]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
RDMA/rtrs-srv: Incorporate ib_register_client into rtrs server init
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
6bf9d8f6 1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
1da177e4
LT
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
10 */
11
6bf9d8f6 12#ifndef IB_VERBS_H
1da177e4
LT
13#define IB_VERBS_H
14
15#include <linux/types.h>
16#include <linux/device.h>
9b513090 17#include <linux/dma-mapping.h>
459d6e2a 18#include <linux/kref.h>
bfb3ea12
DB
19#include <linux/list.h>
20#include <linux/rwsem.h>
f0626710 21#include <linux/workqueue.h>
14d3a3b2 22#include <linux/irq_poll.h>
dd5f03be 23#include <uapi/linux/if_ether.h>
c865f246
SK
24#include <net/ipv6.h>
25#include <net/ip.h>
301a721e
MB
26#include <linux/string.h>
27#include <linux/slab.h>
2fc77572 28#include <linux/netdevice.h>
01b67117 29#include <linux/refcount.h>
50174a7f 30#include <linux/if_link.h>
60063497 31#include <linux/atomic.h>
882214e2 32#include <linux/mmu_notifier.h>
7c0f6ba6 33#include <linux/uaccess.h>
43579b5f 34#include <linux/cgroup_rdma.h>
f6316032
LR
35#include <linux/irqflags.h>
36#include <linux/preempt.h>
da662979 37#include <linux/dim.h>
ea6819e1 38#include <uapi/rdma/ib_user_verbs.h>
413d3347 39#include <rdma/rdma_counter.h>
02d8883f 40#include <rdma/restrack.h>
36b1e47f 41#include <rdma/signature.h>
0ede73bc 42#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 43#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 44
9abb0d1b
LR
45#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
46
b5231b01 47struct ib_umem_odp;
620d3f81 48struct ib_uqp_object;
9fbe334c 49struct ib_usrq_object;
e04dd131 50struct ib_uwq_object;
211cd945 51struct rdma_cm_id;
b5231b01 52
f0626710 53extern struct workqueue_struct *ib_wq;
14d3a3b2 54extern struct workqueue_struct *ib_comp_wq;
f794809a 55extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 56
5bd48c18
JG
57struct ib_ucq_object;
58
923abb9d
GP
59__printf(3, 4) __cold
60void ibdev_printk(const char *level, const struct ib_device *ibdev,
61 const char *format, ...);
62__printf(2, 3) __cold
63void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
64__printf(2, 3) __cold
65void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
66__printf(2, 3) __cold
67void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
68__printf(2, 3) __cold
69void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
70__printf(2, 3) __cold
71void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
72__printf(2, 3) __cold
73void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
74__printf(2, 3) __cold
75void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
76
ceabef7d
OZ
77#if defined(CONFIG_DYNAMIC_DEBUG) || \
78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
923abb9d
GP
79#define ibdev_dbg(__dev, format, args...) \
80 dynamic_ibdev_dbg(__dev, format, ##args)
923abb9d
GP
81#else
82__printf(2, 3) __cold
83static inline
84void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
85#endif
86
05bb411a
GP
87#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
88do { \
89 static DEFINE_RATELIMIT_STATE(_rs, \
90 DEFAULT_RATELIMIT_INTERVAL, \
91 DEFAULT_RATELIMIT_BURST); \
92 if (__ratelimit(&_rs)) \
93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
94} while (0)
95
96#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
98#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
100#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
102#define ibdev_err_ratelimited(ibdev, fmt, ...) \
103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
104#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
106#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
108#define ibdev_info_ratelimited(ibdev, fmt, ...) \
109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
110
ceabef7d
OZ
111#if defined(CONFIG_DYNAMIC_DEBUG) || \
112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
05bb411a
GP
113/* descriptor check is first to prevent flooding with "callbacks suppressed" */
114#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
115do { \
116 static DEFINE_RATELIMIT_STATE(_rs, \
117 DEFAULT_RATELIMIT_INTERVAL, \
118 DEFAULT_RATELIMIT_BURST); \
119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
122 ##__VA_ARGS__); \
123} while (0)
124#else
125__printf(2, 3) __cold
126static inline
127void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
128#endif
129
1da177e4
LT
130union ib_gid {
131 u8 raw[16];
132 struct {
97f52eb4
SH
133 __be64 subnet_prefix;
134 __be64 interface_id;
1da177e4
LT
135 } global;
136};
137
e26be1bf
MS
138extern union ib_gid zgid;
139
b39ffa1d
MB
140enum ib_gid_type {
141 /* If link layer is Ethernet, this is RoCE V1 */
142 IB_GID_TYPE_IB = 0,
143 IB_GID_TYPE_ROCE = 0,
7766a99f 144 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
145 IB_GID_TYPE_SIZE
146};
147
7ead4bcb 148#define ROCE_V2_UDP_DPORT 4791
03db3a2d 149struct ib_gid_attr {
943bd984 150 struct net_device __rcu *ndev;
598ff6ba 151 struct ib_device *device;
b150c386 152 union ib_gid gid;
598ff6ba
PP
153 enum ib_gid_type gid_type;
154 u16 index;
155 u8 port_num;
03db3a2d
MB
156};
157
a0c1b2a3
EC
158enum {
159 /* set the local administered indication */
160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
161};
162
07ebafba
TT
163enum rdma_transport_type {
164 RDMA_TRANSPORT_IB,
180771a3 165 RDMA_TRANSPORT_IWARP,
248567f7 166 RDMA_TRANSPORT_USNIC,
f95be3d2
GP
167 RDMA_TRANSPORT_USNIC_UDP,
168 RDMA_TRANSPORT_UNSPECIFIED,
07ebafba
TT
169};
170
6b90a6d6
MW
171enum rdma_protocol_type {
172 RDMA_PROTOCOL_IB,
173 RDMA_PROTOCOL_IBOE,
174 RDMA_PROTOCOL_IWARP,
175 RDMA_PROTOCOL_USNIC_UDP
176};
177
8385fd84 178__attribute_const__ enum rdma_transport_type
5d60c111 179rdma_node_get_transport(unsigned int node_type);
07ebafba 180
c865f246
SK
181enum rdma_network_type {
182 RDMA_NETWORK_IB,
183 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
184 RDMA_NETWORK_IPV4,
185 RDMA_NETWORK_IPV6
186};
187
188static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189{
190 if (network_type == RDMA_NETWORK_IPV4 ||
191 network_type == RDMA_NETWORK_IPV6)
192 return IB_GID_TYPE_ROCE_UDP_ENCAP;
193
194 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
195 return IB_GID_TYPE_IB;
196}
197
47ec3866
PP
198static inline enum rdma_network_type
199rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 200{
47ec3866 201 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
202 return RDMA_NETWORK_IB;
203
47ec3866 204 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
205 return RDMA_NETWORK_IPV4;
206 else
207 return RDMA_NETWORK_IPV6;
208}
209
a3f5adaf
EC
210enum rdma_link_layer {
211 IB_LINK_LAYER_UNSPECIFIED,
212 IB_LINK_LAYER_INFINIBAND,
213 IB_LINK_LAYER_ETHERNET,
214};
215
1da177e4 216enum ib_device_cap_flags {
7ca0bc53
LR
217 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
218 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
219 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
220 IB_DEVICE_RAW_MULTI = (1 << 3),
221 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
222 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
223 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
224 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
225 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 226 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
227 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
228 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
229 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
230 IB_DEVICE_SRQ_RESIZE = (1 << 13),
231 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
232
233 /*
234 * This device supports a per-device lkey or stag that can be
235 * used without performing a memory registration for the local
236 * memory. Note that ULPs should never check this flag, but
237 * instead of use the local_dma_lkey flag in the ib_pd structure,
238 * which will always contain a usable lkey.
239 */
7ca0bc53 240 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 241 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 242 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
243 /*
244 * Devices should set IB_DEVICE_UD_IP_SUM if they support
245 * insertion of UDP and TCP checksum on outgoing UD IPoIB
246 * messages and can verify the validity of checksum for
247 * incoming messages. Setting this flag implies that the
248 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
249 */
7ca0bc53
LR
250 IB_DEVICE_UD_IP_CSUM = (1 << 18),
251 IB_DEVICE_UD_TSO = (1 << 19),
252 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
253
254 /*
255 * This device supports the IB "base memory management extension",
256 * which includes support for fast registrations (IB_WR_REG_MR,
257 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
258 * also be set by any iWarp device which must support FRs to comply
259 * to the iWarp verbs spec. iWarp devices also support the
260 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
261 * stag.
262 */
7ca0bc53
LR
263 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
264 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
265 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
266 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
267 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 269 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
270 /*
271 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
272 * support execution of WQEs that involve synchronization
273 * of I/O operations with single completion queue managed
274 * by hardware.
275 */
78b57f95 276 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53 277 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
c0a6cbb9 278 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
47355b3c 279 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 280 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 281 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 282 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 283 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
7f90a5a0 284 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
e1d2e887
NO
285 /* The device supports padding incoming writes to cacheline. */
286 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 287 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
288};
289
1da177e4
LT
290enum ib_atomic_cap {
291 IB_ATOMIC_NONE,
292 IB_ATOMIC_HCA,
293 IB_ATOMIC_GLOB
294};
295
860f10a7 296enum ib_odp_general_cap_bits {
25bf14d6
AK
297 IB_ODP_SUPPORT = 1 << 0,
298 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
299};
300
301enum ib_odp_transport_cap_bits {
302 IB_ODP_SUPPORT_SEND = 1 << 0,
303 IB_ODP_SUPPORT_RECV = 1 << 1,
304 IB_ODP_SUPPORT_WRITE = 1 << 2,
305 IB_ODP_SUPPORT_READ = 1 << 3,
306 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 307 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
308};
309
310struct ib_odp_caps {
311 uint64_t general_caps;
312 struct {
313 uint32_t rc_odp_caps;
314 uint32_t uc_odp_caps;
315 uint32_t ud_odp_caps;
52a72e2a 316 uint32_t xrc_odp_caps;
860f10a7
SG
317 } per_transport_caps;
318};
319
ccf20562
YH
320struct ib_rss_caps {
321 /* Corresponding bit will be set if qp type from
322 * 'enum ib_qp_type' is supported, e.g.
323 * supported_qpts |= 1 << IB_QPT_UD
324 */
325 u32 supported_qpts;
326 u32 max_rwq_indirection_tables;
327 u32 max_rwq_indirection_table_size;
328};
329
6938fc1e 330enum ib_tm_cap_flags {
89705e92
DG
331 /* Support tag matching with rendezvous offload for RC transport */
332 IB_TM_CAP_RNDV_RC = 1 << 0,
6938fc1e
AK
333};
334
78b1beb0 335struct ib_tm_caps {
6938fc1e
AK
336 /* Max size of RNDV header */
337 u32 max_rndv_hdr_size;
338 /* Max number of entries in tag matching list */
339 u32 max_num_tags;
340 /* From enum ib_tm_cap_flags */
341 u32 flags;
342 /* Max number of outstanding list operations */
343 u32 max_ops;
344 /* Max number of SGE in tag matching entry */
345 u32 max_sge;
346};
347
bcf4c1ea
MB
348struct ib_cq_init_attr {
349 unsigned int cqe;
a9018adf 350 u32 comp_vector;
bcf4c1ea
MB
351 u32 flags;
352};
353
869ddcf8
YC
354enum ib_cq_attr_mask {
355 IB_CQ_MODERATE = 1 << 0,
356};
357
18bd9072
YC
358struct ib_cq_caps {
359 u16 max_cq_moderation_count;
360 u16 max_cq_moderation_period;
361};
362
be934cca
AL
363struct ib_dm_mr_attr {
364 u64 length;
365 u64 offset;
366 u32 access_flags;
367};
368
bee76d7a
AL
369struct ib_dm_alloc_attr {
370 u64 length;
371 u32 alignment;
372 u32 flags;
373};
374
1da177e4
LT
375struct ib_device_attr {
376 u64 fw_ver;
97f52eb4 377 __be64 sys_image_guid;
1da177e4
LT
378 u64 max_mr_size;
379 u64 page_size_cap;
380 u32 vendor_id;
381 u32 vendor_part_id;
382 u32 hw_ver;
383 int max_qp;
384 int max_qp_wr;
fb532d6a 385 u64 device_cap_flags;
33023fb8
SW
386 int max_send_sge;
387 int max_recv_sge;
1da177e4
LT
388 int max_sge_rd;
389 int max_cq;
390 int max_cqe;
391 int max_mr;
392 int max_pd;
393 int max_qp_rd_atom;
394 int max_ee_rd_atom;
395 int max_res_rd_atom;
396 int max_qp_init_rd_atom;
397 int max_ee_init_rd_atom;
398 enum ib_atomic_cap atomic_cap;
5e80ba8f 399 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
400 int max_ee;
401 int max_rdd;
402 int max_mw;
403 int max_raw_ipv6_qp;
404 int max_raw_ethy_qp;
405 int max_mcast_grp;
406 int max_mcast_qp_attach;
407 int max_total_mcast_qp_attach;
408 int max_ah;
1da177e4
LT
409 int max_srq;
410 int max_srq_wr;
411 int max_srq_sge;
00f7ec36 412 unsigned int max_fast_reg_page_list_len;
62e3c379 413 unsigned int max_pi_fast_reg_page_list_len;
1da177e4
LT
414 u16 max_pkeys;
415 u8 local_ca_ack_delay;
1b01d335
SG
416 int sig_prot_cap;
417 int sig_guard_cap;
860f10a7 418 struct ib_odp_caps odp_caps;
24306dc6
MB
419 uint64_t timestamp_mask;
420 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
421 struct ib_rss_caps rss_caps;
422 u32 max_wq_type_rq;
ebaaee25 423 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 424 struct ib_tm_caps tm_caps;
18bd9072 425 struct ib_cq_caps cq_caps;
1d8eeb9f 426 u64 max_dm_size;
00bd1439
YF
427 /* Max entries for sgl for optimized performance per READ */
428 u32 max_sgl_rd;
1da177e4
LT
429};
430
431enum ib_mtu {
432 IB_MTU_256 = 1,
433 IB_MTU_512 = 2,
434 IB_MTU_1024 = 3,
435 IB_MTU_2048 = 4,
436 IB_MTU_4096 = 5
437};
438
6d72344c
KW
439enum opa_mtu {
440 OPA_MTU_8192 = 6,
441 OPA_MTU_10240 = 7
442};
443
1da177e4
LT
444static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
445{
446 switch (mtu) {
447 case IB_MTU_256: return 256;
448 case IB_MTU_512: return 512;
449 case IB_MTU_1024: return 1024;
450 case IB_MTU_2048: return 2048;
451 case IB_MTU_4096: return 4096;
452 default: return -1;
453 }
454}
455
d3f4aadd
AR
456static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
457{
458 if (mtu >= 4096)
459 return IB_MTU_4096;
460 else if (mtu >= 2048)
461 return IB_MTU_2048;
462 else if (mtu >= 1024)
463 return IB_MTU_1024;
464 else if (mtu >= 512)
465 return IB_MTU_512;
466 else
467 return IB_MTU_256;
468}
469
6d72344c
KW
470static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
471{
472 switch (mtu) {
473 case OPA_MTU_8192:
474 return 8192;
475 case OPA_MTU_10240:
476 return 10240;
477 default:
478 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
479 }
480}
481
482static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
483{
484 if (mtu >= 10240)
485 return OPA_MTU_10240;
486 else if (mtu >= 8192)
487 return OPA_MTU_8192;
488 else
489 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
490}
491
1da177e4
LT
492enum ib_port_state {
493 IB_PORT_NOP = 0,
494 IB_PORT_DOWN = 1,
495 IB_PORT_INIT = 2,
496 IB_PORT_ARMED = 3,
497 IB_PORT_ACTIVE = 4,
498 IB_PORT_ACTIVE_DEFER = 5
499};
500
72a7720f
KH
501enum ib_port_phys_state {
502 IB_PORT_PHYS_STATE_SLEEP = 1,
503 IB_PORT_PHYS_STATE_POLLING = 2,
504 IB_PORT_PHYS_STATE_DISABLED = 3,
505 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
506 IB_PORT_PHYS_STATE_LINK_UP = 5,
507 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
508 IB_PORT_PHYS_STATE_PHY_TEST = 7,
509};
510
1da177e4
LT
511enum ib_port_width {
512 IB_WIDTH_1X = 1,
dbabf685 513 IB_WIDTH_2X = 16,
1da177e4
LT
514 IB_WIDTH_4X = 2,
515 IB_WIDTH_8X = 4,
516 IB_WIDTH_12X = 8
517};
518
519static inline int ib_width_enum_to_int(enum ib_port_width width)
520{
521 switch (width) {
522 case IB_WIDTH_1X: return 1;
dbabf685 523 case IB_WIDTH_2X: return 2;
1da177e4
LT
524 case IB_WIDTH_4X: return 4;
525 case IB_WIDTH_8X: return 8;
526 case IB_WIDTH_12X: return 12;
527 default: return -1;
528 }
529}
530
2e96691c
OG
531enum ib_port_speed {
532 IB_SPEED_SDR = 1,
533 IB_SPEED_DDR = 2,
534 IB_SPEED_QDR = 4,
535 IB_SPEED_FDR10 = 8,
536 IB_SPEED_FDR = 16,
12113a35
NO
537 IB_SPEED_EDR = 32,
538 IB_SPEED_HDR = 64
2e96691c
OG
539};
540
b40f4757
CL
541/**
542 * struct rdma_hw_stats
e945130b
MB
543 * @lock - Mutex to protect parallel write access to lifespan and values
544 * of counters, which are 64bits and not guaranteeed to be written
545 * atomicaly on 32bits systems.
b40f4757
CL
546 * @timestamp - Used by the core code to track when the last update was
547 * @lifespan - Used by the core code to determine how old the counters
548 * should be before being updated again. Stored in jiffies, defaults
549 * to 10 milliseconds, drivers can override the default be specifying
550 * their own value during their allocation routine.
551 * @name - Array of pointers to static names used for the counters in
552 * directory.
553 * @num_counters - How many hardware counters there are. If name is
554 * shorter than this number, a kernel oops will result. Driver authors
555 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
556 * in their code to prevent this.
557 * @value - Array of u64 counters that are accessed by the sysfs code and
558 * filled in by the drivers get_stats routine
559 */
560struct rdma_hw_stats {
e945130b 561 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
562 unsigned long timestamp;
563 unsigned long lifespan;
564 const char * const *names;
565 int num_counters;
566 u64 value[];
7f624d02
SW
567};
568
b40f4757
CL
569#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
570/**
571 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
572 * for drivers.
573 * @names - Array of static const char *
574 * @num_counters - How many elements in array
575 * @lifespan - How many milliseconds between updates
576 */
577static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
578 const char * const *names, int num_counters,
579 unsigned long lifespan)
580{
581 struct rdma_hw_stats *stats;
582
583 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
584 GFP_KERNEL);
585 if (!stats)
586 return NULL;
587 stats->names = names;
588 stats->num_counters = num_counters;
589 stats->lifespan = msecs_to_jiffies(lifespan);
590
591 return stats;
592}
593
594
f9b22e35
IW
595/* Define bits for the various functionality this port needs to be supported by
596 * the core.
