]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/rdma/ib_verbs.h
net/smc: Use rdma_read_gid_l2_fields to L2 fields
[mirror_ubuntu-jammy-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
f6316032
LR
62#include <linux/irqflags.h>
63#include <linux/preempt.h>
ea6819e1 64#include <uapi/rdma/ib_user_verbs.h>
02d8883f 65#include <rdma/restrack.h>
0ede73bc 66#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 67#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 68
9abb0d1b
LR
69#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
70
b5231b01
JG
71struct ib_umem_odp;
72
f0626710 73extern struct workqueue_struct *ib_wq;
14d3a3b2 74extern struct workqueue_struct *ib_comp_wq;
f794809a 75extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 76
923abb9d
GP
77__printf(3, 4) __cold
78void ibdev_printk(const char *level, const struct ib_device *ibdev,
79 const char *format, ...);
80__printf(2, 3) __cold
81void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
82__printf(2, 3) __cold
83void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
84__printf(2, 3) __cold
85void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
86__printf(2, 3) __cold
87void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
88__printf(2, 3) __cold
89void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
90__printf(2, 3) __cold
91void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
92__printf(2, 3) __cold
93void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
94
95#if defined(CONFIG_DYNAMIC_DEBUG)
96#define ibdev_dbg(__dev, format, args...) \
97 dynamic_ibdev_dbg(__dev, format, ##args)
98#elif defined(DEBUG)
99#define ibdev_dbg(__dev, format, args...) \
100 ibdev_printk(KERN_DEBUG, __dev, format, ##args)
101#else
102__printf(2, 3) __cold
103static inline
104void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
105#endif
106
1da177e4
LT
107union ib_gid {
108 u8 raw[16];
109 struct {
97f52eb4
SH
110 __be64 subnet_prefix;
111 __be64 interface_id;
1da177e4
LT
112 } global;
113};
114
e26be1bf
MS
115extern union ib_gid zgid;
116
b39ffa1d
MB
117enum ib_gid_type {
118 /* If link layer is Ethernet, this is RoCE V1 */
119 IB_GID_TYPE_IB = 0,
120 IB_GID_TYPE_ROCE = 0,
7766a99f 121 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
122 IB_GID_TYPE_SIZE
123};
124
7ead4bcb 125#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
126struct ib_gid_attr {
127 struct net_device *ndev;
598ff6ba 128 struct ib_device *device;
b150c386 129 union ib_gid gid;
598ff6ba
PP
130 enum ib_gid_type gid_type;
131 u16 index;
132 u8 port_num;
03db3a2d
MB
133};
134
07ebafba
TT
135enum rdma_node_type {
136 /* IB values map to NodeInfo:NodeType. */
137 RDMA_NODE_IB_CA = 1,
138 RDMA_NODE_IB_SWITCH,
139 RDMA_NODE_IB_ROUTER,
180771a3
UM
140 RDMA_NODE_RNIC,
141 RDMA_NODE_USNIC,
5db5765e 142 RDMA_NODE_USNIC_UDP,
1da177e4
LT
143};
144
a0c1b2a3
EC
145enum {
146 /* set the local administered indication */
147 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
148};
149
07ebafba
TT
150enum rdma_transport_type {
151 RDMA_TRANSPORT_IB,
180771a3 152 RDMA_TRANSPORT_IWARP,
248567f7
UM
153 RDMA_TRANSPORT_USNIC,
154 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
155};
156
6b90a6d6
MW
157enum rdma_protocol_type {
158 RDMA_PROTOCOL_IB,
159 RDMA_PROTOCOL_IBOE,
160 RDMA_PROTOCOL_IWARP,
161 RDMA_PROTOCOL_USNIC_UDP
162};
163
8385fd84
RD
164__attribute_const__ enum rdma_transport_type
165rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 166
c865f246
SK
167enum rdma_network_type {
168 RDMA_NETWORK_IB,
169 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
170 RDMA_NETWORK_IPV4,
171 RDMA_NETWORK_IPV6
172};
173
174static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
175{
176 if (network_type == RDMA_NETWORK_IPV4 ||
177 network_type == RDMA_NETWORK_IPV6)
178 return IB_GID_TYPE_ROCE_UDP_ENCAP;
179
180 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
181 return IB_GID_TYPE_IB;
182}
183
47ec3866
PP
184static inline enum rdma_network_type
185rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 186{
47ec3866 187 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
188 return RDMA_NETWORK_IB;
189
47ec3866 190 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
191 return RDMA_NETWORK_IPV4;
192 else
193 return RDMA_NETWORK_IPV6;
194}
195
a3f5adaf
EC
196enum rdma_link_layer {
197 IB_LINK_LAYER_UNSPECIFIED,
198 IB_LINK_LAYER_INFINIBAND,
199 IB_LINK_LAYER_ETHERNET,
200};
201
1da177e4 202enum ib_device_cap_flags {
7ca0bc53
LR
203 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
204 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
205 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
206 IB_DEVICE_RAW_MULTI = (1 << 3),
207 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
208 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
209 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
210 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
211 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 212 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
213 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
214 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
215 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
216 IB_DEVICE_SRQ_RESIZE = (1 << 13),
217 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
218
219 /*
220 * This device supports a per-device lkey or stag that can be
221 * used without performing a memory registration for the local
222 * memory. Note that ULPs should never check this flag, but
223 * instead of use the local_dma_lkey flag in the ib_pd structure,
224 * which will always contain a usable lkey.
225 */
7ca0bc53 226 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 227 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 228 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
229 /*
230 * Devices should set IB_DEVICE_UD_IP_SUM if they support
231 * insertion of UDP and TCP checksum on outgoing UD IPoIB
232 * messages and can verify the validity of checksum for
233 * incoming messages. Setting this flag implies that the
234 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
235 */
7ca0bc53
LR
236 IB_DEVICE_UD_IP_CSUM = (1 << 18),
237 IB_DEVICE_UD_TSO = (1 << 19),
238 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
239
240 /*
241 * This device supports the IB "base memory management extension",
242 * which includes support for fast registrations (IB_WR_REG_MR,
243 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
244 * also be set by any iWarp device which must support FRs to comply
245 * to the iWarp verbs spec. iWarp devices also support the
246 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
247 * stag.
248 */
7ca0bc53
LR
249 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
250 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
251 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
252 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
253 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 254 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 255 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
256 /*
257 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
258 * support execution of WQEs that involve synchronization
259 * of I/O operations with single completion queue managed
260 * by hardware.
261 */
78b57f95 262 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
263 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
264 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 265 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 266 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 267 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 269 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 270 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
271 /* The device supports padding incoming writes to cacheline. */
272 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 273 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
274};
275
276enum ib_signature_prot_cap {
277 IB_PROT_T10DIF_TYPE_1 = 1,
278 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
279 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
280};
281
282enum ib_signature_guard_cap {
283 IB_GUARD_T10DIF_CRC = 1,
284 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
285};
286
287enum ib_atomic_cap {
288 IB_ATOMIC_NONE,
289 IB_ATOMIC_HCA,
290 IB_ATOMIC_GLOB
291};
292
860f10a7 293enum ib_odp_general_cap_bits {
25bf14d6
AK
294 IB_ODP_SUPPORT = 1 << 0,
295 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
296};
297
298enum ib_odp_transport_cap_bits {
299 IB_ODP_SUPPORT_SEND = 1 << 0,
300 IB_ODP_SUPPORT_RECV = 1 << 1,
301 IB_ODP_SUPPORT_WRITE = 1 << 2,
302 IB_ODP_SUPPORT_READ = 1 << 3,
303 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 304 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
305};
306
307struct ib_odp_caps {
308 uint64_t general_caps;
309 struct {
310 uint32_t rc_odp_caps;
311 uint32_t uc_odp_caps;
312 uint32_t ud_odp_caps;
52a72e2a 313 uint32_t xrc_odp_caps;
860f10a7
SG
314 } per_transport_caps;
315};
316
ccf20562
YH
317struct ib_rss_caps {
318 /* Corresponding bit will be set if qp type from
319 * 'enum ib_qp_type' is supported, e.g.
320 * supported_qpts |= 1 << IB_QPT_UD
321 */
322 u32 supported_qpts;
323 u32 max_rwq_indirection_tables;
324 u32 max_rwq_indirection_table_size;
325};
326
6938fc1e
AK
327enum ib_tm_cap_flags {
328 /* Support tag matching on RC transport */
329 IB_TM_CAP_RC = 1 << 0,
330};
331
78b1beb0 332struct ib_tm_caps {
6938fc1e
AK
333 /* Max size of RNDV header */
334 u32 max_rndv_hdr_size;
335 /* Max number of entries in tag matching list */
336 u32 max_num_tags;
337 /* From enum ib_tm_cap_flags */
338 u32 flags;
339 /* Max number of outstanding list operations */
340 u32 max_ops;
341 /* Max number of SGE in tag matching entry */
342 u32 max_sge;
343};
344
bcf4c1ea
MB
345struct ib_cq_init_attr {
346 unsigned int cqe;
347 int comp_vector;
348 u32 flags;
349};
350
869ddcf8
YC
351enum ib_cq_attr_mask {
352 IB_CQ_MODERATE = 1 << 0,
353};
354
18bd9072
YC
355struct ib_cq_caps {
356 u16 max_cq_moderation_count;
357 u16 max_cq_moderation_period;
358};
359
be934cca
AL
360struct ib_dm_mr_attr {
361 u64 length;
362 u64 offset;
363 u32 access_flags;
364};
365
bee76d7a
AL
366struct ib_dm_alloc_attr {
367 u64 length;
368 u32 alignment;
369 u32 flags;
370};
371
1da177e4
LT
372struct ib_device_attr {
373 u64 fw_ver;
97f52eb4 374 __be64 sys_image_guid;
1da177e4
LT
375 u64 max_mr_size;
376 u64 page_size_cap;
377 u32 vendor_id;
378 u32 vendor_part_id;
379 u32 hw_ver;
380 int max_qp;
381 int max_qp_wr;
fb532d6a 382 u64 device_cap_flags;
33023fb8
SW
383 int max_send_sge;
384 int max_recv_sge;
1da177e4
LT
385 int max_sge_rd;
386 int max_cq;
387 int max_cqe;
388 int max_mr;
389 int max_pd;
390 int max_qp_rd_atom;
391 int max_ee_rd_atom;
392 int max_res_rd_atom;
393 int max_qp_init_rd_atom;
394 int max_ee_init_rd_atom;
395 enum ib_atomic_cap atomic_cap;
5e80ba8f 396 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
397 int max_ee;
398 int max_rdd;
399 int max_mw;
400 int max_raw_ipv6_qp;
401 int max_raw_ethy_qp;
402 int max_mcast_grp;
403 int max_mcast_qp_attach;
404 int max_total_mcast_qp_attach;
405 int max_ah;
406 int max_fmr;
407 int max_map_per_fmr;
408 int max_srq;
409 int max_srq_wr;
410 int max_srq_sge;
00f7ec36 411 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
412 u16 max_pkeys;
413 u8 local_ca_ack_delay;
1b01d335
SG
414 int sig_prot_cap;
415 int sig_guard_cap;
860f10a7 416 struct ib_odp_caps odp_caps;
24306dc6
MB
417 uint64_t timestamp_mask;
418 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
419 struct ib_rss_caps rss_caps;
420 u32 max_wq_type_rq;
ebaaee25 421 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 422 struct ib_tm_caps tm_caps;
18bd9072 423 struct ib_cq_caps cq_caps;
1d8eeb9f 424 u64 max_dm_size;
1da177e4
LT
425};
426
427enum ib_mtu {
428 IB_MTU_256 = 1,
429 IB_MTU_512 = 2,
430 IB_MTU_1024 = 3,
431 IB_MTU_2048 = 4,
432 IB_MTU_4096 = 5
433};
434
435static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
436{
437 switch (mtu) {
438 case IB_MTU_256: return 256;
439 case IB_MTU_512: return 512;
440 case IB_MTU_1024: return 1024;
441 case IB_MTU_2048: return 2048;
442 case IB_MTU_4096: return 4096;
443 default: return -1;
444 }
445}
446
d3f4aadd
AR
447static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
448{
449 if (mtu >= 4096)
450 return IB_MTU_4096;
451 else if (mtu >= 2048)
452 return IB_MTU_2048;
453 else if (mtu >= 1024)
454 return IB_MTU_1024;
455 else if (mtu >= 512)
456 return IB_MTU_512;
457 else
458 return IB_MTU_256;
459}
460
1da177e4
LT
461enum ib_port_state {
462 IB_PORT_NOP = 0,
463 IB_PORT_DOWN = 1,
464 IB_PORT_INIT = 2,
465 IB_PORT_ARMED = 3,
466 IB_PORT_ACTIVE = 4,
467 IB_PORT_ACTIVE_DEFER = 5
468};
469
1da177e4
LT
470enum ib_port_width {
471 IB_WIDTH_1X = 1,
dbabf685 472 IB_WIDTH_2X = 16,
1da177e4
LT
473 IB_WIDTH_4X = 2,
474 IB_WIDTH_8X = 4,
475 IB_WIDTH_12X = 8
476};
477
478static inline int ib_width_enum_to_int(enum ib_port_width width)
479{
480 switch (width) {
481 case IB_WIDTH_1X: return 1;
dbabf685 482 case IB_WIDTH_2X: return 2;
1da177e4
LT
483 case IB_WIDTH_4X: return 4;
484 case IB_WIDTH_8X: return 8;
485 case IB_WIDTH_12X: return 12;
486 default: return -1;
487 }
488}
489
2e96691c
OG
490enum ib_port_speed {
491 IB_SPEED_SDR = 1,
492 IB_SPEED_DDR = 2,
493 IB_SPEED_QDR = 4,
494 IB_SPEED_FDR10 = 8,
495 IB_SPEED_FDR = 16,
12113a35
NO
496 IB_SPEED_EDR = 32,
497 IB_SPEED_HDR = 64
2e96691c
OG
498};
499
b40f4757
CL
500/**
501 * struct rdma_hw_stats
e945130b
MB
502 * @lock - Mutex to protect parallel write access to lifespan and values
503 * of counters, which are 64bits and not guaranteeed to be written
504 * atomicaly on 32bits systems.
b40f4757
CL
505 * @timestamp - Used by the core code to track when the last update was
506 * @lifespan - Used by the core code to determine how old the counters
507 * should be before being updated again. Stored in jiffies, defaults
508 * to 10 milliseconds, drivers can override the default be specifying
509 * their own value during their allocation routine.
510 * @name - Array of pointers to static names used for the counters in
511 * directory.
512 * @num_counters - How many hardware counters there are. If name is
513 * shorter than this number, a kernel oops will result. Driver authors
514 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
515 * in their code to prevent this.
516 * @value - Array of u64 counters that are accessed by the sysfs code and
517 * filled in by the drivers get_stats routine
518 */
519struct rdma_hw_stats {
e945130b 520 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
521 unsigned long timestamp;
522 unsigned long lifespan;
523 const char * const *names;
524 int num_counters;
525 u64 value[];
7f624d02
SW
526};
527
b40f4757
CL
528#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
529/**
530 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
531 * for drivers.
532 * @names - Array of static const char *
533 * @num_counters - How many elements in array
534 * @lifespan - How many milliseconds between updates
535 */
536static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
537 const char * const *names, int num_counters,
538 unsigned long lifespan)
539{
540 struct rdma_hw_stats *stats;
541
542 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
543 GFP_KERNEL);
544 if (!stats)
545 return NULL;
546 stats->names = names;
547 stats->num_counters = num_counters;
548 stats->lifespan = msecs_to_jiffies(lifespan);
549
550 return stats;
551}
552
553
f9b22e35
IW
554/* Define bits for the various functionality this port needs to be supported by
555 * the core.
556 */
557/* Management 0x00000FFF */
558#define RDMA_CORE_CAP_IB_MAD 0x00000001
559#define RDMA_CORE_CAP_IB_SMI 0x00000002
560#define RDMA_CORE_CAP_IB_CM 0x00000004
561#define RDMA_CORE_CAP_IW_CM 0x00000008
562#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 563#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
564
565/* Address format 0x000FF000 */
566#define RDMA_CORE_CAP_AF_IB 0x00001000
567#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 568#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 569#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
570
571/* Protocol 0xFFF00000 */
572#define RDMA_CORE_CAP_PROT_IB 0x00100000
573#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
574#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 575#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 576#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 577#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 578
b02289b3
AK
579#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
580 | RDMA_CORE_CAP_PROT_ROCE \
581 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
582
f9b22e35
IW
583#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
584 | RDMA_CORE_CAP_IB_MAD \
585 | RDMA_CORE_CAP_IB_SMI \
586 | RDMA_CORE_CAP_IB_CM \
587 | RDMA_CORE_CAP_IB_SA \
588 | RDMA_CORE_CAP_AF_IB)
589#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
590 | RDMA_CORE_CAP_IB_MAD \
591 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
592 | RDMA_CORE_CAP_AF_IB \
593 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
594#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
595 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
596 | RDMA_CORE_CAP_IB_MAD \
597 | RDMA_CORE_CAP_IB_CM \
598 | RDMA_CORE_CAP_AF_IB \
599 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
600#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
601 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
602#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
603 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 604
aa773bd4
OG
605#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
606
ce1e055f
OG
607#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
608
1da177e4 609struct ib_port_attr {
fad61ad4 610 u64 subnet_prefix;
1da177e4
LT
611 enum ib_port_state state;
612 enum ib_mtu max_mtu;
613 enum ib_mtu active_mtu;
614 int gid_tbl_len;
2f944c0f
JG
615 unsigned int ip_gids:1;
616 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
617 u32 port_cap_flags;
618 u32 max_msg_sz;
619 u32 bad_pkey_cntr;
620 u32 qkey_viol_cntr;
621 u16 pkey_tbl_len;
db58540b 622 u32 sm_lid;
582faf31 623 u32 lid;
1da177e4
LT
624 u8 lmc;
625 u8 max_vl_num;
626 u8 sm_sl;
627 u8 subnet_timeout;
628 u8 init_type_reply;
629 u8 active_width;
630 u8 active_speed;
631 u8 phys_state;
1e8f43b7 632 u16 port_cap_flags2;
1da177e4
LT
633};
634
635enum ib_device_modify_flags {
c5bcbbb9
RD
636 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
637 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
638};
639
bd99fdea
YS
640#define IB_DEVICE_NODE_DESC_MAX 64
641
1da177e4
LT
642struct ib_device_modify {
643 u64 sys_image_guid;
bd99fdea 644 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
645};
646
647enum ib_port_modify_flags {
648 IB_PORT_SHUTDOWN = 1,
649 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
650 IB_PORT_RESET_QKEY_CNTR = (1<<3),
651 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
652};
653
654struct ib_port_modify {
655 u32 set_port_cap_mask;
656 u32 clr_port_cap_mask;
657 u8 init_type;
658};
659
660enum ib_event_type {
661 IB_EVENT_CQ_ERR,
662 IB_EVENT_QP_FATAL,
663 IB_EVENT_QP_REQ_ERR,
664 IB_EVENT_QP_ACCESS_ERR,
665 IB_EVENT_COMM_EST,
666 IB_EVENT_SQ_DRAINED,
667 IB_EVENT_PATH_MIG,
668 IB_EVENT_PATH_MIG_ERR,
669 IB_EVENT_DEVICE_FATAL,
670 IB_EVENT_PORT_ACTIVE,
671 IB_EVENT_PORT_ERR,
672 IB_EVENT_LID_CHANGE,
673 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
674 IB_EVENT_SM_CHANGE,
675 IB_EVENT_SRQ_ERR,
676 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 677 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
678 IB_EVENT_CLIENT_REREGISTER,
679 IB_EVENT_GID_CHANGE,
f213c052 680 IB_EVENT_WQ_FATAL,
1da177e4
LT
681};
682
db7489e0 683const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 684
1da177e4
LT
685struct ib_event {
686 struct ib_device *device;
687 union {
688 struct ib_cq *cq;
689 struct ib_qp *qp;
d41fcc67 690 struct ib_srq *srq;
f213c052 691 struct ib_wq *wq;
1da177e4
LT
692 u8 port_num;
693 } element;
694 enum ib_event_type event;
695};
696
697struct ib_event_handler {
698 struct ib_device *device;
699 void (*handler)(struct ib_event_handler *, struct ib_event *);
700 struct list_head list;
701};
702
703#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
704 do { \
705 (_ptr)->device = _device; \
706 (_ptr)->handler = _handler; \
707 INIT_LIST_HEAD(&(_ptr)->list); \
708 } while (0)
709
710struct ib_global_route {
8d9ec9ad 711 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
712 union ib_gid dgid;
713 u32 flow_label;
714 u8 sgid_index;
715 u8 hop_limit;
716 u8 traffic_class;
717};
718
513789ed 719struct ib_grh {
97f52eb4
SH
720 __be32 version_tclass_flow;
721 __be16 paylen;
513789ed
HR
722 u8 next_hdr;
723 u8 hop_limit;
724 union ib_gid sgid;
725 union ib_gid dgid;
726};
727
c865f246
SK
728union rdma_network_hdr {
729 struct ib_grh ibgrh;
730 struct {
731 /* The IB spec states that if it's IPv4, the header
732 * is located in the last 20 bytes of the header.
