]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/rdma/ib_verbs.h
IB/cm: Remove the usage of smac and vid of qp_attr and cm_av
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
dd5f03be 52#include <uapi/linux/if_ether.h>
e2773c06 53
60063497 54#include <linux/atomic.h>
882214e2 55#include <linux/mmu_notifier.h>
e2773c06 56#include <asm/uaccess.h>
1da177e4 57
f0626710
TH
58extern struct workqueue_struct *ib_wq;
59
1da177e4
LT
60union ib_gid {
61 u8 raw[16];
62 struct {
97f52eb4
SH
63 __be64 subnet_prefix;
64 __be64 interface_id;
1da177e4
LT
65 } global;
66};
67
e26be1bf
MS
68extern union ib_gid zgid;
69
03db3a2d
MB
70struct ib_gid_attr {
71 struct net_device *ndev;
72};
73
07ebafba
TT
74enum rdma_node_type {
75 /* IB values map to NodeInfo:NodeType. */
76 RDMA_NODE_IB_CA = 1,
77 RDMA_NODE_IB_SWITCH,
78 RDMA_NODE_IB_ROUTER,
180771a3
UM
79 RDMA_NODE_RNIC,
80 RDMA_NODE_USNIC,
5db5765e 81 RDMA_NODE_USNIC_UDP,
1da177e4
LT
82};
83
07ebafba
TT
84enum rdma_transport_type {
85 RDMA_TRANSPORT_IB,
180771a3 86 RDMA_TRANSPORT_IWARP,
248567f7
UM
87 RDMA_TRANSPORT_USNIC,
88 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
89};
90
6b90a6d6
MW
91enum rdma_protocol_type {
92 RDMA_PROTOCOL_IB,
93 RDMA_PROTOCOL_IBOE,
94 RDMA_PROTOCOL_IWARP,
95 RDMA_PROTOCOL_USNIC_UDP
96};
97
8385fd84
RD
98__attribute_const__ enum rdma_transport_type
99rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 100
a3f5adaf
EC
101enum rdma_link_layer {
102 IB_LINK_LAYER_UNSPECIFIED,
103 IB_LINK_LAYER_INFINIBAND,
104 IB_LINK_LAYER_ETHERNET,
105};
106
1da177e4
LT
107enum ib_device_cap_flags {
108 IB_DEVICE_RESIZE_MAX_WR = 1,
109 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
110 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
111 IB_DEVICE_RAW_MULTI = (1<<3),
112 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
113 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
114 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
115 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
116 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
117 IB_DEVICE_INIT_TYPE = (1<<9),
118 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
119 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
120 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
121 IB_DEVICE_SRQ_RESIZE = (1<<13),
122 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 123 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 124 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
125 IB_DEVICE_MEM_WINDOW = (1<<17),
126 /*
127 * Devices should set IB_DEVICE_UD_IP_SUM if they support
128 * insertion of UDP and TCP checksum on outgoing UD IPoIB
129 * messages and can verify the validity of checksum for
130 * incoming messages. Setting this flag implies that the
131 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
132 */
133 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 134 IB_DEVICE_UD_TSO = (1<<19),
59991f94 135 IB_DEVICE_XRC = (1<<20),
00f7ec36 136 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 137 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 138 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 139 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
470a5535
BW
140 IB_DEVICE_RC_IP_CSUM = (1<<25),
141 IB_DEVICE_RAW_IP_CSUM = (1<<26),
1b01d335 142 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
143 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
144 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
145};
146
147enum ib_signature_prot_cap {
148 IB_PROT_T10DIF_TYPE_1 = 1,
149 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
150 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
151};
152
153enum ib_signature_guard_cap {
154 IB_GUARD_T10DIF_CRC = 1,
155 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
156};
157
158enum ib_atomic_cap {
159 IB_ATOMIC_NONE,
160 IB_ATOMIC_HCA,
161 IB_ATOMIC_GLOB
162};
163
860f10a7
SG
164enum ib_odp_general_cap_bits {
165 IB_ODP_SUPPORT = 1 << 0,
166};
167
168enum ib_odp_transport_cap_bits {
169 IB_ODP_SUPPORT_SEND = 1 << 0,
170 IB_ODP_SUPPORT_RECV = 1 << 1,
171 IB_ODP_SUPPORT_WRITE = 1 << 2,
172 IB_ODP_SUPPORT_READ = 1 << 3,
173 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
174};
175
176struct ib_odp_caps {
177 uint64_t general_caps;
178 struct {
179 uint32_t rc_odp_caps;
180 uint32_t uc_odp_caps;
181 uint32_t ud_odp_caps;
182 } per_transport_caps;
183};
184
b9926b92
MB
185enum ib_cq_creation_flags {
186 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
187};
188
bcf4c1ea
MB
189struct ib_cq_init_attr {
190 unsigned int cqe;
191 int comp_vector;
192 u32 flags;
193};
194
1da177e4
LT
195struct ib_device_attr {
196 u64 fw_ver;
97f52eb4 197 __be64 sys_image_guid;
1da177e4
LT
198 u64 max_mr_size;
199 u64 page_size_cap;
200 u32 vendor_id;
201 u32 vendor_part_id;
202 u32 hw_ver;
203 int max_qp;
204 int max_qp_wr;
205 int device_cap_flags;
206 int max_sge;
207 int max_sge_rd;
208 int max_cq;
209 int max_cqe;
210 int max_mr;
211 int max_pd;
212 int max_qp_rd_atom;
213 int max_ee_rd_atom;
214 int max_res_rd_atom;
215 int max_qp_init_rd_atom;
216 int max_ee_init_rd_atom;
217 enum ib_atomic_cap atomic_cap;
5e80ba8f 218 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
219 int max_ee;
220 int max_rdd;
221 int max_mw;
222 int max_raw_ipv6_qp;
223 int max_raw_ethy_qp;
224 int max_mcast_grp;
225 int max_mcast_qp_attach;
226 int max_total_mcast_qp_attach;
227 int max_ah;
228 int max_fmr;
229 int max_map_per_fmr;
230 int max_srq;
231 int max_srq_wr;
232 int max_srq_sge;
00f7ec36 233 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
234 u16 max_pkeys;
235 u8 local_ca_ack_delay;
1b01d335
SG
236 int sig_prot_cap;
237 int sig_guard_cap;
860f10a7 238 struct ib_odp_caps odp_caps;
24306dc6
MB
239 uint64_t timestamp_mask;
240 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
241};
242
243enum ib_mtu {
244 IB_MTU_256 = 1,
245 IB_MTU_512 = 2,
246 IB_MTU_1024 = 3,
247 IB_MTU_2048 = 4,
248 IB_MTU_4096 = 5
249};
250
251static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
252{
253 switch (mtu) {
254 case IB_MTU_256: return 256;
255 case IB_MTU_512: return 512;
256 case IB_MTU_1024: return 1024;
257 case IB_MTU_2048: return 2048;
258 case IB_MTU_4096: return 4096;
259 default: return -1;
260 }
261}
262
263enum ib_port_state {
264 IB_PORT_NOP = 0,
265 IB_PORT_DOWN = 1,
266 IB_PORT_INIT = 2,
267 IB_PORT_ARMED = 3,
268 IB_PORT_ACTIVE = 4,
269 IB_PORT_ACTIVE_DEFER = 5
270};
271
272enum ib_port_cap_flags {
273 IB_PORT_SM = 1 << 1,
274 IB_PORT_NOTICE_SUP = 1 << 2,
275 IB_PORT_TRAP_SUP = 1 << 3,
276 IB_PORT_OPT_IPD_SUP = 1 << 4,
277 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
278 IB_PORT_SL_MAP_SUP = 1 << 6,
279 IB_PORT_MKEY_NVRAM = 1 << 7,
280 IB_PORT_PKEY_NVRAM = 1 << 8,
281 IB_PORT_LED_INFO_SUP = 1 << 9,
282 IB_PORT_SM_DISABLED = 1 << 10,
283 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
284 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 285 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
286 IB_PORT_CM_SUP = 1 << 16,
287 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
288 IB_PORT_REINIT_SUP = 1 << 18,
289 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
290 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
291 IB_PORT_DR_NOTICE_SUP = 1 << 21,
292 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
293 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
294 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 295 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 296 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
297};
298
299enum ib_port_width {
300 IB_WIDTH_1X = 1,
301 IB_WIDTH_4X = 2,
302 IB_WIDTH_8X = 4,
303 IB_WIDTH_12X = 8
304};
305
306static inline int ib_width_enum_to_int(enum ib_port_width width)
307{
308 switch (width) {
309 case IB_WIDTH_1X: return 1;
310 case IB_WIDTH_4X: return 4;
311 case IB_WIDTH_8X: return 8;
312 case IB_WIDTH_12X: return 12;
313 default: return -1;
314 }
315}
316
2e96691c
OG
317enum ib_port_speed {
318 IB_SPEED_SDR = 1,
319 IB_SPEED_DDR = 2,
320 IB_SPEED_QDR = 4,
321 IB_SPEED_FDR10 = 8,
322 IB_SPEED_FDR = 16,
323 IB_SPEED_EDR = 32
324};
325
7f624d02
SW
326struct ib_protocol_stats {
327 /* TBD... */
328};
329
330struct iw_protocol_stats {
331 u64 ipInReceives;
332 u64 ipInHdrErrors;
333 u64 ipInTooBigErrors;
334 u64 ipInNoRoutes;
335 u64 ipInAddrErrors;
336 u64 ipInUnknownProtos;
337 u64 ipInTruncatedPkts;
338 u64 ipInDiscards;
339 u64 ipInDelivers;
340 u64 ipOutForwDatagrams;
341 u64 ipOutRequests;
342 u64 ipOutDiscards;
343 u64 ipOutNoRoutes;
344 u64 ipReasmTimeout;
345 u64 ipReasmReqds;
346 u64 ipReasmOKs;
347 u64 ipReasmFails;
348 u64 ipFragOKs;
349 u64 ipFragFails;
350 u64 ipFragCreates;
351 u64 ipInMcastPkts;
352 u64 ipOutMcastPkts;
353 u64 ipInBcastPkts;
354 u64 ipOutBcastPkts;
355
356 u64 tcpRtoAlgorithm;
357 u64 tcpRtoMin;
358 u64 tcpRtoMax;
359 u64 tcpMaxConn;
360 u64 tcpActiveOpens;
361 u64 tcpPassiveOpens;
362 u64 tcpAttemptFails;
363 u64 tcpEstabResets;
364 u64 tcpCurrEstab;
365 u64 tcpInSegs;
366 u64 tcpOutSegs;
367 u64 tcpRetransSegs;
368 u64 tcpInErrs;
369 u64 tcpOutRsts;
370};
371
372union rdma_protocol_stats {
373 struct ib_protocol_stats ib;
374 struct iw_protocol_stats iw;
375};
376
f9b22e35
IW
377/* Define bits for the various functionality this port needs to be supported by
378 * the core.