597 */
598/* Management 0x00000FFF */
599#define RDMA_CORE_CAP_IB_MAD 0x00000001
600#define RDMA_CORE_CAP_IB_SMI 0x00000002
601#define RDMA_CORE_CAP_IB_CM 0x00000004
602#define RDMA_CORE_CAP_IW_CM 0x00000008
603#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 604#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
605
606/* Address format 0x000FF000 */
607#define RDMA_CORE_CAP_AF_IB 0x00001000
608#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 609#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 610#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
611
612/* Protocol 0xFFF00000 */
613#define RDMA_CORE_CAP_PROT_IB 0x00100000
614#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
615#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 616#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 617#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 618#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 619
b02289b3
AK
620#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
621 | RDMA_CORE_CAP_PROT_ROCE \
622 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
623
f9b22e35
IW
624#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
625 | RDMA_CORE_CAP_IB_MAD \
626 | RDMA_CORE_CAP_IB_SMI \
627 | RDMA_CORE_CAP_IB_CM \
628 | RDMA_CORE_CAP_IB_SA \
629 | RDMA_CORE_CAP_AF_IB)
630#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
631 | RDMA_CORE_CAP_IB_MAD \
632 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
633 | RDMA_CORE_CAP_AF_IB \
634 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
635#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
636 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
637 | RDMA_CORE_CAP_IB_MAD \
638 | RDMA_CORE_CAP_IB_CM \
639 | RDMA_CORE_CAP_AF_IB \
640 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
641#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
642 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
643#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
644 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 645
aa773bd4
OG
646#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
647
ce1e055f
OG
648#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
649
1da177e4 650struct ib_port_attr {
fad61ad4 651 u64 subnet_prefix;
1da177e4
LT
652 enum ib_port_state state;
653 enum ib_mtu max_mtu;
654 enum ib_mtu active_mtu;
6d72344c 655 u32 phys_mtu;
1da177e4 656 int gid_tbl_len;
2f944c0f
JG
657 unsigned int ip_gids:1;
658 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
659 u32 port_cap_flags;
660 u32 max_msg_sz;
661 u32 bad_pkey_cntr;
662 u32 qkey_viol_cntr;
663 u16 pkey_tbl_len;
db58540b 664 u32 sm_lid;
582faf31 665 u32 lid;
1da177e4
LT
666 u8 lmc;
667 u8 max_vl_num;
668 u8 sm_sl;
669 u8 subnet_timeout;
670 u8 init_type_reply;
671 u8 active_width;
672 u8 active_speed;
673 u8 phys_state;
1e8f43b7 674 u16 port_cap_flags2;
1da177e4
LT
675};
676
677enum ib_device_modify_flags {
c5bcbbb9
RD
678 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
679 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
680};
681
bd99fdea
YS
682#define IB_DEVICE_NODE_DESC_MAX 64
683
1da177e4
LT
684struct ib_device_modify {
685 u64 sys_image_guid;
bd99fdea 686 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
687};
688
689enum ib_port_modify_flags {
690 IB_PORT_SHUTDOWN = 1,
691 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
692 IB_PORT_RESET_QKEY_CNTR = (1<<3),
693 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
694};
695
696struct ib_port_modify {
697 u32 set_port_cap_mask;
698 u32 clr_port_cap_mask;
699 u8 init_type;
700};
701
702enum ib_event_type {
703 IB_EVENT_CQ_ERR,
704 IB_EVENT_QP_FATAL,
705 IB_EVENT_QP_REQ_ERR,
706 IB_EVENT_QP_ACCESS_ERR,
707 IB_EVENT_COMM_EST,
708 IB_EVENT_SQ_DRAINED,
709 IB_EVENT_PATH_MIG,
710 IB_EVENT_PATH_MIG_ERR,
711 IB_EVENT_DEVICE_FATAL,
712 IB_EVENT_PORT_ACTIVE,
713 IB_EVENT_PORT_ERR,
714 IB_EVENT_LID_CHANGE,
715 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
716 IB_EVENT_SM_CHANGE,
717 IB_EVENT_SRQ_ERR,
718 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 719 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
720 IB_EVENT_CLIENT_REREGISTER,
721 IB_EVENT_GID_CHANGE,
f213c052 722 IB_EVENT_WQ_FATAL,
1da177e4
LT
723};
724
db7489e0 725const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 726
1da177e4
LT
727struct ib_event {
728 struct ib_device *device;
729 union {
730 struct ib_cq *cq;
731 struct ib_qp *qp;
d41fcc67 732 struct ib_srq *srq;
f213c052 733 struct ib_wq *wq;
1da177e4
LT
734 u8 port_num;
735 } element;
736 enum ib_event_type event;
737};
738
739struct ib_event_handler {
740 struct ib_device *device;
741 void (*handler)(struct ib_event_handler *, struct ib_event *);
742 struct list_head list;
743};
744
745#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
746 do { \
747 (_ptr)->device = _device; \
748 (_ptr)->handler = _handler; \
749 INIT_LIST_HEAD(&(_ptr)->list); \
750 } while (0)
751
752struct ib_global_route {
8d9ec9ad 753 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
754 union ib_gid dgid;
755 u32 flow_label;
756 u8 sgid_index;
757 u8 hop_limit;
758 u8 traffic_class;
759};
760
513789ed 761struct ib_grh {
97f52eb4
SH
762 __be32 version_tclass_flow;
763 __be16 paylen;
513789ed
HR
764 u8 next_hdr;
765 u8 hop_limit;
766 union ib_gid sgid;
767 union ib_gid dgid;
768};
769
c865f246
SK
770union rdma_network_hdr {
771 struct ib_grh ibgrh;
772 struct {
773 /* The IB spec states that if it's IPv4, the header
774 * is located in the last 20 bytes of the header.
775 */
776 u8 reserved[20];
777 struct iphdr roce4grh;
778 };
779};
780
7dafbab3
DH
781#define IB_QPN_MASK 0xFFFFFF
782
1da177e4
LT
783enum {
784 IB_MULTICAST_QPN = 0xffffff
785};
786
f3a7c66b 787#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 788#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 789
1da177e4
LT
790enum ib_ah_flags {
791 IB_AH_GRH = 1
792};
793
bf6a9e31
JM
794enum ib_rate {
795 IB_RATE_PORT_CURRENT = 0,
796 IB_RATE_2_5_GBPS = 2,
797 IB_RATE_5_GBPS = 5,
798 IB_RATE_10_GBPS = 3,
799 IB_RATE_20_GBPS = 6,
800 IB_RATE_30_GBPS = 4,
801 IB_RATE_40_GBPS = 7,
802 IB_RATE_60_GBPS = 8,
803 IB_RATE_80_GBPS = 9,
71eeba16
MA
804 IB_RATE_120_GBPS = 10,
805 IB_RATE_14_GBPS = 11,
806 IB_RATE_56_GBPS = 12,
807 IB_RATE_112_GBPS = 13,
808 IB_RATE_168_GBPS = 14,
809 IB_RATE_25_GBPS = 15,
810 IB_RATE_100_GBPS = 16,
811 IB_RATE_200_GBPS = 17,
a5a5d199
MG
812 IB_RATE_300_GBPS = 18,
813 IB_RATE_28_GBPS = 19,
814 IB_RATE_50_GBPS = 20,
815 IB_RATE_400_GBPS = 21,
816 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
817};
818
819/**
820 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
821 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
822 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
823 * @rate: rate to convert.
824 */
8385fd84 825__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 826
71eeba16
MA
827/**
828 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
829 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
830 * @rate: rate to convert.
831 */
8385fd84 832__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 833
17cd3a2d
SG
834
835/**
9bee178b
SG
836 * enum ib_mr_type - memory region type
837 * @IB_MR_TYPE_MEM_REG: memory region that is used for
838 * normal registration
f5aa9159
SG
839 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
840 * register any arbitrary sg lists (without
841 * the normal mr constraints - see
842 * ib_map_mr_sg)
a0bc099a
MG
843 * @IB_MR_TYPE_DM: memory region that is used for device
844 * memory registration
845 * @IB_MR_TYPE_USER: memory region that is used for the user-space
846 * application
847 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
848 * without address translations (VA=PA)
26bc7eae
IR
849 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
850 * data integrity operations
17cd3a2d 851 */
9bee178b
SG
852enum ib_mr_type {
853 IB_MR_TYPE_MEM_REG,
f5aa9159 854 IB_MR_TYPE_SG_GAPS,
a0bc099a
MG
855 IB_MR_TYPE_DM,
856 IB_MR_TYPE_USER,
857 IB_MR_TYPE_DMA,
26bc7eae 858 IB_MR_TYPE_INTEGRITY,
17cd3a2d
SG
859};
860
1b01d335
SG
861enum ib_mr_status_check {
862 IB_MR_CHECK_SIG_STATUS = 1,
863};
864
865/**
866 * struct ib_mr_status - Memory region status container
867 *
868 * @fail_status: Bitmask of MR checks status. For each
869 * failed check a corresponding status bit is set.
870 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
871 * failure.
872 */
873struct ib_mr_status {
874 u32 fail_status;
875 struct ib_sig_err sig_err;
876};
877
bf6a9e31
JM
878/**
879 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
880 * enum.
881 * @mult: multiple to convert.
882 */
8385fd84 883__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 884
fa5d010c
MG
885struct rdma_ah_init_attr {
886 struct rdma_ah_attr *ah_attr;
887 u32 flags;
51aab126 888 struct net_device *xmit_slave;
fa5d010c
MG
889};
890
44c58487 891enum rdma_ah_attr_type {
87daac68 892 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
893 RDMA_AH_ATTR_TYPE_IB,
894 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 895 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
896};
897
898struct ib_ah_attr {
899 u16 dlid;
900 u8 src_path_bits;
901};
902
903struct roce_ah_attr {
904 u8 dmac[ETH_ALEN];
905};
906
64b4646e
DC
907struct opa_ah_attr {
908 u32 dlid;
909 u8 src_path_bits;
d98bb7f7 910 bool make_grd;
64b4646e
DC
911};
912
90898850 913struct rdma_ah_attr {
1da177e4 914 struct ib_global_route grh;
1da177e4 915 u8 sl;
1da177e4 916 u8 static_rate;
1da177e4 917 u8 port_num;
44c58487
DC
918 u8 ah_flags;
919 enum rdma_ah_attr_type type;
920 union {
921 struct ib_ah_attr ib;
922 struct roce_ah_attr roce;
64b4646e 923 struct opa_ah_attr opa;
44c58487 924 };
1da177e4
LT
925};
926
927enum ib_wc_status {
928 IB_WC_SUCCESS,
929 IB_WC_LOC_LEN_ERR,
930 IB_WC_LOC_QP_OP_ERR,
931 IB_WC_LOC_EEC_OP_ERR,
932 IB_WC_LOC_PROT_ERR,
933 IB_WC_WR_FLUSH_ERR,
934 IB_WC_MW_BIND_ERR,
935 IB_WC_BAD_RESP_ERR,
936 IB_WC_LOC_ACCESS_ERR,
937 IB_WC_REM_INV_REQ_ERR,
938 IB_WC_REM_ACCESS_ERR,
939 IB_WC_REM_OP_ERR,
940 IB_WC_RETRY_EXC_ERR,
941 IB_WC_RNR_RETRY_EXC_ERR,
942 IB_WC_LOC_RDD_VIOL_ERR,
943 IB_WC_REM_INV_RD_REQ_ERR,
944 IB_WC_REM_ABORT_ERR,
945 IB_WC_INV_EECN_ERR,
946 IB_WC_INV_EEC_STATE_ERR,
947 IB_WC_FATAL_ERR,
948 IB_WC_RESP_TIMEOUT_ERR,
949 IB_WC_GENERAL_ERR
950};
951
db7489e0 952const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 953
1da177e4
LT
954enum ib_wc_opcode {
955 IB_WC_SEND,
956 IB_WC_RDMA_WRITE,
957 IB_WC_RDMA_READ,
958 IB_WC_COMP_SWAP,
959 IB_WC_FETCH_ADD,
c93570f2 960 IB_WC_LSO,
00f7ec36 961 IB_WC_LOCAL_INV,
4c67e2bf 962 IB_WC_REG_MR,
5e80ba8f
VS
963 IB_WC_MASKED_COMP_SWAP,
964 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
965/*
966 * Set value of IB_WC_RECV so consumers can test if a completion is a
967 * receive by testing (opcode & IB_WC_RECV).
968 */
969 IB_WC_RECV = 1 << 7,
970 IB_WC_RECV_RDMA_WITH_IMM
971};
972
973enum ib_wc_flags {
974 IB_WC_GRH = 1,
00f7ec36
SW
975 IB_WC_WITH_IMM = (1<<1),
976 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 977 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
978 IB_WC_WITH_SMAC = (1<<4),
979 IB_WC_WITH_VLAN = (1<<5),
c865f246 980 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
981};
982
983struct ib_wc {
14d3a3b2
CH
984 union {
985 u64 wr_id;
986 struct ib_cqe *wr_cqe;
987 };
1da177e4
LT
988 enum ib_wc_status status;
989 enum ib_wc_opcode opcode;
990 u32 vendor_err;
991 u32 byte_len;
062dbb69 992 struct ib_qp *qp;
00f7ec36
SW
993 union {
994 __be32 imm_data;
995 u32 invalidate_rkey;
996 } ex;
1da177e4 997 u32 src_qp;
cd2a6e7d 998 u32 slid;
1da177e4
LT
999 int wc_flags;
1000 u16 pkey_index;
1da177e4
LT
1001 u8 sl;
1002 u8 dlid_path_bits;
1003 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1004 u8 smac[ETH_ALEN];
1005 u16 vlan_id;
c865f246 1006 u8 network_hdr_type;
1da177e4
LT
1007};
1008
ed23a727
RD
1009enum ib_cq_notify_flags {
1010 IB_CQ_SOLICITED = 1 << 0,
1011 IB_CQ_NEXT_COMP = 1 << 1,
1012 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1013 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1014};
1015
96104eda 1016enum ib_srq_type {
175ba58d
YH
1017 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1018 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1019 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
96104eda
SH
1020};
1021
1a56ff6d
AK
1022static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1023{
9c2c8496
AK
1024 return srq_type == IB_SRQT_XRC ||
1025 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1026}
1027
d41fcc67
RD
1028enum ib_srq_attr_mask {
1029 IB_SRQ_MAX_WR = 1 << 0,
1030 IB_SRQ_LIMIT = 1 << 1,
1031};
1032
1033struct ib_srq_attr {
1034 u32 max_wr;
1035 u32 max_sge;
1036 u32 srq_limit;
1037};
1038
1039struct ib_srq_init_attr {
1040 void (*event_handler)(struct ib_event *, void *);
1041 void *srq_context;
1042 struct ib_srq_attr attr;
96104eda 1043 enum ib_srq_type srq_type;
418d5130 1044
1a56ff6d
AK
1045 struct {
1046 struct ib_cq *cq;
1047 union {
1048 struct {
1049 struct ib_xrcd *xrcd;
1050 } xrc;
9c2c8496
AK
1051
1052 struct {
1053 u32 max_num_tags;
1054 } tag_matching;
1a56ff6d 1055 };
418d5130 1056 } ext;
d41fcc67
RD
1057};
1058
1da177e4
LT
1059struct ib_qp_cap {
1060 u32 max_send_wr;
1061 u32 max_recv_wr;
1062 u32 max_send_sge;
1063 u32 max_recv_sge;
1064 u32 max_inline_data;
a060b562
CH
1065
1066 /*
1067 * Maximum number of rdma_rw_ctx structures in flight at a time.
1068 * ib_create_qp() will calculate the right amount of neededed WRs
1069 * and MRs based on this.
1070 */
1071 u32 max_rdma_ctxs;
1da177e4
LT
1072};
1073
1074enum ib_sig_type {
1075 IB_SIGNAL_ALL_WR,
1076 IB_SIGNAL_REQ_WR
1077};
1078
1079enum ib_qp_type {
1080 /*
1081 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1082 * here (and in that order) since the MAD layer uses them as
1083 * indices into a 2-entry table.
1084 */
1085 IB_QPT_SMI,
1086 IB_QPT_GSI,
1087
175ba58d
YH
1088 IB_QPT_RC = IB_UVERBS_QPT_RC,
1089 IB_QPT_UC = IB_UVERBS_QPT_UC,
1090 IB_QPT_UD = IB_UVERBS_QPT_UD,
1da177e4 1091 IB_QPT_RAW_IPV6,
b42b63cf 1092 IB_QPT_RAW_ETHERTYPE,
175ba58d
YH
1093 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1094 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1095 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
0134f16b 1096 IB_QPT_MAX,
175ba58d 1097 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
0134f16b
JM
1098 /* Reserve a range for qp types internal to the low level driver.
1099 * These qp types will not be visible at the IB core layer, so the
1100 * IB_QPT_MAX usages should not be affected in the core layer
1101 */
1102 IB_QPT_RESERVED1 = 0x1000,
1103 IB_QPT_RESERVED2,
1104 IB_QPT_RESERVED3,
1105 IB_QPT_RESERVED4,
1106 IB_QPT_RESERVED5,
1107 IB_QPT_RESERVED6,
1108 IB_QPT_RESERVED7,
1109 IB_QPT_RESERVED8,
1110 IB_QPT_RESERVED9,
1111 IB_QPT_RESERVED10,
1da177e4
LT
1112};
1113
b846f25a 1114enum ib_qp_create_flags {
47ee1b9f 1115 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
175ba58d
YH
1116 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1117 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
8a06ce59
LR
1118 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1119 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1120 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1121 IB_QP_CREATE_NETIF_QP = 1 << 5,
c0a6cbb9 1122 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
7f90a5a0 1123 IB_QP_CREATE_NETDEV_USE = 1 << 7,
175ba58d
YH
1124 IB_QP_CREATE_SCATTER_FCS =
1125 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1126 IB_QP_CREATE_CVLAN_STRIPPING =
1127 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
02984cc7 1128 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
175ba58d
YH
1129 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1130 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
d2b57063
JM
1131 /* reserve bits 26-31 for low level drivers' internal use */
1132 IB_QP_CREATE_RESERVED_START = 1 << 26,
1133 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1134};
1135
73c40c61
YH
1136/*
1137 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1138 * callback to destroy the passed in QP.
1139 */
1140
1da177e4 1141struct ib_qp_init_attr {
eb93c82e 1142 /* Consumer's event_handler callback must not block */
1da177e4 1143 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1144
1da177e4
LT
1145 void *qp_context;
1146 struct ib_cq *send_cq;
1147 struct ib_cq *recv_cq;
1148 struct ib_srq *srq;
b42b63cf 1149 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1150 struct ib_qp_cap cap;
1151 enum ib_sig_type sq_sig_type;
1152 enum ib_qp_type qp_type;
b56511c1 1153 u32 create_flags;
a060b562
CH
1154
1155 /*
1156 * Only needed for special QP types, or when using the RW API.