733 */
734 u8 reserved[20];
735 struct iphdr roce4grh;
736 };
737};
738
7dafbab3
DH
739#define IB_QPN_MASK 0xFFFFFF
740
1da177e4
LT
741enum {
742 IB_MULTICAST_QPN = 0xffffff
743};
744
f3a7c66b 745#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 746#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 747
1da177e4
LT
748enum ib_ah_flags {
749 IB_AH_GRH = 1
750};
751
bf6a9e31
JM
752enum ib_rate {
753 IB_RATE_PORT_CURRENT = 0,
754 IB_RATE_2_5_GBPS = 2,
755 IB_RATE_5_GBPS = 5,
756 IB_RATE_10_GBPS = 3,
757 IB_RATE_20_GBPS = 6,
758 IB_RATE_30_GBPS = 4,
759 IB_RATE_40_GBPS = 7,
760 IB_RATE_60_GBPS = 8,
761 IB_RATE_80_GBPS = 9,
71eeba16
MA
762 IB_RATE_120_GBPS = 10,
763 IB_RATE_14_GBPS = 11,
764 IB_RATE_56_GBPS = 12,
765 IB_RATE_112_GBPS = 13,
766 IB_RATE_168_GBPS = 14,
767 IB_RATE_25_GBPS = 15,
768 IB_RATE_100_GBPS = 16,
769 IB_RATE_200_GBPS = 17,
a5a5d199
MG
770 IB_RATE_300_GBPS = 18,
771 IB_RATE_28_GBPS = 19,
772 IB_RATE_50_GBPS = 20,
773 IB_RATE_400_GBPS = 21,
774 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
775};
776
777/**
778 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
779 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
780 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
781 * @rate: rate to convert.
782 */
8385fd84 783__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 784
71eeba16
MA
785/**
786 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
787 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
788 * @rate: rate to convert.
789 */
8385fd84 790__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 791
17cd3a2d
SG
792
793/**
9bee178b
SG
794 * enum ib_mr_type - memory region type
795 * @IB_MR_TYPE_MEM_REG: memory region that is used for
796 * normal registration
797 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
798 * signature operations (data-integrity
799 * capable regions)
f5aa9159
SG
800 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
801 * register any arbitrary sg lists (without
802 * the normal mr constraints - see
803 * ib_map_mr_sg)
17cd3a2d 804 */
9bee178b
SG
805enum ib_mr_type {
806 IB_MR_TYPE_MEM_REG,
807 IB_MR_TYPE_SIGNATURE,
f5aa9159 808 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
809};
810
1b01d335 811/**
78eda2bb
SG
812 * Signature types
813 * IB_SIG_TYPE_NONE: Unprotected.
814 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 815 */
78eda2bb
SG
816enum ib_signature_type {
817 IB_SIG_TYPE_NONE,
818 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
819};
820
821/**
822 * Signature T10-DIF block-guard types
823 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
824 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
825 */
826enum ib_t10_dif_bg_type {
827 IB_T10DIF_CRC,
828 IB_T10DIF_CSUM
829};
830
831/**
832 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
833 * domain.
1b01d335
SG
834 * @bg_type: T10-DIF block guard type (CRC|CSUM)
835 * @pi_interval: protection information interval.
836 * @bg: seed of guard computation.
837 * @app_tag: application tag of guard block
838 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
839 * @ref_remap: Indicate wethear the reftag increments each block
840 * @app_escape: Indicate to skip block check if apptag=0xffff
841 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
842 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
843 */
844struct ib_t10_dif_domain {
1b01d335
SG
845 enum ib_t10_dif_bg_type bg_type;
846 u16 pi_interval;
847 u16 bg;
848 u16 app_tag;
849 u32 ref_tag;
78eda2bb
SG
850 bool ref_remap;
851 bool app_escape;
852 bool ref_escape;
853 u16 apptag_check_mask;
1b01d335
SG
854};
855
856/**
857 * struct ib_sig_domain - Parameters for signature domain
858 * @sig_type: specific signauture type
859 * @sig: union of all signature domain attributes that may
860 * be used to set domain layout.
861 */
862struct ib_sig_domain {
863 enum ib_signature_type sig_type;
864 union {
865 struct ib_t10_dif_domain dif;
866 } sig;
867};
868
869/**
870 * struct ib_sig_attrs - Parameters for signature handover operation
871 * @check_mask: bitmask for signature byte check (8 bytes)
872 * @mem: memory domain layout desciptor.
873 * @wire: wire domain layout desciptor.
874 */
875struct ib_sig_attrs {
876 u8 check_mask;
877 struct ib_sig_domain mem;
878 struct ib_sig_domain wire;
879};
880
881enum ib_sig_err_type {
882 IB_SIG_BAD_GUARD,
883 IB_SIG_BAD_REFTAG,
884 IB_SIG_BAD_APPTAG,
885};
886
ca24da00
MG
887/**
888 * Signature check masks (8 bytes in total) according to the T10-PI standard:
889 * -------- -------- ------------
890 * | GUARD | APPTAG | REFTAG |
891 * | 2B | 2B | 4B |
892 * -------- -------- ------------
893 */
894enum {
895 IB_SIG_CHECK_GUARD = 0xc0,
896 IB_SIG_CHECK_APPTAG = 0x30,
897 IB_SIG_CHECK_REFTAG = 0x0f,
898};
899
1b01d335
SG
900/**
901 * struct ib_sig_err - signature error descriptor
902 */
903struct ib_sig_err {
904 enum ib_sig_err_type err_type;
905 u32 expected;
906 u32 actual;
907 u64 sig_err_offset;
908 u32 key;
909};
910
911enum ib_mr_status_check {
912 IB_MR_CHECK_SIG_STATUS = 1,
913};
914
915/**
916 * struct ib_mr_status - Memory region status container
917 *
918 * @fail_status: Bitmask of MR checks status. For each
919 * failed check a corresponding status bit is set.
920 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
921 * failure.
922 */
923struct ib_mr_status {
924 u32 fail_status;
925 struct ib_sig_err sig_err;
926};
927
bf6a9e31
JM
928/**
929 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
930 * enum.
931 * @mult: multiple to convert.
932 */
8385fd84 933__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 934
44c58487 935enum rdma_ah_attr_type {
87daac68 936 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
937 RDMA_AH_ATTR_TYPE_IB,
938 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 939 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
940};
941
942struct ib_ah_attr {
943 u16 dlid;
944 u8 src_path_bits;
945};
946
947struct roce_ah_attr {
948 u8 dmac[ETH_ALEN];
949};
950
64b4646e
DC
951struct opa_ah_attr {
952 u32 dlid;
953 u8 src_path_bits;
d98bb7f7 954 bool make_grd;
64b4646e
DC
955};
956
90898850 957struct rdma_ah_attr {
1da177e4 958 struct ib_global_route grh;
1da177e4 959 u8 sl;
1da177e4 960 u8 static_rate;
1da177e4 961 u8 port_num;
44c58487
DC
962 u8 ah_flags;
963 enum rdma_ah_attr_type type;
964 union {
965 struct ib_ah_attr ib;
966 struct roce_ah_attr roce;
64b4646e 967 struct opa_ah_attr opa;
44c58487 968 };
1da177e4
LT
969};
970
971enum ib_wc_status {
972 IB_WC_SUCCESS,
973 IB_WC_LOC_LEN_ERR,
974 IB_WC_LOC_QP_OP_ERR,
975 IB_WC_LOC_EEC_OP_ERR,
976 IB_WC_LOC_PROT_ERR,
977 IB_WC_WR_FLUSH_ERR,
978 IB_WC_MW_BIND_ERR,
979 IB_WC_BAD_RESP_ERR,
980 IB_WC_LOC_ACCESS_ERR,
981 IB_WC_REM_INV_REQ_ERR,
982 IB_WC_REM_ACCESS_ERR,
983 IB_WC_REM_OP_ERR,
984 IB_WC_RETRY_EXC_ERR,
985 IB_WC_RNR_RETRY_EXC_ERR,
986 IB_WC_LOC_RDD_VIOL_ERR,
987 IB_WC_REM_INV_RD_REQ_ERR,
988 IB_WC_REM_ABORT_ERR,
989 IB_WC_INV_EECN_ERR,
990 IB_WC_INV_EEC_STATE_ERR,
991 IB_WC_FATAL_ERR,
992 IB_WC_RESP_TIMEOUT_ERR,
993 IB_WC_GENERAL_ERR
994};
995
db7489e0 996const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 997
1da177e4
LT
998enum ib_wc_opcode {
999 IB_WC_SEND,
1000 IB_WC_RDMA_WRITE,
1001 IB_WC_RDMA_READ,
1002 IB_WC_COMP_SWAP,
1003 IB_WC_FETCH_ADD,
c93570f2 1004 IB_WC_LSO,
00f7ec36 1005 IB_WC_LOCAL_INV,
4c67e2bf 1006 IB_WC_REG_MR,
5e80ba8f
VS
1007 IB_WC_MASKED_COMP_SWAP,
1008 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
1009/*
1010 * Set value of IB_WC_RECV so consumers can test if a completion is a
1011 * receive by testing (opcode & IB_WC_RECV).
1012 */
1013 IB_WC_RECV = 1 << 7,
1014 IB_WC_RECV_RDMA_WITH_IMM
1015};
1016
1017enum ib_wc_flags {
1018 IB_WC_GRH = 1,
00f7ec36
SW
1019 IB_WC_WITH_IMM = (1<<1),
1020 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 1021 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
1022 IB_WC_WITH_SMAC = (1<<4),
1023 IB_WC_WITH_VLAN = (1<<5),
c865f246 1024 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
1025};
1026
1027struct ib_wc {
14d3a3b2
CH
1028 union {
1029 u64 wr_id;
1030 struct ib_cqe *wr_cqe;
1031 };
1da177e4
LT
1032 enum ib_wc_status status;
1033 enum ib_wc_opcode opcode;
1034 u32 vendor_err;
1035 u32 byte_len;
062dbb69 1036 struct ib_qp *qp;
00f7ec36
SW
1037 union {
1038 __be32 imm_data;
1039 u32 invalidate_rkey;
1040 } ex;
1da177e4 1041 u32 src_qp;
cd2a6e7d 1042 u32 slid;
1da177e4
LT
1043 int wc_flags;
1044 u16 pkey_index;
1da177e4
LT
1045 u8 sl;
1046 u8 dlid_path_bits;
1047 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1048 u8 smac[ETH_ALEN];
1049 u16 vlan_id;
c865f246 1050 u8 network_hdr_type;
1da177e4
LT
1051};
1052
ed23a727
RD
1053enum ib_cq_notify_flags {
1054 IB_CQ_SOLICITED = 1 << 0,
1055 IB_CQ_NEXT_COMP = 1 << 1,
1056 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1057 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1058};
1059
96104eda 1060enum ib_srq_type {
418d5130 1061 IB_SRQT_BASIC,
9c2c8496
AK
1062 IB_SRQT_XRC,
1063 IB_SRQT_TM,
96104eda
SH
1064};
1065
1a56ff6d
AK
1066static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1067{
9c2c8496
AK
1068 return srq_type == IB_SRQT_XRC ||
1069 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1070}
1071
d41fcc67
RD
1072enum ib_srq_attr_mask {
1073 IB_SRQ_MAX_WR = 1 << 0,
1074 IB_SRQ_LIMIT = 1 << 1,
1075};
1076
1077struct ib_srq_attr {
1078 u32 max_wr;
1079 u32 max_sge;
1080 u32 srq_limit;
1081};
1082
1083struct ib_srq_init_attr {
1084 void (*event_handler)(struct ib_event *, void *);
1085 void *srq_context;
1086 struct ib_srq_attr attr;
96104eda 1087 enum ib_srq_type srq_type;
418d5130 1088
1a56ff6d
AK
1089 struct {
1090 struct ib_cq *cq;
1091 union {
1092 struct {
1093 struct ib_xrcd *xrcd;
1094 } xrc;
9c2c8496
AK
1095
1096 struct {
1097 u32 max_num_tags;
1098 } tag_matching;
1a56ff6d 1099 };
418d5130 1100 } ext;
d41fcc67
RD
1101};
1102
1da177e4
LT
1103struct ib_qp_cap {
1104 u32 max_send_wr;
1105 u32 max_recv_wr;
1106 u32 max_send_sge;
1107 u32 max_recv_sge;
1108 u32 max_inline_data;
a060b562
CH
1109
1110 /*
1111 * Maximum number of rdma_rw_ctx structures in flight at a time.
1112 * ib_create_qp() will calculate the right amount of neededed WRs
1113 * and MRs based on this.
1114 */
1115 u32 max_rdma_ctxs;
1da177e4
LT
1116};
1117
1118enum ib_sig_type {
1119 IB_SIGNAL_ALL_WR,
1120 IB_SIGNAL_REQ_WR
1121};
1122
1123enum ib_qp_type {
1124 /*
1125 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1126 * here (and in that order) since the MAD layer uses them as
1127 * indices into a 2-entry table.
1128 */
1129 IB_QPT_SMI,
1130 IB_QPT_GSI,
1131
1132 IB_QPT_RC,
1133 IB_QPT_UC,
1134 IB_QPT_UD,
1135 IB_QPT_RAW_IPV6,
b42b63cf 1136 IB_QPT_RAW_ETHERTYPE,
c938a616 1137 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1138 IB_QPT_XRC_INI = 9,
1139 IB_QPT_XRC_TGT,
0134f16b 1140 IB_QPT_MAX,
8011c1e3 1141 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1142 /* Reserve a range for qp types internal to the low level driver.
1143 * These qp types will not be visible at the IB core layer, so the
1144 * IB_QPT_MAX usages should not be affected in the core layer
1145 */
1146 IB_QPT_RESERVED1 = 0x1000,
1147 IB_QPT_RESERVED2,
1148 IB_QPT_RESERVED3,
1149 IB_QPT_RESERVED4,
1150 IB_QPT_RESERVED5,
1151 IB_QPT_RESERVED6,
1152 IB_QPT_RESERVED7,
1153 IB_QPT_RESERVED8,
1154 IB_QPT_RESERVED9,
1155 IB_QPT_RESERVED10,
1da177e4
LT
1156};
1157
b846f25a 1158enum ib_qp_create_flags {
47ee1b9f
RL
1159 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1160 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1161 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1162 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1163 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1164 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1165 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1166 /* FREE = 1 << 7, */
b531b909 1167 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1168 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1169 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1170 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1171 /* reserve bits 26-31 for low level drivers' internal use */
1172 IB_QP_CREATE_RESERVED_START = 1 << 26,
1173 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1174};
1175
73c40c61
YH
1176/*
1177 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1178 * callback to destroy the passed in QP.
1179 */
1180
1da177e4 1181struct ib_qp_init_attr {
eb93c82e 1182 /* Consumer's event_handler callback must not block */
1da177e4 1183 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1184
1da177e4
LT
1185 void *qp_context;
1186 struct ib_cq *send_cq;
1187 struct ib_cq *recv_cq;
1188 struct ib_srq *srq;
b42b63cf 1189 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1190 struct ib_qp_cap cap;
1191 enum ib_sig_type sq_sig_type;
1192 enum ib_qp_type qp_type;
b56511c1 1193 u32 create_flags;
a060b562
CH
1194
1195 /*
1196 * Only needed for special QP types, or when using the RW API.