379 */
380/* Management 0x00000FFF */
381#define RDMA_CORE_CAP_IB_MAD 0x00000001
382#define RDMA_CORE_CAP_IB_SMI 0x00000002
383#define RDMA_CORE_CAP_IB_CM 0x00000004
384#define RDMA_CORE_CAP_IW_CM 0x00000008
385#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 386#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
387
388/* Address format 0x000FF000 */
389#define RDMA_CORE_CAP_AF_IB 0x00001000
390#define RDMA_CORE_CAP_ETH_AH 0x00002000
391
392/* Protocol 0xFFF00000 */
393#define RDMA_CORE_CAP_PROT_IB 0x00100000
394#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
395#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
396
397#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
398 | RDMA_CORE_CAP_IB_MAD \
399 | RDMA_CORE_CAP_IB_SMI \
400 | RDMA_CORE_CAP_IB_CM \
401 | RDMA_CORE_CAP_IB_SA \
402 | RDMA_CORE_CAP_AF_IB)
403#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
404 | RDMA_CORE_CAP_IB_MAD \
405 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
406 | RDMA_CORE_CAP_AF_IB \
407 | RDMA_CORE_CAP_ETH_AH)
408#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
409 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
410#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
411 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 412
1da177e4
LT
413struct ib_port_attr {
414 enum ib_port_state state;
415 enum ib_mtu max_mtu;
416 enum ib_mtu active_mtu;
417 int gid_tbl_len;
418 u32 port_cap_flags;
419 u32 max_msg_sz;
420 u32 bad_pkey_cntr;
421 u32 qkey_viol_cntr;
422 u16 pkey_tbl_len;
423 u16 lid;
424 u16 sm_lid;
425 u8 lmc;
426 u8 max_vl_num;
427 u8 sm_sl;
428 u8 subnet_timeout;
429 u8 init_type_reply;
430 u8 active_width;
431 u8 active_speed;
432 u8 phys_state;
433};
434
435enum ib_device_modify_flags {
c5bcbbb9
RD
436 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
437 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
438};
439
440struct ib_device_modify {
441 u64 sys_image_guid;
c5bcbbb9 442 char node_desc[64];
1da177e4
LT
443};
444
445enum ib_port_modify_flags {
446 IB_PORT_SHUTDOWN = 1,
447 IB_PORT_INIT_TYPE = (1<<2),
448 IB_PORT_RESET_QKEY_CNTR = (1<<3)
449};
450
451struct ib_port_modify {
452 u32 set_port_cap_mask;
453 u32 clr_port_cap_mask;
454 u8 init_type;
455};
456
457enum ib_event_type {
458 IB_EVENT_CQ_ERR,
459 IB_EVENT_QP_FATAL,
460 IB_EVENT_QP_REQ_ERR,
461 IB_EVENT_QP_ACCESS_ERR,
462 IB_EVENT_COMM_EST,
463 IB_EVENT_SQ_DRAINED,
464 IB_EVENT_PATH_MIG,
465 IB_EVENT_PATH_MIG_ERR,
466 IB_EVENT_DEVICE_FATAL,
467 IB_EVENT_PORT_ACTIVE,
468 IB_EVENT_PORT_ERR,
469 IB_EVENT_LID_CHANGE,
470 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
471 IB_EVENT_SM_CHANGE,
472 IB_EVENT_SRQ_ERR,
473 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 474 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
475 IB_EVENT_CLIENT_REREGISTER,
476 IB_EVENT_GID_CHANGE,
1da177e4
LT
477};
478
2b1b5b60
SG
479__attribute_const__ const char *ib_event_msg(enum ib_event_type event);
480
1da177e4
LT
481struct ib_event {
482 struct ib_device *device;
483 union {
484 struct ib_cq *cq;
485 struct ib_qp *qp;
d41fcc67 486 struct ib_srq *srq;
1da177e4
LT
487 u8 port_num;
488 } element;
489 enum ib_event_type event;
490};
491
492struct ib_event_handler {
493 struct ib_device *device;
494 void (*handler)(struct ib_event_handler *, struct ib_event *);
495 struct list_head list;
496};
497
498#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
499 do { \
500 (_ptr)->device = _device; \
501 (_ptr)->handler = _handler; \
502 INIT_LIST_HEAD(&(_ptr)->list); \
503 } while (0)
504
505struct ib_global_route {
506 union ib_gid dgid;
507 u32 flow_label;
508 u8 sgid_index;
509 u8 hop_limit;
510 u8 traffic_class;
511};
512
513789ed 513struct ib_grh {
97f52eb4
SH
514 __be32 version_tclass_flow;
515 __be16 paylen;
513789ed
HR
516 u8 next_hdr;
517 u8 hop_limit;
518 union ib_gid sgid;
519 union ib_gid dgid;
520};
521
1da177e4
LT
522enum {
523 IB_MULTICAST_QPN = 0xffffff
524};
525
f3a7c66b 526#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 527
1da177e4
LT
528enum ib_ah_flags {
529 IB_AH_GRH = 1
530};
531
bf6a9e31
JM
532enum ib_rate {
533 IB_RATE_PORT_CURRENT = 0,
534 IB_RATE_2_5_GBPS = 2,
535 IB_RATE_5_GBPS = 5,
536 IB_RATE_10_GBPS = 3,
537 IB_RATE_20_GBPS = 6,
538 IB_RATE_30_GBPS = 4,
539 IB_RATE_40_GBPS = 7,
540 IB_RATE_60_GBPS = 8,
541 IB_RATE_80_GBPS = 9,
71eeba16
MA
542 IB_RATE_120_GBPS = 10,
543 IB_RATE_14_GBPS = 11,
544 IB_RATE_56_GBPS = 12,
545 IB_RATE_112_GBPS = 13,
546 IB_RATE_168_GBPS = 14,
547 IB_RATE_25_GBPS = 15,
548 IB_RATE_100_GBPS = 16,
549 IB_RATE_200_GBPS = 17,
550 IB_RATE_300_GBPS = 18
bf6a9e31
JM
551};
552
553/**
554 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
555 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
556 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
557 * @rate: rate to convert.
558 */
8385fd84 559__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 560
71eeba16
MA
561/**
562 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
563 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
564 * @rate: rate to convert.
565 */
8385fd84 566__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 567
17cd3a2d
SG
568
569/**
9bee178b
SG
570 * enum ib_mr_type - memory region type
571 * @IB_MR_TYPE_MEM_REG: memory region that is used for
572 * normal registration
573 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
574 * signature operations (data-integrity
575 * capable regions)
17cd3a2d 576 */
9bee178b
SG
577enum ib_mr_type {
578 IB_MR_TYPE_MEM_REG,
579 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
580};
581
1b01d335 582/**
78eda2bb
SG
583 * Signature types
584 * IB_SIG_TYPE_NONE: Unprotected.
585 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 586 */
78eda2bb
SG
587enum ib_signature_type {
588 IB_SIG_TYPE_NONE,
589 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
590};
591
592/**
593 * Signature T10-DIF block-guard types
594 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
595 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
596 */
597enum ib_t10_dif_bg_type {
598 IB_T10DIF_CRC,
599 IB_T10DIF_CSUM
600};
601
602/**
603 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
604 * domain.
1b01d335
SG
605 * @bg_type: T10-DIF block guard type (CRC|CSUM)
606 * @pi_interval: protection information interval.
607 * @bg: seed of guard computation.
608 * @app_tag: application tag of guard block
609 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
610 * @ref_remap: Indicate wethear the reftag increments each block
611 * @app_escape: Indicate to skip block check if apptag=0xffff
612 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
613 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
614 */
615struct ib_t10_dif_domain {
1b01d335
SG
616 enum ib_t10_dif_bg_type bg_type;
617 u16 pi_interval;
618 u16 bg;
619 u16 app_tag;
620 u32 ref_tag;
78eda2bb
SG
621 bool ref_remap;
622 bool app_escape;
623 bool ref_escape;
624 u16 apptag_check_mask;
1b01d335
SG
625};
626
627/**
628 * struct ib_sig_domain - Parameters for signature domain
629 * @sig_type: specific signauture type
630 * @sig: union of all signature domain attributes that may
631 * be used to set domain layout.
632 */
633struct ib_sig_domain {
634 enum ib_signature_type sig_type;
635 union {
636 struct ib_t10_dif_domain dif;
637 } sig;
638};
639
640/**
641 * struct ib_sig_attrs - Parameters for signature handover operation
642 * @check_mask: bitmask for signature byte check (8 bytes)
643 * @mem: memory domain layout desciptor.
644 * @wire: wire domain layout desciptor.
645 */
646struct ib_sig_attrs {
647 u8 check_mask;
648 struct ib_sig_domain mem;
649 struct ib_sig_domain wire;
650};
651
652enum ib_sig_err_type {
653 IB_SIG_BAD_GUARD,
654 IB_SIG_BAD_REFTAG,
655 IB_SIG_BAD_APPTAG,
656};
657
658/**
659 * struct ib_sig_err - signature error descriptor
660 */
661struct ib_sig_err {
662 enum ib_sig_err_type err_type;
663 u32 expected;
664 u32 actual;
665 u64 sig_err_offset;
666 u32 key;
667};
668
669enum ib_mr_status_check {
670 IB_MR_CHECK_SIG_STATUS = 1,
671};
672
673/**
674 * struct ib_mr_status - Memory region status container
675 *
676 * @fail_status: Bitmask of MR checks status. For each
677 * failed check a corresponding status bit is set.
678 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
679 * failure.
680 */
681struct ib_mr_status {
682 u32 fail_status;
683 struct ib_sig_err sig_err;
684};
685
bf6a9e31
JM
686/**
687 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
688 * enum.
689 * @mult: multiple to convert.
690 */
8385fd84 691__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 692
1da177e4
LT
693struct ib_ah_attr {
694 struct ib_global_route grh;
695 u16 dlid;
696 u8 sl;
697 u8 src_path_bits;
698 u8 static_rate;
699 u8 ah_flags;
700 u8 port_num;
dd5f03be
MB
701 u8 dmac[ETH_ALEN];
702 u16 vlan_id;
1da177e4
LT
703};
704
705enum ib_wc_status {
706 IB_WC_SUCCESS,
707 IB_WC_LOC_LEN_ERR,
708 IB_WC_LOC_QP_OP_ERR,
709 IB_WC_LOC_EEC_OP_ERR,
710 IB_WC_LOC_PROT_ERR,
711 IB_WC_WR_FLUSH_ERR,
712 IB_WC_MW_BIND_ERR,
713 IB_WC_BAD_RESP_ERR,
714 IB_WC_LOC_ACCESS_ERR,
715 IB_WC_REM_INV_REQ_ERR,
716 IB_WC_REM_ACCESS_ERR,
717 IB_WC_REM_OP_ERR,
718 IB_WC_RETRY_EXC_ERR,
719 IB_WC_RNR_RETRY_EXC_ERR,
720 IB_WC_LOC_RDD_VIOL_ERR,
721 IB_WC_REM_INV_RD_REQ_ERR,
722 IB_WC_REM_ABORT_ERR,
723 IB_WC_INV_EECN_ERR,
724 IB_WC_INV_EEC_STATE_ERR,
725 IB_WC_FATAL_ERR,
726 IB_WC_RESP_TIMEOUT_ERR,
727 IB_WC_GENERAL_ERR
728};
729
2b1b5b60
SG
730__attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
731
1da177e4
LT
732enum ib_wc_opcode {
733 IB_WC_SEND,
734 IB_WC_RDMA_WRITE,
735 IB_WC_RDMA_READ,
736 IB_WC_COMP_SWAP,
737 IB_WC_FETCH_ADD,
738 IB_WC_BIND_MW,
c93570f2 739 IB_WC_LSO,
00f7ec36
SW
740 IB_WC_LOCAL_INV,
741 IB_WC_FAST_REG_MR,
5e80ba8f
VS
742 IB_WC_MASKED_COMP_SWAP,
743 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
744/*
745 * Set value of IB_WC_RECV so consumers can test if a completion is a
746 * receive by testing (opcode & IB_WC_RECV).
747 */
748 IB_WC_RECV = 1 << 7,
749 IB_WC_RECV_RDMA_WITH_IMM
750};
751
752enum ib_wc_flags {
753 IB_WC_GRH = 1,
00f7ec36
SW
754 IB_WC_WITH_IMM = (1<<1),
755 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 756 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
757 IB_WC_WITH_SMAC = (1<<4),
758 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
759};
760
761struct ib_wc {
762 u64 wr_id;
763 enum ib_wc_status status;
764 enum ib_wc_opcode opcode;
765 u32 vendor_err;
766 u32 byte_len;
062dbb69 767 struct ib_qp *qp;
00f7ec36
SW
768 union {
769 __be32 imm_data;
770 u32 invalidate_rkey;
771 } ex;
1da177e4
LT
772 u32 src_qp;
773 int wc_flags;
774 u16 pkey_index;
775 u16 slid;
776 u8 sl;
777 u8 dlid_path_bits;
778 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
779 u8 smac[ETH_ALEN];
780 u16 vlan_id;
1da177e4
LT
781};
782
ed23a727
RD
783enum ib_cq_notify_flags {
784 IB_CQ_SOLICITED = 1 << 0,
785 IB_CQ_NEXT_COMP = 1 << 1,
786 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
787 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
788};
789
96104eda 790enum ib_srq_type {
418d5130
SH
791 IB_SRQT_BASIC,
792 IB_SRQT_XRC
96104eda
SH
793};
794
d41fcc67
RD
795enum ib_srq_attr_mask {
796 IB_SRQ_MAX_WR = 1 << 0,
797 IB_SRQ_LIMIT = 1 << 1,
798};
799
800struct ib_srq_attr {
801 u32 max_wr;
802 u32 max_sge;
803 u32 srq_limit;
804};
805
806struct ib_srq_init_attr {
807 void (*event_handler)(struct ib_event *, void *);
808 void *srq_context;
809 struct ib_srq_attr attr;
96104eda 810 enum ib_srq_type srq_type;
418d5130
SH
811
812 union {
813 struct {
814 struct ib_xrcd *xrcd;
815 struct ib_cq *cq;
816 } xrc;
817 } ext;
d41fcc67
RD
818};
819
1da177e4
LT
820struct ib_qp_cap {
821 u32 max_send_wr;
822 u32 max_recv_wr;
823 u32 max_send_sge;
824 u32 max_recv_sge;
825 u32 max_inline_data;
826};
827
828enum ib_sig_type {
829 IB_SIGNAL_ALL_WR,
830 IB_SIGNAL_REQ_WR
831};
832
833enum ib_qp_type {
834 /*
835 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
836 * here (and in that order) since the MAD layer uses them as
837 * indices into a 2-entry table.