1157 */
1158 u8 port_num;
a9017e23 1159 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1160 u32 source_qpn;
1da177e4
LT
1161};
1162
0e0ec7e0
SH
1163struct ib_qp_open_attr {
1164 void (*event_handler)(struct ib_event *, void *);
1165 void *qp_context;
1166 u32 qp_num;
1167 enum ib_qp_type qp_type;
1168};
1169
1da177e4
LT
1170enum ib_rnr_timeout {
1171 IB_RNR_TIMER_655_36 = 0,
1172 IB_RNR_TIMER_000_01 = 1,
1173 IB_RNR_TIMER_000_02 = 2,
1174 IB_RNR_TIMER_000_03 = 3,
1175 IB_RNR_TIMER_000_04 = 4,
1176 IB_RNR_TIMER_000_06 = 5,
1177 IB_RNR_TIMER_000_08 = 6,
1178 IB_RNR_TIMER_000_12 = 7,
1179 IB_RNR_TIMER_000_16 = 8,
1180 IB_RNR_TIMER_000_24 = 9,
1181 IB_RNR_TIMER_000_32 = 10,
1182 IB_RNR_TIMER_000_48 = 11,
1183 IB_RNR_TIMER_000_64 = 12,
1184 IB_RNR_TIMER_000_96 = 13,
1185 IB_RNR_TIMER_001_28 = 14,
1186 IB_RNR_TIMER_001_92 = 15,
1187 IB_RNR_TIMER_002_56 = 16,
1188 IB_RNR_TIMER_003_84 = 17,
1189 IB_RNR_TIMER_005_12 = 18,
1190 IB_RNR_TIMER_007_68 = 19,
1191 IB_RNR_TIMER_010_24 = 20,
1192 IB_RNR_TIMER_015_36 = 21,
1193 IB_RNR_TIMER_020_48 = 22,
1194 IB_RNR_TIMER_030_72 = 23,
1195 IB_RNR_TIMER_040_96 = 24,
1196 IB_RNR_TIMER_061_44 = 25,
1197 IB_RNR_TIMER_081_92 = 26,
1198 IB_RNR_TIMER_122_88 = 27,
1199 IB_RNR_TIMER_163_84 = 28,
1200 IB_RNR_TIMER_245_76 = 29,
1201 IB_RNR_TIMER_327_68 = 30,
1202 IB_RNR_TIMER_491_52 = 31
1203};
1204
1205enum ib_qp_attr_mask {
1206 IB_QP_STATE = 1,
1207 IB_QP_CUR_STATE = (1<<1),
1208 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1209 IB_QP_ACCESS_FLAGS = (1<<3),
1210 IB_QP_PKEY_INDEX = (1<<4),
1211 IB_QP_PORT = (1<<5),
1212 IB_QP_QKEY = (1<<6),
1213 IB_QP_AV = (1<<7),
1214 IB_QP_PATH_MTU = (1<<8),
1215 IB_QP_TIMEOUT = (1<<9),
1216 IB_QP_RETRY_CNT = (1<<10),
1217 IB_QP_RNR_RETRY = (1<<11),
1218 IB_QP_RQ_PSN = (1<<12),
1219 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1220 IB_QP_ALT_PATH = (1<<14),
1221 IB_QP_MIN_RNR_TIMER = (1<<15),
1222 IB_QP_SQ_PSN = (1<<16),
1223 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1224 IB_QP_PATH_MIG_STATE = (1<<18),
1225 IB_QP_CAP = (1<<19),
dd5f03be 1226 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1227 IB_QP_RESERVED1 = (1<<21),
1228 IB_QP_RESERVED2 = (1<<22),
1229 IB_QP_RESERVED3 = (1<<23),
1230 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1231 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1232};
1233
1234enum ib_qp_state {
1235 IB_QPS_RESET,
1236 IB_QPS_INIT,
1237 IB_QPS_RTR,
1238 IB_QPS_RTS,
1239 IB_QPS_SQD,
1240 IB_QPS_SQE,
1241 IB_QPS_ERR
1242};
1243
1244enum ib_mig_state {
1245 IB_MIG_MIGRATED,
1246 IB_MIG_REARM,
1247 IB_MIG_ARMED
1248};
1249
7083e42e
SM
1250enum ib_mw_type {
1251 IB_MW_TYPE_1 = 1,
1252 IB_MW_TYPE_2 = 2
1253};
1254
1da177e4
LT
1255struct ib_qp_attr {
1256 enum ib_qp_state qp_state;
1257 enum ib_qp_state cur_qp_state;
1258 enum ib_mtu path_mtu;
1259 enum ib_mig_state path_mig_state;
1260 u32 qkey;
1261 u32 rq_psn;
1262 u32 sq_psn;
1263 u32 dest_qp_num;
1264 int qp_access_flags;
1265 struct ib_qp_cap cap;
90898850
DC
1266 struct rdma_ah_attr ah_attr;
1267 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1268 u16 pkey_index;
1269 u16 alt_pkey_index;
1270 u8 en_sqd_async_notify;
1271 u8 sq_draining;
1272 u8 max_rd_atomic;
1273 u8 max_dest_rd_atomic;
1274 u8 min_rnr_timer;
1275 u8 port_num;
1276 u8 timeout;
1277 u8 retry_cnt;
1278 u8 rnr_retry;
1279 u8 alt_port_num;
1280 u8 alt_timeout;
528e5a1b 1281 u32 rate_limit;
51aab126 1282 struct net_device *xmit_slave;
1da177e4
LT
1283};
1284
1285enum ib_wr_opcode {
9a59739b
JG
1286 /* These are shared with userspace */
1287 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1288 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1289 IB_WR_SEND = IB_UVERBS_WR_SEND,
1290 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1291 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1292 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1293 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1294 IB_WR_LSO = IB_UVERBS_WR_TSO,
1295 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1296 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1297 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1298 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1299 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1300 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1301 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1302
1303 /* These are kernel only and can not be issued by userspace */
1304 IB_WR_REG_MR = 0x20,
38ca87c6 1305 IB_WR_REG_MR_INTEGRITY,
9a59739b 1306
0134f16b
JM
1307 /* reserve values for low level drivers' internal use.
1308 * These values will not be used at all in the ib core layer.
1309 */
1310 IB_WR_RESERVED1 = 0xf0,
1311 IB_WR_RESERVED2,
1312 IB_WR_RESERVED3,
1313 IB_WR_RESERVED4,
1314 IB_WR_RESERVED5,
1315 IB_WR_RESERVED6,
1316 IB_WR_RESERVED7,
1317 IB_WR_RESERVED8,
1318 IB_WR_RESERVED9,
1319 IB_WR_RESERVED10,
1da177e4
LT
1320};
1321
1322enum ib_send_flags {
1323 IB_SEND_FENCE = 1,
1324 IB_SEND_SIGNALED = (1<<1),
1325 IB_SEND_SOLICITED = (1<<2),
e0605d91 1326 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1327 IB_SEND_IP_CSUM = (1<<4),
1328
1329 /* reserve bits 26-31 for low level drivers' internal use */
1330 IB_SEND_RESERVED_START = (1 << 26),
1331 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1332};
1333
1334struct ib_sge {
1335 u64 addr;
1336 u32 length;
1337 u32 lkey;
1338};
1339
14d3a3b2
CH
1340struct ib_cqe {
1341 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1342};
1343
1da177e4
LT
1344struct ib_send_wr {
1345 struct ib_send_wr *next;
14d3a3b2
CH
1346 union {
1347 u64 wr_id;
1348 struct ib_cqe *wr_cqe;
1349 };
1da177e4
LT
1350 struct ib_sge *sg_list;
1351 int num_sge;
1352 enum ib_wr_opcode opcode;
1353 int send_flags;
0f39cf3d
RD
1354 union {
1355 __be32 imm_data;
1356 u32 invalidate_rkey;
1357 } ex;
1da177e4
LT
1358};
1359
e622f2f4
CH
1360struct ib_rdma_wr {
1361 struct ib_send_wr wr;
1362 u64 remote_addr;
1363 u32 rkey;
1364};
1365
f696bf6d 1366static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1367{
1368 return container_of(wr, struct ib_rdma_wr, wr);
1369}
1370
1371struct ib_atomic_wr {
1372 struct ib_send_wr wr;
1373 u64 remote_addr;
1374 u64 compare_add;
1375 u64 swap;
1376 u64 compare_add_mask;
1377 u64 swap_mask;
1378 u32 rkey;
1379};
1380
f696bf6d 1381static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1382{
1383 return container_of(wr, struct ib_atomic_wr, wr);
1384}
1385
1386struct ib_ud_wr {
1387 struct ib_send_wr wr;
1388 struct ib_ah *ah;
1389 void *header;
1390 int hlen;
1391 int mss;
1392 u32 remote_qpn;
1393 u32 remote_qkey;
1394 u16 pkey_index; /* valid for GSI only */
1395 u8 port_num; /* valid for DR SMPs on switch only */
1396};
1397
f696bf6d 1398static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1399{
1400 return container_of(wr, struct ib_ud_wr, wr);
1401}
1402
4c67e2bf
SG
1403struct ib_reg_wr {
1404 struct ib_send_wr wr;
1405 struct ib_mr *mr;
1406 u32 key;
1407 int access;
1408};
1409
f696bf6d 1410static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1411{
1412 return container_of(wr, struct ib_reg_wr, wr);
1413}
1414
1da177e4
LT
1415struct ib_recv_wr {
1416 struct ib_recv_wr *next;
14d3a3b2
CH
1417 union {
1418 u64 wr_id;
1419 struct ib_cqe *wr_cqe;
1420 };
1da177e4
LT
1421 struct ib_sge *sg_list;
1422 int num_sge;
1423};
1424
1425enum ib_access_flags {
4fca0377
JG
1426 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1427 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1428 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1429 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1430 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1431 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1432 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1433 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
2233c660 1434 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
4fca0377 1435
68d384b9
MG
1436 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1437 IB_ACCESS_SUPPORTED =
1438 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1da177e4
LT
1439};
1440
b7d3e0a9
CH
1441/*
1442 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1443 * are hidden here instead of a uapi header!
1444 */
1da177e4
LT
1445enum ib_mr_rereg_flags {
1446 IB_MR_REREG_TRANS = 1,
1447 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1448 IB_MR_REREG_ACCESS = (1<<2),
1449 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1450};
1451
882214e2
HE
1452struct ib_umem;
1453
38321256 1454enum rdma_remove_reason {
1c77483e
YH
1455 /*
1456 * Userspace requested uobject deletion or initial try
1457 * to remove uobject via cleanup. Call could fail
1458 */
38321256
MB
1459 RDMA_REMOVE_DESTROY,
1460 /* Context deletion. This call should delete the actual object itself */
1461 RDMA_REMOVE_CLOSE,
1462 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1463 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1464 /* uobj is being cleaned-up before being committed */
1465 RDMA_REMOVE_ABORT,
38321256
MB
1466};
1467
43579b5f
PP
1468struct ib_rdmacg_object {
1469#ifdef CONFIG_CGROUP_RDMA
1470 struct rdma_cgroup *cg; /* owner rdma cgroup */
1471#endif
1472};
1473
e2773c06
RD
1474struct ib_ucontext {
1475 struct ib_device *device;
771addf6 1476 struct ib_uverbs_file *ufile;
e951747a
JG
1477 /*
1478 * 'closing' can be read by the driver only during a destroy callback,
1479 * it is set when we are closing the file descriptor and indicates
1480 * that mm_sem may be locked.
1481 */
6ceb6331 1482 bool closing;
8ada2c1c 1483
1c77483e 1484 bool cleanup_retryable;
38321256 1485
43579b5f 1486 struct ib_rdmacg_object cg_obj;
60615210
LR
1487 /*
1488 * Implementation details of the RDMA core, don't use in drivers:
1489 */
1490 struct rdma_restrack_entry res;
3411f9f0 1491 struct xarray mmap_xa;
e2773c06
RD
1492};
1493
1494struct ib_uobject {
1495 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1496 /* ufile & ucontext owning this object */
1497 struct ib_uverbs_file *ufile;
1498 /* FIXME, save memory: ufile->context == context */
e2773c06 1499 struct ib_ucontext *context; /* associated user context */
9ead190b 1500 void *object; /* containing object */
e2773c06 1501 struct list_head list; /* link to context's list */
43579b5f 1502 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1503 int id; /* index into kernel idr */
9ead190b 1504 struct kref ref;
38321256 1505 atomic_t usecnt; /* protects exclusive access */
d144da8c 1506 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1507
6b0d08f4 1508 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1509};
1510
e2773c06 1511struct ib_udata {
309243ec 1512 const void __user *inbuf;
e2773c06
RD
1513 void __user *outbuf;
1514 size_t inlen;
1515 size_t outlen;
1516};
1517
1da177e4 1518struct ib_pd {
96249d70 1519 u32 local_dma_lkey;
ed082d36 1520 u32 flags;
e2773c06
RD
1521 struct ib_device *device;
1522 struct ib_uobject *uobject;
1523 atomic_t usecnt; /* count all resources */
50d46335 1524
ed082d36
CH
1525 u32 unsafe_global_rkey;
1526
50d46335
CH
1527 /*
1528 * Implementation details of the RDMA core, don't use in drivers:
1529 */
1530 struct ib_mr *__internal_mr;
02d8883f 1531 struct rdma_restrack_entry res;
1da177e4
LT
1532};
1533
59991f94
SH
1534struct ib_xrcd {
1535 struct ib_device *device;
d3d72d90 1536 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1537 struct inode *inode;
6f3ca6f4
MG
1538 struct rw_semaphore tgt_qps_rwsem;
1539 struct xarray tgt_qps;
59991f94
SH
1540};
1541
1da177e4
LT
1542struct ib_ah {
1543 struct ib_device *device;
1544 struct ib_pd *pd;
e2773c06 1545 struct ib_uobject *uobject;
1a1f460f 1546 const struct ib_gid_attr *sgid_attr;
44c58487 1547 enum rdma_ah_attr_type type;
1da177e4
LT
1548};
1549
1550typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1551
14d3a3b2 1552enum ib_poll_context {
f794809a
JM
1553 IB_POLL_SOFTIRQ, /* poll from softirq context */
1554 IB_POLL_WORKQUEUE, /* poll from workqueue */
1555 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
c7ff819a
YF
1556 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1557
1558 IB_POLL_DIRECT, /* caller context, no hw completions */
14d3a3b2
CH
1559};
1560
1da177e4 1561struct ib_cq {
e2773c06 1562 struct ib_device *device;
5bd48c18 1563 struct ib_ucq_object *uobject;
e2773c06
RD
1564 ib_comp_handler comp_handler;
1565 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1566 void *cq_context;
e2773c06 1567 int cqe;
c7ff819a 1568 unsigned int cqe_used;
e2773c06 1569 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1570 enum ib_poll_context poll_ctx;
1571 struct ib_wc *wc;
c7ff819a 1572 struct list_head pool_entry;
14d3a3b2
CH
1573 union {
1574 struct irq_poll iop;
1575 struct work_struct work;
1576 };
f794809a 1577 struct workqueue_struct *comp_wq;
da662979 1578 struct dim *dim;
3e5901cb
CL
1579
1580 /* updated only by trace points */
1581 ktime_t timestamp;
3446cbd2
YF
1582 u8 interrupt:1;
1583 u8 shared:1;
c7ff819a 1584 unsigned int comp_vector;
3e5901cb 1585
02d8883f
LR
1586 /*
1587 * Implementation details of the RDMA core, don't use in drivers:
1588 */
1589 struct rdma_restrack_entry res;
1da177e4
LT
1590};
1591
1592struct ib_srq {
d41fcc67
RD
1593 struct ib_device *device;
1594 struct ib_pd *pd;
9fbe334c 1595 struct ib_usrq_object *uobject;
d41fcc67
RD
1596 void (*event_handler)(struct ib_event *, void *);
1597 void *srq_context;
96104eda 1598 enum ib_srq_type srq_type;
1da177e4 1599 atomic_t usecnt;
418d5130 1600
1a56ff6d
AK
1601 struct {
1602 struct ib_cq *cq;
1603 union {
1604 struct {
1605 struct ib_xrcd *xrcd;
1606 u32 srq_num;
1607 } xrc;
1608 };
418d5130 1609 } ext;
1da177e4
LT
1610};
1611
ebaaee25
NO
1612enum ib_raw_packet_caps {
1613 /* Strip cvlan from incoming packet and report it in the matching work
1614 * completion is supported.
1615 */
1616 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1617 /* Scatter FCS field of an incoming packet to host memory is supported.
1618 */
1619 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1620 /* Checksum offloads are supported (for both send and receive). */
1621 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1622 /* When a packet is received for an RQ with no receive WQEs, the
1623 * packet processing is delayed.
1624 */
1625 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1626};
1627
5fd251c8 1628enum ib_wq_type {
175ba58d 1629 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
5fd251c8
YH
1630};
1631
1632enum ib_wq_state {
1633 IB_WQS_RESET,
1634 IB_WQS_RDY,
1635 IB_WQS_ERR
1636};
1637
1638struct ib_wq {
1639 struct ib_device *device;
e04dd131 1640 struct ib_uwq_object *uobject;
5fd251c8
YH
1641 void *wq_context;
1642 void (*event_handler)(struct ib_event *, void *);
1643 struct ib_pd *pd;
1644 struct ib_cq *cq;
1645 u32 wq_num;
1646 enum ib_wq_state state;
1647 enum ib_wq_type wq_type;
1648 atomic_t usecnt;
1649};
1650
10bac72b 1651enum ib_wq_flags {
175ba58d
YH
1652 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1653 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1654 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1655 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1656 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
10bac72b
NO
1657};
1658
5fd251c8
YH
1659struct ib_wq_init_attr {
1660 void *wq_context;
1661 enum ib_wq_type wq_type;
1662 u32 max_wr;
1663 u32 max_sge;
1664 struct ib_cq *cq;
1665 void (*event_handler)(struct ib_event *, void *);
10bac72b 1666 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1667};
1668
1669enum ib_wq_attr_mask {
10bac72b
NO
1670 IB_WQ_STATE = 1 << 0,
1671 IB_WQ_CUR_STATE = 1 << 1,
1672 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1673};
1674
1675struct ib_wq_attr {
1676 enum ib_wq_state wq_state;
1677 enum ib_wq_state curr_wq_state;
10bac72b
NO
1678 u32 flags; /* Use enum ib_wq_flags */
1679 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1680};
1681
6d39786b
YH
1682struct ib_rwq_ind_table {
1683 struct ib_device *device;
1684 struct ib_uobject *uobject;
1685 atomic_t usecnt;
1686 u32 ind_tbl_num;
1687 u32 log_ind_tbl_size;
1688 struct ib_wq **ind_tbl;
1689};
1690
1691struct ib_rwq_ind_table_init_attr {
1692 u32 log_ind_tbl_size;
1693 /* Each entry is a pointer to Receive Work Queue */
1694 struct ib_wq **ind_tbl;
1695};
1696
d291f1a6
DJ
1697enum port_pkey_state {
1698 IB_PORT_PKEY_NOT_VALID = 0,
1699 IB_PORT_PKEY_VALID = 1,
1700 IB_PORT_PKEY_LISTED = 2,
1701};
1702
1703struct ib_qp_security;
1704
1705struct ib_port_pkey {
1706 enum port_pkey_state state;
1707 u16 pkey_index;
1708 u8 port_num;
1709 struct list_head qp_list;
1710 struct list_head to_error_list;
1711 struct ib_qp_security *sec;
1712};
1713
1714struct ib_ports_pkeys {
1715 struct ib_port_pkey main;
1716 struct ib_port_pkey alt;
1717};
1718
1719struct ib_qp_security {
1720 struct ib_qp *qp;
1721 struct ib_device *dev;
1722 /* Hold this mutex when changing port and pkey settings. */
1723 struct mutex mutex;
1724 struct ib_ports_pkeys *ports_pkeys;
1725 /* A list of all open shared QP handles. Required to enforce security
1726 * properly for all users of a shared QP.