1197 */
1198 u8 port_num;
a9017e23 1199 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1200 u32 source_qpn;
1da177e4
LT
1201};
1202
0e0ec7e0
SH
1203struct ib_qp_open_attr {
1204 void (*event_handler)(struct ib_event *, void *);
1205 void *qp_context;
1206 u32 qp_num;
1207 enum ib_qp_type qp_type;
1208};
1209
1da177e4
LT
1210enum ib_rnr_timeout {
1211 IB_RNR_TIMER_655_36 = 0,
1212 IB_RNR_TIMER_000_01 = 1,
1213 IB_RNR_TIMER_000_02 = 2,
1214 IB_RNR_TIMER_000_03 = 3,
1215 IB_RNR_TIMER_000_04 = 4,
1216 IB_RNR_TIMER_000_06 = 5,
1217 IB_RNR_TIMER_000_08 = 6,
1218 IB_RNR_TIMER_000_12 = 7,
1219 IB_RNR_TIMER_000_16 = 8,
1220 IB_RNR_TIMER_000_24 = 9,
1221 IB_RNR_TIMER_000_32 = 10,
1222 IB_RNR_TIMER_000_48 = 11,
1223 IB_RNR_TIMER_000_64 = 12,
1224 IB_RNR_TIMER_000_96 = 13,
1225 IB_RNR_TIMER_001_28 = 14,
1226 IB_RNR_TIMER_001_92 = 15,
1227 IB_RNR_TIMER_002_56 = 16,
1228 IB_RNR_TIMER_003_84 = 17,
1229 IB_RNR_TIMER_005_12 = 18,
1230 IB_RNR_TIMER_007_68 = 19,
1231 IB_RNR_TIMER_010_24 = 20,
1232 IB_RNR_TIMER_015_36 = 21,
1233 IB_RNR_TIMER_020_48 = 22,
1234 IB_RNR_TIMER_030_72 = 23,
1235 IB_RNR_TIMER_040_96 = 24,
1236 IB_RNR_TIMER_061_44 = 25,
1237 IB_RNR_TIMER_081_92 = 26,
1238 IB_RNR_TIMER_122_88 = 27,
1239 IB_RNR_TIMER_163_84 = 28,
1240 IB_RNR_TIMER_245_76 = 29,
1241 IB_RNR_TIMER_327_68 = 30,
1242 IB_RNR_TIMER_491_52 = 31
1243};
1244
1245enum ib_qp_attr_mask {
1246 IB_QP_STATE = 1,
1247 IB_QP_CUR_STATE = (1<<1),
1248 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1249 IB_QP_ACCESS_FLAGS = (1<<3),
1250 IB_QP_PKEY_INDEX = (1<<4),
1251 IB_QP_PORT = (1<<5),
1252 IB_QP_QKEY = (1<<6),
1253 IB_QP_AV = (1<<7),
1254 IB_QP_PATH_MTU = (1<<8),
1255 IB_QP_TIMEOUT = (1<<9),
1256 IB_QP_RETRY_CNT = (1<<10),
1257 IB_QP_RNR_RETRY = (1<<11),
1258 IB_QP_RQ_PSN = (1<<12),
1259 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1260 IB_QP_ALT_PATH = (1<<14),
1261 IB_QP_MIN_RNR_TIMER = (1<<15),
1262 IB_QP_SQ_PSN = (1<<16),
1263 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1264 IB_QP_PATH_MIG_STATE = (1<<18),
1265 IB_QP_CAP = (1<<19),
dd5f03be 1266 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1267 IB_QP_RESERVED1 = (1<<21),
1268 IB_QP_RESERVED2 = (1<<22),
1269 IB_QP_RESERVED3 = (1<<23),
1270 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1271 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1272};
1273
1274enum ib_qp_state {
1275 IB_QPS_RESET,
1276 IB_QPS_INIT,
1277 IB_QPS_RTR,
1278 IB_QPS_RTS,
1279 IB_QPS_SQD,
1280 IB_QPS_SQE,
1281 IB_QPS_ERR
1282};
1283
1284enum ib_mig_state {
1285 IB_MIG_MIGRATED,
1286 IB_MIG_REARM,
1287 IB_MIG_ARMED
1288};
1289
7083e42e
SM
1290enum ib_mw_type {
1291 IB_MW_TYPE_1 = 1,
1292 IB_MW_TYPE_2 = 2
1293};
1294
1da177e4
LT
1295struct ib_qp_attr {
1296 enum ib_qp_state qp_state;
1297 enum ib_qp_state cur_qp_state;
1298 enum ib_mtu path_mtu;
1299 enum ib_mig_state path_mig_state;
1300 u32 qkey;
1301 u32 rq_psn;
1302 u32 sq_psn;
1303 u32 dest_qp_num;
1304 int qp_access_flags;
1305 struct ib_qp_cap cap;
90898850
DC
1306 struct rdma_ah_attr ah_attr;
1307 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1308 u16 pkey_index;
1309 u16 alt_pkey_index;
1310 u8 en_sqd_async_notify;
1311 u8 sq_draining;
1312 u8 max_rd_atomic;
1313 u8 max_dest_rd_atomic;
1314 u8 min_rnr_timer;
1315 u8 port_num;
1316 u8 timeout;
1317 u8 retry_cnt;
1318 u8 rnr_retry;
1319 u8 alt_port_num;
1320 u8 alt_timeout;
528e5a1b 1321 u32 rate_limit;
1da177e4
LT
1322};
1323
1324enum ib_wr_opcode {
9a59739b
JG
1325 /* These are shared with userspace */
1326 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1327 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1328 IB_WR_SEND = IB_UVERBS_WR_SEND,
1329 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1330 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1331 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1332 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1333 IB_WR_LSO = IB_UVERBS_WR_TSO,
1334 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1335 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1336 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1337 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1338 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1339 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1340 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1341
1342 /* These are kernel only and can not be issued by userspace */
1343 IB_WR_REG_MR = 0x20,
1b01d335 1344 IB_WR_REG_SIG_MR,
9a59739b 1345
0134f16b
JM
1346 /* reserve values for low level drivers' internal use.
1347 * These values will not be used at all in the ib core layer.
1348 */
1349 IB_WR_RESERVED1 = 0xf0,
1350 IB_WR_RESERVED2,
1351 IB_WR_RESERVED3,
1352 IB_WR_RESERVED4,
1353 IB_WR_RESERVED5,
1354 IB_WR_RESERVED6,
1355 IB_WR_RESERVED7,
1356 IB_WR_RESERVED8,
1357 IB_WR_RESERVED9,
1358 IB_WR_RESERVED10,
1da177e4
LT
1359};
1360
1361enum ib_send_flags {
1362 IB_SEND_FENCE = 1,
1363 IB_SEND_SIGNALED = (1<<1),
1364 IB_SEND_SOLICITED = (1<<2),
e0605d91 1365 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1366 IB_SEND_IP_CSUM = (1<<4),
1367
1368 /* reserve bits 26-31 for low level drivers' internal use */
1369 IB_SEND_RESERVED_START = (1 << 26),
1370 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1371};
1372
1373struct ib_sge {
1374 u64 addr;
1375 u32 length;
1376 u32 lkey;
1377};
1378
14d3a3b2
CH
1379struct ib_cqe {
1380 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1381};
1382
1da177e4
LT
1383struct ib_send_wr {
1384 struct ib_send_wr *next;
14d3a3b2
CH
1385 union {
1386 u64 wr_id;
1387 struct ib_cqe *wr_cqe;
1388 };
1da177e4
LT
1389 struct ib_sge *sg_list;
1390 int num_sge;
1391 enum ib_wr_opcode opcode;
1392 int send_flags;
0f39cf3d
RD
1393 union {
1394 __be32 imm_data;
1395 u32 invalidate_rkey;
1396 } ex;
1da177e4
LT
1397};
1398
e622f2f4
CH
1399struct ib_rdma_wr {
1400 struct ib_send_wr wr;
1401 u64 remote_addr;
1402 u32 rkey;
1403};
1404
f696bf6d 1405static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1406{
1407 return container_of(wr, struct ib_rdma_wr, wr);
1408}
1409
1410struct ib_atomic_wr {
1411 struct ib_send_wr wr;
1412 u64 remote_addr;
1413 u64 compare_add;
1414 u64 swap;
1415 u64 compare_add_mask;
1416 u64 swap_mask;
1417 u32 rkey;
1418};
1419
f696bf6d 1420static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1421{
1422 return container_of(wr, struct ib_atomic_wr, wr);
1423}
1424
1425struct ib_ud_wr {
1426 struct ib_send_wr wr;
1427 struct ib_ah *ah;
1428 void *header;
1429 int hlen;
1430 int mss;
1431 u32 remote_qpn;
1432 u32 remote_qkey;
1433 u16 pkey_index; /* valid for GSI only */
1434 u8 port_num; /* valid for DR SMPs on switch only */
1435};
1436
f696bf6d 1437static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1438{
1439 return container_of(wr, struct ib_ud_wr, wr);
1440}
1441
4c67e2bf
SG
1442struct ib_reg_wr {
1443 struct ib_send_wr wr;
1444 struct ib_mr *mr;
1445 u32 key;
1446 int access;
1447};
1448
f696bf6d 1449static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1450{
1451 return container_of(wr, struct ib_reg_wr, wr);
1452}
1453
e622f2f4
CH
1454struct ib_sig_handover_wr {
1455 struct ib_send_wr wr;
1456 struct ib_sig_attrs *sig_attrs;
1457 struct ib_mr *sig_mr;
1458 int access_flags;
1459 struct ib_sge *prot;
1460};
1461
f696bf6d
BVA
1462static inline const struct ib_sig_handover_wr *
1463sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1464{
1465 return container_of(wr, struct ib_sig_handover_wr, wr);
1466}
1467
1da177e4
LT
1468struct ib_recv_wr {
1469 struct ib_recv_wr *next;
14d3a3b2
CH
1470 union {
1471 u64 wr_id;
1472 struct ib_cqe *wr_cqe;
1473 };
1da177e4
LT
1474 struct ib_sge *sg_list;
1475 int num_sge;
1476};
1477
1478enum ib_access_flags {
4fca0377
JG
1479 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1480 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1481 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1482 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1483 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1484 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1485 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1486 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1487
1488 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1489};
1490
b7d3e0a9
CH
1491/*
1492 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1493 * are hidden here instead of a uapi header!
1494 */
1da177e4
LT
1495enum ib_mr_rereg_flags {
1496 IB_MR_REREG_TRANS = 1,
1497 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1498 IB_MR_REREG_ACCESS = (1<<2),
1499 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1500};
1501
1da177e4
LT
1502struct ib_fmr_attr {
1503 int max_pages;
1504 int max_maps;
d36f34aa 1505 u8 page_shift;
1da177e4
LT
1506};
1507
882214e2
HE
1508struct ib_umem;
1509
38321256 1510enum rdma_remove_reason {
1c77483e
YH
1511 /*
1512 * Userspace requested uobject deletion or initial try
1513 * to remove uobject via cleanup. Call could fail
1514 */
38321256
MB
1515 RDMA_REMOVE_DESTROY,
1516 /* Context deletion. This call should delete the actual object itself */
1517 RDMA_REMOVE_CLOSE,
1518 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1519 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1520 /* uobj is being cleaned-up before being committed */
1521 RDMA_REMOVE_ABORT,
38321256
MB
1522};
1523
43579b5f
PP
1524struct ib_rdmacg_object {
1525#ifdef CONFIG_CGROUP_RDMA
1526 struct rdma_cgroup *cg; /* owner rdma cgroup */
1527#endif
1528};
1529
e2773c06
RD
1530struct ib_ucontext {
1531 struct ib_device *device;
771addf6 1532 struct ib_uverbs_file *ufile;
e951747a
JG
1533 /*
1534 * 'closing' can be read by the driver only during a destroy callback,
1535 * it is set when we are closing the file descriptor and indicates
1536 * that mm_sem may be locked.
1537 */
6ceb6331 1538 bool closing;
8ada2c1c 1539
1c77483e 1540 bool cleanup_retryable;
38321256 1541
b5231b01 1542 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
882214e2 1543 unsigned long start, unsigned long end);
f27a0d50
JG
1544 struct mutex per_mm_list_lock;
1545 struct list_head per_mm_list;
43579b5f
PP
1546
1547 struct ib_rdmacg_object cg_obj;
60615210
LR
1548 /*
1549 * Implementation details of the RDMA core, don't use in drivers:
1550 */
1551 struct rdma_restrack_entry res;
e2773c06
RD
1552};
1553
1554struct ib_uobject {
1555 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1556 /* ufile & ucontext owning this object */
1557 struct ib_uverbs_file *ufile;
1558 /* FIXME, save memory: ufile->context == context */
e2773c06 1559 struct ib_ucontext *context; /* associated user context */
9ead190b 1560 void *object; /* containing object */
e2773c06 1561 struct list_head list; /* link to context's list */
43579b5f 1562 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1563 int id; /* index into kernel idr */
9ead190b 1564 struct kref ref;
38321256 1565 atomic_t usecnt; /* protects exclusive access */
d144da8c 1566 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1567
6b0d08f4 1568 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1569};
1570
e2773c06 1571struct ib_udata {
309243ec 1572 const void __user *inbuf;
e2773c06
RD
1573 void __user *outbuf;
1574 size_t inlen;
1575 size_t outlen;
1576};
1577
1da177e4 1578struct ib_pd {
96249d70 1579 u32 local_dma_lkey;
ed082d36 1580 u32 flags;
e2773c06
RD
1581 struct ib_device *device;
1582 struct ib_uobject *uobject;
1583 atomic_t usecnt; /* count all resources */
50d46335 1584
ed082d36
CH
1585 u32 unsafe_global_rkey;
1586
50d46335
CH
1587 /*
1588 * Implementation details of the RDMA core, don't use in drivers:
1589 */
1590 struct ib_mr *__internal_mr;
02d8883f 1591 struct rdma_restrack_entry res;
1da177e4
LT
1592};
1593
59991f94
SH
1594struct ib_xrcd {
1595 struct ib_device *device;
d3d72d90 1596 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1597 struct inode *inode;
d3d72d90
SH
1598
1599 struct mutex tgt_qp_mutex;
1600 struct list_head tgt_qp_list;
59991f94
SH
1601};
1602
1da177e4
LT
1603struct ib_ah {
1604 struct ib_device *device;
1605 struct ib_pd *pd;
e2773c06 1606 struct ib_uobject *uobject;
1a1f460f 1607 const struct ib_gid_attr *sgid_attr;
44c58487 1608 enum rdma_ah_attr_type type;
1da177e4
LT
1609};
1610
1611typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1612
14d3a3b2 1613enum ib_poll_context {
f794809a
JM
1614 IB_POLL_DIRECT, /* caller context, no hw completions */
1615 IB_POLL_SOFTIRQ, /* poll from softirq context */
1616 IB_POLL_WORKQUEUE, /* poll from workqueue */
1617 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
14d3a3b2
CH
1618};
1619
1da177e4 1620struct ib_cq {
e2773c06
RD
1621 struct ib_device *device;
1622 struct ib_uobject *uobject;
1623 ib_comp_handler comp_handler;
1624 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1625 void *cq_context;
e2773c06
RD
1626 int cqe;
1627 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1628 enum ib_poll_context poll_ctx;
1629 struct ib_wc *wc;
1630 union {
1631 struct irq_poll iop;
1632 struct work_struct work;
1633 };
f794809a 1634 struct workqueue_struct *comp_wq;
02d8883f
LR
1635 /*
1636 * Implementation details of the RDMA core, don't use in drivers:
1637 */
1638 struct rdma_restrack_entry res;
1da177e4
LT
1639};
1640
1641struct ib_srq {
d41fcc67
RD
1642 struct ib_device *device;
1643 struct ib_pd *pd;
1644 struct ib_uobject *uobject;
1645 void (*event_handler)(struct ib_event *, void *);
1646 void *srq_context;
96104eda 1647 enum ib_srq_type srq_type;
1da177e4 1648 atomic_t usecnt;
418d5130 1649
1a56ff6d
AK
1650 struct {
1651 struct ib_cq *cq;
1652 union {
1653 struct {
1654 struct ib_xrcd *xrcd;
1655 u32 srq_num;
1656 } xrc;
1657 };
418d5130 1658 } ext;
1da177e4
LT
1659};
1660
ebaaee25
NO
1661enum ib_raw_packet_caps {
1662 /* Strip cvlan from incoming packet and report it in the matching work
1663 * completion is supported.
1664 */
1665 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1666 /* Scatter FCS field of an incoming packet to host memory is supported.
1667 */
1668 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1669 /* Checksum offloads are supported (for both send and receive). */
1670 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1671 /* When a packet is received for an RQ with no receive WQEs, the
1672 * packet processing is delayed.
1673 */
1674 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1675};
1676
5fd251c8
YH
1677enum ib_wq_type {
1678 IB_WQT_RQ
1679};
1680
1681enum ib_wq_state {
1682 IB_WQS_RESET,
1683 IB_WQS_RDY,
1684 IB_WQS_ERR
1685};
1686
1687struct ib_wq {
1688 struct ib_device *device;
1689 struct ib_uobject *uobject;
1690 void *wq_context;
1691 void (*event_handler)(struct ib_event *, void *);
1692 struct ib_pd *pd;
1693 struct ib_cq *cq;
1694 u32 wq_num;
1695 enum ib_wq_state state;
1696 enum ib_wq_type wq_type;
1697 atomic_t usecnt;
1698};
1699
10bac72b
NO
1700enum ib_wq_flags {
1701 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1702 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1703 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1704 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1705};
1706
5fd251c8
YH
1707struct ib_wq_init_attr {
1708 void *wq_context;
1709 enum ib_wq_type wq_type;
1710 u32 max_wr;
1711 u32 max_sge;
1712 struct ib_cq *cq;
1713 void (*event_handler)(struct ib_event *, void *);
10bac72b 1714 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1715};
1716
1717enum ib_wq_attr_mask {
10bac72b
NO
1718 IB_WQ_STATE = 1 << 0,
1719 IB_WQ_CUR_STATE = 1 << 1,
1720 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1721};
1722
1723struct ib_wq_attr {
1724 enum ib_wq_state wq_state;
1725 enum ib_wq_state curr_wq_state;
10bac72b
NO
1726 u32 flags; /* Use enum ib_wq_flags */
1727 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1728};
1729
6d39786b
YH
1730struct ib_rwq_ind_table {
1731 struct ib_device *device;
1732 struct ib_uobject *uobject;
1733 atomic_t usecnt;
1734 u32 ind_tbl_num;
1735 u32 log_ind_tbl_size;
1736 struct ib_wq **ind_tbl;
1737};
1738
1739struct ib_rwq_ind_table_init_attr {
1740 u32 log_ind_tbl_size;
1741 /* Each entry is a pointer to Receive Work Queue */
1742 struct ib_wq **ind_tbl;
1743};
1744
d291f1a6
DJ
1745enum port_pkey_state {
1746 IB_PORT_PKEY_NOT_VALID = 0,
1747 IB_PORT_PKEY_VALID = 1,
1748 IB_PORT_PKEY_LISTED = 2,
1749};
1750
1751struct ib_qp_security;
1752
1753struct ib_port_pkey {
1754 enum port_pkey_state state;
1755 u16 pkey_index;
1756 u8 port_num;
1757 struct list_head qp_list;
1758 struct list_head to_error_list;
1759 struct ib_qp_security *sec;
1760};
1761
1762struct ib_ports_pkeys {
1763 struct ib_port_pkey main;
1764 struct ib_port_pkey alt;
1765};
1766
1767struct ib_qp_security {
1768 struct ib_qp *qp;
1769 struct ib_device *dev;
1770 /* Hold this mutex when changing port and pkey settings. */
1771 struct mutex mutex;
1772 struct ib_ports_pkeys *ports_pkeys;
1773 /* A list of all open shared QP handles. Required to enforce security
1774 * properly for all users of a shared QP.
