]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/rdma/ib_verbs.h
RDMA/include: Replace license text with SPDX tags
[mirror_ubuntu-jammy-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
6bf9d8f6 1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
1da177e4
LT
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
10 */
11
6bf9d8f6 12#ifndef IB_VERBS_H
1da177e4
LT
13#define IB_VERBS_H
14
15#include <linux/types.h>
16#include <linux/device.h>
9b513090 17#include <linux/dma-mapping.h>
459d6e2a 18#include <linux/kref.h>
bfb3ea12
DB
19#include <linux/list.h>
20#include <linux/rwsem.h>
f0626710 21#include <linux/workqueue.h>
14d3a3b2 22#include <linux/irq_poll.h>
dd5f03be 23#include <uapi/linux/if_ether.h>
c865f246
SK
24#include <net/ipv6.h>
25#include <net/ip.h>
301a721e
MB
26#include <linux/string.h>
27#include <linux/slab.h>
2fc77572 28#include <linux/netdevice.h>
01b67117 29#include <linux/refcount.h>
50174a7f 30#include <linux/if_link.h>
60063497 31#include <linux/atomic.h>
882214e2 32#include <linux/mmu_notifier.h>
7c0f6ba6 33#include <linux/uaccess.h>
43579b5f 34#include <linux/cgroup_rdma.h>
f6316032
LR
35#include <linux/irqflags.h>
36#include <linux/preempt.h>
da662979 37#include <linux/dim.h>
ea6819e1 38#include <uapi/rdma/ib_user_verbs.h>
413d3347 39#include <rdma/rdma_counter.h>
02d8883f 40#include <rdma/restrack.h>
36b1e47f 41#include <rdma/signature.h>
0ede73bc 42#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 43#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 44
9abb0d1b
LR
45#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
46
b5231b01 47struct ib_umem_odp;
620d3f81 48struct ib_uqp_object;
9fbe334c 49struct ib_usrq_object;
e04dd131 50struct ib_uwq_object;
211cd945 51struct rdma_cm_id;
b5231b01 52
f0626710 53extern struct workqueue_struct *ib_wq;
14d3a3b2 54extern struct workqueue_struct *ib_comp_wq;
f794809a 55extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 56
5bd48c18
JG
57struct ib_ucq_object;
58
923abb9d
GP
59__printf(3, 4) __cold
60void ibdev_printk(const char *level, const struct ib_device *ibdev,
61 const char *format, ...);
62__printf(2, 3) __cold
63void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
64__printf(2, 3) __cold
65void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
66__printf(2, 3) __cold
67void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
68__printf(2, 3) __cold
69void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
70__printf(2, 3) __cold
71void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
72__printf(2, 3) __cold
73void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
74__printf(2, 3) __cold
75void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
76
ceabef7d
OZ
77#if defined(CONFIG_DYNAMIC_DEBUG) || \
78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
923abb9d
GP
79#define ibdev_dbg(__dev, format, args...) \
80 dynamic_ibdev_dbg(__dev, format, ##args)
923abb9d
GP
81#else
82__printf(2, 3) __cold
83static inline
84void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
85#endif
86
05bb411a
GP
87#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
88do { \
89 static DEFINE_RATELIMIT_STATE(_rs, \
90 DEFAULT_RATELIMIT_INTERVAL, \
91 DEFAULT_RATELIMIT_BURST); \
92 if (__ratelimit(&_rs)) \
93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
94} while (0)
95
96#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
98#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
100#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
102#define ibdev_err_ratelimited(ibdev, fmt, ...) \
103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
104#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
106#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
108#define ibdev_info_ratelimited(ibdev, fmt, ...) \
109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
110
ceabef7d
OZ
111#if defined(CONFIG_DYNAMIC_DEBUG) || \
112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
05bb411a
GP