1727 */
1728 struct list_head shared_qp_list;
1729 void *security;
1730 bool destroying;
1731 atomic_t error_list_count;
1732 struct completion error_complete;
1733 int error_comps_pending;
1734};
1735
632bc3f6
BVA
1736/*
1737 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1738 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1739 */
1da177e4
LT
1740struct ib_qp {
1741 struct ib_device *device;
1742 struct ib_pd *pd;
1743 struct ib_cq *send_cq;
1744 struct ib_cq *recv_cq;
fffb0383
CH
1745 spinlock_t mr_lock;
1746 int mrs_used;
a060b562 1747 struct list_head rdma_mrs;
0e353e34 1748 struct list_head sig_mrs;
1da177e4 1749 struct ib_srq *srq;
b42b63cf 1750 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1751 struct list_head xrcd_list;
fffb0383 1752
319a441d
HHZ
1753 /* count times opened, mcast attaches, flow attaches */
1754 atomic_t usecnt;
0e0ec7e0
SH
1755 struct list_head open_list;
1756 struct ib_qp *real_qp;
620d3f81 1757 struct ib_uqp_object *uobject;
1da177e4
LT
1758 void (*event_handler)(struct ib_event *, void *);
1759 void *qp_context;
1a1f460f
JG
1760 /* sgid_attrs associated with the AV's */
1761 const struct ib_gid_attr *av_sgid_attr;
1762 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1763 u32 qp_num;
632bc3f6
BVA
1764 u32 max_write_sge;
1765 u32 max_read_sge;
1da177e4 1766 enum ib_qp_type qp_type;
a9017e23 1767 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1768 struct ib_qp_security *qp_sec;
498ca3c8 1769 u8 port;
02d8883f 1770
185eddc4 1771 bool integrity_en;
02d8883f
LR
1772 /*
1773 * Implementation details of the RDMA core, don't use in drivers:
1774 */
1775 struct rdma_restrack_entry res;
99fa331d
MZ
1776
1777 /* The counter the qp is bind to */
1778 struct rdma_counter *counter;
1da177e4
LT
1779};
1780
bee76d7a
AL
1781struct ib_dm {
1782 struct ib_device *device;
1783 u32 length;
1784 u32 flags;
1785 struct ib_uobject *uobject;
1786 atomic_t usecnt;
1787};
1788
1da177e4 1789struct ib_mr {
e2773c06
RD
1790 struct ib_device *device;
1791 struct ib_pd *pd;
e2773c06
RD
1792 u32 lkey;
1793 u32 rkey;
4c67e2bf 1794 u64 iova;
edd31551 1795 u64 length;
4c67e2bf 1796 unsigned int page_size;
a0bc099a 1797 enum ib_mr_type type;
d4a85c30 1798 bool need_inval;
fffb0383
CH
1799 union {
1800 struct ib_uobject *uobject; /* user */
1801 struct list_head qp_entry; /* FR */
1802 };
fccec5b8 1803
be934cca 1804 struct ib_dm *dm;
7c717d3a 1805 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
fccec5b8
SW
1806 /*
1807 * Implementation details of the RDMA core, don't use in drivers:
1808 */
1809 struct rdma_restrack_entry res;
1da177e4
LT
1810};
1811
1812struct ib_mw {
1813 struct ib_device *device;
1814 struct ib_pd *pd;
e2773c06 1815 struct ib_uobject *uobject;
1da177e4 1816 u32 rkey;
7083e42e 1817 enum ib_mw_type type;
1da177e4
LT
1818};
1819
319a441d
HHZ
1820/* Supported steering options */
1821enum ib_flow_attr_type {
1822 /* steering according to rule specifications */
1823 IB_FLOW_ATTR_NORMAL = 0x0,
1824 /* default unicast and multicast rule -
1825 * receive all Eth traffic which isn't steered to any QP
1826 */
1827 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1828 /* default multicast rule -
1829 * receive all Eth multicast traffic which isn't steered to any QP
1830 */
1831 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1832 /* sniffer rule - receive all port traffic */
1833 IB_FLOW_ATTR_SNIFFER = 0x3
1834};
1835
1836/* Supported steering header types */
1837enum ib_flow_spec_type {
1838 /* L2 headers*/
76bd23b3
MR
1839 IB_FLOW_SPEC_ETH = 0x20,
1840 IB_FLOW_SPEC_IB = 0x22,
319a441d 1841 /* L3 header*/
76bd23b3
MR
1842 IB_FLOW_SPEC_IPV4 = 0x30,
1843 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1844 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1845 /* L4 headers*/
76bd23b3
MR
1846 IB_FLOW_SPEC_TCP = 0x40,
1847 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1848 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1849 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1850 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1851 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1852 /* Actions */
1853 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1854 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1855 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1856 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1857};
240ae00e 1858#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1859#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1860
a3100a78
MV
1861enum ib_flow_flags {
1862 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1863 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1864 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1865};
1866
319a441d
HHZ
1867struct ib_flow_eth_filter {
1868 u8 dst_mac[6];
1869 u8 src_mac[6];
1870 __be16 ether_type;
1871 __be16 vlan_tag;
15dfbd6b 1872 /* Must be last */
5b361328 1873 u8 real_sz[];
319a441d
HHZ
1874};
1875
1876struct ib_flow_spec_eth {
fbf46860 1877 u32 type;
319a441d
HHZ
1878 u16 size;
1879 struct ib_flow_eth_filter val;
1880 struct ib_flow_eth_filter mask;
1881};
1882
240ae00e
MB
1883struct ib_flow_ib_filter {
1884 __be16 dlid;
1885 __u8 sl;
15dfbd6b 1886 /* Must be last */
5b361328 1887 u8 real_sz[];
240ae00e
MB
1888};
1889
1890struct ib_flow_spec_ib {
fbf46860 1891 u32 type;
240ae00e
MB
1892 u16 size;
1893 struct ib_flow_ib_filter val;
1894 struct ib_flow_ib_filter mask;
1895};
1896
989a3a8f
MG
1897/* IPv4 header flags */
1898enum ib_ipv4_flags {
1899 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1900 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1901 last have this flag set */
1902};
1903
319a441d
HHZ
1904struct ib_flow_ipv4_filter {
1905 __be32 src_ip;
1906 __be32 dst_ip;
989a3a8f
MG
1907 u8 proto;
1908 u8 tos;
1909 u8 ttl;
1910 u8 flags;
15dfbd6b 1911 /* Must be last */
5b361328 1912 u8 real_sz[];
319a441d
HHZ
1913};
1914
1915struct ib_flow_spec_ipv4 {
fbf46860 1916 u32 type;
319a441d
HHZ
1917 u16 size;
1918 struct ib_flow_ipv4_filter val;
1919 struct ib_flow_ipv4_filter mask;
1920};
1921
4c2aae71
MG
1922struct ib_flow_ipv6_filter {
1923 u8 src_ip[16];
1924 u8 dst_ip[16];
a72c6a2b
MG
1925 __be32 flow_label;
1926 u8 next_hdr;
1927 u8 traffic_class;
1928 u8 hop_limit;
15dfbd6b 1929 /* Must be last */
5b361328 1930 u8 real_sz[];
4c2aae71
MG
1931};
1932
1933struct ib_flow_spec_ipv6 {
fbf46860 1934 u32 type;
4c2aae71
MG
1935 u16 size;
1936 struct ib_flow_ipv6_filter val;
1937 struct ib_flow_ipv6_filter mask;
1938};
1939
319a441d
HHZ
1940struct ib_flow_tcp_udp_filter {
1941 __be16 dst_port;
1942 __be16 src_port;
15dfbd6b 1943 /* Must be last */
5b361328 1944 u8 real_sz[];
319a441d
HHZ
1945};
1946
1947struct ib_flow_spec_tcp_udp {
fbf46860 1948 u32 type;
319a441d
HHZ
1949 u16 size;
1950 struct ib_flow_tcp_udp_filter val;
1951 struct ib_flow_tcp_udp_filter mask;
1952};
1953
0dbf3332
MR
1954struct ib_flow_tunnel_filter {
1955 __be32 tunnel_id;
5b361328 1956 u8 real_sz[];
0dbf3332
MR
1957};
1958
1959/* ib_flow_spec_tunnel describes the Vxlan tunnel
1960 * the tunnel_id from val has the vni value
1961 */
1962struct ib_flow_spec_tunnel {
fbf46860 1963 u32 type;
0dbf3332
MR
1964 u16 size;
1965 struct ib_flow_tunnel_filter val;
1966 struct ib_flow_tunnel_filter mask;
1967};
1968
56ab0b38
MB
1969struct ib_flow_esp_filter {
1970 __be32 spi;
1971 __be32 seq;
1972 /* Must be last */
5b361328 1973 u8 real_sz[];
56ab0b38
MB
1974};
1975
1976struct ib_flow_spec_esp {
1977 u32 type;
1978 u16 size;
1979 struct ib_flow_esp_filter val;
1980 struct ib_flow_esp_filter mask;
1981};
1982
d90e5e50
AL
1983struct ib_flow_gre_filter {
1984 __be16 c_ks_res0_ver;
1985 __be16 protocol;
1986 __be32 key;
1987 /* Must be last */
5b361328 1988 u8 real_sz[];
d90e5e50
AL
1989};
1990
1991struct ib_flow_spec_gre {
1992 u32 type;
1993 u16 size;
1994 struct ib_flow_gre_filter val;
1995 struct ib_flow_gre_filter mask;
1996};
1997
b04f0f03
AL
1998struct ib_flow_mpls_filter {
1999 __be32 tag;
2000 /* Must be last */
5b361328 2001 u8 real_sz[];
b04f0f03
AL
2002};
2003
2004struct ib_flow_spec_mpls {
2005 u32 type;
2006 u16 size;
2007 struct ib_flow_mpls_filter val;
2008 struct ib_flow_mpls_filter mask;
2009};
2010
460d0198
MR
2011struct ib_flow_spec_action_tag {
2012 enum ib_flow_spec_type type;
2013 u16 size;
2014 u32 tag_id;
2015};
2016
483a3966
SS
2017struct ib_flow_spec_action_drop {
2018 enum ib_flow_spec_type type;
2019 u16 size;
2020};
2021
9b828441
MB
2022struct ib_flow_spec_action_handle {
2023 enum ib_flow_spec_type type;
2024 u16 size;
2025 struct ib_flow_action *act;
2026};
2027
7eea23a5
RS
2028enum ib_counters_description {
2029 IB_COUNTER_PACKETS,
2030 IB_COUNTER_BYTES,
2031};
2032
2033struct ib_flow_spec_action_count {
2034 enum ib_flow_spec_type type;
2035 u16 size;
2036 struct ib_counters *counters;
2037};
2038
319a441d
HHZ
2039union ib_flow_spec {
2040 struct {
fbf46860 2041 u32 type;
319a441d
HHZ
2042 u16 size;
2043 };
2044 struct ib_flow_spec_eth eth;
240ae00e 2045 struct ib_flow_spec_ib ib;
319a441d
HHZ
2046 struct ib_flow_spec_ipv4 ipv4;
2047 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2048 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2049 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2050 struct ib_flow_spec_esp esp;
d90e5e50 2051 struct ib_flow_spec_gre gre;
b04f0f03 2052 struct ib_flow_spec_mpls mpls;
460d0198 2053 struct ib_flow_spec_action_tag flow_tag;
483a3966 2054 struct ib_flow_spec_action_drop drop;
9b828441 2055 struct ib_flow_spec_action_handle action;
7eea23a5 2056 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2057};
2058
2059struct ib_flow_attr {
2060 enum ib_flow_attr_type type;
2061 u16 size;
2062 u16 priority;
2063 u32 flags;
2064 u8 num_of_specs;
2065 u8 port;
7654cb1b 2066 union ib_flow_spec flows[];
319a441d
HHZ
2067};
2068
2069struct ib_flow {
2070 struct ib_qp *qp;
6cd080a6 2071 struct ib_device *device;
319a441d
HHZ
2072 struct ib_uobject *uobject;
2073};
2074
2eb9beae
MB
2075enum ib_flow_action_type {
2076 IB_FLOW_ACTION_UNSPECIFIED,
2077 IB_FLOW_ACTION_ESP = 1,
2078};
2079
2080struct ib_flow_action_attrs_esp_keymats {
2081 enum ib_uverbs_flow_action_esp_keymat protocol;
2082 union {
2083 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2084 } keymat;
2085};
2086
2087struct ib_flow_action_attrs_esp_replays {
2088 enum ib_uverbs_flow_action_esp_replay protocol;
2089 union {
2090 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2091 } replay;
2092};
2093
2094enum ib_flow_action_attrs_esp_flags {
2095 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2096 * This is done in order to share the same flags between user-space and
2097 * kernel and spare an unnecessary translation.
2098 */
2099
2100 /* Kernel flags */
2101 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2102 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2103};
2104
2105struct ib_flow_spec_list {
2106 struct ib_flow_spec_list *next;
2107 union ib_flow_spec spec;
2108};
2109
2110struct ib_flow_action_attrs_esp {
2111 struct ib_flow_action_attrs_esp_keymats *keymat;
2112 struct ib_flow_action_attrs_esp_replays *replay;
2113 struct ib_flow_spec_list *encap;
2114 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2115 * Value of 0 is a valid value.
2116 */
2117 u32 esn;
2118 u32 spi;
2119 u32 seq;
2120 u32 tfc_pad;
2121 /* Use enum ib_flow_action_attrs_esp_flags */
2122 u64 flags;
2123 u64 hard_limit_pkts;
2124};
2125
2126struct ib_flow_action {
2127 struct ib_device *device;
2128 struct ib_uobject *uobject;
2129 enum ib_flow_action_type type;
2130 atomic_t usecnt;
2131};
2132
e26e7b88 2133struct ib_mad;
1da177e4
LT
2134struct ib_grh;
2135
2136enum ib_process_mad_flags {
2137 IB_MAD_IGNORE_MKEY = 1,
2138 IB_MAD_IGNORE_BKEY = 2,
2139 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2140};
2141
2142enum ib_mad_result {
2143 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2144 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2145 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2146 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2147};
2148
21d6454a 2149struct ib_port_cache {
883c71fe 2150 u64 subnet_prefix;
21d6454a
JW
2151 struct ib_pkey_cache *pkey;
2152 struct ib_gid_table *gid;
2153 u8 lmc;
2154 enum ib_port_state port_state;
2155};
2156
7738613e
IW
2157struct ib_port_immutable {
2158 int pkey_tbl_len;
2159 int gid_tbl_len;
f9b22e35 2160 u32 core_cap_flags;
337877a4 2161 u32 max_mad_size;
7738613e
IW
2162};
2163
8ceb1357 2164struct ib_port_data {
324e227e
JG
2165 struct ib_device *ib_dev;
2166
8ceb1357
JG
2167 struct ib_port_immutable immutable;
2168
2169 spinlock_t pkey_list_lock;
2170 struct list_head pkey_list;
8faea9fd
JG
2171
2172 struct ib_port_cache cache;
c2261dd7
JG
2173
2174 spinlock_t netdev_lock;
324e227e
JG
2175 struct net_device __rcu *netdev;
2176 struct hlist_node ndev_hash_link;
413d3347 2177 struct rdma_port_counter port_counter;
6e7be47a 2178 struct rdma_hw_stats *hw_stats;
8ceb1357
JG
2179};
2180
2fc77572
VN
2181/* rdma netdev type - specifies protocol type */
2182enum rdma_netdev_t {
f0ad83ac
NV
2183 RDMA_NETDEV_OPA_VNIC,
2184 RDMA_NETDEV_IPOIB,
2fc77572
VN
2185};
2186
2187/**
2188 * struct rdma_netdev - rdma netdev
2189 * For cases where netstack interfacing is required.
2190 */
2191struct rdma_netdev {
2192 void *clnt_priv;
2193 struct ib_device *hca;
2194 u8 port_num;
d99dc602 2195 int mtu;
2fc77572 2196
9f49a5b5
JG
2197 /*
2198 * cleanup function must be specified.
2199 * FIXME: This is only used for OPA_VNIC and that usage should be
2200 * removed too.
2201 */
8e959601
NV
2202 void (*free_rdma_netdev)(struct net_device *netdev);
2203
2fc77572
VN
2204 /* control functions */
2205 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2206 /* send packet */
2207 int (*send)(struct net_device *dev, struct sk_buff *skb,
2208 struct ib_ah *address, u32 dqpn);
2209 /* multicast */
2210 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2211 union ib_gid *gid, u16 mlid,
2212 int set_qkey, u32 qkey);
2213 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2214 union ib_gid *gid, u16 mlid);
2fc77572
VN
2215};
2216
f6a8a19b
DD
2217struct rdma_netdev_alloc_params {
2218 size_t sizeof_priv;
2219 unsigned int txqs;
2220 unsigned int rxqs;
2221 void *param;
2222
2223 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2224 struct net_device *netdev, void *param);
2225};
2226
a3de94e3
EA
2227struct ib_odp_counters {
2228 atomic64_t faults;
2229 atomic64_t invalidations;
d473f4dc 2230 atomic64_t prefetch;
a3de94e3
EA
2231};
2232
fa9b1802
RS
2233struct ib_counters {
2234 struct ib_device *device;
2235 struct ib_uobject *uobject;
2236 /* num of objects attached */
2237 atomic_t usecnt;
2238};
2239
51d7a538
RS
2240struct ib_counters_read_attr {
2241 u64 *counters_buff;
2242 u32 ncounters;
2243 u32 flags; /* use enum ib_read_counters_flags */
2244};
2245
2eb9beae 2246struct uverbs_attr_bundle;
dd05cb82
KH
2247struct iw_cm_id;
2248struct iw_cm_conn_param;
2eb9beae 2249
30471d4b
LR
2250#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2251 .size_##ib_struct = \
2252 (sizeof(struct drv_struct) + \
2253 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2254 BUILD_BUG_ON_ZERO( \
2255 !__same_type(((struct drv_struct *)NULL)->member, \
2256 struct ib_struct)))
2257
f6316032
LR
2258#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2259 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2260
30471d4b 2261#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2262 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2263
2264#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2265
3411f9f0
MK
2266struct rdma_user_mmap_entry {
2267 struct kref ref;
2268 struct ib_ucontext *ucontext;
2269 unsigned long start_pgoff;
2270 size_t npages;
2271 bool driver_removed;
2272};
2273
2274/* Return the offset (in bytes) the user should pass to libc's mmap() */
2275static inline u64
2276rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2277{
2278 return (u64)entry->start_pgoff << PAGE_SHIFT;
2279}
2280
521ed0d9
KH
2281/**
2282 * struct ib_device_ops - InfiniBand device operations
2283 * This structure defines all the InfiniBand device operations, providers will
2284 * need to define the supported operations, otherwise they will be set to null.
2285 */
2286struct ib_device_ops {
7a154142 2287 struct module *owner;
b9560a41 2288 enum rdma_driver_id driver_id;
72c6ec18 2289 u32 uverbs_abi_ver;
8f71bb00 2290 unsigned int uverbs_no_driver_id_binding:1;
b9560a41 2291
521ed0d9
KH
2292 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2293 const struct ib_send_wr **bad_send_wr);
2294 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2295 const struct ib_recv_wr **bad_recv_wr);
2296 void (*drain_rq)(struct ib_qp *qp);
2297 void (*drain_sq)(struct ib_qp *qp);
2298 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2299 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2300 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2301 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2302 int (*post_srq_recv)(struct ib_srq *srq,
2303 const struct ib_recv_wr *recv_wr,
2304 const struct ib_recv_wr **bad_recv_wr);
2305 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2306 u8 port_num, const struct ib_wc *in_wc,
2307 const struct ib_grh *in_grh,
e26e7b88
LR
2308 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2309 size_t *out_mad_size, u16 *out_mad_pkey_index);
521ed0d9
KH
2310 int (*query_device)(struct ib_device *device,
2311 struct ib_device_attr *device_attr,
2312 struct ib_udata *udata);
2313 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2314 struct ib_device_modify *device_modify);
2315 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2316 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2317 int comp_vector);
2318 int (*query_port)(struct ib_device *device, u8 port_num,
2319 struct ib_port_attr *port_attr);
2320 int (*modify_port)(struct ib_device *device, u8 port_num,
2321 int port_modify_mask,
2322 struct ib_port_modify *port_modify);
2323 /**
2324 * The following mandatory functions are used only at device
2325 * registration. Keep functions such as these at the end of this
2326 * structure to avoid cache line misses when accessing struct ib_device
2327 * in fast paths.
