
4190 * @comp_vector: index of completion vector
4191 *
4192 * Returns NULL on failure, otherwise a corresponding cpu map of the
4193 * completion vector (returns all-cpus map if the device driver doesn't
4194 * implement get_vector_affinity).
4195 */
4196static inline const struct cpumask *
4197ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4198{
4199 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4200 !device->get_vector_affinity)
4201 return NULL;
4202
4203 return device->get_vector_affinity(device, comp_vector);
4204
4205}
4206
32f69e4b
DJ
4207/**
4208 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4209 * and add their gids, as needed, to the relevant RoCE devices.
4210 *
4211 * @device: the rdma device
4212 */
4213void rdma_roce_rescan_device(struct ib_device *ibdev);
4214
8313c10f 4215struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4216
15a1b4be
JG
4217
4218int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4219
4220struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4221 enum rdma_netdev_t type, const char *name,
4222 unsigned char name_assign_type,
4223 void (*setup)(struct net_device *));
5d6b0cb3
DD
4224
4225int rdma_init_netdev(struct ib_device *device, u8 port_num,
4226 enum rdma_netdev_t type, const char *name,
4227 unsigned char name_assign_type,
4228 void (*setup)(struct net_device *),
4229 struct net_device *netdev);
4230
d4122f5a
PP
4231/**
4232 * rdma_set_device_sysfs_group - Set device attributes group to have
4233 * driver specific sysfs entries at
4234 * for infiniband class.
4235 *
4236 * @device: device pointer for which attributes to be created
4237 * @group: Pointer to group which should be added when device
4238 * is registered with sysfs.
4239 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4240 * group per device to have sysfs attributes.
4241 *
4242 * NOTE: New drivers should not make use of this API; instead new device
4243 * parameter should be exposed via netlink command. This API and mechanism
4244 * exist only for existing drivers.
4245 */
4246static inline void
4247rdma_set_device_sysfs_group(struct ib_device *dev,
4248 const struct attribute_group *group)
4249{
4250 dev->groups[1] = group;
4251}
4252
1da177e4 4253#endif /* IB_VERBS_H */