1775 */
1776 struct list_head shared_qp_list;
1777 void *security;
1778 bool destroying;
1779 atomic_t error_list_count;
1780 struct completion error_complete;
1781 int error_comps_pending;
1782};
1783
632bc3f6
BVA
1784/*
1785 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1786 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1787 */
1da177e4
LT
1788struct ib_qp {
1789 struct ib_device *device;
1790 struct ib_pd *pd;
1791 struct ib_cq *send_cq;
1792 struct ib_cq *recv_cq;
fffb0383
CH
1793 spinlock_t mr_lock;
1794 int mrs_used;
a060b562 1795 struct list_head rdma_mrs;
0e353e34 1796 struct list_head sig_mrs;
1da177e4 1797 struct ib_srq *srq;
b42b63cf 1798 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1799 struct list_head xrcd_list;
fffb0383 1800
319a441d
HHZ
1801 /* count times opened, mcast attaches, flow attaches */
1802 atomic_t usecnt;
0e0ec7e0
SH
1803 struct list_head open_list;
1804 struct ib_qp *real_qp;
e2773c06 1805 struct ib_uobject *uobject;
1da177e4
LT
1806 void (*event_handler)(struct ib_event *, void *);
1807 void *qp_context;
1a1f460f
JG
1808 /* sgid_attrs associated with the AV's */
1809 const struct ib_gid_attr *av_sgid_attr;
1810 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1811 u32 qp_num;
632bc3f6
BVA
1812 u32 max_write_sge;
1813 u32 max_read_sge;
1da177e4 1814 enum ib_qp_type qp_type;
a9017e23 1815 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1816 struct ib_qp_security *qp_sec;
498ca3c8 1817 u8 port;
02d8883f
LR
1818
1819 /*
1820 * Implementation details of the RDMA core, don't use in drivers:
1821 */
1822 struct rdma_restrack_entry res;
1da177e4
LT
1823};
1824
bee76d7a
AL
1825struct ib_dm {
1826 struct ib_device *device;
1827 u32 length;
1828 u32 flags;
1829 struct ib_uobject *uobject;
1830 atomic_t usecnt;
1831};
1832
1da177e4 1833struct ib_mr {
e2773c06
RD
1834 struct ib_device *device;
1835 struct ib_pd *pd;
e2773c06
RD
1836 u32 lkey;
1837 u32 rkey;
4c67e2bf 1838 u64 iova;
edd31551 1839 u64 length;
4c67e2bf 1840 unsigned int page_size;
d4a85c30 1841 bool need_inval;
fffb0383
CH
1842 union {
1843 struct ib_uobject *uobject; /* user */
1844 struct list_head qp_entry; /* FR */
1845 };
fccec5b8 1846
be934cca
AL
1847 struct ib_dm *dm;
1848
fccec5b8
SW
1849 /*
1850 * Implementation details of the RDMA core, don't use in drivers:
1851 */
1852 struct rdma_restrack_entry res;
1da177e4
LT
1853};
1854
1855struct ib_mw {
1856 struct ib_device *device;
1857 struct ib_pd *pd;
e2773c06 1858 struct ib_uobject *uobject;
1da177e4 1859 u32 rkey;
7083e42e 1860 enum ib_mw_type type;
1da177e4
LT
1861};
1862
1863struct ib_fmr {
1864 struct ib_device *device;
1865 struct ib_pd *pd;
1866 struct list_head list;
1867 u32 lkey;
1868 u32 rkey;
1869};
1870
319a441d
HHZ
1871/* Supported steering options */
1872enum ib_flow_attr_type {
1873 /* steering according to rule specifications */
1874 IB_FLOW_ATTR_NORMAL = 0x0,
1875 /* default unicast and multicast rule -
1876 * receive all Eth traffic which isn't steered to any QP
1877 */
1878 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1879 /* default multicast rule -
1880 * receive all Eth multicast traffic which isn't steered to any QP
1881 */
1882 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1883 /* sniffer rule - receive all port traffic */
1884 IB_FLOW_ATTR_SNIFFER = 0x3
1885};
1886
1887/* Supported steering header types */
1888enum ib_flow_spec_type {
1889 /* L2 headers*/
76bd23b3
MR
1890 IB_FLOW_SPEC_ETH = 0x20,
1891 IB_FLOW_SPEC_IB = 0x22,
319a441d 1892 /* L3 header*/
76bd23b3
MR
1893 IB_FLOW_SPEC_IPV4 = 0x30,
1894 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1895 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1896 /* L4 headers*/
76bd23b3
MR
1897 IB_FLOW_SPEC_TCP = 0x40,
1898 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1899 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1900 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1901 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1902 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1903 /* Actions */
1904 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1905 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1906 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1907 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1908};
240ae00e 1909#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1910#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1911
319a441d
HHZ
1912/* Flow steering rule priority is set according to it's domain.
1913 * Lower domain value means higher priority.
1914 */
1915enum ib_flow_domain {
1916 IB_FLOW_DOMAIN_USER,
1917 IB_FLOW_DOMAIN_ETHTOOL,
1918 IB_FLOW_DOMAIN_RFS,
1919 IB_FLOW_DOMAIN_NIC,
1920 IB_FLOW_DOMAIN_NUM /* Must be last */
1921};
1922
a3100a78
MV
1923enum ib_flow_flags {
1924 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1925 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1926 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1927};
1928
319a441d
HHZ
1929struct ib_flow_eth_filter {
1930 u8 dst_mac[6];
1931 u8 src_mac[6];
1932 __be16 ether_type;
1933 __be16 vlan_tag;
15dfbd6b
MG
1934 /* Must be last */
1935 u8 real_sz[0];
319a441d
HHZ
1936};
1937
1938struct ib_flow_spec_eth {
fbf46860 1939 u32 type;
319a441d
HHZ
1940 u16 size;
1941 struct ib_flow_eth_filter val;
1942 struct ib_flow_eth_filter mask;
1943};
1944
240ae00e
MB
1945struct ib_flow_ib_filter {
1946 __be16 dlid;
1947 __u8 sl;
15dfbd6b
MG
1948 /* Must be last */
1949 u8 real_sz[0];
240ae00e
MB
1950};
1951
1952struct ib_flow_spec_ib {
fbf46860 1953 u32 type;
240ae00e
MB
1954 u16 size;
1955 struct ib_flow_ib_filter val;
1956 struct ib_flow_ib_filter mask;
1957};
1958
989a3a8f
MG
1959/* IPv4 header flags */
1960enum ib_ipv4_flags {
1961 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1962 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1963 last have this flag set */
1964};
1965
319a441d
HHZ
1966struct ib_flow_ipv4_filter {
1967 __be32 src_ip;
1968 __be32 dst_ip;
989a3a8f
MG
1969 u8 proto;
1970 u8 tos;
1971 u8 ttl;
1972 u8 flags;
15dfbd6b
MG
1973 /* Must be last */
1974 u8 real_sz[0];
319a441d
HHZ
1975};
1976
1977struct ib_flow_spec_ipv4 {
fbf46860 1978 u32 type;
319a441d
HHZ
1979 u16 size;
1980 struct ib_flow_ipv4_filter val;
1981 struct ib_flow_ipv4_filter mask;
1982};
1983
4c2aae71
MG
1984struct ib_flow_ipv6_filter {
1985 u8 src_ip[16];
1986 u8 dst_ip[16];
a72c6a2b
MG
1987 __be32 flow_label;
1988 u8 next_hdr;
1989 u8 traffic_class;
1990 u8 hop_limit;
15dfbd6b
MG
1991 /* Must be last */
1992 u8 real_sz[0];
4c2aae71
MG
1993};
1994
1995struct ib_flow_spec_ipv6 {
fbf46860 1996 u32 type;
4c2aae71
MG
1997 u16 size;
1998 struct ib_flow_ipv6_filter val;
1999 struct ib_flow_ipv6_filter mask;
2000};
2001
319a441d
HHZ
2002struct ib_flow_tcp_udp_filter {
2003 __be16 dst_port;
2004 __be16 src_port;
15dfbd6b
MG
2005 /* Must be last */
2006 u8 real_sz[0];
319a441d
HHZ
2007};
2008
2009struct ib_flow_spec_tcp_udp {
fbf46860 2010 u32 type;
319a441d
HHZ
2011 u16 size;
2012 struct ib_flow_tcp_udp_filter val;
2013 struct ib_flow_tcp_udp_filter mask;
2014};
2015
0dbf3332
MR
2016struct ib_flow_tunnel_filter {
2017 __be32 tunnel_id;
2018 u8 real_sz[0];
2019};
2020
2021/* ib_flow_spec_tunnel describes the Vxlan tunnel
2022 * the tunnel_id from val has the vni value
2023 */
2024struct ib_flow_spec_tunnel {
fbf46860 2025 u32 type;
0dbf3332
MR
2026 u16 size;
2027 struct ib_flow_tunnel_filter val;
2028 struct ib_flow_tunnel_filter mask;
2029};
2030
56ab0b38
MB
2031struct ib_flow_esp_filter {
2032 __be32 spi;
2033 __be32 seq;
2034 /* Must be last */
2035 u8 real_sz[0];
2036};
2037
2038struct ib_flow_spec_esp {
2039 u32 type;
2040 u16 size;
2041 struct ib_flow_esp_filter val;
2042 struct ib_flow_esp_filter mask;
2043};
2044
d90e5e50
AL
2045struct ib_flow_gre_filter {
2046 __be16 c_ks_res0_ver;
2047 __be16 protocol;
2048 __be32 key;
2049 /* Must be last */
2050 u8 real_sz[0];
2051};
2052
2053struct ib_flow_spec_gre {
2054 u32 type;
2055 u16 size;
2056 struct ib_flow_gre_filter val;
2057 struct ib_flow_gre_filter mask;
2058};
2059
b04f0f03
AL
2060struct ib_flow_mpls_filter {
2061 __be32 tag;
2062 /* Must be last */
2063 u8 real_sz[0];
2064};
2065
2066struct ib_flow_spec_mpls {
2067 u32 type;
2068 u16 size;
2069 struct ib_flow_mpls_filter val;
2070 struct ib_flow_mpls_filter mask;
2071};
2072
460d0198
MR
2073struct ib_flow_spec_action_tag {
2074 enum ib_flow_spec_type type;
2075 u16 size;
2076 u32 tag_id;
2077};
2078
483a3966
SS
2079struct ib_flow_spec_action_drop {
2080 enum ib_flow_spec_type type;
2081 u16 size;
2082};
2083
9b828441
MB
2084struct ib_flow_spec_action_handle {
2085 enum ib_flow_spec_type type;
2086 u16 size;
2087 struct ib_flow_action *act;
2088};
2089
7eea23a5
RS
2090enum ib_counters_description {
2091 IB_COUNTER_PACKETS,
2092 IB_COUNTER_BYTES,
2093};
2094
2095struct ib_flow_spec_action_count {
2096 enum ib_flow_spec_type type;
2097 u16 size;
2098 struct ib_counters *counters;
2099};
2100
319a441d
HHZ
2101union ib_flow_spec {
2102 struct {
fbf46860 2103 u32 type;
319a441d
HHZ
2104 u16 size;
2105 };
2106 struct ib_flow_spec_eth eth;
240ae00e 2107 struct ib_flow_spec_ib ib;
319a441d
HHZ
2108 struct ib_flow_spec_ipv4 ipv4;
2109 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2110 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2111 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2112 struct ib_flow_spec_esp esp;
d90e5e50 2113 struct ib_flow_spec_gre gre;
b04f0f03 2114 struct ib_flow_spec_mpls mpls;
460d0198 2115 struct ib_flow_spec_action_tag flow_tag;
483a3966 2116 struct ib_flow_spec_action_drop drop;
9b828441 2117 struct ib_flow_spec_action_handle action;
7eea23a5 2118 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2119};
2120
2121struct ib_flow_attr {
2122 enum ib_flow_attr_type type;
2123 u16 size;
2124 u16 priority;
2125 u32 flags;
2126 u8 num_of_specs;
2127 u8 port;
7654cb1b 2128 union ib_flow_spec flows[];
319a441d
HHZ
2129};
2130
2131struct ib_flow {
2132 struct ib_qp *qp;
6cd080a6 2133 struct ib_device *device;
319a441d
HHZ
2134 struct ib_uobject *uobject;
2135};
2136
2eb9beae
MB
2137enum ib_flow_action_type {
2138 IB_FLOW_ACTION_UNSPECIFIED,
2139 IB_FLOW_ACTION_ESP = 1,
2140};
2141
2142struct ib_flow_action_attrs_esp_keymats {
2143 enum ib_uverbs_flow_action_esp_keymat protocol;
2144 union {
2145 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2146 } keymat;
2147};
2148
2149struct ib_flow_action_attrs_esp_replays {
2150 enum ib_uverbs_flow_action_esp_replay protocol;
2151 union {
2152 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2153 } replay;
2154};
2155
2156enum ib_flow_action_attrs_esp_flags {
2157 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2158 * This is done in order to share the same flags between user-space and
2159 * kernel and spare an unnecessary translation.
2160 */
2161
2162 /* Kernel flags */
2163 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2164 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2165};
2166
2167struct ib_flow_spec_list {
2168 struct ib_flow_spec_list *next;
2169 union ib_flow_spec spec;
2170};
2171
2172struct ib_flow_action_attrs_esp {
2173 struct ib_flow_action_attrs_esp_keymats *keymat;
2174 struct ib_flow_action_attrs_esp_replays *replay;
2175 struct ib_flow_spec_list *encap;
2176 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2177 * Value of 0 is a valid value.
2178 */
2179 u32 esn;
2180 u32 spi;
2181 u32 seq;
2182 u32 tfc_pad;
2183 /* Use enum ib_flow_action_attrs_esp_flags */
2184 u64 flags;
2185 u64 hard_limit_pkts;
2186};
2187
2188struct ib_flow_action {
2189 struct ib_device *device;
2190 struct ib_uobject *uobject;
2191 enum ib_flow_action_type type;
2192 atomic_t usecnt;
2193};
2194
4cd7c947 2195struct ib_mad_hdr;
1da177e4
LT
2196struct ib_grh;
2197
2198enum ib_process_mad_flags {
2199 IB_MAD_IGNORE_MKEY = 1,
2200 IB_MAD_IGNORE_BKEY = 2,
2201 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2202};
2203
2204enum ib_mad_result {
2205 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2206 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2207 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2208 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2209};
2210
21d6454a 2211struct ib_port_cache {
883c71fe 2212 u64 subnet_prefix;
21d6454a
JW
2213 struct ib_pkey_cache *pkey;
2214 struct ib_gid_table *gid;
2215 u8 lmc;
2216 enum ib_port_state port_state;
2217};
2218
1da177e4
LT
2219struct ib_cache {
2220 rwlock_t lock;
2221 struct ib_event_handler event_handler;
1da177e4
LT
2222};
2223
7738613e
IW
2224struct ib_port_immutable {
2225 int pkey_tbl_len;
2226 int gid_tbl_len;
f9b22e35 2227 u32 core_cap_flags;
337877a4 2228 u32 max_mad_size;
7738613e
IW
2229};
2230
8ceb1357 2231struct ib_port_data {
324e227e
JG
2232 struct ib_device *ib_dev;
2233
8ceb1357
JG
2234 struct ib_port_immutable immutable;
2235
2236 spinlock_t pkey_list_lock;
2237 struct list_head pkey_list;
8faea9fd
JG
2238
2239 struct ib_port_cache cache;
c2261dd7
JG
2240
2241 spinlock_t netdev_lock;
324e227e
JG
2242 struct net_device __rcu *netdev;
2243 struct hlist_node ndev_hash_link;
8ceb1357
JG
2244};
2245
2fc77572
VN
2246/* rdma netdev type - specifies protocol type */
2247enum rdma_netdev_t {
f0ad83ac
NV
2248 RDMA_NETDEV_OPA_VNIC,
2249 RDMA_NETDEV_IPOIB,
2fc77572
VN
2250};
2251
2252/**
2253 * struct rdma_netdev - rdma netdev
2254 * For cases where netstack interfacing is required.
2255 */
2256struct rdma_netdev {
2257 void *clnt_priv;
2258 struct ib_device *hca;
2259 u8 port_num;
2260
9f49a5b5
JG
2261 /*
2262 * cleanup function must be specified.
2263 * FIXME: This is only used for OPA_VNIC and that usage should be
2264 * removed too.
2265 */
8e959601
NV
2266 void (*free_rdma_netdev)(struct net_device *netdev);
2267
2fc77572
VN
2268 /* control functions */
2269 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2270 /* send packet */
2271 int (*send)(struct net_device *dev, struct sk_buff *skb,
2272 struct ib_ah *address, u32 dqpn);
2273 /* multicast */
2274 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2275 union ib_gid *gid, u16 mlid,
2276 int set_qkey, u32 qkey);
2277 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2278 union ib_gid *gid, u16 mlid);
2fc77572
VN
2279};
2280
f6a8a19b
DD
2281struct rdma_netdev_alloc_params {
2282 size_t sizeof_priv;
2283 unsigned int txqs;
2284 unsigned int rxqs;
2285 void *param;
2286
2287 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2288 struct net_device *netdev, void *param);
2289};
2290
fa9b1802
RS
2291struct ib_counters {
2292 struct ib_device *device;
2293 struct ib_uobject *uobject;
2294 /* num of objects attached */
2295 atomic_t usecnt;
2296};
2297
51d7a538
RS
2298struct ib_counters_read_attr {
2299 u64 *counters_buff;
2300 u32 ncounters;
2301 u32 flags; /* use enum ib_read_counters_flags */
2302};
2303
2eb9beae 2304struct uverbs_attr_bundle;
dd05cb82
KH
2305struct iw_cm_id;
2306struct iw_cm_conn_param;
2eb9beae 2307
30471d4b
LR
2308#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2309 .size_##ib_struct = \
2310 (sizeof(struct drv_struct) + \
2311 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2312 BUILD_BUG_ON_ZERO( \
2313 !__same_type(((struct drv_struct *)NULL)->member, \
2314 struct ib_struct)))
2315
f6316032
LR
2316#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2317 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2318
30471d4b 2319#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2320 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2321
2322#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2323
521ed0d9
KH
2324/**
2325 * struct ib_device_ops - InfiniBand device operations
2326 * This structure defines all the InfiniBand device operations, providers will
2327 * need to define the supported operations, otherwise they will be set to null.