2328 */
2329 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2330 struct ib_port_immutable *immutable);
2331 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2332 u8 port_num);
2333 /**
2334 * When calling get_netdev, the HW vendor's driver should return the
2335 * net device of device @device at port @port_num or NULL if such
2336 * a net device doesn't exist. The vendor driver should call dev_hold
2337 * on this net device. The HW vendor's device driver must guarantee
2338 * that this function returns NULL before the net device has finished
2339 * NETDEV_UNREGISTER state.
2340 */
2341 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2342 /**
2343 * rdma netdev operation
2344 *
2345 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2346 * must return -EOPNOTSUPP if it doesn't support the specified type.
2347 */
2348 struct net_device *(*alloc_rdma_netdev)(
2349 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2350 const char *name, unsigned char name_assign_type,
2351 void (*setup)(struct net_device *));
2352
2353 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2354 enum rdma_netdev_t type,
2355 struct rdma_netdev_alloc_params *params);
2356 /**
2357 * query_gid should be return GID value for @device, when @port_num
2358 * link layer is either IB or iWarp. It is no-op if @port_num port
2359 * is RoCE link layer.
2360 */
2361 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2362 union ib_gid *gid);
2363 /**
2364 * When calling add_gid, the HW vendor's driver should add the gid
2365 * of device of port at gid index available at @attr. Meta-info of
2366 * that gid (for example, the network device related to this gid) is
2367 * available at @attr. @context allows the HW vendor driver to store
2368 * extra information together with a GID entry. The HW vendor driver may
2369 * allocate memory to contain this information and store it in @context
2370 * when a new GID entry is written to. Params are consistent until the
2371 * next call of add_gid or delete_gid. The function should return 0 on
2372 * success or error otherwise. The function could be called
2373 * concurrently for different ports. This function is only called when
2374 * roce_gid_table is used.
2375 */
2376 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2377 /**
2378 * When calling del_gid, the HW vendor's driver should delete the
2379 * gid of device @device at gid index gid_index of port port_num
2380 * available in @attr.
2381 * Upon the deletion of a GID entry, the HW vendor must free any
2382 * allocated memory. The caller will clear @context afterwards.
2383 * This function is only called when roce_gid_table is used.
2384 */
2385 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2386 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2387 u16 *pkey);
a2a074ef
LR
2388 int (*alloc_ucontext)(struct ib_ucontext *context,
2389 struct ib_udata *udata);
2390 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9 2391 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
3411f9f0
MK
2392 /**
2393 * This will be called once refcount of an entry in mmap_xa reaches
2394 * zero. The type of the memory that was mapped may differ between
2395 * entries and is opaque to the rdma_user_mmap interface.
2396 * Therefore needs to be implemented by the driver in mmap_free.
2397 */
2398 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
521ed0d9 2399 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2400 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2401 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
fa5d010c
MG
2402 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2403 struct ib_udata *udata);
521ed0d9
KH
2404 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2405 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
d3456914 2406 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2407 int (*create_srq)(struct ib_srq *srq,
2408 struct ib_srq_init_attr *srq_init_attr,
2409 struct ib_udata *udata);
521ed0d9
KH
2410 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2411 enum ib_srq_attr_mask srq_attr_mask,
2412 struct ib_udata *udata);
2413 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
68e326de 2414 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
521ed0d9
KH
2415 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2416 struct ib_qp_init_attr *qp_init_attr,
2417 struct ib_udata *udata);
2418 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2419 int qp_attr_mask, struct ib_udata *udata);
2420 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2421 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2422 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
e39afe3d
LR
2423 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2424 struct ib_udata *udata);
521ed0d9 2425 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
a52c8e24 2426 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2427 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2428 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2429 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2430 u64 virt_addr, int mr_access_flags,
2431 struct ib_udata *udata);
2432 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2433 u64 virt_addr, int mr_access_flags,
2434 struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2435 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2436 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
42a3b153 2437 u32 max_num_sg);
26bc7eae
IR
2438 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2439 u32 max_num_data_sg,
2440 u32 max_num_meta_sg);
ad8a4496
MS
2441 int (*advise_mr)(struct ib_pd *pd,
2442 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2443 struct ib_sge *sg_list, u32 num_sge,
2444 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2445 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2446 unsigned int *sg_offset);
2447 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2448 struct ib_mr_status *mr_status);
2449 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2450 struct ib_udata *udata);
2451 int (*dealloc_mw)(struct ib_mw *mw);
521ed0d9
KH
2452 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2453 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
28ad5f65
LR
2454 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2455 void (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2456 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2457 struct ib_flow_attr *flow_attr,
d6673746 2458 struct ib_udata *udata);
521ed0d9
KH
2459 int (*destroy_flow)(struct ib_flow *flow_id);
2460 struct ib_flow_action *(*create_flow_action_esp)(
2461 struct ib_device *device,
2462 const struct ib_flow_action_attrs_esp *attr,
2463 struct uverbs_attr_bundle *attrs);
2464 int (*destroy_flow_action)(struct ib_flow_action *action);
2465 int (*modify_flow_action_esp)(
2466 struct ib_flow_action *action,
2467 const struct ib_flow_action_attrs_esp *attr,
2468 struct uverbs_attr_bundle *attrs);
2469 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2470 int state);
2471 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2472 struct ifla_vf_info *ivf);
2473 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2474 struct ifla_vf_stats *stats);
bfcb3c5d
DG
2475 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2476 struct ifla_vf_guid *node_guid,
2477 struct ifla_vf_guid *port_guid);
521ed0d9
KH
2478 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2479 int type);
2480 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2481 struct ib_wq_init_attr *init_attr,
2482 struct ib_udata *udata);
a49b1dc7 2483 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2484 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2485 u32 wq_attr_mask, struct ib_udata *udata);
2486 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2487 struct ib_device *device,
2488 struct ib_rwq_ind_table_init_attr *init_attr,
2489 struct ib_udata *udata);
2490 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2491 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2492 struct ib_ucontext *context,
2493 struct ib_dm_alloc_attr *attr,
2494 struct uverbs_attr_bundle *attrs);
c4367a26 2495 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2496 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2497 struct ib_dm_mr_attr *attr,
2498 struct uverbs_attr_bundle *attrs);
3b023e1b
LR
2499 int (*create_counters)(struct ib_counters *counters,
2500 struct uverbs_attr_bundle *attrs);
2501 void (*destroy_counters)(struct ib_counters *counters);
521ed0d9
KH
2502 int (*read_counters)(struct ib_counters *counters,
2503 struct ib_counters_read_attr *counters_read_attr,
2504 struct uverbs_attr_bundle *attrs);
2cdfcdd8
MG
2505 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2506 int data_sg_nents, unsigned int *data_sg_offset,
2507 struct scatterlist *meta_sg, int meta_sg_nents,
2508 unsigned int *meta_sg_offset);
2509
521ed0d9
KH
2510 /**
2511 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2512 * driver initialized data. The struct is kfree()'ed by the sysfs
2513 * core when the device is removed. A lifespan of -1 in the return
2514 * struct tells the core to set a default lifespan.
2515 */
2516 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2517 u8 port_num);
2518 /**
2519 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2520 * @index - The index in the value array we wish to have updated, or
2521 * num_counters if we want all stats updated
2522 * Return codes -
2523 * < 0 - Error, no counters updated
2524 * index - Updated the single counter pointed to by index
2525 * num_counters - Updated all counters (will reset the timestamp
2526 * and prevent further calls for lifespan milliseconds)
2527 * Drivers are allowed to update all counters in leiu of just the
2528 * one given in index at their option
2529 */
2530 int (*get_hw_stats)(struct ib_device *device,
2531 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2532 /*
2533 * This function is called once for each port when a ib device is
2534 * registered.
2535 */
2536 int (*init_port)(struct ib_device *device, u8 port_num,
2537 struct kobject *port_sysfs);
02da3750
LR
2538 /**
2539 * Allows rdma drivers to add their own restrack attributes.
2540 */
f4434529 2541 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
65959522 2542 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
9e2a187a 2543 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
65959522 2544 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
5cc34116 2545 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
65959522 2546 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
211cd945 2547 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
21a428a0 2548
d0899892 2549 /* Device lifecycle callbacks */
ca22354b
JG
2550 /*
2551 * Called after the device becomes registered, before clients are
2552 * attached
2553 */
2554 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2555 /*
2556 * This is called as part of ib_dealloc_device().
2557 */
2558 void (*dealloc_driver)(struct ib_device *dev);
2559
dd05cb82
KH
2560 /* iWarp CM callbacks */
2561 void (*iw_add_ref)(struct ib_qp *qp);
2562 void (*iw_rem_ref)(struct ib_qp *qp);
2563 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2564 int (*iw_connect)(struct iw_cm_id *cm_id,
2565 struct iw_cm_conn_param *conn_param);
2566 int (*iw_accept)(struct iw_cm_id *cm_id,
2567 struct iw_cm_conn_param *conn_param);
2568 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2569 u8 pdata_len);
2570 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2571 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
99fa331d
MZ
2572 /**
2573 * counter_bind_qp - Bind a QP to a counter.
2574 * @counter - The counter to be bound. If counter->id is zero then
2575 * the driver needs to allocate a new counter and set counter->id
2576 */
2577 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2578 /**
2579 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2580 * counter and bind it onto the default one
2581 */
2582 int (*counter_unbind_qp)(struct ib_qp *qp);
2583 /**
2584 * counter_dealloc -De-allocate the hw counter
2585 */
2586 int (*counter_dealloc)(struct rdma_counter *counter);
c4ffee7c
MZ
2587 /**
2588 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2589 * the driver initialized data.
2590 */
2591 struct rdma_hw_stats *(*counter_alloc_stats)(
2592 struct rdma_counter *counter);
2593 /**
2594 * counter_update_stats - Query the stats value of this counter
2595 */
2596 int (*counter_update_stats)(struct rdma_counter *counter);
dd05cb82 2597
4061ff7a
EA
2598 /**
2599 * Allows rdma drivers to add their own restrack attributes
2600 * dumped via 'rdma stat' iproute2 command.
2601 */
f4434529 2602 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
4061ff7a 2603
1c8fb1ea
YH
2604 /* query driver for its ucontext properties */
2605 int (*query_ucontext)(struct ib_ucontext *context,
2606 struct uverbs_attr_bundle *attrs);
2607
d3456914 2608 DECLARE_RDMA_OBJ_SIZE(ib_ah);
3b023e1b 2609 DECLARE_RDMA_OBJ_SIZE(ib_counters);
e39afe3d 2610 DECLARE_RDMA_OBJ_SIZE(ib_cq);
21a428a0 2611 DECLARE_RDMA_OBJ_SIZE(ib_pd);
68e326de 2612 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2613 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
28ad5f65 2614 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
521ed0d9
KH
2615};
2616
cebe556b
PP
2617struct ib_core_device {
2618 /* device must be the first element in structure until,
2619 * union of ib_core_device and device exists in ib_device.
2620 */
2621 struct device dev;
4e0f7b90 2622 possible_net_t rdma_net;
cebe556b
PP
2623 struct kobject *ports_kobj;
2624 struct list_head port_list;
2625 struct ib_device *owner; /* reach back to owner ib_device */
2626};
41eda65c 2627
cebe556b 2628struct rdma_restrack_root;
1da177e4 2629struct ib_device {
0957c29f
BVA
2630 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2631 struct device *dma_device;
3023a1e9 2632 struct ib_device_ops ops;
1da177e4 2633 char name[IB_DEVICE_NAME_MAX];
324e227e 2634 struct rcu_head rcu_head;
1da177e4
LT
2635
2636 struct list_head event_handler_list;
6b57cea9
PP
2637 /* Protects event_handler_list */
2638 struct rw_semaphore event_handler_rwsem;
2639
2640 /* Protects QP's event_handler calls and open_qp list */
40adf686 2641 spinlock_t qp_open_list_lock;
1da177e4 2642
921eab11 2643 struct rw_semaphore client_data_rwsem;
0df91bb6 2644 struct xarray client_data;
d0899892 2645 struct mutex unregistration_lock;
1da177e4 2646
17e10646
PP
2647 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2648 rwlock_t cache_lock;
7738613e 2649 /**
8ceb1357 2650 * port_data is indexed by port number
7738613e 2651 */
8ceb1357 2652 struct ib_port_data *port_data;
1da177e4 2653
f4fd0b22
MT
2654 int num_comp_vectors;
2655
cebe556b
PP
2656 union {
2657 struct device dev;
2658 struct ib_core_device coredev;
2659 };
2660
d4122f5a
PP
2661 /* First group for device attributes,
2662 * Second group for driver provided attributes (optional).
2663 * It is NULL terminated array.
2664 */
2665 const struct attribute_group *groups[3];
adee9f3f 2666
17a55f79 2667 u64 uverbs_cmd_mask;
f21519b2 2668 u64 uverbs_ex_cmd_mask;
274c0891 2669
bd99fdea 2670 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2671 __be64 node_guid;
96f15c03 2672 u32 local_dma_lkey;
4139032b 2673 u16 is_switch:1;
6780c4fa
GP
2674 /* Indicates kernel verbs support, should not be used in drivers */
2675 u16 kverbs_provider:1;
da662979
YF
2676 /* CQ adaptive moderation (RDMA DIM) */
2677 u16 use_cq_dim:1;
1da177e4
LT
2678 u8 node_type;
2679 u8 phys_port_cnt;
3e153a93 2680 struct ib_device_attr attrs;
b40f4757
CL
2681 struct attribute_group *hw_stats_ag;
2682 struct rdma_hw_stats *hw_stats;
7738613e 2683
43579b5f
PP
2684#ifdef CONFIG_CGROUP_RDMA
2685 struct rdmacg_device cg_device;
2686#endif
2687
ecc82c53 2688 u32 index;
c7ff819a
YF
2689
2690 spinlock_t cq_pools_lock;
2691 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2692
41eda65c 2693 struct rdma_restrack_root *res;
ecc82c53 2694
0cbf432d 2695 const struct uapi_definition *driver_def;
d79af724 2696
01b67117 2697 /*
d79af724
JG
2698 * Positive refcount indicates that the device is currently
2699 * registered and cannot be unregistered.
01b67117
PP
2700 */
2701 refcount_t refcount;
2702 struct completion unreg_completion;
d0899892 2703 struct work_struct unregistration_work;
3856ec4b
SW
2704
2705 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2706
2707 /* Protects compat_devs xarray modifications */
2708 struct mutex compat_devs_mutex;
2709 /* Maintains compat devices for each net namespace */
2710 struct xarray compat_devs;
dd05cb82
KH
2711
2712 /* Used by iWarp CM */
2713 char iw_ifname[IFNAMSIZ];
2714 u32 iw_driver_flags;
bd3920ea 2715 u32 lag_flags;
1da177e4
LT
2716};
2717
0e2d00eb 2718struct ib_client_nl_info;
1da177e4 2719struct ib_client {
e59178d8 2720 const char *name;
11a0ae4c 2721 int (*add)(struct ib_device *ibdev);
7c1eb45a 2722 void (*remove)(struct ib_device *, void *client_data);
dc1435c0 2723 void (*rename)(struct ib_device *dev, void *client_data);
0e2d00eb
JG
2724 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2725 struct ib_client_nl_info *res);
2726 int (*get_global_nl_info)(struct ib_client_nl_info *res);
1da177e4 2727
9268f72d
YK
2728 /* Returns the net_dev belonging to this ib_client and matching the
2729 * given parameters.
2730 * @dev: An RDMA device that the net_dev use for communication.
2731 * @port: A physical port number on the RDMA device.
2732 * @pkey: P_Key that the net_dev uses if applicable.
2733 * @gid: A GID that the net_dev uses to communicate.
2734 * @addr: An IP address the net_dev is configured with.
2735 * @client_data: The device's client data set by ib_set_client_data().
2736 *
2737 * An ib_client that implements a net_dev on top of RDMA devices
2738 * (such as IP over IB) should implement this callback, allowing the
2739 * rdma_cm module to find the right net_dev for a given request.
2740 *
2741 * The caller is responsible for calling dev_put on the returned
2742 * netdev. */
2743 struct net_device *(*get_net_dev_by_params)(
2744 struct ib_device *dev,
2745 u8 port,
2746 u16 pkey,
2747 const union ib_gid *gid,
2748 const struct sockaddr *addr,
2749 void *client_data);
621e55ff
JG
2750
2751 refcount_t uses;
2752 struct completion uses_zero;
e59178d8 2753 u32 client_id;
6780c4fa
GP
2754
2755 /* kverbs are not required by the client */
2756 u8 no_kverbs_req:1;
1da177e4
LT
2757};
2758
a808273a
SS
2759/*
2760 * IB block DMA iterator
2761 *
2762 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2763 * to a HW supported page size.
2764 */
2765struct ib_block_iter {
2766 /* internal states */
2767 struct scatterlist *__sg; /* sg holding the current aligned block */
2768 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2769 unsigned int __sg_nents; /* number of SG entries */
2770 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2771 unsigned int __pg_bit; /* alignment of current block */
2772};
2773
459cc69f
LR
2774struct ib_device *_ib_alloc_device(size_t size);
2775#define ib_alloc_device(drv_struct, member) \
2776 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2777 BUILD_BUG_ON_ZERO(offsetof( \
2778 struct drv_struct, member))), \
2779 struct drv_struct, member)
2780
1da177e4
LT
2781void ib_dealloc_device(struct ib_device *device);
2782
9abb0d1b 2783void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2784
ea4baf7f 2785int ib_register_device(struct ib_device *device, const char *name);
1da177e4 2786void ib_unregister_device(struct ib_device *device);
d0899892
JG
2787void ib_unregister_driver(enum rdma_driver_id driver_id);
2788void ib_unregister_device_and_put(struct ib_device *device);
2789void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2790
2791int ib_register_client (struct ib_client *client);
2792void ib_unregister_client(struct ib_client *client);
2793
a808273a
SS
2794void __rdma_block_iter_start(struct ib_block_iter *biter,
2795 struct scatterlist *sglist,
2796 unsigned int nents,
2797 unsigned long pgsz);
2798bool __rdma_block_iter_next(struct ib_block_iter *biter);
2799
2800/**
2801 * rdma_block_iter_dma_address - get the aligned dma address of the current
2802 * block held by the block iterator.
2803 * @biter: block iterator holding the memory block
2804 */
2805static inline dma_addr_t
2806rdma_block_iter_dma_address(struct ib_block_iter *biter)
2807{
2808 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2809}
2810
2811/**
2812 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2813 * @sglist: sglist to iterate over
2814 * @biter: block iterator holding the memory block
2815 * @nents: maximum number of sg entries to iterate over
2816 * @pgsz: best HW supported page size to use
2817 *
2818 * Callers may use rdma_block_iter_dma_address() to get each
2819 * blocks aligned DMA address.
2820 */
2821#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2822 for (__rdma_block_iter_start(biter, sglist, nents, \
2823 pgsz); \
2824 __rdma_block_iter_next(biter);)
2825
0df91bb6
JG
2826/**
2827 * ib_get_client_data - Get IB client context
2828 * @device:Device to get context for
2829 * @client:Client to get context for
2830 *
2831 * ib_get_client_data() returns the client context data set with
2832 * ib_set_client_data(). This can only be called while the client is
2833 * registered to the device, once the ib_client remove() callback returns this
2834 * cannot be called.