838 */
839 IB_QPT_SMI,
840 IB_QPT_GSI,
841
842 IB_QPT_RC,
843 IB_QPT_UC,
844 IB_QPT_UD,
845 IB_QPT_RAW_IPV6,
b42b63cf 846 IB_QPT_RAW_ETHERTYPE,
c938a616 847 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
848 IB_QPT_XRC_INI = 9,
849 IB_QPT_XRC_TGT,
0134f16b
JM
850 IB_QPT_MAX,
851 /* Reserve a range for qp types internal to the low level driver.
852 * These qp types will not be visible at the IB core layer, so the
853 * IB_QPT_MAX usages should not be affected in the core layer
854 */
855 IB_QPT_RESERVED1 = 0x1000,
856 IB_QPT_RESERVED2,
857 IB_QPT_RESERVED3,
858 IB_QPT_RESERVED4,
859 IB_QPT_RESERVED5,
860 IB_QPT_RESERVED6,
861 IB_QPT_RESERVED7,
862 IB_QPT_RESERVED8,
863 IB_QPT_RESERVED9,
864 IB_QPT_RESERVED10,
1da177e4
LT
865};
866
b846f25a 867enum ib_qp_create_flags {
47ee1b9f
RL
868 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
869 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 870 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 871 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 872 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
873 /* reserve bits 26-31 for low level drivers' internal use */
874 IB_QP_CREATE_RESERVED_START = 1 << 26,
875 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
876};
877
73c40c61
YH
878/*
879 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
880 * callback to destroy the passed in QP.
881 */
882
1da177e4
LT
883struct ib_qp_init_attr {
884 void (*event_handler)(struct ib_event *, void *);
885 void *qp_context;
886 struct ib_cq *send_cq;
887 struct ib_cq *recv_cq;
888 struct ib_srq *srq;
b42b63cf 889 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
890 struct ib_qp_cap cap;
891 enum ib_sig_type sq_sig_type;
892 enum ib_qp_type qp_type;
b846f25a 893 enum ib_qp_create_flags create_flags;
1da177e4
LT
894 u8 port_num; /* special QP types only */
895};
896
0e0ec7e0
SH
897struct ib_qp_open_attr {
898 void (*event_handler)(struct ib_event *, void *);
899 void *qp_context;
900 u32 qp_num;
901 enum ib_qp_type qp_type;
902};
903
1da177e4
LT
904enum ib_rnr_timeout {
905 IB_RNR_TIMER_655_36 = 0,
906 IB_RNR_TIMER_000_01 = 1,
907 IB_RNR_TIMER_000_02 = 2,
908 IB_RNR_TIMER_000_03 = 3,
909 IB_RNR_TIMER_000_04 = 4,
910 IB_RNR_TIMER_000_06 = 5,
911 IB_RNR_TIMER_000_08 = 6,
912 IB_RNR_TIMER_000_12 = 7,
913 IB_RNR_TIMER_000_16 = 8,
914 IB_RNR_TIMER_000_24 = 9,
915 IB_RNR_TIMER_000_32 = 10,
916 IB_RNR_TIMER_000_48 = 11,
917 IB_RNR_TIMER_000_64 = 12,
918 IB_RNR_TIMER_000_96 = 13,
919 IB_RNR_TIMER_001_28 = 14,
920 IB_RNR_TIMER_001_92 = 15,
921 IB_RNR_TIMER_002_56 = 16,
922 IB_RNR_TIMER_003_84 = 17,
923 IB_RNR_TIMER_005_12 = 18,
924 IB_RNR_TIMER_007_68 = 19,
925 IB_RNR_TIMER_010_24 = 20,
926 IB_RNR_TIMER_015_36 = 21,
927 IB_RNR_TIMER_020_48 = 22,
928 IB_RNR_TIMER_030_72 = 23,
929 IB_RNR_TIMER_040_96 = 24,
930 IB_RNR_TIMER_061_44 = 25,
931 IB_RNR_TIMER_081_92 = 26,
932 IB_RNR_TIMER_122_88 = 27,
933 IB_RNR_TIMER_163_84 = 28,
934 IB_RNR_TIMER_245_76 = 29,
935 IB_RNR_TIMER_327_68 = 30,
936 IB_RNR_TIMER_491_52 = 31
937};
938
939enum ib_qp_attr_mask {
940 IB_QP_STATE = 1,
941 IB_QP_CUR_STATE = (1<<1),
942 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
943 IB_QP_ACCESS_FLAGS = (1<<3),
944 IB_QP_PKEY_INDEX = (1<<4),
945 IB_QP_PORT = (1<<5),
946 IB_QP_QKEY = (1<<6),
947 IB_QP_AV = (1<<7),
948 IB_QP_PATH_MTU = (1<<8),
949 IB_QP_TIMEOUT = (1<<9),
950 IB_QP_RETRY_CNT = (1<<10),
951 IB_QP_RNR_RETRY = (1<<11),
952 IB_QP_RQ_PSN = (1<<12),
953 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
954 IB_QP_ALT_PATH = (1<<14),
955 IB_QP_MIN_RNR_TIMER = (1<<15),
956 IB_QP_SQ_PSN = (1<<16),
957 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
958 IB_QP_PATH_MIG_STATE = (1<<18),
959 IB_QP_CAP = (1<<19),
dd5f03be
MB
960 IB_QP_DEST_QPN = (1<<20),
961 IB_QP_SMAC = (1<<21),
962 IB_QP_ALT_SMAC = (1<<22),
963 IB_QP_VID = (1<<23),
964 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
965};
966
967enum ib_qp_state {
968 IB_QPS_RESET,
969 IB_QPS_INIT,
970 IB_QPS_RTR,
971 IB_QPS_RTS,
972 IB_QPS_SQD,
973 IB_QPS_SQE,
974 IB_QPS_ERR
975};
976
977enum ib_mig_state {
978 IB_MIG_MIGRATED,
979 IB_MIG_REARM,
980 IB_MIG_ARMED
981};
982
7083e42e
SM
983enum ib_mw_type {
984 IB_MW_TYPE_1 = 1,
985 IB_MW_TYPE_2 = 2
986};
987
1da177e4
LT
988struct ib_qp_attr {
989 enum ib_qp_state qp_state;
990 enum ib_qp_state cur_qp_state;
991 enum ib_mtu path_mtu;
992 enum ib_mig_state path_mig_state;
993 u32 qkey;
994 u32 rq_psn;
995 u32 sq_psn;
996 u32 dest_qp_num;
997 int qp_access_flags;
998 struct ib_qp_cap cap;
999 struct ib_ah_attr ah_attr;
1000 struct ib_ah_attr alt_ah_attr;
1001 u16 pkey_index;
1002 u16 alt_pkey_index;
1003 u8 en_sqd_async_notify;
1004 u8 sq_draining;
1005 u8 max_rd_atomic;
1006 u8 max_dest_rd_atomic;
1007 u8 min_rnr_timer;
1008 u8 port_num;
1009 u8 timeout;
1010 u8 retry_cnt;
1011 u8 rnr_retry;
1012 u8 alt_port_num;
1013 u8 alt_timeout;
dd5f03be
MB
1014 u8 smac[ETH_ALEN];
1015 u8 alt_smac[ETH_ALEN];
1016 u16 vlan_id;
1017 u16 alt_vlan_id;
1da177e4
LT
1018};
1019
1020enum ib_wr_opcode {
1021 IB_WR_RDMA_WRITE,
1022 IB_WR_RDMA_WRITE_WITH_IMM,
1023 IB_WR_SEND,
1024 IB_WR_SEND_WITH_IMM,
1025 IB_WR_RDMA_READ,
1026 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1027 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1028 IB_WR_LSO,
1029 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1030 IB_WR_RDMA_READ_WITH_INV,
1031 IB_WR_LOCAL_INV,
1032 IB_WR_FAST_REG_MR,
5e80ba8f
VS
1033 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1034 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1035 IB_WR_BIND_MW,
1b01d335 1036 IB_WR_REG_SIG_MR,
0134f16b
JM
1037 /* reserve values for low level drivers' internal use.
1038 * These values will not be used at all in the ib core layer.
1039 */
1040 IB_WR_RESERVED1 = 0xf0,
1041 IB_WR_RESERVED2,
1042 IB_WR_RESERVED3,
1043 IB_WR_RESERVED4,
1044 IB_WR_RESERVED5,
1045 IB_WR_RESERVED6,
1046 IB_WR_RESERVED7,
1047 IB_WR_RESERVED8,
1048 IB_WR_RESERVED9,
1049 IB_WR_RESERVED10,
1da177e4
LT
1050};
1051
1052enum ib_send_flags {
1053 IB_SEND_FENCE = 1,
1054 IB_SEND_SIGNALED = (1<<1),
1055 IB_SEND_SOLICITED = (1<<2),
e0605d91 1056 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1057 IB_SEND_IP_CSUM = (1<<4),
1058
1059 /* reserve bits 26-31 for low level drivers' internal use */
1060 IB_SEND_RESERVED_START = (1 << 26),
1061 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1062};
1063
1064struct ib_sge {
1065 u64 addr;
1066 u32 length;
1067 u32 lkey;
1068};
1069
00f7ec36
SW
1070struct ib_fast_reg_page_list {
1071 struct ib_device *device;
1072 u64 *page_list;
1073 unsigned int max_page_list_len;
1074};
1075
7083e42e
SM
1076/**
1077 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1078 * @mr: A memory region to bind the memory window to.
1079 * @addr: The address where the memory window should begin.
1080 * @length: The length of the memory window, in bytes.
1081 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1082 *
1083 * This struct contains the shared parameters for type 1 and type 2
1084 * memory window bind operations.
1085 */
1086struct ib_mw_bind_info {
1087 struct ib_mr *mr;
1088 u64 addr;
1089 u64 length;
1090 int mw_access_flags;
1091};
1092
1da177e4
LT
1093struct ib_send_wr {
1094 struct ib_send_wr *next;
1095 u64 wr_id;
1096 struct ib_sge *sg_list;
1097 int num_sge;
1098 enum ib_wr_opcode opcode;
1099 int send_flags;
0f39cf3d
RD
1100 union {
1101 __be32 imm_data;
1102 u32 invalidate_rkey;
1103 } ex;
1da177e4
LT
1104 union {
1105 struct {
1106 u64 remote_addr;
1107 u32 rkey;
1108 } rdma;
1109 struct {
1110 u64 remote_addr;
1111 u64 compare_add;
1112 u64 swap;
5e80ba8f
VS
1113 u64 compare_add_mask;
1114 u64 swap_mask;
1da177e4
LT
1115 u32 rkey;
1116 } atomic;
1117 struct {
1118 struct ib_ah *ah;
c93570f2
EC
1119 void *header;
1120 int hlen;
1121 int mss;
1da177e4
LT
1122 u32 remote_qpn;
1123 u32 remote_qkey;
1da177e4
LT
1124 u16 pkey_index; /* valid for GSI only */
1125 u8 port_num; /* valid for DR SMPs on switch only */
1126 } ud;
00f7ec36
SW
1127 struct {
1128 u64 iova_start;
1129 struct ib_fast_reg_page_list *page_list;
1130 unsigned int page_shift;
1131 unsigned int page_list_len;
1132 u32 length;
1133 int access_flags;
1134 u32 rkey;
1135 } fast_reg;
7083e42e
SM
1136 struct {
1137 struct ib_mw *mw;
1138 /* The new rkey for the memory window. */
1139 u32 rkey;
1140 struct ib_mw_bind_info bind_info;
1141 } bind_mw;
1b01d335
SG
1142 struct {
1143 struct ib_sig_attrs *sig_attrs;
1144 struct ib_mr *sig_mr;
1145 int access_flags;
1146 struct ib_sge *prot;
1147 } sig_handover;
1da177e4 1148 } wr;
b42b63cf 1149 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1150};
1151
1152struct ib_recv_wr {
1153 struct ib_recv_wr *next;
1154 u64 wr_id;
1155 struct ib_sge *sg_list;
1156 int num_sge;
1157};
1158
1159enum ib_access_flags {
1160 IB_ACCESS_LOCAL_WRITE = 1,
1161 IB_ACCESS_REMOTE_WRITE = (1<<1),
1162 IB_ACCESS_REMOTE_READ = (1<<2),
1163 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1164 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1165 IB_ZERO_BASED = (1<<5),
1166 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1167};
1168
1169struct ib_phys_buf {
1170 u64 addr;
1171 u64 size;
1172};
1173
1174struct ib_mr_attr {
1175 struct ib_pd *pd;
1176 u64 device_virt_addr;
1177 u64 size;
1178 int mr_access_flags;
1179 u32 lkey;
1180 u32 rkey;
1181};
1182
1183enum ib_mr_rereg_flags {
1184 IB_MR_REREG_TRANS = 1,
1185 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1186 IB_MR_REREG_ACCESS = (1<<2),
1187 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1188};
1189
7083e42e
SM
1190/**
1191 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1192 * @wr_id: Work request id.