113/* descriptor check is first to prevent flooding with "callbacks suppressed" */
114#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
115do { \
116 static DEFINE_RATELIMIT_STATE(_rs, \
117 DEFAULT_RATELIMIT_INTERVAL, \
118 DEFAULT_RATELIMIT_BURST); \
119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
122 ##__VA_ARGS__); \
123} while (0)
124#else
125__printf(2, 3) __cold
126static inline
127void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
128#endif
129
1da177e4
LT
130union ib_gid {
131 u8 raw[16];
132 struct {
97f52eb4
SH
133 __be64 subnet_prefix;
134 __be64 interface_id;
1da177e4
LT
135 } global;
136};
137
e26be1bf
MS
138extern union ib_gid zgid;
139
b39ffa1d
MB
140enum ib_gid_type {
141 /* If link layer is Ethernet, this is RoCE V1 */
142 IB_GID_TYPE_IB = 0,
143 IB_GID_TYPE_ROCE = 0,
7766a99f 144 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
145 IB_GID_TYPE_SIZE
146};
147
7ead4bcb 148#define ROCE_V2_UDP_DPORT 4791
03db3a2d 149struct ib_gid_attr {
943bd984 150 struct net_device __rcu *ndev;
598ff6ba 151 struct ib_device *device;
b150c386 152 union ib_gid gid;
598ff6ba
PP
153 enum ib_gid_type gid_type;
154 u16 index;
155 u8 port_num;
03db3a2d
MB
156};
157
a0c1b2a3
EC
158enum {
159 /* set the local administered indication */
160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
161};
162
07ebafba
TT
163enum rdma_transport_type {
164 RDMA_TRANSPORT_IB,
180771a3 165 RDMA_TRANSPORT_IWARP,
248567f7 166 RDMA_TRANSPORT_USNIC,
f95be3d2
GP
167 RDMA_TRANSPORT_USNIC_UDP,
168 RDMA_TRANSPORT_UNSPECIFIED,
07ebafba
TT
169};
170
6b90a6d6
MW
171enum rdma_protocol_type {
172 RDMA_PROTOCOL_IB,
173 RDMA_PROTOCOL_IBOE,
174 RDMA_PROTOCOL_IWARP,
175 RDMA_PROTOCOL_USNIC_UDP
176};
177
8385fd84 178__attribute_const__ enum rdma_transport_type
5d60c111 179rdma_node_get_transport(unsigned int node_type);
07ebafba 180
c865f246
SK
181enum rdma_network_type {
182 RDMA_NETWORK_IB,
183 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
184 RDMA_NETWORK_IPV4,
185 RDMA_NETWORK_IPV6
186};
187
188static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189{
190 if (network_type == RDMA_NETWORK_IPV4 ||
191 network_type == RDMA_NETWORK_IPV6)
192 return IB_GID_TYPE_ROCE_UDP_ENCAP;
193
194 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
195 return IB_GID_TYPE_IB;
196}
197
47ec3866
PP
198static inline enum rdma_network_type
199rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 200{
47ec3866 201 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
202 return RDMA_NETWORK_IB;
203
47ec3866 204 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
205 return RDMA_NETWORK_IPV4;
206 else
207 return RDMA_NETWORK_IPV6;
208}
209
a3f5adaf
EC
210enum rdma_link_layer {
211 IB_LINK_LAYER_UNSPECIFIED,
212 IB_LINK_LAYER_INFINIBAND,
213 IB_LINK_LAYER_ETHERNET,
214};
215
1da177e4 216enum ib_device_cap_flags {
7ca0bc53
LR
217 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
218 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
219 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
220 IB_DEVICE_RAW_MULTI = (1 << 3),
221 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
222 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
223 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
224 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
225 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 226 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
227 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
228 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
229 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
230 IB_DEVICE_SRQ_RESIZE = (1 << 13),
231 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
232
233 /*
234 * This device supports a per-device lkey or stag that can be
235 * used without performing a memory registration for the local
236 * memory. Note that ULPs should never check this flag, but
237 * instead of use the local_dma_lkey flag in the ib_pd structure,
238 * which will always contain a usable lkey.