2328 */
2329struct ib_device_ops {
2330 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2331 const struct ib_send_wr **bad_send_wr);
2332 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2333 const struct ib_recv_wr **bad_recv_wr);
2334 void (*drain_rq)(struct ib_qp *qp);
2335 void (*drain_sq)(struct ib_qp *qp);
2336 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2337 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2338 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2339 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2340 int (*post_srq_recv)(struct ib_srq *srq,
2341 const struct ib_recv_wr *recv_wr,
2342 const struct ib_recv_wr **bad_recv_wr);
2343 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2344 u8 port_num, const struct ib_wc *in_wc,
2345 const struct ib_grh *in_grh,
2346 const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2347 struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2348 u16 *out_mad_pkey_index);
2349 int (*query_device)(struct ib_device *device,
2350 struct ib_device_attr *device_attr,
2351 struct ib_udata *udata);
2352 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2353 struct ib_device_modify *device_modify);
2354 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2355 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2356 int comp_vector);
2357 int (*query_port)(struct ib_device *device, u8 port_num,
2358 struct ib_port_attr *port_attr);
2359 int (*modify_port)(struct ib_device *device, u8 port_num,
2360 int port_modify_mask,
2361 struct ib_port_modify *port_modify);
2362 /**
2363 * The following mandatory functions are used only at device
2364 * registration. Keep functions such as these at the end of this
2365 * structure to avoid cache line misses when accessing struct ib_device
2366 * in fast paths.
2367 */
2368 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2369 struct ib_port_immutable *immutable);
2370 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2371 u8 port_num);
2372 /**
2373 * When calling get_netdev, the HW vendor's driver should return the
2374 * net device of device @device at port @port_num or NULL if such
2375 * a net device doesn't exist. The vendor driver should call dev_hold
2376 * on this net device. The HW vendor's device driver must guarantee
2377 * that this function returns NULL before the net device has finished
2378 * NETDEV_UNREGISTER state.
2379 */
2380 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2381 /**
2382 * rdma netdev operation
2383 *
2384 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2385 * must return -EOPNOTSUPP if it doesn't support the specified type.
2386 */
2387 struct net_device *(*alloc_rdma_netdev)(
2388 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2389 const char *name, unsigned char name_assign_type,
2390 void (*setup)(struct net_device *));
2391
2392 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2393 enum rdma_netdev_t type,
2394 struct rdma_netdev_alloc_params *params);
2395 /**
2396 * query_gid should be return GID value for @device, when @port_num
2397 * link layer is either IB or iWarp. It is no-op if @port_num port
2398 * is RoCE link layer.
2399 */
2400 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2401 union ib_gid *gid);
2402 /**
2403 * When calling add_gid, the HW vendor's driver should add the gid
2404 * of device of port at gid index available at @attr. Meta-info of
2405 * that gid (for example, the network device related to this gid) is
2406 * available at @attr. @context allows the HW vendor driver to store
2407 * extra information together with a GID entry. The HW vendor driver may
2408 * allocate memory to contain this information and store it in @context
2409 * when a new GID entry is written to. Params are consistent until the
2410 * next call of add_gid or delete_gid. The function should return 0 on
2411 * success or error otherwise. The function could be called
2412 * concurrently for different ports. This function is only called when
2413 * roce_gid_table is used.
2414 */
2415 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2416 /**
2417 * When calling del_gid, the HW vendor's driver should delete the
2418 * gid of device @device at gid index gid_index of port port_num
2419 * available in @attr.
2420 * Upon the deletion of a GID entry, the HW vendor must free any
2421 * allocated memory. The caller will clear @context afterwards.
2422 * This function is only called when roce_gid_table is used.
2423 */
2424 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2425 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2426 u16 *pkey);
a2a074ef
LR
2427 int (*alloc_ucontext)(struct ib_ucontext *context,
2428 struct ib_udata *udata);
2429 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9
KH
2430 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2431 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2432 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2433 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
d3456914
LR
2434 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2435 u32 flags, struct ib_udata *udata);
521ed0d9
KH
2436 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2437 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
d3456914 2438 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2439 int (*create_srq)(struct ib_srq *srq,
2440 struct ib_srq_init_attr *srq_init_attr,
2441 struct ib_udata *udata);
521ed0d9
KH
2442 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2443 enum ib_srq_attr_mask srq_attr_mask,
2444 struct ib_udata *udata);
2445 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
68e326de 2446 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
521ed0d9
KH
2447 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2448 struct ib_qp_init_attr *qp_init_attr,
2449 struct ib_udata *udata);
2450 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2451 int qp_attr_mask, struct ib_udata *udata);
2452 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2453 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2454 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
521ed0d9
KH
2455 struct ib_cq *(*create_cq)(struct ib_device *device,
2456 const struct ib_cq_init_attr *attr,
521ed0d9
KH
2457 struct ib_udata *udata);
2458 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
c4367a26 2459 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2460 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2461 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2462 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2463 u64 virt_addr, int mr_access_flags,
2464 struct ib_udata *udata);
2465 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2466 u64 virt_addr, int mr_access_flags,
2467 struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2468 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2469 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
c4367a26 2470 u32 max_num_sg, struct ib_udata *udata);
ad8a4496
MS
2471 int (*advise_mr)(struct ib_pd *pd,
2472 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2473 struct ib_sge *sg_list, u32 num_sge,
2474 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2475 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2476 unsigned int *sg_offset);
2477 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2478 struct ib_mr_status *mr_status);
2479 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2480 struct ib_udata *udata);
2481 int (*dealloc_mw)(struct ib_mw *mw);
2482 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2483 struct ib_fmr_attr *fmr_attr);
2484 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2485 u64 iova);
2486 int (*unmap_fmr)(struct list_head *fmr_list);
2487 int (*dealloc_fmr)(struct ib_fmr *fmr);
2488 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2489 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2490 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
521ed0d9 2491 struct ib_udata *udata);
c4367a26 2492 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2493 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2494 struct ib_flow_attr *flow_attr,
2495 int domain, struct ib_udata *udata);
2496 int (*destroy_flow)(struct ib_flow *flow_id);
2497 struct ib_flow_action *(*create_flow_action_esp)(
2498 struct ib_device *device,
2499 const struct ib_flow_action_attrs_esp *attr,
2500 struct uverbs_attr_bundle *attrs);
2501 int (*destroy_flow_action)(struct ib_flow_action *action);
2502 int (*modify_flow_action_esp)(
2503 struct ib_flow_action *action,
2504 const struct ib_flow_action_attrs_esp *attr,
2505 struct uverbs_attr_bundle *attrs);
2506 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2507 int state);
2508 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2509 struct ifla_vf_info *ivf);
2510 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2511 struct ifla_vf_stats *stats);
2512 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2513 int type);
2514 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2515 struct ib_wq_init_attr *init_attr,
2516 struct ib_udata *udata);
c4367a26 2517 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2518 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2519 u32 wq_attr_mask, struct ib_udata *udata);
2520 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2521 struct ib_device *device,
2522 struct ib_rwq_ind_table_init_attr *init_attr,
2523 struct ib_udata *udata);
2524 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2525 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2526 struct ib_ucontext *context,
2527 struct ib_dm_alloc_attr *attr,
2528 struct uverbs_attr_bundle *attrs);
c4367a26 2529 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2530 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2531 struct ib_dm_mr_attr *attr,
2532 struct uverbs_attr_bundle *attrs);
2533 struct ib_counters *(*create_counters)(
2534 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2535 int (*destroy_counters)(struct ib_counters *counters);
2536 int (*read_counters)(struct ib_counters *counters,
2537 struct ib_counters_read_attr *counters_read_attr,
2538 struct uverbs_attr_bundle *attrs);
2539 /**
2540 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2541 * driver initialized data. The struct is kfree()'ed by the sysfs
2542 * core when the device is removed. A lifespan of -1 in the return
2543 * struct tells the core to set a default lifespan.
2544 */
2545 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2546 u8 port_num);
2547 /**
2548 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2549 * @index - The index in the value array we wish to have updated, or
2550 * num_counters if we want all stats updated
2551 * Return codes -
2552 * < 0 - Error, no counters updated
2553 * index - Updated the single counter pointed to by index
2554 * num_counters - Updated all counters (will reset the timestamp
2555 * and prevent further calls for lifespan milliseconds)
2556 * Drivers are allowed to update all counters in leiu of just the
2557 * one given in index at their option
2558 */
2559 int (*get_hw_stats)(struct ib_device *device,
2560 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2561 /*
2562 * This function is called once for each port when a ib device is
2563 * registered.
2564 */
2565 int (*init_port)(struct ib_device *device, u8 port_num,
2566 struct kobject *port_sysfs);
02da3750
LR
2567 /**
2568 * Allows rdma drivers to add their own restrack attributes.
2569 */
2570 int (*fill_res_entry)(struct sk_buff *msg,
2571 struct rdma_restrack_entry *entry);
21a428a0 2572
d0899892 2573 /* Device lifecycle callbacks */
ca22354b
JG
2574 /*
2575 * Called after the device becomes registered, before clients are
2576 * attached
2577 */
2578 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2579 /*
2580 * This is called as part of ib_dealloc_device().
2581 */
2582 void (*dealloc_driver)(struct ib_device *dev);
2583
dd05cb82
KH
2584 /* iWarp CM callbacks */
2585 void (*iw_add_ref)(struct ib_qp *qp);
2586 void (*iw_rem_ref)(struct ib_qp *qp);
2587 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2588 int (*iw_connect)(struct iw_cm_id *cm_id,
2589 struct iw_cm_conn_param *conn_param);
2590 int (*iw_accept)(struct iw_cm_id *cm_id,
2591 struct iw_cm_conn_param *conn_param);
2592 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2593 u8 pdata_len);
2594 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2595 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2596
d3456914 2597 DECLARE_RDMA_OBJ_SIZE(ib_ah);
21a428a0 2598 DECLARE_RDMA_OBJ_SIZE(ib_pd);
68e326de 2599 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2600 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
521ed0d9
KH
2601};
2602
cebe556b
PP
2603struct ib_core_device {
2604 /* device must be the first element in structure until,
2605 * union of ib_core_device and device exists in ib_device.
2606 */
2607 struct device dev;
4e0f7b90 2608 possible_net_t rdma_net;
cebe556b
PP
2609 struct kobject *ports_kobj;
2610 struct list_head port_list;
2611 struct ib_device *owner; /* reach back to owner ib_device */
2612};
41eda65c 2613
cebe556b 2614struct rdma_restrack_root;
1da177e4 2615struct ib_device {
0957c29f
BVA
2616 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2617 struct device *dma_device;
3023a1e9 2618 struct ib_device_ops ops;
1da177e4 2619 char name[IB_DEVICE_NAME_MAX];
324e227e 2620 struct rcu_head rcu_head;
1da177e4
LT
2621
2622 struct list_head event_handler_list;
2623 spinlock_t event_handler_lock;
2624
921eab11 2625 struct rw_semaphore client_data_rwsem;
0df91bb6 2626 struct xarray client_data;
d0899892 2627 struct mutex unregistration_lock;
1da177e4
LT
2628
2629 struct ib_cache cache;
7738613e 2630 /**
8ceb1357 2631 * port_data is indexed by port number
7738613e 2632 */
8ceb1357 2633 struct ib_port_data *port_data;
1da177e4 2634
f4fd0b22
MT
2635 int num_comp_vectors;
2636
e2773c06 2637 struct module *owner;
cebe556b
PP
2638 union {
2639 struct device dev;
2640 struct ib_core_device coredev;
2641 };
2642
d4122f5a
PP
2643 /* First group for device attributes,
2644 * Second group for driver provided attributes (optional).
2645 * It is NULL terminated array.
2646 */
2647 const struct attribute_group *groups[3];
adee9f3f 2648
274c0891 2649 int uverbs_abi_ver;
17a55f79 2650 u64 uverbs_cmd_mask;
f21519b2 2651 u64 uverbs_ex_cmd_mask;
274c0891 2652
bd99fdea 2653 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2654 __be64 node_guid;
96f15c03 2655 u32 local_dma_lkey;
4139032b 2656 u16 is_switch:1;
6780c4fa
GP
2657 /* Indicates kernel verbs support, should not be used in drivers */
2658 u16 kverbs_provider:1;
1da177e4
LT
2659 u8 node_type;
2660 u8 phys_port_cnt;
3e153a93 2661 struct ib_device_attr attrs;
b40f4757
CL
2662 struct attribute_group *hw_stats_ag;
2663 struct rdma_hw_stats *hw_stats;
7738613e 2664
43579b5f
PP
2665#ifdef CONFIG_CGROUP_RDMA
2666 struct rdmacg_device cg_device;
2667#endif
2668
ecc82c53 2669 u32 index;
41eda65c 2670 struct rdma_restrack_root *res;
ecc82c53 2671
0cbf432d 2672 const struct uapi_definition *driver_def;
0ede73bc 2673 enum rdma_driver_id driver_id;
d79af724 2674
01b67117 2675 /*
d79af724
JG
2676 * Positive refcount indicates that the device is currently
2677 * registered and cannot be unregistered.
01b67117
PP
2678 */
2679 refcount_t refcount;
2680 struct completion unreg_completion;
d0899892 2681 struct work_struct unregistration_work;
3856ec4b
SW
2682
2683 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2684
2685 /* Protects compat_devs xarray modifications */
2686 struct mutex compat_devs_mutex;
2687 /* Maintains compat devices for each net namespace */
2688 struct xarray compat_devs;
dd05cb82
KH
2689
2690 /* Used by iWarp CM */
2691 char iw_ifname[IFNAMSIZ];
2692 u32 iw_driver_flags;
1da177e4
LT
2693};
2694
2695struct ib_client {
e59178d8 2696 const char *name;
1da177e4 2697 void (*add) (struct ib_device *);
7c1eb45a 2698 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2699
9268f72d
YK
2700 /* Returns the net_dev belonging to this ib_client and matching the
2701 * given parameters.
2702 * @dev: An RDMA device that the net_dev use for communication.
2703 * @port: A physical port number on the RDMA device.
2704 * @pkey: P_Key that the net_dev uses if applicable.
2705 * @gid: A GID that the net_dev uses to communicate.
2706 * @addr: An IP address the net_dev is configured with.
2707 * @client_data: The device's client data set by ib_set_client_data().
2708 *
2709 * An ib_client that implements a net_dev on top of RDMA devices
2710 * (such as IP over IB) should implement this callback, allowing the
2711 * rdma_cm module to find the right net_dev for a given request.
2712 *
2713 * The caller is responsible for calling dev_put on the returned
2714 * netdev. */
2715 struct net_device *(*get_net_dev_by_params)(
2716 struct ib_device *dev,
2717 u8 port,
2718 u16 pkey,
2719 const union ib_gid *gid,
2720 const struct sockaddr *addr,
2721 void *client_data);
1da177e4 2722 struct list_head list;
e59178d8 2723 u32 client_id;
6780c4fa
GP
2724
2725 /* kverbs are not required by the client */
2726 u8 no_kverbs_req:1;
1da177e4
LT
2727};
2728
459cc69f
LR
2729struct ib_device *_ib_alloc_device(size_t size);
2730#define ib_alloc_device(drv_struct, member) \
2731 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2732 BUILD_BUG_ON_ZERO(offsetof( \
2733 struct drv_struct, member))), \
2734 struct drv_struct, member)
2735
1da177e4
LT
2736void ib_dealloc_device(struct ib_device *device);
2737
9abb0d1b 2738void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2739
ea4baf7f 2740int ib_register_device(struct ib_device *device, const char *name);
1da177e4 2741void ib_unregister_device(struct ib_device *device);
d0899892
JG
2742void ib_unregister_driver(enum rdma_driver_id driver_id);
2743void ib_unregister_device_and_put(struct ib_device *device);
2744void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2745
2746int ib_register_client (struct ib_client *client);
2747void ib_unregister_client(struct ib_client *client);
2748
0df91bb6
JG
2749/**
2750 * ib_get_client_data - Get IB client context
2751 * @device:Device to get context for
2752 * @client:Client to get context for
2753 *
2754 * ib_get_client_data() returns the client context data set with
2755 * ib_set_client_data(). This can only be called while the client is
2756 * registered to the device, once the ib_client remove() callback returns this
2757 * cannot be called.
2758 */
2759static inline void *ib_get_client_data(struct ib_device *device,
2760 struct ib_client *client)
2761{
2762 return xa_load(&device->client_data, client->client_id);
2763}
1da177e4
LT
2764void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2765 void *data);
521ed0d9
KH
2766void ib_set_device_ops(struct ib_device *device,
2767 const struct ib_device_ops *ops);
1da177e4 2768
5f9794dc
JG
2769#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2770int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2771 unsigned long pfn, unsigned long size, pgprot_t prot);
5f9794dc
JG
2772#else
2773static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2774 struct vm_area_struct *vma,
2775 unsigned long pfn, unsigned long size,
2776 pgprot_t prot)
2777{
2778 return -EINVAL;
2779}
5f9794dc
JG
2780#endif
2781
e2773c06
RD
2782static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2783{
2784 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2785}
2786
2787static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2788{
43c61165 2789 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2790}
2791
c66db311
MB
2792static inline bool ib_is_buffer_cleared(const void __user *p,
2793 size_t len)
301a721e 2794{
92d27ae6 2795 bool ret;
301a721e
MB
2796 u8 *buf;
2797
2798 if (len > USHRT_MAX)
2799 return false;
2800
92d27ae6
ME
2801 buf = memdup_user(p, len);
2802 if (IS_ERR(buf))
301a721e
MB
2803 return false;
2804
301a721e 2805 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2806 kfree(buf);
2807 return ret;
2808}
2809
c66db311
MB
2810static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2811 size_t offset,
2812 size_t len)
2813{
2814 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2815}
2816
1c77483e
YH
2817/**
2818 * ib_is_destroy_retryable - Check whether the uobject destruction
2819 * is retryable.