1193 * @send_flags: Flags from ib_send_flags enum.
1194 * @bind_info: More parameters of the bind operation.
1195 */
1da177e4 1196struct ib_mw_bind {
7083e42e
SM
1197 u64 wr_id;
1198 int send_flags;
1199 struct ib_mw_bind_info bind_info;
1da177e4
LT
1200};
1201
1202struct ib_fmr_attr {
1203 int max_pages;
1204 int max_maps;
d36f34aa 1205 u8 page_shift;
1da177e4
LT
1206};
1207
882214e2
HE
1208struct ib_umem;
1209
e2773c06
RD
1210struct ib_ucontext {
1211 struct ib_device *device;
1212 struct list_head pd_list;
1213 struct list_head mr_list;
1214 struct list_head mw_list;
1215 struct list_head cq_list;
1216 struct list_head qp_list;
1217 struct list_head srq_list;
1218 struct list_head ah_list;
53d0bd1e 1219 struct list_head xrcd_list;
436f2ad0 1220 struct list_head rule_list;
f7c6a7b5 1221 int closing;
8ada2c1c
SR
1222
1223 struct pid *tgid;
882214e2
HE
1224#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1225 struct rb_root umem_tree;
1226 /*
1227 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1228 * mmu notifiers registration.
1229 */
1230 struct rw_semaphore umem_rwsem;
1231 void (*invalidate_range)(struct ib_umem *umem,
1232 unsigned long start, unsigned long end);
1233
1234 struct mmu_notifier mn;
1235 atomic_t notifier_count;
1236 /* A list of umems that don't have private mmu notifier counters yet. */
1237 struct list_head no_private_counters;
1238 int odp_mrs_count;
1239#endif
e2773c06
RD
1240};
1241
1242struct ib_uobject {
1243 u64 user_handle; /* handle given to us by userspace */
1244 struct ib_ucontext *context; /* associated user context */
9ead190b 1245 void *object; /* containing object */
e2773c06 1246 struct list_head list; /* link to context's list */
b3d636b0 1247 int id; /* index into kernel idr */
9ead190b
RD
1248 struct kref ref;
1249 struct rw_semaphore mutex; /* protects .live */
1250 int live;
e2773c06
RD
1251};
1252
e2773c06 1253struct ib_udata {
309243ec 1254 const void __user *inbuf;
e2773c06
RD
1255 void __user *outbuf;
1256 size_t inlen;
1257 size_t outlen;
1258};
1259
1da177e4 1260struct ib_pd {
96249d70 1261 u32 local_dma_lkey;
e2773c06
RD
1262 struct ib_device *device;
1263 struct ib_uobject *uobject;
1264 atomic_t usecnt; /* count all resources */
96249d70 1265 struct ib_mr *local_mr;
1da177e4
LT
1266};
1267
59991f94
SH
1268struct ib_xrcd {
1269 struct ib_device *device;
d3d72d90 1270 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1271 struct inode *inode;
d3d72d90
SH
1272
1273 struct mutex tgt_qp_mutex;
1274 struct list_head tgt_qp_list;
59991f94
SH
1275};
1276
1da177e4
LT
1277struct ib_ah {
1278 struct ib_device *device;
1279 struct ib_pd *pd;
e2773c06 1280 struct ib_uobject *uobject;
1da177e4
LT
1281};
1282
1283typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1284
1285struct ib_cq {
e2773c06
RD
1286 struct ib_device *device;
1287 struct ib_uobject *uobject;
1288 ib_comp_handler comp_handler;
1289 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1290 void *cq_context;
e2773c06
RD
1291 int cqe;
1292 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1293};
1294
1295struct ib_srq {
d41fcc67
RD
1296 struct ib_device *device;
1297 struct ib_pd *pd;
1298 struct ib_uobject *uobject;
1299 void (*event_handler)(struct ib_event *, void *);
1300 void *srq_context;
96104eda 1301 enum ib_srq_type srq_type;
1da177e4 1302 atomic_t usecnt;
418d5130
SH
1303
1304 union {
1305 struct {
1306 struct ib_xrcd *xrcd;
1307 struct ib_cq *cq;
1308 u32 srq_num;
1309 } xrc;
1310 } ext;
1da177e4
LT
1311};
1312
1313struct ib_qp {
1314 struct ib_device *device;
1315 struct ib_pd *pd;
1316 struct ib_cq *send_cq;
1317 struct ib_cq *recv_cq;
1318 struct ib_srq *srq;
b42b63cf 1319 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1320 struct list_head xrcd_list;
319a441d
HHZ
1321 /* count times opened, mcast attaches, flow attaches */
1322 atomic_t usecnt;
0e0ec7e0
SH
1323 struct list_head open_list;
1324 struct ib_qp *real_qp;
e2773c06 1325 struct ib_uobject *uobject;
1da177e4
LT
1326 void (*event_handler)(struct ib_event *, void *);
1327 void *qp_context;
1328 u32 qp_num;
1329 enum ib_qp_type qp_type;
1330};
1331
1332struct ib_mr {
e2773c06
RD
1333 struct ib_device *device;
1334 struct ib_pd *pd;
1335 struct ib_uobject *uobject;
1336 u32 lkey;
1337 u32 rkey;
1338 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1339};
1340
1341struct ib_mw {
1342 struct ib_device *device;
1343 struct ib_pd *pd;
e2773c06 1344 struct ib_uobject *uobject;
1da177e4 1345 u32 rkey;
7083e42e 1346 enum ib_mw_type type;
1da177e4
LT
1347};
1348
1349struct ib_fmr {
1350 struct ib_device *device;
1351 struct ib_pd *pd;
1352 struct list_head list;
1353 u32 lkey;
1354 u32 rkey;
1355};
1356
319a441d
HHZ
1357/* Supported steering options */
1358enum ib_flow_attr_type {
1359 /* steering according to rule specifications */
1360 IB_FLOW_ATTR_NORMAL = 0x0,
1361 /* default unicast and multicast rule -
1362 * receive all Eth traffic which isn't steered to any QP
1363 */
1364 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1365 /* default multicast rule -
1366 * receive all Eth multicast traffic which isn't steered to any QP
1367 */
1368 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1369 /* sniffer rule - receive all port traffic */
1370 IB_FLOW_ATTR_SNIFFER = 0x3
1371};
1372
1373/* Supported steering header types */
1374enum ib_flow_spec_type {
1375 /* L2 headers*/
1376 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1377 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1378 /* L3 header*/
1379 IB_FLOW_SPEC_IPV4 = 0x30,
1380 /* L4 headers*/
1381 IB_FLOW_SPEC_TCP = 0x40,
1382 IB_FLOW_SPEC_UDP = 0x41
1383};
240ae00e 1384#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1385#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1386
319a441d
HHZ
1387/* Flow steering rule priority is set according to it's domain.
1388 * Lower domain value means higher priority.
1389 */
1390enum ib_flow_domain {
1391 IB_FLOW_DOMAIN_USER,
1392 IB_FLOW_DOMAIN_ETHTOOL,
1393 IB_FLOW_DOMAIN_RFS,
1394 IB_FLOW_DOMAIN_NIC,
1395 IB_FLOW_DOMAIN_NUM /* Must be last */
1396};
1397
1398struct ib_flow_eth_filter {
1399 u8 dst_mac[6];
1400 u8 src_mac[6];
1401 __be16 ether_type;
1402 __be16 vlan_tag;
1403};
1404
1405struct ib_flow_spec_eth {
1406 enum ib_flow_spec_type type;
1407 u16 size;
1408 struct ib_flow_eth_filter val;
1409 struct ib_flow_eth_filter mask;
1410};
1411
240ae00e
MB
1412struct ib_flow_ib_filter {
1413 __be16 dlid;
1414 __u8 sl;
1415};
1416
1417struct ib_flow_spec_ib {
1418 enum ib_flow_spec_type type;
1419 u16 size;
1420 struct ib_flow_ib_filter val;
1421 struct ib_flow_ib_filter mask;
1422};
1423
319a441d
HHZ
1424struct ib_flow_ipv4_filter {
1425 __be32 src_ip;
1426 __be32 dst_ip;
1427};
1428
1429struct ib_flow_spec_ipv4 {
1430 enum ib_flow_spec_type type;
1431 u16 size;
1432 struct ib_flow_ipv4_filter val;
1433 struct ib_flow_ipv4_filter mask;
1434};
1435
1436struct ib_flow_tcp_udp_filter {
1437 __be16 dst_port;
1438 __be16 src_port;
1439};
1440
1441struct ib_flow_spec_tcp_udp {
1442 enum ib_flow_spec_type type;
1443 u16 size;
1444 struct ib_flow_tcp_udp_filter val;
1445 struct ib_flow_tcp_udp_filter mask;
1446};
1447
1448union ib_flow_spec {
1449 struct {
1450 enum ib_flow_spec_type type;
1451 u16 size;
1452 };
1453 struct ib_flow_spec_eth eth;
240ae00e 1454 struct ib_flow_spec_ib ib;
319a441d
HHZ
1455 struct ib_flow_spec_ipv4 ipv4;
1456 struct ib_flow_spec_tcp_udp tcp_udp;
1457};
1458
1459struct ib_flow_attr {
1460 enum ib_flow_attr_type type;
1461 u16 size;
1462 u16 priority;
1463 u32 flags;
1464 u8 num_of_specs;
1465 u8 port;
1466 /* Following are the optional layers according to user request
1467 * struct ib_flow_spec_xxx
1468 * struct ib_flow_spec_yyy
1469 */
1470};
1471
1472struct ib_flow {
1473 struct ib_qp *qp;
1474 struct ib_uobject *uobject;
1475};
1476
4cd7c947 1477struct ib_mad_hdr;
1da177e4
LT
1478struct ib_grh;
1479
1480enum ib_process_mad_flags {
1481 IB_MAD_IGNORE_MKEY = 1,
1482 IB_MAD_IGNORE_BKEY = 2,
1483 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1484};
1485
1486enum ib_mad_result {
1487 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1488 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1489 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1490 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1491};
1492
1493#define IB_DEVICE_NAME_MAX 64
1494
1495struct ib_cache {
1496 rwlock_t lock;
1497 struct ib_event_handler event_handler;
1498 struct ib_pkey_cache **pkey_cache;
03db3a2d 1499 struct ib_gid_table **gid_cache;
6fb9cdbf 1500 u8 *lmc_cache;
1da177e4
LT
1501};
1502
9b513090
RC
1503struct ib_dma_mapping_ops {
1504 int (*mapping_error)(struct ib_device *dev,
1505 u64 dma_addr);
1506 u64 (*map_single)(struct ib_device *dev,
1507 void *ptr, size_t size,
1508 enum dma_data_direction direction);
1509 void (*unmap_single)(struct ib_device *dev,
1510 u64 addr, size_t size,
1511 enum dma_data_direction direction);
1512 u64 (*map_page)(struct ib_device *dev,
1513 struct page *page, unsigned long offset,
1514 size_t size,
1515 enum dma_data_direction direction);
1516 void (*unmap_page)(struct ib_device *dev,
1517 u64 addr, size_t size,
1518 enum dma_data_direction direction);
1519 int (*map_sg)(struct ib_device *dev,
1520 struct scatterlist *sg, int nents,
1521 enum dma_data_direction direction);
1522 void (*unmap_sg)(struct ib_device *dev,
1523 struct scatterlist *sg, int nents,
1524 enum dma_data_direction direction);
9b513090
RC
1525 void (*sync_single_for_cpu)(struct ib_device *dev,
1526 u64 dma_handle,
1527 size_t size,
4deccd6d 1528 enum dma_data_direction dir);
9b513090
RC
1529 void (*sync_single_for_device)(struct ib_device *dev,
1530 u64 dma_handle,
1531 size_t size,
1532 enum dma_data_direction dir);
1533 void *(*alloc_coherent)(struct ib_device *dev,
1534 size_t size,
1535 u64 *dma_handle,
1536 gfp_t flag);
1537 void (*free_coherent)(struct ib_device *dev,
1538 size_t size, void *cpu_addr,
1539 u64 dma_handle);
1540};
1541
07ebafba
TT
1542struct iw_cm_verbs;
1543
7738613e
IW
1544struct ib_port_immutable {
1545 int pkey_tbl_len;
1546 int gid_tbl_len;
f9b22e35 1547 u32 core_cap_flags;
337877a4 1548 u32 max_mad_size;
7738613e
IW
1549};
1550
1da177e4
LT
1551struct ib_device {
1552 struct device *dma_device;
1553
1554 char name[IB_DEVICE_NAME_MAX];
1555
1556 struct list_head event_handler_list;
1557 spinlock_t event_handler_lock;
1558
17a55f79 1559 spinlock_t client_data_lock;
1da177e4 1560 struct list_head core_list;
7c1eb45a
HE
1561 /* Access to the client_data_list is protected by the client_data_lock
1562 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1563 struct list_head client_data_list;
1da177e4
LT
1564
1565 struct ib_cache cache;
7738613e
IW
1566 /**
1567 * port_immutable is indexed by port number
1568 */
1569 struct ib_port_immutable *port_immutable;
1da177e4 1570
f4fd0b22
MT
1571 int num_comp_vectors;
1572
07ebafba
TT
1573 struct iw_cm_verbs *iwcm;
1574
7f624d02
SW
1575 int (*get_protocol_stats)(struct ib_device *device,
1576 union rdma_protocol_stats *stats);
1da177e4 1577 int (*query_device)(struct ib_device *device,
2528e33e
MB
1578 struct ib_device_attr *device_attr,
1579 struct ib_udata *udata);
1da177e4
LT
1580 int (*query_port)(struct ib_device *device,
1581 u8 port_num,
1582 struct ib_port_attr *port_attr);
a3f5adaf
EC
1583 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1584 u8 port_num);
03db3a2d
MB
1585 /* When calling get_netdev, the HW vendor's driver should return the
1586 * net device of device @device at port @port_num or NULL if such
1587 * a net device doesn't exist. The vendor driver should call dev_hold
1588 * on this net device. The HW vendor's device driver must guarantee
1589 * that this function returns NULL before the net device reaches
1590 * NETDEV_UNREGISTER_FINAL state.