239 */
7ca0bc53 240 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 241 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 242 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
243 /*
244 * Devices should set IB_DEVICE_UD_IP_SUM if they support
245 * insertion of UDP and TCP checksum on outgoing UD IPoIB
246 * messages and can verify the validity of checksum for
247 * incoming messages. Setting this flag implies that the
248 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
249 */
7ca0bc53
LR
250 IB_DEVICE_UD_IP_CSUM = (1 << 18),
251 IB_DEVICE_UD_TSO = (1 << 19),
252 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
253
254 /*
255 * This device supports the IB "base memory management extension",
256 * which includes support for fast registrations (IB_WR_REG_MR,
257 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
258 * also be set by any iWarp device which must support FRs to comply
259 * to the iWarp verbs spec. iWarp devices also support the
260 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
261 * stag.
262 */
7ca0bc53
LR
263 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
264 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
265 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
266 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
267 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 269 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
270 /*
271 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
272 * support execution of WQEs that involve synchronization
273 * of I/O operations with single completion queue managed
274 * by hardware.
275 */
78b57f95 276 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53 277 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
c0a6cbb9 278 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
47355b3c 279 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 280 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 281 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 282 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 283 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
7f90a5a0 284 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
e1d2e887
NO
285 /* The device supports padding incoming writes to cacheline. */
286 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 287 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
288};
289
1da177e4
LT
290enum ib_atomic_cap {
291 IB_ATOMIC_NONE,
292 IB_ATOMIC_HCA,
293 IB_ATOMIC_GLOB
294};
295
860f10a7 296enum ib_odp_general_cap_bits {
25bf14d6
AK
297 IB_ODP_SUPPORT = 1 << 0,
298 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
299};
300
301enum ib_odp_transport_cap_bits {
302 IB_ODP_SUPPORT_SEND = 1 << 0,
303 IB_ODP_SUPPORT_RECV = 1 << 1,
304 IB_ODP_SUPPORT_WRITE = 1 << 2,
305 IB_ODP_SUPPORT_READ = 1 << 3,
306 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 307 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
308};
309
310struct ib_odp_caps {
311 uint64_t general_caps;
312 struct {
313 uint32_t rc_odp_caps;
314 uint32_t uc_odp_caps;
315 uint32_t ud_odp_caps;
52a72e2a 316 uint32_t xrc_odp_caps;
860f10a7
SG
317 } per_transport_caps;
318};
319
ccf20562
YH
320struct ib_rss_caps {
321 /* Corresponding bit will be set if qp type from
322 * 'enum ib_qp_type' is supported, e.g.
323 * supported_qpts |= 1 << IB_QPT_UD
324 */
325 u32 supported_qpts;
326 u32 max_rwq_indirection_tables;
327 u32 max_rwq_indirection_table_size;
328};
329
6938fc1e 330enum ib_tm_cap_flags {
89705e92
DG
331 /* Support tag matching with rendezvous offload for RC transport */
332 IB_TM_CAP_RNDV_RC = 1 << 0,
6938fc1e
AK
333};
334