2835 */
2836static inline void *ib_get_client_data(struct ib_device *device,
2837 struct ib_client *client)
2838{
2839 return xa_load(&device->client_data, client->client_id);
2840}
1da177e4
LT
2841void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2842 void *data);
521ed0d9
KH
2843void ib_set_device_ops(struct ib_device *device,
2844 const struct ib_device_ops *ops);
1da177e4 2845
5f9794dc 2846int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
c043ff2c
MK
2847 unsigned long pfn, unsigned long size, pgprot_t prot,
2848 struct rdma_user_mmap_entry *entry);
3411f9f0
MK
2849int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2850 struct rdma_user_mmap_entry *entry,
2851 size_t length);
7a763d18
YH
2852int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2853 struct rdma_user_mmap_entry *entry,
2854 size_t length, u32 min_pgoff,
2855 u32 max_pgoff);
2856
3411f9f0
MK
2857struct rdma_user_mmap_entry *
2858rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2859 unsigned long pgoff);
2860struct rdma_user_mmap_entry *
2861rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2862 struct vm_area_struct *vma);
2863void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2864
2865void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
5f9794dc 2866
e2773c06
RD
2867static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2868{
2869 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2870}
2871
2872static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2873{
43c61165 2874 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2875}
2876
c66db311
MB
2877static inline bool ib_is_buffer_cleared(const void __user *p,
2878 size_t len)
301a721e 2879{
92d27ae6 2880 bool ret;
301a721e
MB
2881 u8 *buf;
2882
2883 if (len > USHRT_MAX)
2884 return false;
2885
92d27ae6
ME
2886 buf = memdup_user(p, len);
2887 if (IS_ERR(buf))
301a721e
MB
2888 return false;
2889
301a721e 2890 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2891 kfree(buf);
2892 return ret;
2893}
2894
c66db311
MB
2895static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2896 size_t offset,
2897 size_t len)
2898{
2899 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2900}
2901
1c77483e
YH
2902/**
2903 * ib_is_destroy_retryable - Check whether the uobject destruction
2904 * is retryable.
2905 * @ret: The initial destruction return code
2906 * @why: remove reason
2907 * @uobj: The uobject that is destroyed
2908 *
2909 * This function is a helper function that IB layer and low-level drivers
2910 * can use to consider whether the destruction of the given uobject is
2911 * retry-able.
2912 * It checks the original return code, if it wasn't success the destruction
2913 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2914 * the remove reason. (i.e. why).
2915 * Must be called with the object locked for destroy.
2916 */
2917static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2918 struct ib_uobject *uobj)
2919{
2920 return ret && (why == RDMA_REMOVE_DESTROY ||
2921 uobj->context->cleanup_retryable);
2922}
2923
2924/**
2925 * ib_destroy_usecnt - Called during destruction to check the usecnt
2926 * @usecnt: The usecnt atomic
2927 * @why: remove reason
2928 * @uobj: The uobject that is destroyed
2929 *
2930 * Non-zero usecnts will block destruction unless destruction was triggered by
2931 * a ucontext cleanup.
2932 */
2933static inline int ib_destroy_usecnt(atomic_t *usecnt,
2934 enum rdma_remove_reason why,
2935 struct ib_uobject *uobj)
2936{
2937 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2938 return -EBUSY;
2939 return 0;
2940}
2941
8a51866f
RD
2942/**
2943 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2944 * contains all required attributes and no attributes not allowed for
2945 * the given QP state transition.
2946 * @cur_state: Current QP state
2947 * @next_state: Next QP state
2948 * @type: QP type
2949 * @mask: Mask of supplied QP attributes
2950 *
2951 * This function is a helper function that a low-level driver's
2952 * modify_qp method can use to validate the consumer's input. It
2953 * checks that cur_state and next_state are valid QP states, that a
2954 * transition from cur_state to next_state is allowed by the IB spec,
2955 * and that the attribute mask supplied is allowed for the transition.
2956 */
19b1f540 2957bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2958 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2959
dcc9881e
LR
2960void ib_register_event_handler(struct ib_event_handler *event_handler);
2961void ib_unregister_event_handler(struct ib_event_handler *event_handler);
6b57cea9 2962void ib_dispatch_event(const struct ib_event *event);
1da177e4 2963
1da177e4
LT
2964int ib_query_port(struct ib_device *device,
2965 u8 port_num, struct ib_port_attr *port_attr);
2966
a3f5adaf
EC
2967enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2968 u8 port_num);
2969
4139032b
HR
2970/**
2971 * rdma_cap_ib_switch - Check if the device is IB switch
2972 * @device: Device to check
2973 *
2974 * Device driver is responsible for setting is_switch bit on
2975 * in ib_device structure at init time.
2976 *
2977 * Return: true if the device is IB switch.
2978 */
2979static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2980{
2981 return device->is_switch;
2982}
2983
0cf18d77
IW
2984/**
2985 * rdma_start_port - Return the first valid port number for the device
2986 * specified
2987 *
2988 * @device: Device to be checked
2989 *
2990 * Return start port number
2991 */
2992static inline u8 rdma_start_port(const struct ib_device *device)
2993{
4139032b 2994 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2995}
2996
ea1075ed
JG
2997/**
2998 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2999 * @device - The struct ib_device * to iterate over
3000 * @iter - The unsigned int to store the port number
3001 */
3002#define rdma_for_each_port(device, iter) \
3003 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
3004 unsigned int, iter))); \
3005 iter <= rdma_end_port(device); (iter)++)
3006
0cf18d77
IW
3007/**
3008 * rdma_end_port - Return the last valid port number for the device
3009 * specified
3010 *
3011 * @device: Device to be checked
3012 *
3013 * Return last port number
3014 */
3015static inline u8 rdma_end_port(const struct ib_device *device)
3016{
4139032b 3017 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
3018}
3019
24dc831b
YS
3020static inline int rdma_is_port_valid(const struct ib_device *device,
3021 unsigned int port)
3022{
3023 return (port >= rdma_start_port(device) &&
3024 port <= rdma_end_port(device));
3025}
3026
b02289b3
AK
3027static inline bool rdma_is_grh_required(const struct ib_device *device,
3028 u8 port_num)
3029{
8ceb1357
JG
3030 return device->port_data[port_num].immutable.core_cap_flags &
3031 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
3032}
3033
5ede9289 3034static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 3035{
8ceb1357
JG
3036 return device->port_data[port_num].immutable.core_cap_flags &
3037 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
3038}
3039
5ede9289 3040static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f 3041{
8ceb1357
JG
3042 return device->port_data[port_num].immutable.core_cap_flags &
3043 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
3044}
3045
3046static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3047{
8ceb1357
JG
3048 return device->port_data[port_num].immutable.core_cap_flags &
3049 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
3050}
3051
3052static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 3053{
8ceb1357
JG
3054 return device->port_data[port_num].immutable.core_cap_flags &
3055 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
3056}
3057
5ede9289 3058static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 3059{
8ceb1357
JG
3060 return device->port_data[port_num].immutable.core_cap_flags &
3061 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
3062}
3063
5ede9289 3064static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 3065{
7766a99f
MB
3066 return rdma_protocol_ib(device, port_num) ||
3067 rdma_protocol_roce(device, port_num);
de66be94
MW
3068}
3069
aa773bd4
OG
3070static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3071{
8ceb1357
JG
3072 return device->port_data[port_num].immutable.core_cap_flags &
3073 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
3074}
3075
ce1e055f
OG
3076static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3077{
8ceb1357
JG
3078 return device->port_data[port_num].immutable.core_cap_flags &
3079 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
3080}
3081
c757dea8 3082/**
296ec009 3083 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 3084 * Management Datagrams.
296ec009
MW
3085 * @device: Device to check
3086 * @port_num: Port number to check
c757dea8 3087 *
296ec009
MW
3088 * Management Datagrams (MAD) are a required part of the InfiniBand
3089 * specification and are supported on all InfiniBand devices. A slightly
3090 * extended version are also supported on OPA interfaces.
c757dea8 3091 *
296ec009 3092 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3093 */
5ede9289 3094static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 3095{
8ceb1357
JG
3096 return device->port_data[port_num].immutable.core_cap_flags &
3097 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3098}
3099
65995fee
IW
3100/**
3101 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3102 * Management Datagrams.
3103 * @device: Device to check
3104 * @port_num: Port number to check
3105 *
3106 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3107 * datagrams with their own versions. These OPA MADs share many but not all of
3108 * the characteristics of InfiniBand MADs.
3109 *
3110 * OPA MADs differ in the following ways:
3111 *
3112 * 1) MADs are variable size up to 2K
3113 * IBTA defined MADs remain fixed at 256 bytes
3114 * 2) OPA SMPs must carry valid PKeys
3115 * 3) OPA SMP packets are a different format
3116 *
3117 * Return: true if the port supports OPA MAD packet formats.
3118 */
3119static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3120{
d3243da8
LR
3121 return device->port_data[port_num].immutable.core_cap_flags &
3122 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3123}
3124
29541e3a 3125/**
296ec009
MW
3126 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3127 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3128 * @device: Device to check
3129 * @port_num: Port number to check
29541e3a 3130 *
296ec009
MW
3131 * Each InfiniBand node is required to provide a Subnet Management Agent
3132 * that the subnet manager can access. Prior to the fabric being fully
3133 * configured by the subnet manager, the SMA is accessed via a well known
3134 * interface called the Subnet Management Interface (SMI). This interface
3135 * uses directed route packets to communicate with the SM to get around the
3136 * chicken and egg problem of the SM needing to know what's on the fabric
3137 * in order to configure the fabric, and needing to configure the fabric in
3138 * order to send packets to the devices on the fabric. These directed
3139 * route packets do not need the fabric fully configured in order to reach
3140 * their destination. The SMI is the only method allowed to send
3141 * directed route packets on an InfiniBand fabric.
29541e3a 3142 *
296ec009 3143 * Return: true if the port provides an SMI.
29541e3a 3144 */
5ede9289 3145static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 3146{
8ceb1357
JG
3147 return device->port_data[port_num].immutable.core_cap_flags &
3148 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3149}
3150
72219cea
MW
3151/**
3152 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3153 * Communication Manager.
296ec009
MW
3154 * @device: Device to check
3155 * @port_num: Port number to check
72219cea 3156 *
296ec009
MW
3157 * The InfiniBand Communication Manager is one of many pre-defined General
3158 * Service Agents (GSA) that are accessed via the General Service
3159 * Interface (GSI). It's role is to facilitate establishment of connections
3160 * between nodes as well as other management related tasks for established
3161 * connections.
72219cea 3162 *
296ec009
MW
3163 * Return: true if the port supports an IB CM (this does not guarantee that
3164 * a CM is actually running however).
72219cea 3165 */
5ede9289 3166static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 3167{
8ceb1357
JG
3168 return device->port_data[port_num].immutable.core_cap_flags &
3169 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3170}
3171
04215330
MW
3172/**
3173 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3174 * Communication Manager.
296ec009
MW
3175 * @device: Device to check
3176 * @port_num: Port number to check
04215330 3177 *
296ec009
MW
3178 * Similar to above, but specific to iWARP connections which have a different
3179 * managment protocol than InfiniBand.
04215330 3180 *
296ec009
MW
3181 * Return: true if the port supports an iWARP CM (this does not guarantee that
3182 * a CM is actually running however).
04215330 3183 */
5ede9289 3184static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 3185{
8ceb1357
JG
3186 return device->port_data[port_num].immutable.core_cap_flags &
3187 RDMA_CORE_CAP_IW_CM;
04215330
MW
3188}
3189
fe53ba2f
MW
3190/**
3191 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3192 * Subnet Administration.
296ec009
MW
3193 * @device: Device to check
3194 * @port_num: Port number to check
fe53ba2f 3195 *
296ec009
MW
3196 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3197 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3198 * fabrics, devices should resolve routes to other hosts by contacting the
3199 * SA to query the proper route.
fe53ba2f 3200 *
296ec009
MW
3201 * Return: true if the port should act as a client to the fabric Subnet
3202 * Administration interface. This does not imply that the SA service is
3203 * running locally.
fe53ba2f 3204 */
5ede9289 3205static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3206{
8ceb1357
JG
3207 return device->port_data[port_num].immutable.core_cap_flags &
3208 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3209}
3210
a31ad3b0
MW
3211/**
3212 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3213 * Multicast.
296ec009
MW
3214 * @device: Device to check
3215 * @port_num: Port number to check
a31ad3b0 3216 *
296ec009
MW
3217 * InfiniBand multicast registration is more complex than normal IPv4 or
3218 * IPv6 multicast registration. Each Host Channel Adapter must register
3219 * with the Subnet Manager when it wishes to join a multicast group. It
3220 * should do so only once regardless of how many queue pairs it subscribes
3221 * to this group. And it should leave the group only after all queue pairs
3222 * attached to the group have been detached.
a31ad3b0 3223 *
296ec009
MW
3224 * Return: true if the port must undertake the additional adminstrative
3225 * overhead of registering/unregistering with the SM and tracking of the
3226 * total number of queue pairs attached to the multicast group.
a31ad3b0 3227 */
5ede9289 3228static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3229{
3230 return rdma_cap_ib_sa(device, port_num);
3231}
3232
30a74ef4
MW
3233/**
3234 * rdma_cap_af_ib - Check if the port of device has the capability
3235 * Native Infiniband Address.
296ec009
MW
3236 * @device: Device to check
3237 * @port_num: Port number to check
30a74ef4 3238 *
296ec009
MW
3239 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3240 * GID. RoCE uses a different mechanism, but still generates a GID via
3241 * a prescribed mechanism and port specific data.
30a74ef4 3242 *
296ec009
MW
3243 * Return: true if the port uses a GID address to identify devices on the
3244 * network.
30a74ef4 3245 */
5ede9289 3246static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3247{
8ceb1357
JG
3248 return device->port_data[port_num].immutable.core_cap_flags &
3249 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3250}
3251
227128fc
MW
3252/**
3253 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3254 * Ethernet Address Handle.
3255 * @device: Device to check
3256 * @port_num: Port number to check
227128fc 3257 *
296ec009
MW
3258 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3259 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3260 * port. Normally, packet headers are generated by the sending host
3261 * adapter, but when sending connectionless datagrams, we must manually
3262 * inject the proper headers for the fabric we are communicating over.
227128fc 3263 *
296ec009
MW
3264 * Return: true if we are running as a RoCE port and must force the
3265 * addition of a Global Route Header built from our Ethernet Address
3266 * Handle into our header list for connectionless packets.
227128fc 3267 */
5ede9289 3268static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3269{
8ceb1357
JG
3270 return device->port_data[port_num].immutable.core_cap_flags &
3271 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3272}
3273
94d595c5
DC
3274/**
3275 * rdma_cap_opa_ah - Check if the port of device supports
3276 * OPA Address handles
3277 * @device: Device to check
3278 * @port_num: Port number to check
3279 *
3280 * Return: true if we are running on an OPA device which supports
3281 * the extended OPA addressing.
3282 */
3283static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3284{
8ceb1357 3285 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3286 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3287}
3288
337877a4
IW
3289/**
3290 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3291 *
3292 * @device: Device
3293 * @port_num: Port number
3294 *
3295 * This MAD size includes the MAD headers and MAD payload. No other headers
3296 * are included.
3297 *
3298 * Return the max MAD size required by the Port. Will return 0 if the port
3299 * does not support MADs
3300 */
3301static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3302{
8ceb1357 3303 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3304}
3305
03db3a2d
MB
3306/**
3307 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3308 * @device: Device to check
3309 * @port_num: Port number to check
3310 *
3311 * RoCE GID table mechanism manages the various GIDs for a device.
3312 *
3313 * NOTE: if allocating the port's GID table has failed, this call will still
3314 * return true, but any RoCE GID table API will fail.
3315 *
3316 * Return: true if the port uses RoCE GID table mechanism in order to manage
3317 * its GIDs.
3318 */
3319static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3320 u8 port_num)
3321{
3322 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3323 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3324}
3325
002516ed
CH
3326/*
3327 * Check if the device supports READ W/ INVALIDATE.
3328 */
3329static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3330{
3331 /*
3332 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3333 * has support for it yet.
3334 */
3335 return rdma_protocol_iwarp(dev, port_num);
3336}
3337
4a353399
SS
3338/**
3339 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3340 *
3341 * @addr: address
3342 * @pgsz_bitmap: bitmap of HW supported page sizes
3343 */
3344static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3345 unsigned long pgsz_bitmap)
3346{
3347 unsigned long align;
3348 unsigned long pgsz;
3349
3350 align = addr & -addr;
3351
3352 /* Find page bit such that addr is aligned to the highest supported
3353 * HW page size
3354 */
3355 pgsz = pgsz_bitmap & ~(-align << 1);
3356 if (!pgsz)
3357 return __ffs(pgsz_bitmap);
3358
3359 return __fls(pgsz);
3360}
3361
6d72344c
KW
3362/**
3363 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3364 * @device: Device
3365 * @port_num: 1 based Port number
3366 *
3367 * Return true if port is an Intel OPA port , false if not
3368 */
3369static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3370 u32 port_num)
3371{
3372 return (device->port_data[port_num].immutable.core_cap_flags &
3373 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3374}
3375
3376/**
3377 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3378 * @device: Device
3379 * @port_num: Port number
3380 * @mtu: enum value of MTU
3381 *
3382 * Return the MTU size supported by the port as an integer value. Will return
3383 * -1 if enum value of mtu is not supported.
3384 */
3385static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3386 int mtu)
3387{
3388 if (rdma_core_cap_opa_port(device, port))
3389 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3390 else
3391 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3392}
3393
3394/**
3395 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3396 * @device: Device
3397 * @port_num: Port number
3398 * @attr: port attribute
3399 *
3400 * Return the MTU size supported by the port as an integer value.
3401 */
3402static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3403 struct ib_port_attr *attr)
3404{
3405 if (rdma_core_cap_opa_port(device, port))
3406 return attr->phys_mtu;
3407 else
3408 return ib_mtu_enum_to_int(attr->max_mtu);
3409}
3410
50174a7f
EC
3411int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3412 int state);
3413int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3414 struct ifla_vf_info *info);
3415int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3416 struct ifla_vf_stats *stats);
bfcb3c5d
DG
3417int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3418 struct ifla_vf_guid *node_guid,
3419 struct ifla_vf_guid *port_guid);
50174a7f
EC
3420int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3421 int type);
3422
1da177e4
LT
3423int ib_query_pkey(struct ib_device *device,
3424 u8 port_num, u16 index, u16 *pkey);
3425
3426int ib_modify_device(struct ib_device *device,
3427 int device_modify_mask,
3428 struct ib_device_modify *device_modify);
3429
3430int ib_modify_port(struct ib_device *device,
3431 u8 port_num, int port_modify_mask,
3432 struct ib_port_modify *port_modify);
3433
5eb620c8 3434int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3435 u8 *port_num, u16 *index);
5eb620c8
YE
3436
3437int ib_find_pkey(struct ib_device *device,
3438 u8 port_num, u16 pkey, u16 *index);
3439
ed082d36
CH
3440enum ib_pd_flags {
3441 /*
3442 * Create a memory registration for all memory in the system and place
3443 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3444 * ULPs to avoid the overhead of dynamic MRs.
3445 *
3446 * This flag is generally considered unsafe and must only be used in
3447 * extremly trusted environments. Every use of it will log a warning
3448 * in the kernel log.
3449 */
3450 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3451};
1da177e4 3452
ed082d36
CH
3453struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3454 const char *caller);
c4367a26 3455
ed082d36 3456#define ib_alloc_pd(device, flags) \
e4496447 3457 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26
SR
3458
3459/**
3460 * ib_dealloc_pd_user - Deallocate kernel/user PD
3461 * @pd: The protection domain
3462 * @udata: Valid user data or NULL for kernel objects
3463 */
3464void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3465
3466/**
3467 * ib_dealloc_pd - Deallocate kernel PD
3468 * @pd: The protection domain
3469 *
3470 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3471 */
3472static inline void ib_dealloc_pd(struct ib_pd *pd)
3473{
3474 ib_dealloc_pd_user(pd, NULL);
3475}
1da177e4 3476
b090c4e3
GP
3477enum rdma_create_ah_flags {
3478 /* In a sleepable context */
3479 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3480};
3481
1da177e4 3482/**
0a18cfe4 3483 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3484 * @pd: The protection domain associated with the address handle.