1591 */
1592 struct net_device *(*get_netdev)(struct ib_device *device,
1593 u8 port_num);
1da177e4
LT
1594 int (*query_gid)(struct ib_device *device,
1595 u8 port_num, int index,
1596 union ib_gid *gid);
03db3a2d
MB
1597 /* When calling add_gid, the HW vendor's driver should
1598 * add the gid of device @device at gid index @index of
1599 * port @port_num to be @gid. Meta-info of that gid (for example,
1600 * the network device related to this gid is available
1601 * at @attr. @context allows the HW vendor driver to store extra
1602 * information together with a GID entry. The HW vendor may allocate
1603 * memory to contain this information and store it in @context when a
1604 * new GID entry is written to. Params are consistent until the next
1605 * call of add_gid or delete_gid. The function should return 0 on
1606 * success or error otherwise. The function could be called
1607 * concurrently for different ports. This function is only called
1608 * when roce_gid_table is used.
1609 */
1610 int (*add_gid)(struct ib_device *device,
1611 u8 port_num,
1612 unsigned int index,
1613 const union ib_gid *gid,
1614 const struct ib_gid_attr *attr,
1615 void **context);
1616 /* When calling del_gid, the HW vendor's driver should delete the
1617 * gid of device @device at gid index @index of port @port_num.
1618 * Upon the deletion of a GID entry, the HW vendor must free any
1619 * allocated memory. The caller will clear @context afterwards.
1620 * This function is only called when roce_gid_table is used.
1621 */
1622 int (*del_gid)(struct ib_device *device,
1623 u8 port_num,
1624 unsigned int index,
1625 void **context);
1da177e4
LT
1626 int (*query_pkey)(struct ib_device *device,
1627 u8 port_num, u16 index, u16 *pkey);
1628 int (*modify_device)(struct ib_device *device,
1629 int device_modify_mask,
1630 struct ib_device_modify *device_modify);
1631 int (*modify_port)(struct ib_device *device,
1632 u8 port_num, int port_modify_mask,
1633 struct ib_port_modify *port_modify);
e2773c06
RD
1634 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1635 struct ib_udata *udata);
1636 int (*dealloc_ucontext)(struct ib_ucontext *context);
1637 int (*mmap)(struct ib_ucontext *context,
1638 struct vm_area_struct *vma);
1639 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1640 struct ib_ucontext *context,
1641 struct ib_udata *udata);
1da177e4
LT
1642 int (*dealloc_pd)(struct ib_pd *pd);
1643 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1644 struct ib_ah_attr *ah_attr);
1645 int (*modify_ah)(struct ib_ah *ah,
1646 struct ib_ah_attr *ah_attr);
1647 int (*query_ah)(struct ib_ah *ah,
1648 struct ib_ah_attr *ah_attr);
1649 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1650 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1651 struct ib_srq_init_attr *srq_init_attr,
1652 struct ib_udata *udata);
1653 int (*modify_srq)(struct ib_srq *srq,
1654 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1655 enum ib_srq_attr_mask srq_attr_mask,
1656 struct ib_udata *udata);
d41fcc67
RD
1657 int (*query_srq)(struct ib_srq *srq,
1658 struct ib_srq_attr *srq_attr);
1659 int (*destroy_srq)(struct ib_srq *srq);
1660 int (*post_srq_recv)(struct ib_srq *srq,
1661 struct ib_recv_wr *recv_wr,
1662 struct ib_recv_wr **bad_recv_wr);
1da177e4 1663 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1664 struct ib_qp_init_attr *qp_init_attr,
1665 struct ib_udata *udata);
1da177e4
LT
1666 int (*modify_qp)(struct ib_qp *qp,
1667 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1668 int qp_attr_mask,
1669 struct ib_udata *udata);
1da177e4
LT
1670 int (*query_qp)(struct ib_qp *qp,
1671 struct ib_qp_attr *qp_attr,
1672 int qp_attr_mask,
1673 struct ib_qp_init_attr *qp_init_attr);
1674 int (*destroy_qp)(struct ib_qp *qp);
1675 int (*post_send)(struct ib_qp *qp,
1676 struct ib_send_wr *send_wr,
1677 struct ib_send_wr **bad_send_wr);
1678 int (*post_recv)(struct ib_qp *qp,
1679 struct ib_recv_wr *recv_wr,
1680 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1681 struct ib_cq * (*create_cq)(struct ib_device *device,
1682 const struct ib_cq_init_attr *attr,
e2773c06
RD
1683 struct ib_ucontext *context,
1684 struct ib_udata *udata);
2dd57162
EC
1685 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1686 u16 cq_period);
1da177e4 1687 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1688 int (*resize_cq)(struct ib_cq *cq, int cqe,
1689 struct ib_udata *udata);
1da177e4
LT
1690 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1691 struct ib_wc *wc);
1692 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1693 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1694 enum ib_cq_notify_flags flags);
1da177e4
LT
1695 int (*req_ncomp_notif)(struct ib_cq *cq,
1696 int wc_cnt);
1697 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1698 int mr_access_flags);
1699 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1700 struct ib_phys_buf *phys_buf_array,
1701 int num_phys_buf,
1702 int mr_access_flags,
1703 u64 *iova_start);
e2773c06 1704 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1705 u64 start, u64 length,
1706 u64 virt_addr,
e2773c06
RD
1707 int mr_access_flags,
1708 struct ib_udata *udata);
7e6edb9b
MB
1709 int (*rereg_user_mr)(struct ib_mr *mr,
1710 int flags,
1711 u64 start, u64 length,
1712 u64 virt_addr,
1713 int mr_access_flags,
1714 struct ib_pd *pd,
1715 struct ib_udata *udata);
1da177e4
LT
1716 int (*query_mr)(struct ib_mr *mr,
1717 struct ib_mr_attr *mr_attr);
1718 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1719 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1720 enum ib_mr_type mr_type,
1721 u32 max_num_sg);
00f7ec36
SW
1722 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1723 int page_list_len);
1724 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1725 int (*rereg_phys_mr)(struct ib_mr *mr,
1726 int mr_rereg_mask,
1727 struct ib_pd *pd,
1728 struct ib_phys_buf *phys_buf_array,
1729 int num_phys_buf,
1730 int mr_access_flags,
1731 u64 *iova_start);
7083e42e
SM
1732 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1733 enum ib_mw_type type);
1da177e4
LT
1734 int (*bind_mw)(struct ib_qp *qp,
1735 struct ib_mw *mw,
1736 struct ib_mw_bind *mw_bind);
1737 int (*dealloc_mw)(struct ib_mw *mw);
1738 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1739 int mr_access_flags,
1740 struct ib_fmr_attr *fmr_attr);
1741 int (*map_phys_fmr)(struct ib_fmr *fmr,
1742 u64 *page_list, int list_len,
1743 u64 iova);
1744 int (*unmap_fmr)(struct list_head *fmr_list);
1745 int (*dealloc_fmr)(struct ib_fmr *fmr);
1746 int (*attach_mcast)(struct ib_qp *qp,
1747 union ib_gid *gid,
1748 u16 lid);
1749 int (*detach_mcast)(struct ib_qp *qp,
1750 union ib_gid *gid,
1751 u16 lid);
1752 int (*process_mad)(struct ib_device *device,
1753 int process_mad_flags,
1754 u8 port_num,
a97e2d86
IW
1755 const struct ib_wc *in_wc,
1756 const struct ib_grh *in_grh,
4cd7c947
IW
1757 const struct ib_mad_hdr *in_mad,
1758 size_t in_mad_size,
1759 struct ib_mad_hdr *out_mad,
1760 size_t *out_mad_size,
1761 u16 *out_mad_pkey_index);
59991f94
SH
1762 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1763 struct ib_ucontext *ucontext,
1764 struct ib_udata *udata);
1765 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1766 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1767 struct ib_flow_attr
1768 *flow_attr,
1769 int domain);
1770 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1771 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1772 struct ib_mr_status *mr_status);
036b1063 1773 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1da177e4 1774
9b513090
RC
1775 struct ib_dma_mapping_ops *dma_ops;
1776
e2773c06 1777 struct module *owner;
f4e91eb4 1778 struct device dev;
35be0681 1779 struct kobject *ports_parent;
1da177e4
LT
1780 struct list_head port_list;
1781
1782 enum {
1783 IB_DEV_UNINITIALIZED,
1784 IB_DEV_REGISTERED,
1785 IB_DEV_UNREGISTERED
1786 } reg_state;
1787
274c0891 1788 int uverbs_abi_ver;
17a55f79 1789 u64 uverbs_cmd_mask;
f21519b2 1790 u64 uverbs_ex_cmd_mask;
274c0891 1791
c5bcbbb9 1792 char node_desc[64];
cf311cd4 1793 __be64 node_guid;
96f15c03 1794 u32 local_dma_lkey;
4139032b 1795 u16 is_switch:1;
1da177e4
LT
1796 u8 node_type;
1797 u8 phys_port_cnt;
7738613e
IW
1798
1799 /**
1800 * The following mandatory functions are used only at device
1801 * registration. Keep functions such as these at the end of this
1802 * structure to avoid cache line misses when accessing struct ib_device
1803 * in fast paths.
1804 */
1805 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1806};
1807
1808struct ib_client {
1809 char *name;
1810 void (*add) (struct ib_device *);
7c1eb45a 1811 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1812
9268f72d
YK
1813 /* Returns the net_dev belonging to this ib_client and matching the
1814 * given parameters.
1815 * @dev: An RDMA device that the net_dev use for communication.
1816 * @port: A physical port number on the RDMA device.
1817 * @pkey: P_Key that the net_dev uses if applicable.
1818 * @gid: A GID that the net_dev uses to communicate.
1819 * @addr: An IP address the net_dev is configured with.
1820 * @client_data: The device's client data set by ib_set_client_data().
1821 *
1822 * An ib_client that implements a net_dev on top of RDMA devices
1823 * (such as IP over IB) should implement this callback, allowing the
1824 * rdma_cm module to find the right net_dev for a given request.
1825 *
1826 * The caller is responsible for calling dev_put on the returned
1827 * netdev. */
1828 struct net_device *(*get_net_dev_by_params)(
1829 struct ib_device *dev,
1830 u8 port,
1831 u16 pkey,
1832 const union ib_gid *gid,
1833 const struct sockaddr *addr,
1834 void *client_data);
1da177e4
LT
1835 struct list_head list;
1836};
1837
1838struct ib_device *ib_alloc_device(size_t size);
1839void ib_dealloc_device(struct ib_device *device);
1840
9a6edb60
RC
1841int ib_register_device(struct ib_device *device,
1842 int (*port_callback)(struct ib_device *,
1843 u8, struct kobject *));
1da177e4
LT
1844void ib_unregister_device(struct ib_device *device);
1845
1846int ib_register_client (struct ib_client *client);
1847void ib_unregister_client(struct ib_client *client);
1848
1849void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1850void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1851 void *data);
1852
e2773c06
RD
1853static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1854{
1855 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1856}
1857
1858static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1859{
43c61165 1860 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1861}
1862
8a51866f
RD
1863/**
1864 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1865 * contains all required attributes and no attributes not allowed for
1866 * the given QP state transition.
1867 * @cur_state: Current QP state
1868 * @next_state: Next QP state
1869 * @type: QP type
1870 * @mask: Mask of supplied QP attributes
dd5f03be 1871 * @ll : link layer of port
8a51866f
RD
1872 *
1873 * This function is a helper function that a low-level driver's
1874 * modify_qp method can use to validate the consumer's input. It
1875 * checks that cur_state and next_state are valid QP states, that a
1876 * transition from cur_state to next_state is allowed by the IB spec,
1877 * and that the attribute mask supplied is allowed for the transition.