78b1beb0 335struct ib_tm_caps {
6938fc1e
AK
336 /* Max size of RNDV header */
337 u32 max_rndv_hdr_size;
338 /* Max number of entries in tag matching list */
339 u32 max_num_tags;
340 /* From enum ib_tm_cap_flags */
341 u32 flags;
342 /* Max number of outstanding list operations */
343 u32 max_ops;
344 /* Max number of SGE in tag matching entry */
345 u32 max_sge;
346};
347
bcf4c1ea
MB
348struct ib_cq_init_attr {
349 unsigned int cqe;
a9018adf 350 u32 comp_vector;
bcf4c1ea
MB
351 u32 flags;
352};
353
869ddcf8
YC
354enum ib_cq_attr_mask {
355 IB_CQ_MODERATE = 1 << 0,
356};
357
18bd9072
YC
358struct ib_cq_caps {
359 u16 max_cq_moderation_count;
360 u16 max_cq_moderation_period;
361};
362
be934cca
AL
363struct ib_dm_mr_attr {
364 u64 length;
365 u64 offset;
366 u32 access_flags;
367};
368
bee76d7a
AL
369struct ib_dm_alloc_attr {
370 u64 length;
371 u32 alignment;
372 u32 flags;
373};
374
1da177e4
LT
375struct ib_device_attr {
376 u64 fw_ver;
97f52eb4 377 __be64 sys_image_guid;
1da177e4
LT
378 u64 max_mr_size;
379 u64 page_size_cap;
380 u32 vendor_id;
381 u32 vendor_part_id;
382 u32 hw_ver;
383 int max_qp;
384 int max_qp_wr;
fb532d6a 385 u64 device_cap_flags;
33023fb8
SW
386 int max_send_sge;
387 int max_recv_sge;
1da177e4
LT
388 int max_sge_rd;
389 int max_cq;
390 int max_cqe;
391 int max_mr;
392 int max_pd;
393 int max_qp_rd_atom;
394 int max_ee_rd_atom;
395 int max_res_rd_atom;
396 int max_qp_init_rd_atom;
397 int max_ee_init_rd_atom;
398 enum ib_atomic_cap atomic_cap;
5e80ba8f 399 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
400 int max_ee;
401 int max_rdd;
402 int max_mw;
403 int max_raw_ipv6_qp;
404 int max_raw_ethy_qp;
405 int max_mcast_grp;
406 int max_mcast_qp_attach;
407 int max_total_mcast_qp_attach;
408 int max_ah;
1da177e4
LT
409 int max_srq;
410 int max_srq_wr;
411 int max_srq_sge;
00f7ec36 412 unsigned int max_fast_reg_page_list_len;
62e3c379 413 unsigned int max_pi_fast_reg_page_list_len;
1da177e4
LT
414 u16 max_pkeys;
415 u8 local_ca_ack_delay;
1b01d335
SG
416 int sig_prot_cap;
417 int sig_guard_cap;
860f10a7 418 struct ib_odp_caps odp_caps;
24306dc6
MB
419 uint64_t timestamp_mask;
420 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
421 struct ib_rss_caps rss_caps;
422 u32 max_wq_type_rq;
ebaaee25 423 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 424 struct ib_tm_caps tm_caps;
18bd9072 425 struct ib_cq_caps cq_caps;
1d8eeb9f 426 u64 max_dm_size;
00bd1439
YF
427 /* Max entries for sgl for optimized performance per READ */
428 u32 max_sgl_rd;
1da177e4
LT
429};
430
431enum ib_mtu {
432 IB_MTU_256 = 1,
433 IB_MTU_512 = 2,
434 IB_MTU_1024 = 3,
435 IB_MTU_2048 = 4,
436 IB_MTU_4096 = 5
437};
438
6d72344c
KW
439enum opa_mtu {
440 OPA_MTU_8192 = 6,
441 OPA_MTU_10240 = 7
442};
443
1da177e4
LT
444static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
445{
446 switch (mtu) {
447 case IB_MTU_256: return 256;
448 case IB_MTU_512: return 512;
449 case IB_MTU_1024: return 1024;
450 case IB_MTU_2048: return 2048;
451 case IB_MTU_4096: return 4096;
452 default: return -1;
453 }
454}
455
d3f4aadd
AR
456static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
457{
458 if (mtu >= 4096)
459 return IB_MTU_4096;
460 else if (mtu >= 2048)
461 return IB_MTU_2048;
462 else if (mtu >= 1024)
463 return IB_MTU_1024;
464 else if (mtu >= 512)
465 return IB_MTU_512;
466 else
467 return IB_MTU_256;
468}
469
6d72344c
KW
470static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
471{
472 switch (mtu) {
473 case OPA_MTU_8192:
474 return 8192;
475 case OPA_MTU_10240:
476 return 10240;
477 default:
478 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
479 }
480}
481