2820 * @ret: The initial destruction return code
2821 * @why: remove reason
2822 * @uobj: The uobject that is destroyed
2823 *
2824 * This function is a helper function that IB layer and low-level drivers
2825 * can use to consider whether the destruction of the given uobject is
2826 * retry-able.
2827 * It checks the original return code, if it wasn't success the destruction
2828 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2829 * the remove reason. (i.e. why).
2830 * Must be called with the object locked for destroy.
2831 */
2832static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2833 struct ib_uobject *uobj)
2834{
2835 return ret && (why == RDMA_REMOVE_DESTROY ||
2836 uobj->context->cleanup_retryable);
2837}
2838
2839/**
2840 * ib_destroy_usecnt - Called during destruction to check the usecnt
2841 * @usecnt: The usecnt atomic
2842 * @why: remove reason
2843 * @uobj: The uobject that is destroyed
2844 *
2845 * Non-zero usecnts will block destruction unless destruction was triggered by
2846 * a ucontext cleanup.
2847 */
2848static inline int ib_destroy_usecnt(atomic_t *usecnt,
2849 enum rdma_remove_reason why,
2850 struct ib_uobject *uobj)
2851{
2852 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2853 return -EBUSY;
2854 return 0;
2855}
2856
8a51866f
RD
2857/**
2858 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2859 * contains all required attributes and no attributes not allowed for
2860 * the given QP state transition.
2861 * @cur_state: Current QP state
2862 * @next_state: Next QP state
2863 * @type: QP type
2864 * @mask: Mask of supplied QP attributes
2865 *
2866 * This function is a helper function that a low-level driver's
2867 * modify_qp method can use to validate the consumer's input. It
2868 * checks that cur_state and next_state are valid QP states, that a
2869 * transition from cur_state to next_state is allowed by the IB spec,
2870 * and that the attribute mask supplied is allowed for the transition.
2871 */
19b1f540 2872bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2873 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2874
dcc9881e
LR
2875void ib_register_event_handler(struct ib_event_handler *event_handler);
2876void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2877void ib_dispatch_event(struct ib_event *event);
2878
1da177e4
LT
2879int ib_query_port(struct ib_device *device,
2880 u8 port_num, struct ib_port_attr *port_attr);
2881
a3f5adaf
EC
2882enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2883 u8 port_num);
2884
4139032b
HR
2885/**
2886 * rdma_cap_ib_switch - Check if the device is IB switch
2887 * @device: Device to check
2888 *
2889 * Device driver is responsible for setting is_switch bit on
2890 * in ib_device structure at init time.
2891 *
2892 * Return: true if the device is IB switch.
2893 */
2894static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2895{
2896 return device->is_switch;
2897}
2898
0cf18d77
IW
2899/**
2900 * rdma_start_port - Return the first valid port number for the device
2901 * specified
2902 *
2903 * @device: Device to be checked
2904 *
2905 * Return start port number
2906 */
2907static inline u8 rdma_start_port(const struct ib_device *device)
2908{
4139032b 2909 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2910}
2911
ea1075ed
JG
2912/**
2913 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2914 * @device - The struct ib_device * to iterate over
2915 * @iter - The unsigned int to store the port number
2916 */
2917#define rdma_for_each_port(device, iter) \
2918 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
2919 unsigned int, iter))); \
2920 iter <= rdma_end_port(device); (iter)++)
2921
0cf18d77
IW
2922/**
2923 * rdma_end_port - Return the last valid port number for the device
2924 * specified
2925 *
2926 * @device: Device to be checked
2927 *
2928 * Return last port number
2929 */
2930static inline u8 rdma_end_port(const struct ib_device *device)
2931{
4139032b 2932 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2933}
2934
24dc831b
YS
2935static inline int rdma_is_port_valid(const struct ib_device *device,
2936 unsigned int port)
2937{
2938 return (port >= rdma_start_port(device) &&
2939 port <= rdma_end_port(device));
2940}
2941
b02289b3
AK
2942static inline bool rdma_is_grh_required(const struct ib_device *device,
2943 u8 port_num)
2944{
8ceb1357
JG
2945 return device->port_data[port_num].immutable.core_cap_flags &
2946 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
2947}
2948
5ede9289 2949static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2950{
8ceb1357
JG
2951 return device->port_data[port_num].immutable.core_cap_flags &
2952 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2953}
2954
5ede9289 2955static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f 2956{
8ceb1357
JG
2957 return device->port_data[port_num].immutable.core_cap_flags &
2958 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
2959}
2960
2961static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2962{
8ceb1357
JG
2963 return device->port_data[port_num].immutable.core_cap_flags &
2964 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
2965}
2966
2967static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2968{
8ceb1357
JG
2969 return device->port_data[port_num].immutable.core_cap_flags &
2970 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2971}
2972
5ede9289 2973static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2974{
8ceb1357
JG
2975 return device->port_data[port_num].immutable.core_cap_flags &
2976 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2977}
2978
5ede9289 2979static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2980{
7766a99f
MB
2981 return rdma_protocol_ib(device, port_num) ||
2982 rdma_protocol_roce(device, port_num);
de66be94
MW
2983}
2984
aa773bd4
OG
2985static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2986{
8ceb1357
JG
2987 return device->port_data[port_num].immutable.core_cap_flags &
2988 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
2989}
2990
ce1e055f
OG
2991static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2992{
8ceb1357
JG
2993 return device->port_data[port_num].immutable.core_cap_flags &
2994 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
2995}
2996
c757dea8 2997/**
296ec009 2998 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2999 * Management Datagrams.
296ec009
MW
3000 * @device: Device to check
3001 * @port_num: Port number to check
c757dea8 3002 *
296ec009
MW
3003 * Management Datagrams (MAD) are a required part of the InfiniBand
3004 * specification and are supported on all InfiniBand devices. A slightly
3005 * extended version are also supported on OPA interfaces.
c757dea8 3006 *
296ec009 3007 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3008 */
5ede9289 3009static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 3010{
8ceb1357
JG
3011 return device->port_data[port_num].immutable.core_cap_flags &
3012 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3013}
3014
65995fee
IW
3015/**
3016 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3017 * Management Datagrams.
3018 * @device: Device to check
3019 * @port_num: Port number to check
3020 *
3021 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3022 * datagrams with their own versions. These OPA MADs share many but not all of
3023 * the characteristics of InfiniBand MADs.
3024 *
3025 * OPA MADs differ in the following ways:
3026 *
3027 * 1) MADs are variable size up to 2K
3028 * IBTA defined MADs remain fixed at 256 bytes
3029 * 2) OPA SMPs must carry valid PKeys
3030 * 3) OPA SMP packets are a different format
3031 *
3032 * Return: true if the port supports OPA MAD packet formats.
3033 */
3034static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3035{
d3243da8
LR
3036 return device->port_data[port_num].immutable.core_cap_flags &
3037 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3038}
3039
29541e3a 3040/**
296ec009
MW
3041 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3042 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3043 * @device: Device to check
3044 * @port_num: Port number to check
29541e3a 3045 *
296ec009
MW
3046 * Each InfiniBand node is required to provide a Subnet Management Agent
3047 * that the subnet manager can access. Prior to the fabric being fully
3048 * configured by the subnet manager, the SMA is accessed via a well known
3049 * interface called the Subnet Management Interface (SMI). This interface
3050 * uses directed route packets to communicate with the SM to get around the
3051 * chicken and egg problem of the SM needing to know what's on the fabric
3052 * in order to configure the fabric, and needing to configure the fabric in
3053 * order to send packets to the devices on the fabric. These directed
3054 * route packets do not need the fabric fully configured in order to reach
3055 * their destination. The SMI is the only method allowed to send
3056 * directed route packets on an InfiniBand fabric.
29541e3a 3057 *
296ec009 3058 * Return: true if the port provides an SMI.
29541e3a 3059 */
5ede9289 3060static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 3061{
8ceb1357
JG
3062 return device->port_data[port_num].immutable.core_cap_flags &
3063 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3064}
3065
72219cea
MW
3066/**
3067 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3068 * Communication Manager.
296ec009
MW
3069 * @device: Device to check
3070 * @port_num: Port number to check
72219cea 3071 *
296ec009
MW
3072 * The InfiniBand Communication Manager is one of many pre-defined General
3073 * Service Agents (GSA) that are accessed via the General Service
3074 * Interface (GSI). It's role is to facilitate establishment of connections
3075 * between nodes as well as other management related tasks for established
3076 * connections.
72219cea 3077 *
296ec009
MW
3078 * Return: true if the port supports an IB CM (this does not guarantee that
3079 * a CM is actually running however).
72219cea 3080 */
5ede9289 3081static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 3082{
8ceb1357
JG
3083 return device->port_data[port_num].immutable.core_cap_flags &
3084 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3085}
3086
04215330
MW
3087/**
3088 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3089 * Communication Manager.
296ec009
MW
3090 * @device: Device to check
3091 * @port_num: Port number to check
04215330 3092 *
296ec009
MW
3093 * Similar to above, but specific to iWARP connections which have a different
3094 * managment protocol than InfiniBand.
04215330 3095 *
296ec009
MW
3096 * Return: true if the port supports an iWARP CM (this does not guarantee that
3097 * a CM is actually running however).
04215330 3098 */
5ede9289 3099static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 3100{
8ceb1357
JG
3101 return device->port_data[port_num].immutable.core_cap_flags &
3102 RDMA_CORE_CAP_IW_CM;
04215330
MW
3103}
3104
fe53ba2f
MW
3105/**
3106 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3107 * Subnet Administration.
296ec009
MW
3108 * @device: Device to check
3109 * @port_num: Port number to check
fe53ba2f 3110 *
296ec009
MW
3111 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3112 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3113 * fabrics, devices should resolve routes to other hosts by contacting the
3114 * SA to query the proper route.
fe53ba2f 3115 *
296ec009
MW
3116 * Return: true if the port should act as a client to the fabric Subnet
3117 * Administration interface. This does not imply that the SA service is
3118 * running locally.
fe53ba2f 3119 */
5ede9289 3120static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3121{
8ceb1357
JG
3122 return device->port_data[port_num].immutable.core_cap_flags &
3123 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3124}
3125
a31ad3b0
MW
3126/**
3127 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3128 * Multicast.
296ec009
MW
3129 * @device: Device to check
3130 * @port_num: Port number to check
a31ad3b0 3131 *
296ec009
MW
3132 * InfiniBand multicast registration is more complex than normal IPv4 or
3133 * IPv6 multicast registration. Each Host Channel Adapter must register
3134 * with the Subnet Manager when it wishes to join a multicast group. It
3135 * should do so only once regardless of how many queue pairs it subscribes
3136 * to this group. And it should leave the group only after all queue pairs
3137 * attached to the group have been detached.
a31ad3b0 3138 *
296ec009
MW
3139 * Return: true if the port must undertake the additional adminstrative
3140 * overhead of registering/unregistering with the SM and tracking of the
3141 * total number of queue pairs attached to the multicast group.
a31ad3b0 3142 */
5ede9289 3143static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3144{
3145 return rdma_cap_ib_sa(device, port_num);
3146}
3147
30a74ef4
MW
3148/**
3149 * rdma_cap_af_ib - Check if the port of device has the capability
3150 * Native Infiniband Address.
296ec009
MW
3151 * @device: Device to check
3152 * @port_num: Port number to check
30a74ef4 3153 *
296ec009
MW
3154 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3155 * GID. RoCE uses a different mechanism, but still generates a GID via
3156 * a prescribed mechanism and port specific data.
30a74ef4 3157 *
296ec009
MW
3158 * Return: true if the port uses a GID address to identify devices on the
3159 * network.
30a74ef4 3160 */
5ede9289 3161static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3162{
8ceb1357
JG
3163 return device->port_data[port_num].immutable.core_cap_flags &
3164 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3165}
3166
227128fc
MW
3167/**
3168 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3169 * Ethernet Address Handle.
3170 * @device: Device to check
3171 * @port_num: Port number to check
227128fc 3172 *
296ec009
MW
3173 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3174 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3175 * port. Normally, packet headers are generated by the sending host
3176 * adapter, but when sending connectionless datagrams, we must manually
3177 * inject the proper headers for the fabric we are communicating over.
227128fc 3178 *
296ec009
MW
3179 * Return: true if we are running as a RoCE port and must force the
3180 * addition of a Global Route Header built from our Ethernet Address
3181 * Handle into our header list for connectionless packets.
227128fc 3182 */
5ede9289 3183static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3184{
8ceb1357
JG
3185 return device->port_data[port_num].immutable.core_cap_flags &
3186 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3187}
3188
94d595c5
DC
3189/**
3190 * rdma_cap_opa_ah - Check if the port of device supports
3191 * OPA Address handles
3192 * @device: Device to check
3193 * @port_num: Port number to check
3194 *
3195 * Return: true if we are running on an OPA device which supports
3196 * the extended OPA addressing.
3197 */
3198static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3199{
8ceb1357 3200 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3201 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3202}
3203
337877a4
IW
3204/**
3205 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3206 *
3207 * @device: Device
3208 * @port_num: Port number
3209 *
3210 * This MAD size includes the MAD headers and MAD payload. No other headers
3211 * are included.
3212 *
3213 * Return the max MAD size required by the Port. Will return 0 if the port
3214 * does not support MADs
3215 */
3216static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3217{
8ceb1357 3218 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3219}
3220
03db3a2d
MB
3221/**
3222 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3223 * @device: Device to check
3224 * @port_num: Port number to check
3225 *
3226 * RoCE GID table mechanism manages the various GIDs for a device.
3227 *
3228 * NOTE: if allocating the port's GID table has failed, this call will still
3229 * return true, but any RoCE GID table API will fail.
3230 *
3231 * Return: true if the port uses RoCE GID table mechanism in order to manage
3232 * its GIDs.
3233 */
3234static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3235 u8 port_num)
3236{
3237 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3238 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3239}
3240
002516ed
CH
3241/*
3242 * Check if the device supports READ W/ INVALIDATE.
3243 */
3244static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3245{
3246 /*
3247 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3248 * has support for it yet.
3249 */
3250 return rdma_protocol_iwarp(dev, port_num);
3251}
3252
50174a7f
EC
3253int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3254 int state);
3255int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3256 struct ifla_vf_info *info);
3257int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3258 struct ifla_vf_stats *stats);
3259int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3260 int type);
3261
1da177e4
LT
3262int ib_query_pkey(struct ib_device *device,
3263 u8 port_num, u16 index, u16 *pkey);
3264
3265int ib_modify_device(struct ib_device *device,
3266 int device_modify_mask,
3267 struct ib_device_modify *device_modify);
3268
3269int ib_modify_port(struct ib_device *device,
3270 u8 port_num, int port_modify_mask,
3271 struct ib_port_modify *port_modify);
3272
5eb620c8 3273int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3274 u8 *port_num, u16 *index);
5eb620c8
YE
3275
3276int ib_find_pkey(struct ib_device *device,
3277 u8 port_num, u16 pkey, u16 *index);
3278
ed082d36
CH
3279enum ib_pd_flags {
3280 /*
3281 * Create a memory registration for all memory in the system and place
3282 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3283 * ULPs to avoid the overhead of dynamic MRs.
3284 *
3285 * This flag is generally considered unsafe and must only be used in
3286 * extremly trusted environments. Every use of it will log a warning
3287 * in the kernel log.
3288 */
3289 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3290};
1da177e4 3291
ed082d36
CH
3292struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3293 const char *caller);
c4367a26 3294
ed082d36 3295#define ib_alloc_pd(device, flags) \
e4496447 3296 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26
SR
3297
3298/**
3299 * ib_dealloc_pd_user - Deallocate kernel/user PD
3300 * @pd: The protection domain
3301 * @udata: Valid user data or NULL for kernel objects
3302 */
3303void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3304
3305/**
3306 * ib_dealloc_pd - Deallocate kernel PD
3307 * @pd: The protection domain
3308 *
3309 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3310 */
3311static inline void ib_dealloc_pd(struct ib_pd *pd)
3312{
3313 ib_dealloc_pd_user(pd, NULL);
3314}
1da177e4 3315
b090c4e3
GP
3316enum rdma_create_ah_flags {
3317 /* In a sleepable context */
3318 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3319};
3320
1da177e4 3321/**
0a18cfe4 3322 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3323 * @pd: The protection domain associated with the address handle.
3324 * @ah_attr: The attributes of the address vector.
b090c4e3 3325 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3326 *
3327 * The address handle is used to reference a local or global destination
3328 * in all UD QP post sends.
3329 */
b090c4e3
GP
3330struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3331 u32 flags);
1da177e4 3332
5cda6587
PP
3333/**
3334 * rdma_create_user_ah - Creates an address handle for the given address vector.
3335 * It resolves destination mac address for ah attribute of RoCE type.
3336 * @pd: The protection domain associated with the address handle.
3337 * @ah_attr: The attributes of the address vector.
3338 * @udata: pointer to user's input output buffer information need by
3339 * provider driver.
3340 *
3341 * It returns 0 on success and returns appropriate error code on error.
3342 * The address handle is used to reference a local or global destination
3343 * in all UD QP post sends.
3344 */
3345struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3346 struct rdma_ah_attr *ah_attr,
3347 struct ib_udata *udata);
850d8fd7
MS
3348/**
3349 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3350 * work completion.
3351 * @hdr: the L3 header to parse
3352 * @net_type: type of header to parse
3353 * @sgid: place to store source gid
3354 * @dgid: place to store destination gid
3355 */
3356int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3357 enum rdma_network_type net_type,
3358 union ib_gid *sgid, union ib_gid *dgid);
3359
3360/**
3361 * ib_get_rdma_header_version - Get the header version
3362 * @hdr: the L3 header to parse
3363 */
3364int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3365
4e00d694 3366/**
f6bdb142 3367 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3368 * work completion.
3369 * @device: Device on which the received message arrived.
3370 * @port_num: Port on which the received message arrived.
3371 * @wc: Work completion associated with the received message.
3372 * @grh: References the received global route header. This parameter is
3373 * ignored unless the work completion indicates that the GRH is valid.
3374 * @ah_attr: Returned attributes that can be used when creating an address
3375 * handle for replying to the message.
b7403217
PP
3376 * When ib_init_ah_attr_from_wc() returns success,
3377 * (a) for IB link layer it optionally contains a reference to SGID attribute
3378 * when GRH is present for IB link layer.
3379 * (b) for RoCE link layer it contains a reference to SGID attribute.