3485 * @ah_attr: The attributes of the address vector.
b090c4e3 3486 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3487 *
3488 * The address handle is used to reference a local or global destination
3489 * in all UD QP post sends.
3490 */
b090c4e3
GP
3491struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3492 u32 flags);
1da177e4 3493
5cda6587
PP
3494/**
3495 * rdma_create_user_ah - Creates an address handle for the given address vector.
3496 * It resolves destination mac address for ah attribute of RoCE type.
3497 * @pd: The protection domain associated with the address handle.
3498 * @ah_attr: The attributes of the address vector.
3499 * @udata: pointer to user's input output buffer information need by
3500 * provider driver.
3501 *
3502 * It returns 0 on success and returns appropriate error code on error.
3503 * The address handle is used to reference a local or global destination
3504 * in all UD QP post sends.
3505 */
3506struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3507 struct rdma_ah_attr *ah_attr,
3508 struct ib_udata *udata);
850d8fd7
MS
3509/**
3510 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3511 * work completion.
3512 * @hdr: the L3 header to parse
3513 * @net_type: type of header to parse
3514 * @sgid: place to store source gid
3515 * @dgid: place to store destination gid
3516 */
3517int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3518 enum rdma_network_type net_type,
3519 union ib_gid *sgid, union ib_gid *dgid);
3520
3521/**
3522 * ib_get_rdma_header_version - Get the header version
3523 * @hdr: the L3 header to parse
3524 */
3525int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3526
4e00d694 3527/**
f6bdb142 3528 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3529 * work completion.
3530 * @device: Device on which the received message arrived.
3531 * @port_num: Port on which the received message arrived.
3532 * @wc: Work completion associated with the received message.
3533 * @grh: References the received global route header. This parameter is
3534 * ignored unless the work completion indicates that the GRH is valid.
3535 * @ah_attr: Returned attributes that can be used when creating an address
3536 * handle for replying to the message.
b7403217
PP
3537 * When ib_init_ah_attr_from_wc() returns success,
3538 * (a) for IB link layer it optionally contains a reference to SGID attribute
3539 * when GRH is present for IB link layer.
3540 * (b) for RoCE link layer it contains a reference to SGID attribute.
3541 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3542 * attributes which are initialized using ib_init_ah_attr_from_wc().
3543 *
4e00d694 3544 */
f6bdb142
PP
3545int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3546 const struct ib_wc *wc, const struct ib_grh *grh,
3547 struct rdma_ah_attr *ah_attr);
4e00d694 3548
513789ed
HR
3549/**
3550 * ib_create_ah_from_wc - Creates an address handle associated with the
3551 * sender of the specified work completion.
3552 * @pd: The protection domain associated with the address handle.
3553 * @wc: Work completion information associated with a received message.
3554 * @grh: References the received global route header. This parameter is
3555 * ignored unless the work completion indicates that the GRH is valid.
3556 * @port_num: The outbound port number to associate with the address.
3557 *
3558 * The address handle is used to reference a local or global destination
3559 * in all UD QP post sends.
3560 */
73cdaaee
IW
3561struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3562 const struct ib_grh *grh, u8 port_num);
513789ed 3563
1da177e4 3564/**
67b985b6 3565 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3566 * handle.
3567 * @ah: The address handle to modify.
3568 * @ah_attr: The new address vector attributes to associate with the
3569 * address handle.
3570 */
67b985b6 3571int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3572
3573/**
bfbfd661 3574 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3575 * handle.
3576 * @ah: The address handle to query.
3577 * @ah_attr: The address vector attributes associated with the address
3578 * handle.
3579 */
bfbfd661 3580int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3581
2553ba21
GP
3582enum rdma_destroy_ah_flags {
3583 /* In a sleepable context */
3584 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3585};
3586
1da177e4 3587/**
c4367a26 3588 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3589 * @ah: The address handle to destroy.
2553ba21 3590 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3591 * @udata: Valid user data or NULL for kernel objects
1da177e4 3592 */
c4367a26
SR
3593int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3594
3595/**
3596 * rdma_destroy_ah - Destroys an kernel address handle.
3597 * @ah: The address handle to destroy.
3598 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3599 *
3600 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3601 */
3602static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3603{
3604 return rdma_destroy_ah_user(ah, flags, NULL);
3605}
1da177e4 3606
b0810b03
JG
3607struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3608 struct ib_srq_init_attr *srq_init_attr,
3609 struct ib_usrq_object *uobject,
3610 struct ib_udata *udata);
3611static inline struct ib_srq *
3612ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3613{
3614 if (!pd->device->ops.create_srq)
3615 return ERR_PTR(-EOPNOTSUPP);
3616
3617 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3618}
d41fcc67
RD
3619
3620/**
3621 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3622 * @srq: The SRQ to modify.
3623 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3624 * the current values of selected SRQ attributes are returned.
3625 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3626 * are being modified.
3627 *
3628 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3629 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3630 * the number of receives queued drops below the limit.
3631 */
3632int ib_modify_srq(struct ib_srq *srq,
3633 struct ib_srq_attr *srq_attr,
3634 enum ib_srq_attr_mask srq_attr_mask);
3635
3636/**
3637 * ib_query_srq - Returns the attribute list and current values for the
3638 * specified SRQ.
3639 * @srq: The SRQ to query.
3640 * @srq_attr: The attributes of the specified SRQ.
3641 */
3642int ib_query_srq(struct ib_srq *srq,
3643 struct ib_srq_attr *srq_attr);
3644
3645/**
c4367a26
SR
3646 * ib_destroy_srq_user - Destroys the specified SRQ.
3647 * @srq: The SRQ to destroy.
3648 * @udata: Valid user data or NULL for kernel objects
3649 */
3650int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3651
3652/**
3653 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3654 * @srq: The SRQ to destroy.
c4367a26
SR
3655 *
3656 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3657 */
c4367a26
SR
3658static inline int ib_destroy_srq(struct ib_srq *srq)
3659{
3660 return ib_destroy_srq_user(srq, NULL);
3661}
d41fcc67
RD
3662
3663/**
3664 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3665 * @srq: The SRQ to post the work request on.
3666 * @recv_wr: A list of work requests to post on the receive queue.
3667 * @bad_recv_wr: On an immediate failure, this parameter will reference
3668 * the work request that failed to be posted on the QP.
3669 */
3670static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3671 const struct ib_recv_wr *recv_wr,
3672 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3673{
d34ac5cd 3674 const struct ib_recv_wr *dummy;
bb039a87 3675
3023a1e9
KH
3676 return srq->device->ops.post_srq_recv(srq, recv_wr,
3677 bad_recv_wr ? : &dummy);
d41fcc67
RD
3678}
3679
b72bfc96
JG
3680struct ib_qp *ib_create_qp(struct ib_pd *pd,
3681 struct ib_qp_init_attr *qp_init_attr);
1da177e4 3682
a512c2fb
PP
3683/**
3684 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3685 * @qp: The QP to modify.
3686 * @attr: On input, specifies the QP attributes to modify. On output,
3687 * the current values of selected QP attributes are returned.
3688 * @attr_mask: A bit-mask used to specify which attributes of the QP
3689 * are being modified.
3690 * @udata: pointer to user's input output buffer information
3691 * are being modified.
3692 * It returns 0 on success and returns appropriate error code on error.
3693 */
3694int ib_modify_qp_with_udata(struct ib_qp *qp,
3695 struct ib_qp_attr *attr,
3696 int attr_mask,
3697 struct ib_udata *udata);
3698
1da177e4
LT
3699/**
3700 * ib_modify_qp - Modifies the attributes for the specified QP and then
3701 * transitions the QP to the given state.
3702 * @qp: The QP to modify.
3703 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3704 * the current values of selected QP attributes are returned.
3705 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3706 * are being modified.
3707 */
3708int ib_modify_qp(struct ib_qp *qp,
3709 struct ib_qp_attr *qp_attr,
3710 int qp_attr_mask);
3711
3712/**
3713 * ib_query_qp - Returns the attribute list and current values for the
3714 * specified QP.
3715 * @qp: The QP to query.
3716 * @qp_attr: The attributes of the specified QP.
3717 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3718 * @qp_init_attr: Additional attributes of the selected QP.
3719 *
3720 * The qp_attr_mask may be used to limit the query to gathering only the
3721 * selected attributes.
3722 */
3723int ib_query_qp(struct ib_qp *qp,
3724 struct ib_qp_attr *qp_attr,
3725 int qp_attr_mask,
3726 struct ib_qp_init_attr *qp_init_attr);
3727
3728/**
3729 * ib_destroy_qp - Destroys the specified QP.
3730 * @qp: The QP to destroy.
c4367a26 3731 * @udata: Valid udata or NULL for kernel objects
1da177e4 3732 */
c4367a26
SR
3733int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3734
3735/**
3736 * ib_destroy_qp - Destroys the specified kernel QP.
3737 * @qp: The QP to destroy.
3738 *
3739 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3740 */
3741static inline int ib_destroy_qp(struct ib_qp *qp)
3742{
3743 return ib_destroy_qp_user(qp, NULL);
3744}
1da177e4 3745
d3d72d90 3746/**
0e0ec7e0
SH
3747 * ib_open_qp - Obtain a reference to an existing sharable QP.
3748 * @xrcd - XRC domain
3749 * @qp_open_attr: Attributes identifying the QP to open.
3750 *
3751 * Returns a reference to a sharable QP.
3752 */
3753struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3754 struct ib_qp_open_attr *qp_open_attr);
3755
3756/**
3757 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3758 * @qp: The QP handle to release
3759 *
0e0ec7e0
SH
3760 * The opened QP handle is released by the caller. The underlying
3761 * shared QP is not destroyed until all internal references are released.
d3d72d90 3762 */
0e0ec7e0 3763int ib_close_qp(struct ib_qp *qp);
d3d72d90 3764
1da177e4
LT
3765/**
3766 * ib_post_send - Posts a list of work requests to the send queue of
3767 * the specified QP.
3768 * @qp: The QP to post the work request on.
3769 * @send_wr: A list of work requests to post on the send queue.
3770 * @bad_send_wr: On an immediate failure, this parameter will reference
3771 * the work request that failed to be posted on the QP.
55464d46
BVA
3772 *
3773 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3774 * error is returned, the QP state shall not be affected,
3775 * ib_post_send() will return an immediate error after queueing any
3776 * earlier work requests in the list.
1da177e4
LT
3777 */
3778static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3779 const struct ib_send_wr *send_wr,
3780 const struct ib_send_wr **bad_send_wr)
1da177e4 3781{
d34ac5cd 3782 const struct ib_send_wr *dummy;
bb039a87 3783
3023a1e9 3784 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3785}
3786
3787/**
3788 * ib_post_recv - Posts a list of work requests to the receive queue of
3789 * the specified QP.
3790 * @qp: The QP to post the work request on.
3791 * @recv_wr: A list of work requests to post on the receive queue.
3792 * @bad_recv_wr: On an immediate failure, this parameter will reference
3793 * the work request that failed to be posted on the QP.
3794 */
3795static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3796 const struct ib_recv_wr *recv_wr,
3797 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3798{
d34ac5cd 3799 const struct ib_recv_wr *dummy;
bb039a87 3800
3023a1e9 3801 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3802}
3803
c4367a26
SR
3804struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3805 int nr_cqe, int comp_vector,
3806 enum ib_poll_context poll_ctx,
3807 const char *caller, struct ib_udata *udata);
3808
3809/**
3810 * ib_alloc_cq_user: Allocate kernel/user CQ
3811 * @dev: The IB device
3812 * @private: Private data attached to the CQE
3813 * @nr_cqe: Number of CQEs in the CQ
3814 * @comp_vector: Completion vector used for the IRQs
3815 * @poll_ctx: Context used for polling the CQ
3816 * @udata: Valid user data or NULL for kernel objects
3817 */
3818static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3819 void *private, int nr_cqe,
3820 int comp_vector,
3821 enum ib_poll_context poll_ctx,
3822 struct ib_udata *udata)
3823{
3824 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3825 KBUILD_MODNAME, udata);
3826}
3827
3828/**
3829 * ib_alloc_cq: Allocate kernel CQ
3830 * @dev: The IB device
3831 * @private: Private data attached to the CQE
3832 * @nr_cqe: Number of CQEs in the CQ
3833 * @comp_vector: Completion vector used for the IRQs
3834 * @poll_ctx: Context used for polling the CQ
3835 *
3836 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3837 */
3838static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3839 int nr_cqe, int comp_vector,
3840 enum ib_poll_context poll_ctx)
3841{
3842 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3843 NULL);
3844}
3845
20cf4e02
CL
3846struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3847 int nr_cqe, enum ib_poll_context poll_ctx,
3848 const char *caller);
3849
3850/**
3851 * ib_alloc_cq_any: Allocate kernel CQ
3852 * @dev: The IB device
3853 * @private: Private data attached to the CQE
3854 * @nr_cqe: Number of CQEs in the CQ
3855 * @poll_ctx: Context used for polling the CQ
3856 */
3857static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3858 void *private, int nr_cqe,
3859 enum ib_poll_context poll_ctx)
3860{
3861 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3862 KBUILD_MODNAME);
3863}
3864
c4367a26
SR
3865/**
3866 * ib_free_cq_user - Free kernel/user CQ
3867 * @cq: The CQ to free
3868 * @udata: Valid user data or NULL for kernel objects
3446cbd2
YF
3869 *
3870 * NOTE: This function shouldn't be called on shared CQs.
c4367a26
SR
3871 */
3872void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3873
3874/**
3875 * ib_free_cq - Free kernel CQ
3876 * @cq: The CQ to free
3877 *
3878 * NOTE: for user cq use ib_free_cq_user with valid udata!
3879 */
3880static inline void ib_free_cq(struct ib_cq *cq)
3881{
3882 ib_free_cq_user(cq, NULL);
3883}
f66c8ba4 3884
14d3a3b2
CH
3885int ib_process_cq_direct(struct ib_cq *cq, int budget);
3886
1da177e4
LT
3887/**
3888 * ib_create_cq - Creates a CQ on the specified device.
3889 * @device: The device on which to create the CQ.
3890 * @comp_handler: A user-specified callback that is invoked when a
3891 * completion event occurs on the CQ.
3892 * @event_handler: A user-specified callback that is invoked when an
3893 * asynchronous event not associated with a completion occurs on the CQ.
3894 * @cq_context: Context associated with the CQ returned to the user via
3895 * the associated completion and event handlers.
8e37210b 3896 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3897 *
3898 * Users can examine the cq structure to determine the actual CQ size.
3899 */
7350cdd0
BP
3900struct ib_cq *__ib_create_cq(struct ib_device *device,
3901 ib_comp_handler comp_handler,
3902 void (*event_handler)(struct ib_event *, void *),
3903 void *cq_context,
3904 const struct ib_cq_init_attr *cq_attr,
3905 const char *caller);
3906#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3907 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3908
3909/**
3910 * ib_resize_cq - Modifies the capacity of the CQ.
3911 * @cq: The CQ to resize.
3912 * @cqe: The minimum size of the CQ.
3913 *
3914 * Users can examine the cq structure to determine the actual CQ size.
3915 */
3916int ib_resize_cq(struct ib_cq *cq, int cqe);
3917
2dd57162 3918/**
4190b4e9 3919 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3920 * @cq: The CQ to modify.
3921 * @cq_count: number of CQEs that will trigger an event
3922 * @cq_period: max period of time in usec before triggering an event
3923 *
3924 */
4190b4e9 3925int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3926
1da177e4 3927/**
c4367a26 3928 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3929 * @cq: The CQ to destroy.
c4367a26 3930 * @udata: Valid user data or NULL for kernel objects
1da177e4 3931 */
c4367a26
SR
3932int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3933
3934/**
3935 * ib_destroy_cq - Destroys the specified kernel CQ.
3936 * @cq: The CQ to destroy.
3937 *
3938 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3939 */
890ac8d9 3940static inline void ib_destroy_cq(struct ib_cq *cq)
c4367a26 3941{
890ac8d9 3942 ib_destroy_cq_user(cq, NULL);
c4367a26 3943}
1da177e4
LT
3944
3945/**
3946 * ib_poll_cq - poll a CQ for completion(s)
3947 * @cq:the CQ being polled
3948 * @num_entries:maximum number of completions to return
3949 * @wc:array of at least @num_entries &struct ib_wc where completions
3950 * will be returned
3951 *
3952 * Poll a CQ for (possibly multiple) completions. If the return value
3953 * is < 0, an error occurred. If the return value is >= 0, it is the
3954 * number of completions returned. If the return value is
3955 * non-negative and < num_entries, then the CQ was emptied.
3956 */
3957static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3958 struct ib_wc *wc)
3959{
3023a1e9 3960 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3961}
3962
1da177e4
LT
3963/**
3964 * ib_req_notify_cq - Request completion notification on a CQ.
3965 * @cq: The CQ to generate an event for.
ed23a727
RD
3966 * @flags:
3967 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3968 * to request an event on the next solicited event or next work
3969 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3970 * may also be |ed in to request a hint about missed events, as
3971 * described below.
3972 *
3973 * Return Value:
3974 * < 0 means an error occurred while requesting notification
3975 * == 0 means notification was requested successfully, and if
3976 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3977 * were missed and it is safe to wait for another event. In
3978 * this case is it guaranteed that any work completions added
3979 * to the CQ since the last CQ poll will trigger a completion
3980 * notification event.
3981 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3982 * in. It means that the consumer must poll the CQ again to
3983 * make sure it is empty to avoid missing an event because of a
3984 * race between requesting notification and an entry being
3985 * added to the CQ. This return value means it is possible
3986 * (but not guaranteed) that a work completion has been added
3987 * to the CQ since the last poll without triggering a
3988 * completion notification event.
1da177e4
LT
3989 */
3990static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3991 enum ib_cq_notify_flags flags)
1da177e4 3992{
3023a1e9 3993 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
3994}
3995
c7ff819a
YF
3996struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3997 int comp_vector_hint,
3998 enum ib_poll_context poll_ctx);
3999
4000void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4001
1da177e4
LT
4002/**
4003 * ib_req_ncomp_notif - Request completion notification when there are
4004 * at least the specified number of unreaped completions on the CQ.
4005 * @cq: The CQ to generate an event for.
4006 * @wc_cnt: The number of unreaped completions that should be on the
4007 * CQ before an event is generated.
4008 */
4009static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
4010{
3023a1e9
KH
4011 return cq->device->ops.req_ncomp_notif ?