1878 */
1879int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1880 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1881 enum rdma_link_layer ll);
8a51866f 1882
1da177e4
LT
1883int ib_register_event_handler (struct ib_event_handler *event_handler);
1884int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1885void ib_dispatch_event(struct ib_event *event);
1886
1887int ib_query_device(struct ib_device *device,
1888 struct ib_device_attr *device_attr);
1889
1890int ib_query_port(struct ib_device *device,
1891 u8 port_num, struct ib_port_attr *port_attr);
1892
a3f5adaf
EC
1893enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1894 u8 port_num);
1895
4139032b
HR
1896/**
1897 * rdma_cap_ib_switch - Check if the device is IB switch
1898 * @device: Device to check
1899 *
1900 * Device driver is responsible for setting is_switch bit on
1901 * in ib_device structure at init time.
1902 *
1903 * Return: true if the device is IB switch.
1904 */
1905static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1906{
1907 return device->is_switch;
1908}
1909
0cf18d77
IW
1910/**
1911 * rdma_start_port - Return the first valid port number for the device
1912 * specified
1913 *
1914 * @device: Device to be checked
1915 *
1916 * Return start port number
1917 */
1918static inline u8 rdma_start_port(const struct ib_device *device)
1919{
4139032b 1920 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
1921}
1922
1923/**
1924 * rdma_end_port - Return the last valid port number for the device
1925 * specified
1926 *
1927 * @device: Device to be checked
1928 *
1929 * Return last port number
1930 */
1931static inline u8 rdma_end_port(const struct ib_device *device)
1932{
4139032b 1933 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
1934}
1935
5ede9289 1936static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1937{
f9b22e35 1938 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1939}
1940
5ede9289 1941static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
de66be94 1942{
f9b22e35 1943 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
1944}
1945
5ede9289 1946static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 1947{
f9b22e35 1948 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
1949}
1950
5ede9289 1951static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 1952{
f9b22e35
IW
1953 return device->port_immutable[port_num].core_cap_flags &
1954 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
de66be94
MW
1955}
1956
c757dea8 1957/**
296ec009 1958 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 1959 * Management Datagrams.
296ec009
MW
1960 * @device: Device to check
1961 * @port_num: Port number to check
c757dea8 1962 *
296ec009
MW
1963 * Management Datagrams (MAD) are a required part of the InfiniBand
1964 * specification and are supported on all InfiniBand devices. A slightly
1965 * extended version are also supported on OPA interfaces.
c757dea8 1966 *
296ec009 1967 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 1968 */
5ede9289 1969static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 1970{
f9b22e35 1971 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
1972}
1973
65995fee
IW
1974/**
1975 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
1976 * Management Datagrams.
1977 * @device: Device to check
1978 * @port_num: Port number to check
1979 *
1980 * Intel OmniPath devices extend and/or replace the InfiniBand Management
1981 * datagrams with their own versions. These OPA MADs share many but not all of
1982 * the characteristics of InfiniBand MADs.
1983 *
1984 * OPA MADs differ in the following ways:
1985 *
1986 * 1) MADs are variable size up to 2K
1987 * IBTA defined MADs remain fixed at 256 bytes
1988 * 2) OPA SMPs must carry valid PKeys
1989 * 3) OPA SMP packets are a different format
1990 *
1991 * Return: true if the port supports OPA MAD packet formats.
1992 */
1993static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
1994{
1995 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
1996 == RDMA_CORE_CAP_OPA_MAD;
1997}
1998
29541e3a 1999/**
296ec009
MW
2000 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2001 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2002 * @device: Device to check
2003 * @port_num: Port number to check
29541e3a 2004 *
296ec009
MW
2005 * Each InfiniBand node is required to provide a Subnet Management Agent
2006 * that the subnet manager can access. Prior to the fabric being fully
2007 * configured by the subnet manager, the SMA is accessed via a well known
2008 * interface called the Subnet Management Interface (SMI). This interface
2009 * uses directed route packets to communicate with the SM to get around the
2010 * chicken and egg problem of the SM needing to know what's on the fabric
2011 * in order to configure the fabric, and needing to configure the fabric in
2012 * order to send packets to the devices on the fabric. These directed
2013 * route packets do not need the fabric fully configured in order to reach
2014 * their destination. The SMI is the only method allowed to send
2015 * directed route packets on an InfiniBand fabric.
29541e3a 2016 *
296ec009 2017 * Return: true if the port provides an SMI.
29541e3a 2018 */
5ede9289 2019static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2020{
f9b22e35 2021 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2022}
2023
72219cea
MW
2024/**
2025 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2026 * Communication Manager.
296ec009
MW
2027 * @device: Device to check
2028 * @port_num: Port number to check
72219cea 2029 *
296ec009
MW
2030 * The InfiniBand Communication Manager is one of many pre-defined General
2031 * Service Agents (GSA) that are accessed via the General Service
2032 * Interface (GSI). It's role is to facilitate establishment of connections
2033 * between nodes as well as other management related tasks for established
2034 * connections.
72219cea 2035 *
296ec009
MW
2036 * Return: true if the port supports an IB CM (this does not guarantee that
2037 * a CM is actually running however).
72219cea 2038 */
5ede9289 2039static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2040{
f9b22e35 2041 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2042}
2043
04215330
MW
2044/**
2045 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2046 * Communication Manager.
296ec009
MW
2047 * @device: Device to check
2048 * @port_num: Port number to check
04215330 2049 *
296ec009
MW
2050 * Similar to above, but specific to iWARP connections which have a different
2051 * managment protocol than InfiniBand.
04215330 2052 *
296ec009
MW
2053 * Return: true if the port supports an iWARP CM (this does not guarantee that
2054 * a CM is actually running however).
04215330 2055 */
5ede9289 2056static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2057{
f9b22e35 2058 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2059}
2060
fe53ba2f
MW
2061/**
2062 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2063 * Subnet Administration.
296ec009
MW
2064 * @device: Device to check
2065 * @port_num: Port number to check
fe53ba2f 2066 *
296ec009
MW
2067 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2068 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2069 * fabrics, devices should resolve routes to other hosts by contacting the
2070 * SA to query the proper route.
fe53ba2f 2071 *
296ec009
MW
2072 * Return: true if the port should act as a client to the fabric Subnet
2073 * Administration interface. This does not imply that the SA service is
2074 * running locally.
fe53ba2f 2075 */
5ede9289 2076static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2077{
f9b22e35 2078 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2079}
2080
a31ad3b0
MW
2081/**
2082 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2083 * Multicast.
296ec009
MW
2084 * @device: Device to check
2085 * @port_num: Port number to check
a31ad3b0 2086 *
296ec009
MW
2087 * InfiniBand multicast registration is more complex than normal IPv4 or
2088 * IPv6 multicast registration. Each Host Channel Adapter must register
2089 * with the Subnet Manager when it wishes to join a multicast group. It
2090 * should do so only once regardless of how many queue pairs it subscribes
2091 * to this group. And it should leave the group only after all queue pairs
2092 * attached to the group have been detached.
a31ad3b0 2093 *
296ec009
MW
2094 * Return: true if the port must undertake the additional adminstrative
2095 * overhead of registering/unregistering with the SM and tracking of the
2096 * total number of queue pairs attached to the multicast group.
a31ad3b0 2097 */
5ede9289 2098static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2099{
2100 return rdma_cap_ib_sa(device, port_num);
2101}
2102
30a74ef4
MW
2103/**
2104 * rdma_cap_af_ib - Check if the port of device has the capability
2105 * Native Infiniband Address.
296ec009
MW
2106 * @device: Device to check
2107 * @port_num: Port number to check
30a74ef4 2108 *
296ec009
MW
2109 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2110 * GID. RoCE uses a different mechanism, but still generates a GID via
2111 * a prescribed mechanism and port specific data.
30a74ef4 2112 *
296ec009
MW
2113 * Return: true if the port uses a GID address to identify devices on the
2114 * network.
30a74ef4 2115 */
5ede9289 2116static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2117{
f9b22e35 2118 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2119}
2120
227128fc
MW
2121/**
2122 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2123 * Ethernet Address Handle.
2124 * @device: Device to check
2125 * @port_num: Port number to check
227128fc 2126 *
296ec009
MW
2127 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2128 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2129 * port. Normally, packet headers are generated by the sending host
2130 * adapter, but when sending connectionless datagrams, we must manually
2131 * inject the proper headers for the fabric we are communicating over.
227128fc 2132 *
296ec009
MW
2133 * Return: true if we are running as a RoCE port and must force the
2134 * addition of a Global Route Header built from our Ethernet Address
2135 * Handle into our header list for connectionless packets.
227128fc 2136 */
5ede9289 2137static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2138{
f9b22e35 2139 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2140}
2141
337877a4
IW
2142/**
2143 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2144 *
2145 * @device: Device
2146 * @port_num: Port number
2147 *
2148 * This MAD size includes the MAD headers and MAD payload. No other headers
2149 * are included.
2150 *
2151 * Return the max MAD size required by the Port. Will return 0 if the port
2152 * does not support MADs
2153 */
2154static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2155{
2156 return device->port_immutable[port_num].max_mad_size;
2157}
2158
03db3a2d
MB
2159/**
2160 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2161 * @device: Device to check
2162 * @port_num: Port number to check
2163 *
2164 * RoCE GID table mechanism manages the various GIDs for a device.
2165 *
2166 * NOTE: if allocating the port's GID table has failed, this call will still
2167 * return true, but any RoCE GID table API will fail.
2168 *
2169 * Return: true if the port uses RoCE GID table mechanism in order to manage
2170 * its GIDs.
2171 */
2172static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2173 u8 port_num)
2174{
2175 return rdma_protocol_roce(device, port_num) &&
2176 device->add_gid && device->del_gid;
2177}
2178
1da177e4 2179int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2180 u8 port_num, int index, union ib_gid *gid,
2181 struct ib_gid_attr *attr);
1da177e4
LT
2182
2183int ib_query_pkey(struct ib_device *device,
2184 u8 port_num, u16 index, u16 *pkey);
2185
2186int ib_modify_device(struct ib_device *device,
2187 int device_modify_mask,
2188 struct ib_device_modify *device_modify);
2189
2190int ib_modify_port(struct ib_device *device,
2191 u8 port_num, int port_modify_mask,
2192 struct ib_port_modify *port_modify);
2193
5eb620c8 2194int ib_find_gid(struct ib_device *device, union ib_gid *gid,
55ee3ab2 2195 struct net_device *ndev, u8 *port_num, u16 *index);
5eb620c8
YE
2196
2197int ib_find_pkey(struct ib_device *device,
2198 u8 port_num, u16 pkey, u16 *index);
2199
1da177e4
LT
2200struct ib_pd *ib_alloc_pd(struct ib_device *device);
2201
7dd78647 2202void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2203
2204/**
2205 * ib_create_ah - Creates an address handle for the given address vector.
2206 * @pd: The protection domain associated with the address handle.
2207 * @ah_attr: The attributes of the address vector.
2208 *
2209 * The address handle is used to reference a local or global destination
2210 * in all UD QP post sends.
2211 */
2212struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2213
4e00d694
SH
2214/**
2215 * ib_init_ah_from_wc - Initializes address handle attributes from a
2216 * work completion.
2217 * @device: Device on which the received message arrived.
2218 * @port_num: Port on which the received message arrived.
2219 * @wc: Work completion associated with the received message.
2220 * @grh: References the received global route header. This parameter is
2221 * ignored unless the work completion indicates that the GRH is valid.
2222 * @ah_attr: Returned attributes that can be used when creating an address
2223 * handle for replying to the message.
2224 */
73cdaaee
IW
2225int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2226 const struct ib_wc *wc, const struct ib_grh *grh,
2227 struct ib_ah_attr *ah_attr);
4e00d694 2228
513789ed
HR
2229/**
2230 * ib_create_ah_from_wc - Creates an address handle associated with the
2231 * sender of the specified work completion.
2232 * @pd: The protection domain associated with the address handle.
2233 * @wc: Work completion information associated with a received message.
2234 * @grh: References the received global route header. This parameter is
2235 * ignored unless the work completion indicates that the GRH is valid.
2236 * @port_num: The outbound port number to associate with the address.
2237 *
2238 * The address handle is used to reference a local or global destination
2239 * in all UD QP post sends.
2240 */
73cdaaee
IW
2241struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2242 const struct ib_grh *grh, u8 port_num);
513789ed 2243
1da177e4
LT
2244/**
2245 * ib_modify_ah - Modifies the address vector associated with an address
2246 * handle.
2247 * @ah: The address handle to modify.
2248 * @ah_attr: The new address vector attributes to associate with the
2249 * address handle.