482static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
483{
484 if (mtu >= 10240)
485 return OPA_MTU_10240;
486 else if (mtu >= 8192)
487 return OPA_MTU_8192;
488 else
489 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
490}
491
1da177e4
LT
492enum ib_port_state {
493 IB_PORT_NOP = 0,
494 IB_PORT_DOWN = 1,
495 IB_PORT_INIT = 2,
496 IB_PORT_ARMED = 3,
497 IB_PORT_ACTIVE = 4,
498 IB_PORT_ACTIVE_DEFER = 5
499};
500
72a7720f
KH
501enum ib_port_phys_state {
502 IB_PORT_PHYS_STATE_SLEEP = 1,
503 IB_PORT_PHYS_STATE_POLLING = 2,
504 IB_PORT_PHYS_STATE_DISABLED = 3,
505 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
506 IB_PORT_PHYS_STATE_LINK_UP = 5,
507 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
508 IB_PORT_PHYS_STATE_PHY_TEST = 7,
509};
510
1da177e4
LT
511enum ib_port_width {
512 IB_WIDTH_1X = 1,
dbabf685 513 IB_WIDTH_2X = 16,
1da177e4
LT
514 IB_WIDTH_4X = 2,
515 IB_WIDTH_8X = 4,
516 IB_WIDTH_12X = 8
517};
518
519static inline int ib_width_enum_to_int(enum ib_port_width width)
520{
521 switch (width) {
522 case IB_WIDTH_1X: return 1;
dbabf685 523 case IB_WIDTH_2X: return 2;
1da177e4
LT
524 case IB_WIDTH_4X: return 4;
525 case IB_WIDTH_8X: return 8;
526 case IB_WIDTH_12X: return 12;
527 default: return -1;
528 }
529}
530
2e96691c
OG
531enum ib_port_speed {
532 IB_SPEED_SDR = 1,
533 IB_SPEED_DDR = 2,
534 IB_SPEED_QDR = 4,
535 IB_SPEED_FDR10 = 8,
536 IB_SPEED_FDR = 16,
12113a35
NO
537 IB_SPEED_EDR = 32,
538 IB_SPEED_HDR = 64
2e96691c
OG
539};
540
b40f4757
CL
541/**
542 * struct rdma_hw_stats
e945130b
MB
543 * @lock - Mutex to protect parallel write access to lifespan and values
544 * of counters, which are 64bits and not guaranteeed to be written
545 * atomicaly on 32bits systems.
b40f4757
CL
546 * @timestamp - Used by the core code to track when the last update was
547 * @lifespan - Used by the core code to determine how old the counters
548 * should be before being updated again. Stored in jiffies, defaults
549 * to 10 milliseconds, drivers can override the default be specifying
550 * their own value during their allocation routine.
551 * @name - Array of pointers to static names used for the counters in
552 * directory.
553 * @num_counters - How many hardware counters there are. If name is
554 * shorter than this number, a kernel oops will result. Driver authors
555 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
556 * in their code to prevent this.
557 * @value - Array of u64 counters that are accessed by the sysfs code and
558 * filled in by the drivers get_stats routine
559 */
560struct rdma_hw_stats {
e945130b 561 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
562 unsigned long timestamp;
563 unsigned long lifespan;
564 const char * const *names;
565 int num_counters;
566 u64 value[];
7f624d02
SW
567};
568
b40f4757
CL
569#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
570/**
571 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
572 * for drivers.
573 * @names - Array of static const char *
574 * @num_counters - How many elements in array
575 * @lifespan - How many milliseconds between updates
576 */
577static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
578 const char * const *names, int num_counters,
579 unsigned long lifespan)
580{
581 struct rdma_hw_stats *stats;
582
583 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
584 GFP_KERNEL);
585 if (!stats)
586 return NULL;
587 stats->names = names;
588 stats->num_counters = num_counters;
589 stats->lifespan = msecs_to_jiffies(lifespan);
590
591 return stats;
592}
593
594
f9b22e35
IW
595/* Define bits for the various functionality this port needs to be supported by
596 * the core.