4012 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
4013 -ENOSYS;
4014}
4015
9b513090
RC
4016/**
4017 * ib_dma_mapping_error - check a DMA addr for error
4018 * @dev: The device for which the dma_addr was created
4019 * @dma_addr: The DMA address to check
4020 */
4021static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4022{
0957c29f 4023 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
4024}
4025
4026/**
4027 * ib_dma_map_single - Map a kernel virtual address to DMA address
4028 * @dev: The device for which the dma_addr is to be created
4029 * @cpu_addr: The kernel virtual address
4030 * @size: The size of the region in bytes
4031 * @direction: The direction of the DMA
4032 */
4033static inline u64 ib_dma_map_single(struct ib_device *dev,
4034 void *cpu_addr, size_t size,
4035 enum dma_data_direction direction)
4036{
0957c29f 4037 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
4038}
4039
4040/**
4041 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4042 * @dev: The device for which the DMA address was created
4043 * @addr: The DMA address
4044 * @size: The size of the region in bytes
4045 * @direction: The direction of the DMA
4046 */
4047static inline void ib_dma_unmap_single(struct ib_device *dev,
4048 u64 addr, size_t size,
4049 enum dma_data_direction direction)
4050{
0957c29f 4051 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
4052}
4053
9b513090
RC
4054/**
4055 * ib_dma_map_page - Map a physical page to DMA address
4056 * @dev: The device for which the dma_addr is to be created
4057 * @page: The page to be mapped
4058 * @offset: The offset within the page
4059 * @size: The size of the region in bytes
4060 * @direction: The direction of the DMA
4061 */
4062static inline u64 ib_dma_map_page(struct ib_device *dev,
4063 struct page *page,
4064 unsigned long offset,
4065 size_t size,
4066 enum dma_data_direction direction)
4067{
0957c29f 4068 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
4069}
4070
4071/**
4072 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4073 * @dev: The device for which the DMA address was created
4074 * @addr: The DMA address
4075 * @size: The size of the region in bytes
4076 * @direction: The direction of the DMA
4077 */
4078static inline void ib_dma_unmap_page(struct ib_device *dev,
4079 u64 addr, size_t size,
4080 enum dma_data_direction direction)
4081{
0957c29f 4082 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
4083}
4084
4085/**
4086 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4087 * @dev: The device for which the DMA addresses are to be created
4088 * @sg: The array of scatter/gather entries
4089 * @nents: The number of scatter/gather entries
4090 * @direction: The direction of the DMA
4091 */
4092static inline int ib_dma_map_sg(struct ib_device *dev,
4093 struct scatterlist *sg, int nents,
4094 enum dma_data_direction direction)
4095{
0957c29f 4096 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4097}
4098
4099/**
4100 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4101 * @dev: The device for which the DMA addresses were created
4102 * @sg: The array of scatter/gather entries
4103 * @nents: The number of scatter/gather entries
4104 * @direction: The direction of the DMA
4105 */
4106static inline void ib_dma_unmap_sg(struct ib_device *dev,
4107 struct scatterlist *sg, int nents,
4108 enum dma_data_direction direction)
4109{
0957c29f 4110 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4111}
4112
cb9fbc5c
AK
4113static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4114 struct scatterlist *sg, int nents,
4115 enum dma_data_direction direction,
00085f1e 4116 unsigned long dma_attrs)
cb9fbc5c 4117{
0957c29f
BVA
4118 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4119 dma_attrs);
cb9fbc5c
AK
4120}
4121
4122static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4123 struct scatterlist *sg, int nents,
4124 enum dma_data_direction direction,
00085f1e 4125 unsigned long dma_attrs)
cb9fbc5c 4126{
0957c29f 4127 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 4128}
9b513090 4129
0b5cb330
BVA
4130/**
4131 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4132 * @dev: The device to query
4133 *
4134 * The returned value represents a size in bytes.
4135 */
4136static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4137{
ecdfdfdb 4138 return dma_get_max_seg_size(dev->dma_device);
0b5cb330
BVA
4139}
4140
9b513090
RC
4141/**
4142 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4143 * @dev: The device for which the DMA address was created
4144 * @addr: The DMA address
4145 * @size: The size of the region in bytes
4146 * @dir: The direction of the DMA
4147 */
4148static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4149 u64 addr,
4150 size_t size,
4151 enum dma_data_direction dir)
4152{
0957c29f 4153 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
4154}
4155
4156/**
4157 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4158 * @dev: The device for which the DMA address was created
4159 * @addr: The DMA address
4160 * @size: The size of the region in bytes
4161 * @dir: The direction of the DMA
4162 */
4163static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4164 u64 addr,
4165 size_t size,
4166 enum dma_data_direction dir)
4167{
0957c29f 4168 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4169}
4170
4171/**
4172 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4173 * @dev: The device for which the DMA address is requested
4174 * @size: The size of the region to allocate in bytes
4175 * @dma_handle: A pointer for returning the DMA address of the region
4176 * @flag: memory allocator flags
4177 */
4178static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4179 size_t size,
d43dbacf 4180 dma_addr_t *dma_handle,
9b513090
RC
4181 gfp_t flag)
4182{
0957c29f 4183 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
4184}
4185
4186/**
4187 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4188 * @dev: The device for which the DMA addresses were allocated
4189 * @size: The size of the region
4190 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4191 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4192 */
4193static inline void ib_dma_free_coherent(struct ib_device *dev,
4194 size_t size, void *cpu_addr,
d43dbacf 4195 dma_addr_t dma_handle)
9b513090 4196{
0957c29f 4197 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
4198}
4199
33006bd4
MS
4200/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4201 * space. This function should be called when 'current' is the owning MM.
4202 */
4203struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4204 u64 virt_addr, int mr_access_flags);
4205
87d8069f
MS
4206/* ib_advise_mr - give an advice about an address range in a memory region */
4207int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4208 u32 flags, struct ib_sge *sg_list, u32 num_sge);
1da177e4 4209/**
c4367a26
SR
4210 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4211 * HCA translation table.
4212 * @mr: The memory region to deregister.
4213 * @udata: Valid user data or NULL for kernel object
4214 *
4215 * This function can fail, if the memory region has memory windows bound to it.
4216 */
4217int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4218
4219/**
4220 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4221 * HCA translation table.
4222 * @mr: The memory region to deregister.
7083e42e
SM
4223 *
4224 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4225 *
4226 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4227 */
c4367a26
SR
4228static inline int ib_dereg_mr(struct ib_mr *mr)
4229{
4230 return ib_dereg_mr_user(mr, NULL);
4231}
4232
b64b74b1
GP
4233struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4234 u32 max_num_sg);
00f7ec36 4235
26bc7eae
IR
4236struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4237 u32 max_num_data_sg,
4238 u32 max_num_meta_sg);
4239
00f7ec36
SW
4240/**
4241 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4242 * R_Key and L_Key.
4243 * @mr - struct ib_mr pointer to be updated.
4244 * @newkey - new key to be used.
4245 */
4246static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4247{
4248 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4249 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4250}
4251
7083e42e
SM
4252/**
4253 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4254 * for calculating a new rkey for type 2 memory windows.
4255 * @rkey - the rkey to increment.
4256 */
4257static inline u32 ib_inc_rkey(u32 rkey)
4258{
4259 const u32 mask = 0x000000ff;
4260 return ((rkey + 1) & mask) | (rkey & ~mask);
4261}
4262
1da177e4
LT
4263/**
4264 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4265 * @qp: QP to attach to the multicast group. The QP must be type
4266 * IB_QPT_UD.
4267 * @gid: Multicast group GID.
4268 * @lid: Multicast group LID in host byte order.
4269 *
4270 * In order to send and receive multicast packets, subnet
4271 * administration must have created the multicast group and configured
4272 * the fabric appropriately. The port associated with the specified
4273 * QP must also be a member of the multicast group.
4274 */
4275int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4276
4277/**
4278 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4279 * @qp: QP to detach from the multicast group.
4280 * @gid: Multicast group GID.
4281 * @lid: Multicast group LID in host byte order.
4282 */
4283int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4284
b73efcb2
MG
4285struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4286 struct inode *inode, struct ib_udata *udata);
4287int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4288
1c636f80
EC
4289static inline int ib_check_mr_access(int flags)
4290{
4291 /*
4292 * Local write permission is required if remote write or
4293 * remote atomic permission is also requested.
4294 */
4295 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4296 !(flags & IB_ACCESS_LOCAL_WRITE))
4297 return -EINVAL;
4298
ca95c141
MG
4299 if (flags & ~IB_ACCESS_SUPPORTED)
4300 return -EINVAL;
4301
1c636f80
EC
4302 return 0;
4303}
4304
08bb558a
JM
4305static inline bool ib_access_writable(int access_flags)
4306{
4307 /*
4308 * We have writable memory backing the MR if any of the following
4309 * access flags are set. "Local write" and "remote write" obviously
4310 * require write access. "Remote atomic" can do things like fetch and
4311 * add, which will modify memory, and "MW bind" can change permissions
4312 * by binding a window.
4313 */
4314 return access_flags &
4315 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4316 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4317}
4318
1b01d335
SG
4319/**
4320 * ib_check_mr_status: lightweight check of MR status.
4321 * This routine may provide status checks on a selected
4322 * ib_mr. first use is for signature status check.
4323 *
4324 * @mr: A memory region.
4325 * @check_mask: Bitmask of which checks to perform from
4326 * ib_mr_status_check enumeration.
4327 * @mr_status: The container of relevant status checks.
4328 * failed checks will be indicated in the status bitmask
4329 * and the relevant info shall be in the error item.
4330 */
4331int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4332 struct ib_mr_status *mr_status);
4333
d79af724
JG
4334/**
4335 * ib_device_try_get: Hold a registration lock
4336 * device: The device to lock
4337 *
4338 * A device under an active registration lock cannot become unregistered. It
4339 * is only possible to obtain a registration lock on a device that is fully
4340 * registered, otherwise this function returns false.
4341 *
4342 * The registration lock is only necessary for actions which require the
4343 * device to still be registered. Uses that only require the device pointer to
4344 * be valid should use get_device(&ibdev->dev) to hold the memory.
4345 *
4346 */
4347static inline bool ib_device_try_get(struct ib_device *dev)
4348{
4349 return refcount_inc_not_zero(&dev->refcount);
4350}
4351
4352void ib_device_put(struct ib_device *device);
324e227e
JG
4353struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4354 enum rdma_driver_id driver_id);
4355struct ib_device *ib_device_get_by_name(const char *name,
4356 enum rdma_driver_id driver_id);
9268f72d
YK
4357struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4358 u16 pkey, const union ib_gid *gid,
4359 const struct sockaddr *addr);
c2261dd7
JG
4360int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4361 unsigned int port);
4362struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4363
5fd251c8
YH
4364struct ib_wq *ib_create_wq(struct ib_pd *pd,
4365 struct ib_wq_init_attr *init_attr);
c4367a26 4366int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
5fd251c8
YH
4367int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4368 u32 wq_attr_mask);
6d39786b 4369int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 4370
ff2ba993 4371int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4372 unsigned int *sg_offset, unsigned int page_size);
2cdfcdd8
MG
4373int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4374 int data_sg_nents, unsigned int *data_sg_offset,
4375 struct scatterlist *meta_sg, int meta_sg_nents,
4376 unsigned int *meta_sg_offset, unsigned int page_size);
4c67e2bf
SG
4377
4378static inline int
ff2ba993 4379ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4380 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4381{
4382 int n;
4383
ff2ba993 4384 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4385 mr->iova = 0;
4386
4387 return n;
4388}
4389
ff2ba993 4390int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4391 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4392
765d6774
SW
4393void ib_drain_rq(struct ib_qp *qp);
4394void ib_drain_sq(struct ib_qp *qp);
4395void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4396
d4186194 4397int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4398
4399static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4400{
44c58487
DC
4401 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4402 return attr->roce.dmac;
4403 return NULL;
2224c47a
DC
4404}
4405
64b4646e 4406static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4407{
44c58487 4408 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4409 attr->ib.dlid = (u16)dlid;
4410 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4411 attr->opa.dlid = dlid;
2224c47a
DC
4412}
4413
64b4646e 4414static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4415{
44c58487
DC
4416 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4417 return attr->ib.dlid;
64b4646e
DC
4418 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4419 return attr->opa.dlid;
44c58487 4420 return 0;
2224c47a
DC
4421}
4422
4423static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4424{
4425 attr->sl = sl;
4426}
4427
4428static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4429{
4430 return attr->sl;
4431}
4432
4433static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4434 u8 src_path_bits)
4435{
44c58487
DC
4436 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4437 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4438 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4439 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4440}
4441
4442static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4443{
44c58487
DC
4444 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4445 return attr->ib.src_path_bits;
64b4646e
DC
4446 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4447 return attr->opa.src_path_bits;
44c58487 4448 return 0;
2224c47a
DC
4449}
4450
d98bb7f7
DH
4451static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4452 bool make_grd)
4453{
4454 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4455 attr->opa.make_grd = make_grd;
4456}
4457
4458static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4459{
4460 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4461 return attr->opa.make_grd;
4462 return false;
4463}
4464
2224c47a
DC
4465static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4466{
4467 attr->port_num = port_num;
4468}
4469
4470static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4471{
4472 return attr->port_num;
4473}
4474
4475static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4476 u8 static_rate)
4477{
4478 attr->static_rate = static_rate;
4479}
4480
4481static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4482{
4483 return attr->static_rate;
4484}
4485
4486static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4487 enum ib_ah_flags flag)
4488{
4489 attr->ah_flags = flag;
4490}
4491
4492static inline enum ib_ah_flags
4493 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4494{
4495 return attr->ah_flags;
4496}
4497
4498static inline const struct ib_global_route
4499 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4500{
4501 return &attr->grh;
4502}
4503
4504/*To retrieve and modify the grh */
4505static inline struct ib_global_route
4506 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4507{
4508 return &attr->grh;
4509}
4510
4511static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4512{
4513 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4514
4515 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4516}
4517
4518static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4519 __be64 prefix)
4520{
4521 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4522
4523 grh->dgid.global.subnet_prefix = prefix;
4524}
4525
4526static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4527 __be64 if_id)
4528{
4529 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4530
4531 grh->dgid.global.interface_id = if_id;
4532}
4533
4534static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4535 union ib_gid *dgid, u32 flow_label,
4536 u8 sgid_index, u8 hop_limit,
4537 u8 traffic_class)
4538{
4539 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4540
4541 attr->ah_flags = IB_AH_GRH;
4542 if (dgid)
4543 grh->dgid = *dgid;
4544 grh->flow_label = flow_label;
4545 grh->sgid_index = sgid_index;
4546 grh->hop_limit = hop_limit;
4547 grh->traffic_class = traffic_class;
8d9ec9ad 4548 grh->sgid_attr = NULL;
2224c47a 4549}
44c58487 4550
8d9ec9ad
JG
4551void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4552void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4553 u32 flow_label, u8 hop_limit, u8 traffic_class,
4554 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4555void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4556 const struct rdma_ah_attr *src);
4557void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4558 const struct rdma_ah_attr *new);
4559void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4560
87daac68
DH
4561/**
4562 * rdma_ah_find_type - Return address handle type.
4563 *
4564 * @dev: Device to be checked
4565 * @port_num: Port number
4566 */
44c58487 4567static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4568 u8 port_num)
44c58487 4569{
a6532e71 4570 if (rdma_protocol_roce(dev, port_num))
44c58487 4571 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4572 if (rdma_protocol_ib(dev, port_num)) {
4573 if (rdma_cap_opa_ah(dev, port_num))
4574 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4575 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4576 }
4577
4578 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4579}
7db20ecd 4580
62ede777
HD
4581/**
4582 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4583 * In the current implementation the only way to get
4584 * get the 32bit lid is from other sources for OPA.
4585 * For IB, lids will always be 16bits so cast the
4586 * value accordingly.
4587 *
4588 * @lid: A 32bit LID
4589 */
4590static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4591{
62ede777
HD
4592 WARN_ON_ONCE(lid & 0xFFFF0000);
4593 return (u16)lid;
7db20ecd
HD
4594}
4595
62ede777
HD
4596/**
4597 * ib_lid_be16 - Return lid in 16bit BE encoding.
4598 *
4599 * @lid: A 32bit LID
4600 */
4601static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4602{
62ede777
HD
4603 WARN_ON_ONCE(lid & 0xFFFF0000);
4604 return cpu_to_be16((u16)lid);
7db20ecd 4605}
32043830 4606
c66cd353
SG
4607/**
4608 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4609 * vector
4610 * @device: the rdma device
4611 * @comp_vector: index of completion vector
4612 *
4613 * Returns NULL on failure, otherwise a corresponding cpu map of the
4614 * completion vector (returns all-cpus map if the device driver doesn't
4615 * implement get_vector_affinity).
4616 */
4617static inline const struct cpumask *
4618ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4619{
4620 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4621 !device->ops.get_vector_affinity)
c66cd353
SG
4622 return NULL;
4623
3023a1e9 4624 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4625
4626}
4627
32f69e4b
DJ
4628/**
4629 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4630 * and add their gids, as needed, to the relevant RoCE devices.
4631 *
4632 * @device: the rdma device
4633 */
4634void rdma_roce_rescan_device(struct ib_device *ibdev);
4635
8313c10f 4636struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4637
15a1b4be 4638int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4639
4640struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4641 enum rdma_netdev_t type, const char *name,
4642 unsigned char name_assign_type,
4643 void (*setup)(struct net_device *));
5d6b0cb3
DD
4644
4645int rdma_init_netdev(struct ib_device *device, u8 port_num,
4646 enum rdma_netdev_t type, const char *name,
4647 unsigned char name_assign_type,
4648 void (*setup)(struct net_device *),
4649 struct net_device *netdev);
4650
d4122f5a
PP
4651/**
4652 * rdma_set_device_sysfs_group - Set device attributes group to have
4653 * driver specific sysfs entries at
4654 * for infiniband class.
4655 *
4656 * @device: device pointer for which attributes to be created
4657 * @group: Pointer to group which should be added when device
4658 * is registered with sysfs.
4659 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4660 * group per device to have sysfs attributes.
4661 *
4662 * NOTE: New drivers should not make use of this API; instead new device
4663 * parameter should be exposed via netlink command. This API and mechanism
4664 * exist only for existing drivers.
4665 */
4666static inline void
4667rdma_set_device_sysfs_group(struct ib_device *dev,
4668 const struct attribute_group *group)
4669{
4670 dev->groups[1] = group;
4671}
4672
54747231
PP
4673/**
4674 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4675 *
4676 * @device: device pointer for which ib_device pointer to retrieve
4677 *
4678 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4679 *
4680 */
4681static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4682{
cebe556b
PP
4683 struct ib_core_device *coredev =
4684 container_of(device, struct ib_core_device, dev);
4685
4686 return coredev->owner;
54747231
PP
4687}
4688
4689/**
4690 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4691 * ib_device holder structure from device pointer.
4692 *
4693 * NOTE: New drivers should not make use of this API; This API is only for
4694 * existing drivers who have exposed sysfs entries using
4695 * rdma_set_device_sysfs_group().
4696 */
4697#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4698 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4699
4700bool rdma_dev_access_netns(const struct ib_device *device,
4701 const struct net *net);
d5665a21
MZ
4702
4703#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
074bf2c2 4704#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
d5665a21
MZ
4705#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4706
4707/**
4708 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4709 * on the flow_label
4710 *
4711 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4712 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4713 * convention.
4714 */
4715static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4716{
4717 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4718
4719 fl_low ^= fl_high >> 14;
4720 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4721}
4722
4723/**
4724 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4725 * local and remote qpn values
4726 *
4727 * This function folded the multiplication results of two qpns, 24 bit each,
4728 * fields, and converts it to a 20 bit results.
4729 *
4730 * This function will create symmetric flow_label value based on the local
4731 * and remote qpn values. this will allow both the requester and responder
4732 * to calculate the same flow_label for a given connection.
4733 *
4734 * This helper function should be used by driver in case the upper layer
4735 * provide a zero flow_label value. This is to improve entropy of RDMA
4736 * traffic in the network.
4737 */
4738static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4739{
4740 u64 v = (u64)lqpn * rqpn;
4741
4742 v ^= v >> 20;
4743 v ^= v >> 40;
4744
4745 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4746}
1da177e4 4747#endif /* IB_VERBS_H */