2250 */
2251int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2252
2253/**
2254 * ib_query_ah - Queries the address vector associated with an address
2255 * handle.
2256 * @ah: The address handle to query.
2257 * @ah_attr: The address vector attributes associated with the address
2258 * handle.
2259 */
2260int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2261
2262/**
2263 * ib_destroy_ah - Destroys an address handle.
2264 * @ah: The address handle to destroy.
2265 */
2266int ib_destroy_ah(struct ib_ah *ah);
2267
d41fcc67
RD
2268/**
2269 * ib_create_srq - Creates a SRQ associated with the specified protection
2270 * domain.
2271 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2272 * @srq_init_attr: A list of initial attributes required to create the
2273 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2274 * the actual capabilities of the created SRQ.
d41fcc67
RD
2275 *
2276 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2277 * requested size of the SRQ, and set to the actual values allocated
2278 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2279 * will always be at least as large as the requested values.
2280 */
2281struct ib_srq *ib_create_srq(struct ib_pd *pd,
2282 struct ib_srq_init_attr *srq_init_attr);
2283
2284/**
2285 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2286 * @srq: The SRQ to modify.
2287 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2288 * the current values of selected SRQ attributes are returned.
2289 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2290 * are being modified.
2291 *
2292 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2293 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2294 * the number of receives queued drops below the limit.
2295 */
2296int ib_modify_srq(struct ib_srq *srq,
2297 struct ib_srq_attr *srq_attr,
2298 enum ib_srq_attr_mask srq_attr_mask);
2299
2300/**
2301 * ib_query_srq - Returns the attribute list and current values for the
2302 * specified SRQ.
2303 * @srq: The SRQ to query.
2304 * @srq_attr: The attributes of the specified SRQ.
2305 */
2306int ib_query_srq(struct ib_srq *srq,
2307 struct ib_srq_attr *srq_attr);
2308
2309/**
2310 * ib_destroy_srq - Destroys the specified SRQ.
2311 * @srq: The SRQ to destroy.
2312 */
2313int ib_destroy_srq(struct ib_srq *srq);
2314
2315/**
2316 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2317 * @srq: The SRQ to post the work request on.
2318 * @recv_wr: A list of work requests to post on the receive queue.
2319 * @bad_recv_wr: On an immediate failure, this parameter will reference
2320 * the work request that failed to be posted on the QP.
2321 */
2322static inline int ib_post_srq_recv(struct ib_srq *srq,
2323 struct ib_recv_wr *recv_wr,
2324 struct ib_recv_wr **bad_recv_wr)
2325{
2326 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2327}
2328
1da177e4
LT
2329/**
2330 * ib_create_qp - Creates a QP associated with the specified protection
2331 * domain.
2332 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2333 * @qp_init_attr: A list of initial attributes required to create the
2334 * QP. If QP creation succeeds, then the attributes are updated to
2335 * the actual capabilities of the created QP.
1da177e4
LT
2336 */
2337struct ib_qp *ib_create_qp(struct ib_pd *pd,
2338 struct ib_qp_init_attr *qp_init_attr);
2339
2340/**
2341 * ib_modify_qp - Modifies the attributes for the specified QP and then
2342 * transitions the QP to the given state.
2343 * @qp: The QP to modify.
2344 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2345 * the current values of selected QP attributes are returned.
2346 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2347 * are being modified.
2348 */
2349int ib_modify_qp(struct ib_qp *qp,
2350 struct ib_qp_attr *qp_attr,
2351 int qp_attr_mask);
2352
2353/**
2354 * ib_query_qp - Returns the attribute list and current values for the
2355 * specified QP.
2356 * @qp: The QP to query.
2357 * @qp_attr: The attributes of the specified QP.
2358 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2359 * @qp_init_attr: Additional attributes of the selected QP.
2360 *
2361 * The qp_attr_mask may be used to limit the query to gathering only the
2362 * selected attributes.
2363 */
2364int ib_query_qp(struct ib_qp *qp,
2365 struct ib_qp_attr *qp_attr,
2366 int qp_attr_mask,
2367 struct ib_qp_init_attr *qp_init_attr);
2368
2369/**
2370 * ib_destroy_qp - Destroys the specified QP.
2371 * @qp: The QP to destroy.
2372 */
2373int ib_destroy_qp(struct ib_qp *qp);
2374
d3d72d90 2375/**
0e0ec7e0
SH
2376 * ib_open_qp - Obtain a reference to an existing sharable QP.
2377 * @xrcd - XRC domain
2378 * @qp_open_attr: Attributes identifying the QP to open.
2379 *
2380 * Returns a reference to a sharable QP.
2381 */
2382struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2383 struct ib_qp_open_attr *qp_open_attr);
2384
2385/**
2386 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2387 * @qp: The QP handle to release
2388 *
0e0ec7e0
SH
2389 * The opened QP handle is released by the caller. The underlying
2390 * shared QP is not destroyed until all internal references are released.
d3d72d90 2391 */
0e0ec7e0 2392int ib_close_qp(struct ib_qp *qp);
d3d72d90 2393
1da177e4
LT
2394/**
2395 * ib_post_send - Posts a list of work requests to the send queue of
2396 * the specified QP.
2397 * @qp: The QP to post the work request on.
2398 * @send_wr: A list of work requests to post on the send queue.
2399 * @bad_send_wr: On an immediate failure, this parameter will reference
2400 * the work request that failed to be posted on the QP.
55464d46
BVA
2401 *
2402 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2403 * error is returned, the QP state shall not be affected,
2404 * ib_post_send() will return an immediate error after queueing any
2405 * earlier work requests in the list.
1da177e4
LT
2406 */
2407static inline int ib_post_send(struct ib_qp *qp,
2408 struct ib_send_wr *send_wr,
2409 struct ib_send_wr **bad_send_wr)
2410{
2411 return qp->device->post_send(qp, send_wr, bad_send_wr);
2412}
2413
2414/**
2415 * ib_post_recv - Posts a list of work requests to the receive queue of
2416 * the specified QP.
2417 * @qp: The QP to post the work request on.
2418 * @recv_wr: A list of work requests to post on the receive queue.
2419 * @bad_recv_wr: On an immediate failure, this parameter will reference
2420 * the work request that failed to be posted on the QP.
2421 */
2422static inline int ib_post_recv(struct ib_qp *qp,
2423 struct ib_recv_wr *recv_wr,
2424 struct ib_recv_wr **bad_recv_wr)
2425{
2426 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2427}
2428
2429/**
2430 * ib_create_cq - Creates a CQ on the specified device.
2431 * @device: The device on which to create the CQ.
2432 * @comp_handler: A user-specified callback that is invoked when a
2433 * completion event occurs on the CQ.
2434 * @event_handler: A user-specified callback that is invoked when an
2435 * asynchronous event not associated with a completion occurs on the CQ.
2436 * @cq_context: Context associated with the CQ returned to the user via
2437 * the associated completion and event handlers.
8e37210b 2438 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2439 *
2440 * Users can examine the cq structure to determine the actual CQ size.
2441 */
2442struct ib_cq *ib_create_cq(struct ib_device *device,
2443 ib_comp_handler comp_handler,
2444 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2445 void *cq_context,
2446 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2447
2448/**
2449 * ib_resize_cq - Modifies the capacity of the CQ.
2450 * @cq: The CQ to resize.
2451 * @cqe: The minimum size of the CQ.
2452 *
2453 * Users can examine the cq structure to determine the actual CQ size.
2454 */
2455int ib_resize_cq(struct ib_cq *cq, int cqe);
2456
2dd57162
EC
2457/**
2458 * ib_modify_cq - Modifies moderation params of the CQ
2459 * @cq: The CQ to modify.
2460 * @cq_count: number of CQEs that will trigger an event
2461 * @cq_period: max period of time in usec before triggering an event
2462 *
2463 */
2464int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2465
1da177e4
LT
2466/**
2467 * ib_destroy_cq - Destroys the specified CQ.
2468 * @cq: The CQ to destroy.
2469 */
2470int ib_destroy_cq(struct ib_cq *cq);
2471
2472/**
2473 * ib_poll_cq - poll a CQ for completion(s)
2474 * @cq:the CQ being polled
2475 * @num_entries:maximum number of completions to return
2476 * @wc:array of at least @num_entries &struct ib_wc where completions
2477 * will be returned
2478 *
2479 * Poll a CQ for (possibly multiple) completions. If the return value
2480 * is < 0, an error occurred. If the return value is >= 0, it is the
2481 * number of completions returned. If the return value is
2482 * non-negative and < num_entries, then the CQ was emptied.
2483 */
2484static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2485 struct ib_wc *wc)
2486{
2487 return cq->device->poll_cq(cq, num_entries, wc);
2488}
2489
2490/**
2491 * ib_peek_cq - Returns the number of unreaped completions currently
2492 * on the specified CQ.
2493 * @cq: The CQ to peek.
2494 * @wc_cnt: A minimum number of unreaped completions to check for.
2495 *
2496 * If the number of unreaped completions is greater than or equal to wc_cnt,
2497 * this function returns wc_cnt, otherwise, it returns the actual number of
2498 * unreaped completions.
2499 */
2500int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2501
2502/**
2503 * ib_req_notify_cq - Request completion notification on a CQ.
2504 * @cq: The CQ to generate an event for.
ed23a727
RD
2505 * @flags:
2506 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2507 * to request an event on the next solicited event or next work
2508 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2509 * may also be |ed in to request a hint about missed events, as
2510 * described below.
2511 *
2512 * Return Value:
2513 * < 0 means an error occurred while requesting notification
2514 * == 0 means notification was requested successfully, and if
2515 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2516 * were missed and it is safe to wait for another event. In
2517 * this case is it guaranteed that any work completions added
2518 * to the CQ since the last CQ poll will trigger a completion
2519 * notification event.
2520 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2521 * in. It means that the consumer must poll the CQ again to
2522 * make sure it is empty to avoid missing an event because of a
2523 * race between requesting notification and an entry being
2524 * added to the CQ. This return value means it is possible
2525 * (but not guaranteed) that a work completion has been added
2526 * to the CQ since the last poll without triggering a
2527 * completion notification event.
1da177e4
LT
2528 */
2529static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2530 enum ib_cq_notify_flags flags)
1da177e4 2531{
ed23a727 2532 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2533}
2534
2535/**
2536 * ib_req_ncomp_notif - Request completion notification when there are
2537 * at least the specified number of unreaped completions on the CQ.
2538 * @cq: The CQ to generate an event for.
2539 * @wc_cnt: The number of unreaped completions that should be on the
2540 * CQ before an event is generated.
2541 */
2542static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2543{
2544 return cq->device->req_ncomp_notif ?
2545 cq->device->req_ncomp_notif(cq, wc_cnt) :
2546 -ENOSYS;
2547}
2548
2549/**
2550 * ib_get_dma_mr - Returns a memory region for system memory that is
2551 * usable for DMA.
2552 * @pd: The protection domain associated with the memory region.
2553 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2554 *
2555 * Note that the ib_dma_*() functions defined below must be used
2556 * to create/destroy addresses used with the Lkey or Rkey returned
2557 * by ib_get_dma_mr().