3380 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3381 * attributes which are initialized using ib_init_ah_attr_from_wc().
3382 *
4e00d694 3383 */
f6bdb142
PP
3384int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3385 const struct ib_wc *wc, const struct ib_grh *grh,
3386 struct rdma_ah_attr *ah_attr);
4e00d694 3387
513789ed
HR
3388/**
3389 * ib_create_ah_from_wc - Creates an address handle associated with the
3390 * sender of the specified work completion.
3391 * @pd: The protection domain associated with the address handle.
3392 * @wc: Work completion information associated with a received message.
3393 * @grh: References the received global route header. This parameter is
3394 * ignored unless the work completion indicates that the GRH is valid.
3395 * @port_num: The outbound port number to associate with the address.
3396 *
3397 * The address handle is used to reference a local or global destination
3398 * in all UD QP post sends.
3399 */
73cdaaee
IW
3400struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3401 const struct ib_grh *grh, u8 port_num);
513789ed 3402
1da177e4 3403/**
67b985b6 3404 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3405 * handle.
3406 * @ah: The address handle to modify.
3407 * @ah_attr: The new address vector attributes to associate with the
3408 * address handle.
3409 */
67b985b6 3410int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3411
3412/**
bfbfd661 3413 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3414 * handle.
3415 * @ah: The address handle to query.
3416 * @ah_attr: The address vector attributes associated with the address
3417 * handle.
3418 */
bfbfd661 3419int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3420
2553ba21
GP
3421enum rdma_destroy_ah_flags {
3422 /* In a sleepable context */
3423 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3424};
3425
1da177e4 3426/**
c4367a26 3427 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3428 * @ah: The address handle to destroy.
2553ba21 3429 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3430 * @udata: Valid user data or NULL for kernel objects
1da177e4 3431 */
c4367a26
SR
3432int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3433
3434/**
3435 * rdma_destroy_ah - Destroys an kernel address handle.
3436 * @ah: The address handle to destroy.
3437 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3438 *
3439 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3440 */
3441static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3442{
3443 return rdma_destroy_ah_user(ah, flags, NULL);
3444}
1da177e4 3445
d41fcc67
RD
3446/**
3447 * ib_create_srq - Creates a SRQ associated with the specified protection
3448 * domain.
3449 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3450 * @srq_init_attr: A list of initial attributes required to create the
3451 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3452 * the actual capabilities of the created SRQ.
d41fcc67
RD
3453 *
3454 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3455 * requested size of the SRQ, and set to the actual values allocated
3456 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3457 * will always be at least as large as the requested values.
3458 */
3459struct ib_srq *ib_create_srq(struct ib_pd *pd,
3460 struct ib_srq_init_attr *srq_init_attr);
3461
3462/**
3463 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3464 * @srq: The SRQ to modify.
3465 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3466 * the current values of selected SRQ attributes are returned.
3467 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3468 * are being modified.
3469 *
3470 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3471 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3472 * the number of receives queued drops below the limit.
3473 */
3474int ib_modify_srq(struct ib_srq *srq,
3475 struct ib_srq_attr *srq_attr,
3476 enum ib_srq_attr_mask srq_attr_mask);
3477
3478/**
3479 * ib_query_srq - Returns the attribute list and current values for the
3480 * specified SRQ.
3481 * @srq: The SRQ to query.
3482 * @srq_attr: The attributes of the specified SRQ.
3483 */
3484int ib_query_srq(struct ib_srq *srq,
3485 struct ib_srq_attr *srq_attr);
3486
3487/**
c4367a26
SR
3488 * ib_destroy_srq_user - Destroys the specified SRQ.
3489 * @srq: The SRQ to destroy.
3490 * @udata: Valid user data or NULL for kernel objects
3491 */
3492int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3493
3494/**
3495 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3496 * @srq: The SRQ to destroy.
c4367a26
SR
3497 *
3498 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3499 */
c4367a26
SR
3500static inline int ib_destroy_srq(struct ib_srq *srq)
3501{
3502 return ib_destroy_srq_user(srq, NULL);
3503}
d41fcc67
RD
3504
3505/**
3506 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3507 * @srq: The SRQ to post the work request on.
3508 * @recv_wr: A list of work requests to post on the receive queue.
3509 * @bad_recv_wr: On an immediate failure, this parameter will reference
3510 * the work request that failed to be posted on the QP.
3511 */
3512static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3513 const struct ib_recv_wr *recv_wr,
3514 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3515{
d34ac5cd 3516 const struct ib_recv_wr *dummy;
bb039a87 3517
3023a1e9
KH
3518 return srq->device->ops.post_srq_recv(srq, recv_wr,
3519 bad_recv_wr ? : &dummy);
d41fcc67
RD
3520}
3521
1da177e4 3522/**
c4367a26 3523 * ib_create_qp_user - Creates a QP associated with the specified protection
1da177e4
LT
3524 * domain.
3525 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3526 * @qp_init_attr: A list of initial attributes required to create the
3527 * QP. If QP creation succeeds, then the attributes are updated to
3528 * the actual capabilities of the created QP.
c4367a26 3529 * @udata: Valid user data or NULL for kernel objects
1da177e4 3530 */
c4367a26
SR
3531struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3532 struct ib_qp_init_attr *qp_init_attr,
3533 struct ib_udata *udata);
3534
3535/**
3536 * ib_create_qp - Creates a kernel QP associated with the specified protection
3537 * domain.
3538 * @pd: The protection domain associated with the QP.
3539 * @qp_init_attr: A list of initial attributes required to create the
3540 * QP. If QP creation succeeds, then the attributes are updated to
3541 * the actual capabilities of the created QP.
3542 * @udata: Valid user data or NULL for kernel objects
3543 *
3544 * NOTE: for user qp use ib_create_qp_user with valid udata!
3545 */
3546static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3547 struct ib_qp_init_attr *qp_init_attr)
3548{
3549 return ib_create_qp_user(pd, qp_init_attr, NULL);
3550}
1da177e4 3551
a512c2fb
PP
3552/**
3553 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3554 * @qp: The QP to modify.
3555 * @attr: On input, specifies the QP attributes to modify. On output,
3556 * the current values of selected QP attributes are returned.
3557 * @attr_mask: A bit-mask used to specify which attributes of the QP
3558 * are being modified.
3559 * @udata: pointer to user's input output buffer information
3560 * are being modified.
3561 * It returns 0 on success and returns appropriate error code on error.
3562 */
3563int ib_modify_qp_with_udata(struct ib_qp *qp,
3564 struct ib_qp_attr *attr,
3565 int attr_mask,
3566 struct ib_udata *udata);
3567
1da177e4
LT
3568/**
3569 * ib_modify_qp - Modifies the attributes for the specified QP and then
3570 * transitions the QP to the given state.
3571 * @qp: The QP to modify.
3572 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3573 * the current values of selected QP attributes are returned.
3574 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3575 * are being modified.
3576 */
3577int ib_modify_qp(struct ib_qp *qp,
3578 struct ib_qp_attr *qp_attr,
3579 int qp_attr_mask);
3580
3581/**
3582 * ib_query_qp - Returns the attribute list and current values for the
3583 * specified QP.
3584 * @qp: The QP to query.
3585 * @qp_attr: The attributes of the specified QP.
3586 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3587 * @qp_init_attr: Additional attributes of the selected QP.
3588 *
3589 * The qp_attr_mask may be used to limit the query to gathering only the
3590 * selected attributes.
3591 */
3592int ib_query_qp(struct ib_qp *qp,
3593 struct ib_qp_attr *qp_attr,
3594 int qp_attr_mask,
3595 struct ib_qp_init_attr *qp_init_attr);
3596
3597/**
3598 * ib_destroy_qp - Destroys the specified QP.
3599 * @qp: The QP to destroy.
c4367a26 3600 * @udata: Valid udata or NULL for kernel objects
1da177e4 3601 */
c4367a26
SR
3602int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3603
3604/**
3605 * ib_destroy_qp - Destroys the specified kernel QP.
3606 * @qp: The QP to destroy.
3607 *
3608 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3609 */
3610static inline int ib_destroy_qp(struct ib_qp *qp)
3611{
3612 return ib_destroy_qp_user(qp, NULL);
3613}
1da177e4 3614
d3d72d90 3615/**
0e0ec7e0
SH
3616 * ib_open_qp - Obtain a reference to an existing sharable QP.
3617 * @xrcd - XRC domain
3618 * @qp_open_attr: Attributes identifying the QP to open.
3619 *
3620 * Returns a reference to a sharable QP.
3621 */
3622struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3623 struct ib_qp_open_attr *qp_open_attr);
3624
3625/**
3626 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3627 * @qp: The QP handle to release
3628 *
0e0ec7e0
SH
3629 * The opened QP handle is released by the caller. The underlying
3630 * shared QP is not destroyed until all internal references are released.
d3d72d90 3631 */
0e0ec7e0 3632int ib_close_qp(struct ib_qp *qp);
d3d72d90 3633
1da177e4
LT
3634/**
3635 * ib_post_send - Posts a list of work requests to the send queue of
3636 * the specified QP.
3637 * @qp: The QP to post the work request on.
3638 * @send_wr: A list of work requests to post on the send queue.
3639 * @bad_send_wr: On an immediate failure, this parameter will reference
3640 * the work request that failed to be posted on the QP.
55464d46
BVA
3641 *
3642 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3643 * error is returned, the QP state shall not be affected,
3644 * ib_post_send() will return an immediate error after queueing any
3645 * earlier work requests in the list.
1da177e4
LT
3646 */
3647static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3648 const struct ib_send_wr *send_wr,
3649 const struct ib_send_wr **bad_send_wr)
1da177e4 3650{
d34ac5cd 3651 const struct ib_send_wr *dummy;
bb039a87 3652
3023a1e9 3653 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3654}
3655
3656/**
3657 * ib_post_recv - Posts a list of work requests to the receive queue of
3658 * the specified QP.
3659 * @qp: The QP to post the work request on.
3660 * @recv_wr: A list of work requests to post on the receive queue.
3661 * @bad_recv_wr: On an immediate failure, this parameter will reference
3662 * the work request that failed to be posted on the QP.
3663 */
3664static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3665 const struct ib_recv_wr *recv_wr,
3666 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3667{
d34ac5cd 3668 const struct ib_recv_wr *dummy;
bb039a87 3669
3023a1e9 3670 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3671}
3672
c4367a26
SR
3673struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3674 int nr_cqe, int comp_vector,
3675 enum ib_poll_context poll_ctx,
3676 const char *caller, struct ib_udata *udata);
3677
3678/**
3679 * ib_alloc_cq_user: Allocate kernel/user CQ
3680 * @dev: The IB device
3681 * @private: Private data attached to the CQE
3682 * @nr_cqe: Number of CQEs in the CQ
3683 * @comp_vector: Completion vector used for the IRQs
3684 * @poll_ctx: Context used for polling the CQ
3685 * @udata: Valid user data or NULL for kernel objects
3686 */
3687static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3688 void *private, int nr_cqe,
3689 int comp_vector,
3690 enum ib_poll_context poll_ctx,
3691 struct ib_udata *udata)
3692{
3693 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3694 KBUILD_MODNAME, udata);
3695}
3696
3697/**
3698 * ib_alloc_cq: Allocate kernel CQ
3699 * @dev: The IB device
3700 * @private: Private data attached to the CQE
3701 * @nr_cqe: Number of CQEs in the CQ
3702 * @comp_vector: Completion vector used for the IRQs
3703 * @poll_ctx: Context used for polling the CQ
3704 *
3705 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3706 */
3707static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3708 int nr_cqe, int comp_vector,
3709 enum ib_poll_context poll_ctx)
3710{
3711 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3712 NULL);
3713}
3714
3715/**
3716 * ib_free_cq_user - Free kernel/user CQ
3717 * @cq: The CQ to free
3718 * @udata: Valid user data or NULL for kernel objects
3719 */
3720void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3721
3722/**
3723 * ib_free_cq - Free kernel CQ
3724 * @cq: The CQ to free
3725 *
3726 * NOTE: for user cq use ib_free_cq_user with valid udata!
3727 */
3728static inline void ib_free_cq(struct ib_cq *cq)
3729{
3730 ib_free_cq_user(cq, NULL);
3731}
f66c8ba4 3732
14d3a3b2
CH
3733int ib_process_cq_direct(struct ib_cq *cq, int budget);
3734
1da177e4
LT
3735/**
3736 * ib_create_cq - Creates a CQ on the specified device.
3737 * @device: The device on which to create the CQ.
3738 * @comp_handler: A user-specified callback that is invoked when a
3739 * completion event occurs on the CQ.
3740 * @event_handler: A user-specified callback that is invoked when an
3741 * asynchronous event not associated with a completion occurs on the CQ.
3742 * @cq_context: Context associated with the CQ returned to the user via
3743 * the associated completion and event handlers.
8e37210b 3744 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3745 *
3746 * Users can examine the cq structure to determine the actual CQ size.
3747 */
7350cdd0
BP
3748struct ib_cq *__ib_create_cq(struct ib_device *device,
3749 ib_comp_handler comp_handler,
3750 void (*event_handler)(struct ib_event *, void *),
3751 void *cq_context,
3752 const struct ib_cq_init_attr *cq_attr,
3753 const char *caller);
3754#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3755 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3756
3757/**
3758 * ib_resize_cq - Modifies the capacity of the CQ.
3759 * @cq: The CQ to resize.
3760 * @cqe: The minimum size of the CQ.
3761 *
3762 * Users can examine the cq structure to determine the actual CQ size.
3763 */
3764int ib_resize_cq(struct ib_cq *cq, int cqe);
3765
2dd57162 3766/**
4190b4e9 3767 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3768 * @cq: The CQ to modify.
3769 * @cq_count: number of CQEs that will trigger an event
3770 * @cq_period: max period of time in usec before triggering an event
3771 *
3772 */
4190b4e9 3773int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3774
1da177e4 3775/**
c4367a26 3776 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3777 * @cq: The CQ to destroy.
c4367a26 3778 * @udata: Valid user data or NULL for kernel objects
1da177e4 3779 */
c4367a26
SR
3780int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3781
3782/**
3783 * ib_destroy_cq - Destroys the specified kernel CQ.
3784 * @cq: The CQ to destroy.
3785 *
3786 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3787 */
3788static inline int ib_destroy_cq(struct ib_cq *cq)
3789{
3790 return ib_destroy_cq_user(cq, NULL);
3791}
1da177e4
LT
3792
3793/**
3794 * ib_poll_cq - poll a CQ for completion(s)
3795 * @cq:the CQ being polled
3796 * @num_entries:maximum number of completions to return
3797 * @wc:array of at least @num_entries &struct ib_wc where completions
3798 * will be returned
3799 *
3800 * Poll a CQ for (possibly multiple) completions. If the return value
3801 * is < 0, an error occurred. If the return value is >= 0, it is the
3802 * number of completions returned. If the return value is
3803 * non-negative and < num_entries, then the CQ was emptied.
3804 */
3805static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3806 struct ib_wc *wc)
3807{
3023a1e9 3808 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3809}
3810
1da177e4
LT
3811/**
3812 * ib_req_notify_cq - Request completion notification on a CQ.
3813 * @cq: The CQ to generate an event for.
ed23a727
RD
3814 * @flags:
3815 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3816 * to request an event on the next solicited event or next work
3817 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3818 * may also be |ed in to request a hint about missed events, as
3819 * described below.
3820 *
3821 * Return Value:
3822 * < 0 means an error occurred while requesting notification
3823 * == 0 means notification was requested successfully, and if
3824 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3825 * were missed and it is safe to wait for another event. In
3826 * this case is it guaranteed that any work completions added
3827 * to the CQ since the last CQ poll will trigger a completion
3828 * notification event.
3829 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3830 * in. It means that the consumer must poll the CQ again to
3831 * make sure it is empty to avoid missing an event because of a
3832 * race between requesting notification and an entry being
3833 * added to the CQ. This return value means it is possible
3834 * (but not guaranteed) that a work completion has been added
3835 * to the CQ since the last poll without triggering a
3836 * completion notification event.
1da177e4
LT
3837 */
3838static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3839 enum ib_cq_notify_flags flags)
1da177e4 3840{
3023a1e9 3841 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
3842}
3843
3844/**
3845 * ib_req_ncomp_notif - Request completion notification when there are
3846 * at least the specified number of unreaped completions on the CQ.
3847 * @cq: The CQ to generate an event for.
3848 * @wc_cnt: The number of unreaped completions that should be on the
3849 * CQ before an event is generated.
3850 */
3851static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3852{
3023a1e9
KH
3853 return cq->device->ops.req_ncomp_notif ?
3854 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
3855 -ENOSYS;
3856}
3857
9b513090
RC
3858/**
3859 * ib_dma_mapping_error - check a DMA addr for error
3860 * @dev: The device for which the dma_addr was created
3861 * @dma_addr: The DMA address to check
3862 */
3863static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3864{
0957c29f 3865 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3866}
3867
3868/**
3869 * ib_dma_map_single - Map a kernel virtual address to DMA address
3870 * @dev: The device for which the dma_addr is to be created
3871 * @cpu_addr: The kernel virtual address
3872 * @size: The size of the region in bytes
3873 * @direction: The direction of the DMA
3874 */
3875static inline u64 ib_dma_map_single(struct ib_device *dev,
3876 void *cpu_addr, size_t size,
3877 enum dma_data_direction direction)
3878{
0957c29f 3879 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3880}
3881
3882/**
3883 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3884 * @dev: The device for which the DMA address was created
3885 * @addr: The DMA address
3886 * @size: The size of the region in bytes
3887 * @direction: The direction of the DMA
3888 */
3889static inline void ib_dma_unmap_single(struct ib_device *dev,
3890 u64 addr, size_t size,
3891 enum dma_data_direction direction)
3892{
0957c29f 3893 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3894}
3895
9b513090
RC
3896/**
3897 * ib_dma_map_page - Map a physical page to DMA address
3898 * @dev: The device for which the dma_addr is to be created
3899 * @page: The page to be mapped
3900 * @offset: The offset within the page
3901 * @size: The size of the region in bytes
3902 * @direction: The direction of the DMA
3903 */
3904static inline u64 ib_dma_map_page(struct ib_device *dev,
3905 struct page *page,
3906 unsigned long offset,
3907 size_t size,
3908 enum dma_data_direction direction)
3909{
0957c29f 3910 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3911}
3912
3913/**
3914 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3915 * @dev: The device for which the DMA address was created
3916 * @addr: The DMA address
3917 * @size: The size of the region in bytes
3918 * @direction: The direction of the DMA
3919 */
3920static inline void ib_dma_unmap_page(struct ib_device *dev,
3921 u64 addr, size_t size,
3922 enum dma_data_direction direction)
3923{
0957c29f 3924 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3925}
3926
3927/**
3928 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3929 * @dev: The device for which the DMA addresses are to be created
3930 * @sg: The array of scatter/gather entries
3931 * @nents: The number of scatter/gather entries
3932 * @direction: The direction of the DMA
3933 */
3934static inline int ib_dma_map_sg(struct ib_device *dev,
3935 struct scatterlist *sg, int nents,
3936 enum dma_data_direction direction)
3937{
0957c29f 3938 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3939}
3940
3941/**
3942 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3943 * @dev: The device for which the DMA addresses were created
3944 * @sg: The array of scatter/gather entries
3945 * @nents: The number of scatter/gather entries
3946 * @direction: The direction of the DMA
3947 */
3948static inline void ib_dma_unmap_sg(struct ib_device *dev,
3949 struct scatterlist *sg, int nents,
3950 enum dma_data_direction direction)
3951{
0957c29f 3952 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3953}
3954
cb9fbc5c
AK
3955static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3956 struct scatterlist *sg, int nents,
3957 enum dma_data_direction direction,
00085f1e 3958 unsigned long dma_attrs)
cb9fbc5c 3959{
0957c29f
BVA
3960 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3961 dma_attrs);
cb9fbc5c
AK
3962}
3963
3964static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3965 struct scatterlist *sg, int nents,
3966 enum dma_data_direction direction,
00085f1e 3967 unsigned long dma_attrs)
cb9fbc5c 3968{
0957c29f 3969 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3970}
9b513090 3971
0b5cb330
BVA
3972/**
3973 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
3974 * @dev: The device to query
3975 *
3976 * The returned value represents a size in bytes.