1da177e4
LT
2558 */
2559struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2560
9b513090
RC
2561/**
2562 * ib_dma_mapping_error - check a DMA addr for error
2563 * @dev: The device for which the dma_addr was created
2564 * @dma_addr: The DMA address to check
2565 */
2566static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2567{
d1998ef3
BC
2568 if (dev->dma_ops)
2569 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2570 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2571}
2572
2573/**
2574 * ib_dma_map_single - Map a kernel virtual address to DMA address
2575 * @dev: The device for which the dma_addr is to be created
2576 * @cpu_addr: The kernel virtual address
2577 * @size: The size of the region in bytes
2578 * @direction: The direction of the DMA
2579 */
2580static inline u64 ib_dma_map_single(struct ib_device *dev,
2581 void *cpu_addr, size_t size,
2582 enum dma_data_direction direction)
2583{
d1998ef3
BC
2584 if (dev->dma_ops)
2585 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2586 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2587}
2588
2589/**
2590 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2591 * @dev: The device for which the DMA address was created
2592 * @addr: The DMA address
2593 * @size: The size of the region in bytes
2594 * @direction: The direction of the DMA
2595 */
2596static inline void ib_dma_unmap_single(struct ib_device *dev,
2597 u64 addr, size_t size,
2598 enum dma_data_direction direction)
2599{
d1998ef3
BC
2600 if (dev->dma_ops)
2601 dev->dma_ops->unmap_single(dev, addr, size, direction);
2602 else
9b513090
RC
2603 dma_unmap_single(dev->dma_device, addr, size, direction);
2604}
2605
cb9fbc5c
AK
2606static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2607 void *cpu_addr, size_t size,
2608 enum dma_data_direction direction,
2609 struct dma_attrs *attrs)
2610{
2611 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2612 direction, attrs);
2613}
2614
2615static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2616 u64 addr, size_t size,
2617 enum dma_data_direction direction,
2618 struct dma_attrs *attrs)
2619{
2620 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2621 direction, attrs);
2622}
2623
9b513090
RC
2624/**
2625 * ib_dma_map_page - Map a physical page to DMA address
2626 * @dev: The device for which the dma_addr is to be created
2627 * @page: The page to be mapped
2628 * @offset: The offset within the page
2629 * @size: The size of the region in bytes
2630 * @direction: The direction of the DMA
2631 */
2632static inline u64 ib_dma_map_page(struct ib_device *dev,
2633 struct page *page,
2634 unsigned long offset,
2635 size_t size,
2636 enum dma_data_direction direction)
2637{
d1998ef3
BC
2638 if (dev->dma_ops)
2639 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2640 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2641}
2642
2643/**
2644 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2645 * @dev: The device for which the DMA address was created
2646 * @addr: The DMA address
2647 * @size: The size of the region in bytes
2648 * @direction: The direction of the DMA
2649 */
2650static inline void ib_dma_unmap_page(struct ib_device *dev,
2651 u64 addr, size_t size,
2652 enum dma_data_direction direction)
2653{
d1998ef3
BC
2654 if (dev->dma_ops)
2655 dev->dma_ops->unmap_page(dev, addr, size, direction);
2656 else
9b513090
RC
2657 dma_unmap_page(dev->dma_device, addr, size, direction);
2658}
2659
2660/**
2661 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2662 * @dev: The device for which the DMA addresses are to be created
2663 * @sg: The array of scatter/gather entries
2664 * @nents: The number of scatter/gather entries
2665 * @direction: The direction of the DMA
2666 */
2667static inline int ib_dma_map_sg(struct ib_device *dev,
2668 struct scatterlist *sg, int nents,
2669 enum dma_data_direction direction)
2670{
d1998ef3
BC
2671 if (dev->dma_ops)
2672 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2673 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2674}
2675
2676/**
2677 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2678 * @dev: The device for which the DMA addresses were created
2679 * @sg: The array of scatter/gather entries
2680 * @nents: The number of scatter/gather entries
2681 * @direction: The direction of the DMA
2682 */
2683static inline void ib_dma_unmap_sg(struct ib_device *dev,
2684 struct scatterlist *sg, int nents,
2685 enum dma_data_direction direction)
2686{
d1998ef3
BC
2687 if (dev->dma_ops)
2688 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2689 else
9b513090
RC
2690 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2691}
2692
cb9fbc5c
AK
2693static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2694 struct scatterlist *sg, int nents,
2695 enum dma_data_direction direction,
2696 struct dma_attrs *attrs)
2697{
2698 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2699}
2700
2701static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2702 struct scatterlist *sg, int nents,
2703 enum dma_data_direction direction,
2704 struct dma_attrs *attrs)
2705{
2706 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2707}
9b513090
RC
2708/**
2709 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2710 * @dev: The device for which the DMA addresses were created
2711 * @sg: The scatter/gather entry
ea58a595
MM
2712 *
2713 * Note: this function is obsolete. To do: change all occurrences of
2714 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2715 */
2716static inline u64 ib_sg_dma_address(struct ib_device *dev,
2717 struct scatterlist *sg)
2718{
d1998ef3 2719 return sg_dma_address(sg);
9b513090
RC
2720}
2721
2722/**
2723 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2724 * @dev: The device for which the DMA addresses were created
2725 * @sg: The scatter/gather entry
ea58a595
MM
2726 *
2727 * Note: this function is obsolete. To do: change all occurrences of
2728 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2729 */
2730static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2731 struct scatterlist *sg)
2732{
d1998ef3 2733 return sg_dma_len(sg);
9b513090
RC
2734}
2735
2736/**
2737 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2738 * @dev: The device for which the DMA address was created
2739 * @addr: The DMA address
2740 * @size: The size of the region in bytes
2741 * @dir: The direction of the DMA
2742 */
2743static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2744 u64 addr,
2745 size_t size,
2746 enum dma_data_direction dir)
2747{
d1998ef3
BC
2748 if (dev->dma_ops)
2749 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2750 else
9b513090
RC
2751 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2752}
2753
2754/**
2755 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2756 * @dev: The device for which the DMA address was created
2757 * @addr: The DMA address
2758 * @size: The size of the region in bytes
2759 * @dir: The direction of the DMA
2760 */
2761static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2762 u64 addr,
2763 size_t size,
2764 enum dma_data_direction dir)
2765{
d1998ef3
BC
2766 if (dev->dma_ops)
2767 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2768 else
9b513090
RC
2769 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2770}
2771
2772/**
2773 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2774 * @dev: The device for which the DMA address is requested
2775 * @size: The size of the region to allocate in bytes
2776 * @dma_handle: A pointer for returning the DMA address of the region
2777 * @flag: memory allocator flags
2778 */
2779static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2780 size_t size,
2781 u64 *dma_handle,
2782 gfp_t flag)
2783{
d1998ef3
BC
2784 if (dev->dma_ops)
2785 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2786 else {
2787 dma_addr_t handle;
2788 void *ret;
2789
2790 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2791 *dma_handle = handle;
2792 return ret;
2793 }
9b513090
RC
2794}
2795
2796/**
2797 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2798 * @dev: The device for which the DMA addresses were allocated
2799 * @size: The size of the region
2800 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2801 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2802 */
2803static inline void ib_dma_free_coherent(struct ib_device *dev,
2804 size_t size, void *cpu_addr,
2805 u64 dma_handle)
2806{
d1998ef3
BC
2807 if (dev->dma_ops)
2808 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2809 else
9b513090
RC
2810 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2811}
2812
1da177e4
LT
2813/**
2814 * ib_query_mr - Retrieves information about a specific memory region.
2815 * @mr: The memory region to retrieve information about.
2816 * @mr_attr: The attributes of the specified memory region.
2817 */
2818int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2819
2820/**
2821 * ib_dereg_mr - Deregisters a memory region and removes it from the
2822 * HCA translation table.
2823 * @mr: The memory region to deregister.
7083e42e
SM
2824 *
2825 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2826 */
2827int ib_dereg_mr(struct ib_mr *mr);
2828
9bee178b
SG
2829struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2830 enum ib_mr_type mr_type,
2831 u32 max_num_sg);
00f7ec36
SW
2832
2833/**
2834 * ib_alloc_fast_reg_page_list - Allocates a page list array
2835 * @device - ib device pointer.
2836 * @page_list_len - size of the page list array to be allocated.
2837 *
2838 * This allocates and returns a struct ib_fast_reg_page_list * and a
2839 * page_list array that is at least page_list_len in size. The actual
2840 * size is returned in max_page_list_len. The caller is responsible
2841 * for initializing the contents of the page_list array before posting
2842 * a send work request with the IB_WC_FAST_REG_MR opcode.
2843 *
2844 * The page_list array entries must be translated using one of the
2845 * ib_dma_*() functions just like the addresses passed to
2846 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2847 * ib_fast_reg_page_list must not be modified by the caller until the
2848 * IB_WC_FAST_REG_MR work request completes.
2849 */
2850struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2851 struct ib_device *device, int page_list_len);
2852
2853/**
2854 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2855 * page list array.
2856 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2857 */
2858void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2859
2860/**
2861 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2862 * R_Key and L_Key.
2863 * @mr - struct ib_mr pointer to be updated.
2864 * @newkey - new key to be used.
2865 */
2866static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2867{
2868 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2869 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2870}
2871
7083e42e
SM
2872/**
2873 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2874 * for calculating a new rkey for type 2 memory windows.
2875 * @rkey - the rkey to increment.
2876 */
2877static inline u32 ib_inc_rkey(u32 rkey)
2878{
2879 const u32 mask = 0x000000ff;
2880 return ((rkey + 1) & mask) | (rkey & ~mask);
2881}
2882
1da177e4
LT
2883/**
2884 * ib_alloc_mw - Allocates a memory window.
2885 * @pd: The protection domain associated with the memory window.
7083e42e 2886 * @type: The type of the memory window (1 or 2).
1da177e4 2887 */
7083e42e 2888struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2889
2890/**
2891 * ib_bind_mw - Posts a work request to the send queue of the specified
2892 * QP, which binds the memory window to the given address range and
2893 * remote access attributes.
2894 * @qp: QP to post the bind work request on.
2895 * @mw: The memory window to bind.
2896 * @mw_bind: Specifies information about the memory window, including
2897 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2898 *
2899 * If there is no immediate error, the function will update the rkey member
2900 * of the mw parameter to its new value. The bind operation can still fail
2901 * asynchronously.
1da177e4
LT
2902 */
2903static inline int ib_bind_mw(struct ib_qp *qp,
2904 struct ib_mw *mw,
2905 struct ib_mw_bind *mw_bind)
2906{
2907 /* XXX reference counting in corresponding MR? */
2908 return mw->device->bind_mw ?
2909 mw->device->bind_mw(qp, mw, mw_bind) :
2910 -ENOSYS;
2911}
2912
2913/**
2914 * ib_dealloc_mw - Deallocates a memory window.
2915 * @mw: The memory window to deallocate.
2916 */
2917int ib_dealloc_mw(struct ib_mw *mw);
2918
2919/**
2920 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2921 * @pd: The protection domain associated with the unmapped region.
2922 * @mr_access_flags: Specifies the memory access rights.
2923 * @fmr_attr: Attributes of the unmapped region.
2924 *
2925 * A fast memory region must be mapped before it can be used as part of
2926 * a work request.
2927 */
2928struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2929 int mr_access_flags,
2930 struct ib_fmr_attr *fmr_attr);
2931
2932/**
2933 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2934 * @fmr: The fast memory region to associate with the pages.
2935 * @page_list: An array of physical pages to map to the fast memory region.
2936 * @list_len: The number of pages in page_list.
2937 * @iova: The I/O virtual address to use with the mapped region.
2938 */
2939static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2940 u64 *page_list, int list_len,
2941 u64 iova)
2942{
2943 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2944}
2945
2946/**
2947 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2948 * @fmr_list: A linked list of fast memory regions to unmap.
2949 */
2950int ib_unmap_fmr(struct list_head *fmr_list);
2951
2952/**
2953 * ib_dealloc_fmr - Deallocates a fast memory region.
2954 * @fmr: The fast memory region to deallocate.
2955 */
2956int ib_dealloc_fmr(struct ib_fmr *fmr);
2957
2958/**
2959 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2960 * @qp: QP to attach to the multicast group. The QP must be type
2961 * IB_QPT_UD.
2962 * @gid: Multicast group GID.
2963 * @lid: Multicast group LID in host byte order.
2964 *
2965 * In order to send and receive multicast packets, subnet
2966 * administration must have created the multicast group and configured
2967 * the fabric appropriately. The port associated with the specified
2968 * QP must also be a member of the multicast group.
2969 */
2970int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2971
2972/**
2973 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2974 * @qp: QP to detach from the multicast group.
2975 * @gid: Multicast group GID.
2976 * @lid: Multicast group LID in host byte order.
2977 */
2978int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2979
59991f94
SH
2980/**
2981 * ib_alloc_xrcd - Allocates an XRC domain.
2982 * @device: The device on which to allocate the XRC domain.
2983 */
2984struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2985
2986/**
2987 * ib_dealloc_xrcd - Deallocates an XRC domain.
2988 * @xrcd: The XRC domain to deallocate.
2989 */
2990int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2991
319a441d
HHZ
2992struct ib_flow *ib_create_flow(struct ib_qp *qp,
2993 struct ib_flow_attr *flow_attr, int domain);
2994int ib_destroy_flow(struct ib_flow *flow_id);
2995
1c636f80
EC
2996static inline int ib_check_mr_access(int flags)
2997{
2998 /*
2999 * Local write permission is required if remote write or
3000 * remote atomic permission is also requested.
3001 */
3002 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3003 !(flags & IB_ACCESS_LOCAL_WRITE))
3004 return -EINVAL;
3005
3006 return 0;
3007}
3008
1b01d335
SG
3009/**
3010 * ib_check_mr_status: lightweight check of MR status.
3011 * This routine may provide status checks on a selected
3012 * ib_mr. first use is for signature status check.
3013 *
3014 * @mr: A memory region.
3015 * @check_mask: Bitmask of which checks to perform from
3016 * ib_mr_status_check enumeration.
3017 * @mr_status: The container of relevant status checks.
3018 * failed checks will be indicated in the status bitmask
3019 * and the relevant info shall be in the error item.
3020 */
3021int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3022 struct ib_mr_status *mr_status);
3023
9268f72d
YK
3024struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3025 u16 pkey, const union ib_gid *gid,
3026 const struct sockaddr *addr);
3027
1da177e4 3028#endif /* IB_VERBS_H */