3977 */
3978static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
3979{
3980 struct device_dma_parameters *p = dev->dma_device->dma_parms;
3981
3982 return p ? p->max_segment_size : UINT_MAX;
3983}
3984
9b513090
RC
3985/**
3986 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3987 * @dev: The device for which the DMA address was created
3988 * @addr: The DMA address
3989 * @size: The size of the region in bytes
3990 * @dir: The direction of the DMA
3991 */
3992static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3993 u64 addr,
3994 size_t size,
3995 enum dma_data_direction dir)
3996{
0957c29f 3997 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3998}
3999
4000/**
4001 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4002 * @dev: The device for which the DMA address was created
4003 * @addr: The DMA address
4004 * @size: The size of the region in bytes
4005 * @dir: The direction of the DMA
4006 */
4007static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4008 u64 addr,
4009 size_t size,
4010 enum dma_data_direction dir)
4011{
0957c29f 4012 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4013}
4014
4015/**
4016 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4017 * @dev: The device for which the DMA address is requested
4018 * @size: The size of the region to allocate in bytes
4019 * @dma_handle: A pointer for returning the DMA address of the region
4020 * @flag: memory allocator flags
4021 */
4022static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4023 size_t size,
d43dbacf 4024 dma_addr_t *dma_handle,
9b513090
RC
4025 gfp_t flag)
4026{
0957c29f 4027 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
4028}
4029
4030/**
4031 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4032 * @dev: The device for which the DMA addresses were allocated
4033 * @size: The size of the region
4034 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4035 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4036 */
4037static inline void ib_dma_free_coherent(struct ib_device *dev,
4038 size_t size, void *cpu_addr,
d43dbacf 4039 dma_addr_t dma_handle)
9b513090 4040{
0957c29f 4041 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
4042}
4043
1da177e4 4044/**
c4367a26
SR
4045 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4046 * HCA translation table.
4047 * @mr: The memory region to deregister.
4048 * @udata: Valid user data or NULL for kernel object
4049 *
4050 * This function can fail, if the memory region has memory windows bound to it.
4051 */
4052int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4053
4054/**
4055 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4056 * HCA translation table.
4057 * @mr: The memory region to deregister.
7083e42e
SM
4058 *
4059 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4060 *
4061 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4062 */
c4367a26
SR
4063static inline int ib_dereg_mr(struct ib_mr *mr)
4064{
4065 return ib_dereg_mr_user(mr, NULL);
4066}
4067
4068struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4069 u32 max_num_sg, struct ib_udata *udata);
1da177e4 4070
c4367a26
SR
4071static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4072 enum ib_mr_type mr_type, u32 max_num_sg)
4073{
4074 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4075}
00f7ec36 4076
00f7ec36
SW
4077/**
4078 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4079 * R_Key and L_Key.
4080 * @mr - struct ib_mr pointer to be updated.
4081 * @newkey - new key to be used.
4082 */
4083static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4084{
4085 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4086 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4087}
4088
7083e42e
SM
4089/**
4090 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4091 * for calculating a new rkey for type 2 memory windows.
4092 * @rkey - the rkey to increment.
4093 */
4094static inline u32 ib_inc_rkey(u32 rkey)
4095{
4096 const u32 mask = 0x000000ff;
4097 return ((rkey + 1) & mask) | (rkey & ~mask);
4098}
4099
1da177e4
LT
4100/**
4101 * ib_alloc_fmr - Allocates a unmapped fast memory region.
4102 * @pd: The protection domain associated with the unmapped region.
4103 * @mr_access_flags: Specifies the memory access rights.
4104 * @fmr_attr: Attributes of the unmapped region.
4105 *
4106 * A fast memory region must be mapped before it can be used as part of
4107 * a work request.
4108 */
4109struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4110 int mr_access_flags,
4111 struct ib_fmr_attr *fmr_attr);
4112
4113/**
4114 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4115 * @fmr: The fast memory region to associate with the pages.
4116 * @page_list: An array of physical pages to map to the fast memory region.
4117 * @list_len: The number of pages in page_list.
4118 * @iova: The I/O virtual address to use with the mapped region.
4119 */
4120static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4121 u64 *page_list, int list_len,
4122 u64 iova)
4123{
3023a1e9 4124 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
1da177e4
LT
4125}
4126
4127/**
4128 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4129 * @fmr_list: A linked list of fast memory regions to unmap.
4130 */
4131int ib_unmap_fmr(struct list_head *fmr_list);
4132
4133/**
4134 * ib_dealloc_fmr - Deallocates a fast memory region.
4135 * @fmr: The fast memory region to deallocate.
4136 */
4137int ib_dealloc_fmr(struct ib_fmr *fmr);
4138
4139/**
4140 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4141 * @qp: QP to attach to the multicast group. The QP must be type
4142 * IB_QPT_UD.
4143 * @gid: Multicast group GID.
4144 * @lid: Multicast group LID in host byte order.
4145 *
4146 * In order to send and receive multicast packets, subnet
4147 * administration must have created the multicast group and configured
4148 * the fabric appropriately. The port associated with the specified
4149 * QP must also be a member of the multicast group.
4150 */
4151int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4152
4153/**
4154 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4155 * @qp: QP to detach from the multicast group.
4156 * @gid: Multicast group GID.
4157 * @lid: Multicast group LID in host byte order.
4158 */
4159int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4160
59991f94
SH
4161/**
4162 * ib_alloc_xrcd - Allocates an XRC domain.
4163 * @device: The device on which to allocate the XRC domain.
f66c8ba4 4164 * @caller: Module name for kernel consumers
59991f94 4165 */
f66c8ba4
LR
4166struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4167#define ib_alloc_xrcd(device) \
4168 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
4169
4170/**
4171 * ib_dealloc_xrcd - Deallocates an XRC domain.
4172 * @xrcd: The XRC domain to deallocate.
c4367a26 4173 * @udata: Valid user data or NULL for kernel object
59991f94 4174 */
c4367a26 4175int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4176
1c636f80
EC
4177static inline int ib_check_mr_access(int flags)
4178{
4179 /*
4180 * Local write permission is required if remote write or
4181 * remote atomic permission is also requested.
4182 */
4183 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4184 !(flags & IB_ACCESS_LOCAL_WRITE))
4185 return -EINVAL;
4186
4187 return 0;
4188}
4189
08bb558a
JM
4190static inline bool ib_access_writable(int access_flags)
4191{
4192 /*
4193 * We have writable memory backing the MR if any of the following
4194 * access flags are set. "Local write" and "remote write" obviously
4195 * require write access. "Remote atomic" can do things like fetch and
4196 * add, which will modify memory, and "MW bind" can change permissions
4197 * by binding a window.
4198 */
4199 return access_flags &
4200 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4201 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4202}
4203
1b01d335
SG
4204/**
4205 * ib_check_mr_status: lightweight check of MR status.
4206 * This routine may provide status checks on a selected
4207 * ib_mr. first use is for signature status check.
4208 *
4209 * @mr: A memory region.
4210 * @check_mask: Bitmask of which checks to perform from
4211 * ib_mr_status_check enumeration.
4212 * @mr_status: The container of relevant status checks.
4213 * failed checks will be indicated in the status bitmask
4214 * and the relevant info shall be in the error item.
4215 */
4216int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4217 struct ib_mr_status *mr_status);
4218
d79af724
JG
4219/**
4220 * ib_device_try_get: Hold a registration lock
4221 * device: The device to lock
4222 *
4223 * A device under an active registration lock cannot become unregistered. It
4224 * is only possible to obtain a registration lock on a device that is fully
4225 * registered, otherwise this function returns false.
4226 *
4227 * The registration lock is only necessary for actions which require the
4228 * device to still be registered. Uses that only require the device pointer to
4229 * be valid should use get_device(&ibdev->dev) to hold the memory.
4230 *
4231 */
4232static inline bool ib_device_try_get(struct ib_device *dev)
4233{
4234 return refcount_inc_not_zero(&dev->refcount);
4235}
4236
4237void ib_device_put(struct ib_device *device);
324e227e
JG
4238struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4239 enum rdma_driver_id driver_id);
4240struct ib_device *ib_device_get_by_name(const char *name,
4241 enum rdma_driver_id driver_id);
9268f72d
YK
4242struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4243 u16 pkey, const union ib_gid *gid,
4244 const struct sockaddr *addr);
c2261dd7
JG
4245int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4246 unsigned int port);
4247struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4248
5fd251c8
YH
4249struct ib_wq *ib_create_wq(struct ib_pd *pd,
4250 struct ib_wq_init_attr *init_attr);
c4367a26 4251int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
5fd251c8
YH
4252int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4253 u32 wq_attr_mask);
6d39786b
YH
4254struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4255 struct ib_rwq_ind_table_init_attr*
4256 wq_ind_table_init_attr);
4257int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 4258
ff2ba993 4259int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4260 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
4261
4262static inline int
ff2ba993 4263ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4264 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4265{
4266 int n;
4267
ff2ba993 4268 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4269 mr->iova = 0;
4270
4271 return n;
4272}
4273
ff2ba993 4274int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4275 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4276
765d6774
SW
4277void ib_drain_rq(struct ib_qp *qp);
4278void ib_drain_sq(struct ib_qp *qp);
4279void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4280
d4186194 4281int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4282
4283static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4284{
44c58487
DC
4285 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4286 return attr->roce.dmac;
4287 return NULL;
2224c47a
DC
4288}
4289
64b4646e 4290static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4291{
44c58487 4292 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4293 attr->ib.dlid = (u16)dlid;
4294 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4295 attr->opa.dlid = dlid;
2224c47a
DC
4296}
4297
64b4646e 4298static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4299{
44c58487
DC
4300 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4301 return attr->ib.dlid;
64b4646e
DC
4302 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4303 return attr->opa.dlid;
44c58487 4304 return 0;
2224c47a
DC
4305}
4306
4307static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4308{
4309 attr->sl = sl;
4310}
4311
4312static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4313{
4314 return attr->sl;
4315}
4316
4317static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4318 u8 src_path_bits)
4319{
44c58487
DC
4320 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4321 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4322 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4323 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4324}
4325
4326static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4327{
44c58487
DC
4328 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4329 return attr->ib.src_path_bits;
64b4646e
DC
4330 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4331 return attr->opa.src_path_bits;
44c58487 4332 return 0;
2224c47a
DC
4333}
4334
d98bb7f7
DH
4335static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4336 bool make_grd)
4337{
4338 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4339 attr->opa.make_grd = make_grd;
4340}
4341
4342static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4343{
4344 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4345 return attr->opa.make_grd;
4346 return false;
4347}
4348
2224c47a
DC
4349static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4350{
4351 attr->port_num = port_num;
4352}
4353
4354static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4355{
4356 return attr->port_num;
4357}
4358
4359static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4360 u8 static_rate)
4361{
4362 attr->static_rate = static_rate;
4363}
4364
4365static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4366{
4367 return attr->static_rate;
4368}
4369
4370static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4371 enum ib_ah_flags flag)
4372{
4373 attr->ah_flags = flag;
4374}
4375
4376static inline enum ib_ah_flags
4377 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4378{
4379 return attr->ah_flags;
4380}
4381
4382static inline const struct ib_global_route
4383 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4384{
4385 return &attr->grh;
4386}
4387
4388/*To retrieve and modify the grh */
4389static inline struct ib_global_route
4390 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4391{
4392 return &attr->grh;
4393}
4394
4395static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4396{
4397 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4398
4399 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4400}
4401
4402static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4403 __be64 prefix)
4404{
4405 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4406
4407 grh->dgid.global.subnet_prefix = prefix;
4408}
4409
4410static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4411 __be64 if_id)
4412{
4413 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4414
4415 grh->dgid.global.interface_id = if_id;
4416}
4417
4418static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4419 union ib_gid *dgid, u32 flow_label,
4420 u8 sgid_index, u8 hop_limit,
4421 u8 traffic_class)
4422{
4423 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4424
4425 attr->ah_flags = IB_AH_GRH;
4426 if (dgid)
4427 grh->dgid = *dgid;
4428 grh->flow_label = flow_label;
4429 grh->sgid_index = sgid_index;
4430 grh->hop_limit = hop_limit;
4431 grh->traffic_class = traffic_class;
8d9ec9ad 4432 grh->sgid_attr = NULL;
2224c47a 4433}
44c58487 4434
8d9ec9ad
JG
4435void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4436void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4437 u32 flow_label, u8 hop_limit, u8 traffic_class,
4438 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4439void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4440 const struct rdma_ah_attr *src);
4441void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4442 const struct rdma_ah_attr *new);
4443void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4444
87daac68
DH
4445/**
4446 * rdma_ah_find_type - Return address handle type.
4447 *
4448 * @dev: Device to be checked
4449 * @port_num: Port number
4450 */
44c58487 4451static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4452 u8 port_num)
44c58487 4453{
a6532e71 4454 if (rdma_protocol_roce(dev, port_num))
44c58487 4455 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4456 if (rdma_protocol_ib(dev, port_num)) {
4457 if (rdma_cap_opa_ah(dev, port_num))
4458 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4459 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4460 }
4461
4462 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4463}
7db20ecd 4464
62ede777
HD
4465/**
4466 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4467 * In the current implementation the only way to get
4468 * get the 32bit lid is from other sources for OPA.
4469 * For IB, lids will always be 16bits so cast the
4470 * value accordingly.
4471 *
4472 * @lid: A 32bit LID
4473 */
4474static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4475{
62ede777
HD
4476 WARN_ON_ONCE(lid & 0xFFFF0000);
4477 return (u16)lid;
7db20ecd
HD
4478}
4479
62ede777
HD
4480/**
4481 * ib_lid_be16 - Return lid in 16bit BE encoding.
4482 *
4483 * @lid: A 32bit LID
4484 */
4485static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4486{
62ede777
HD
4487 WARN_ON_ONCE(lid & 0xFFFF0000);
4488 return cpu_to_be16((u16)lid);
7db20ecd 4489}
32043830 4490
c66cd353
SG
4491/**
4492 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4493 * vector
4494 * @device: the rdma device
4495 * @comp_vector: index of completion vector
4496 *
4497 * Returns NULL on failure, otherwise a corresponding cpu map of the
4498 * completion vector (returns all-cpus map if the device driver doesn't
4499 * implement get_vector_affinity).
4500 */
4501static inline const struct cpumask *
4502ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4503{
4504 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4505 !device->ops.get_vector_affinity)
c66cd353
SG
4506 return NULL;
4507
3023a1e9 4508 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4509
4510}
4511
32f69e4b
DJ
4512/**
4513 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4514 * and add their gids, as needed, to the relevant RoCE devices.
4515 *
4516 * @device: the rdma device
4517 */
4518void rdma_roce_rescan_device(struct ib_device *ibdev);
4519
8313c10f 4520struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4521
15a1b4be 4522int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4523
4524struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4525 enum rdma_netdev_t type, const char *name,
4526 unsigned char name_assign_type,
4527 void (*setup)(struct net_device *));
5d6b0cb3
DD
4528
4529int rdma_init_netdev(struct ib_device *device, u8 port_num,
4530 enum rdma_netdev_t type, const char *name,
4531 unsigned char name_assign_type,
4532 void (*setup)(struct net_device *),
4533 struct net_device *netdev);
4534
d4122f5a
PP
4535/**
4536 * rdma_set_device_sysfs_group - Set device attributes group to have
4537 * driver specific sysfs entries at
4538 * for infiniband class.
4539 *
4540 * @device: device pointer for which attributes to be created
4541 * @group: Pointer to group which should be added when device
4542 * is registered with sysfs.
4543 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4544 * group per device to have sysfs attributes.
4545 *
4546 * NOTE: New drivers should not make use of this API; instead new device
4547 * parameter should be exposed via netlink command. This API and mechanism
4548 * exist only for existing drivers.
4549 */
4550static inline void
4551rdma_set_device_sysfs_group(struct ib_device *dev,
4552 const struct attribute_group *group)
4553{
4554 dev->groups[1] = group;
4555}
4556
54747231
PP
4557/**
4558 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4559 *
4560 * @device: device pointer for which ib_device pointer to retrieve
4561 *
4562 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4563 *
4564 */
4565static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4566{
cebe556b
PP
4567 struct ib_core_device *coredev =
4568 container_of(device, struct ib_core_device, dev);
4569
4570 return coredev->owner;
54747231
PP
4571}
4572
4573/**
4574 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4575 * ib_device holder structure from device pointer.
4576 *
4577 * NOTE: New drivers should not make use of this API; This API is only for
4578 * existing drivers who have exposed sysfs entries using
4579 * rdma_set_device_sysfs_group().
4580 */
4581#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4582 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4583
4584bool rdma_dev_access_netns(const struct ib_device *device,
4585 const struct net *net);
1da177e4 4586#endif /* IB_VERBS_H */