597 */
598/* Management 0x00000FFF */
599#define RDMA_CORE_CAP_IB_MAD 0x00000001
600#define RDMA_CORE_CAP_IB_SMI 0x00000002
601#define RDMA_CORE_CAP_IB_CM 0x00000004
602#define RDMA_CORE_CAP_IW_CM 0x00000008
603#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 604#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
605
606/* Address format 0x000FF000 */
607#define RDMA_CORE_CAP_AF_IB 0x00001000
608#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 609#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 610#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
611
612/* Protocol 0xFFF00000 */
613#define RDMA_CORE_CAP_PROT_IB 0x00100000
614#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
615#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 616#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 617#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 618#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 619
b02289b3
AK
620#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
621 | RDMA_CORE_CAP_PROT_ROCE \
622 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
623
f9b22e35
IW
624#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
625 | RDMA_CORE_CAP_IB_MAD \
626 | RDMA_CORE_CAP_IB_SMI \
627 | RDMA_CORE_CAP_IB_CM \
628 | RDMA_CORE_CAP_IB_SA \
629 | RDMA_CORE_CAP_AF_IB)
630#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
631 | RDMA_CORE_CAP_IB_MAD \
632 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
633 | RDMA_CORE_CAP_AF_IB \
634 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
635#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
636 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
637 | RDMA_CORE_CAP_IB_MAD \
638 | RDMA_CORE_CAP_IB_CM \
639 | RDMA_CORE_CAP_AF_IB \
640 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
641#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
642 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
643#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
644 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 645
aa773bd4
OG
646#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
647
ce1e055f
OG
648#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
649
1da177e4 650struct ib_port_attr {
fad61ad4 651 u64 subnet_prefix;
1da177e4
LT
652 enum ib_port_state state;
653 enum ib_mtu max_mtu;
654 enum ib_mtu active_mtu;
6d72344c 655 u32 phys_mtu;
1da177e4 656 int gid_tbl_len;
2f944c0f
JG
657 unsigned int ip_gids:1;
658 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
659 u32 port_cap_flags;
660 u32 max_msg_sz;
661 u32 bad_pkey_cntr;
662 u32 qkey_viol_cntr;
663 u16 pkey_tbl_len;
db58540b 664 u32 sm_lid;
582faf31 665 u32 lid;
1da177e4
LT
666 u8 lmc;
667 u8 max_vl_num;
668 u8 sm_sl;
669 u8 subnet_timeout;
670 u8 init_type_reply;
671 u8 active_width;
672 u8 active_speed;
673 u8 phys_state;
1e8f43b7 674 u16 port_cap_flags2;
1da177e4
LT
675};
676
677enum ib_device_modify_flags {
c5bcbbb9
RD
678 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
679 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
680};
681
bd99fdea
YS
682#define IB_DEVICE_NODE_DESC_MAX 64
683
1da177e4
LT
684struct ib_device_modify {
685 u64 sys_image_guid;
bd99fdea 686 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
687};
688
689enum ib_port_modify_flags {
690 IB_PORT_SHUTDOWN = 1,
691 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
692 IB_PORT_RESET_QKEY_CNTR = (1<<3),
693 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
694};
695
696struct ib_port_modify {
697 u32 set_port_cap_mask;
698 u32 clr_port_cap_mask;
699 u8 init_type;
700};
701
702enum ib_event_type {
703 IB_EVENT_CQ_ERR,
704 IB_EVENT_QP_FATAL,
705 IB_EVENT_QP_REQ_ERR,
706 IB_EVENT_QP_ACCESS_ERR,
707 IB_EVENT_COMM_EST,
708 IB_EVENT_SQ_DRAINED,
709 IB_EVENT_PATH_MIG,
710 IB_EVENT_PATH_MIG_ERR,
711 IB_EVENT_DEVICE_FATAL,
712 IB_EVENT_PORT_ACTIVE,
713 IB_EVENT_PORT_ERR,
714 IB_EVENT_LID_CHANGE,
715 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
716 IB_EVENT_SM_CHANGE,
717 IB_EVENT_SRQ_ERR,
718 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 719 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
720 IB_EVENT_CLIENT_REREGISTER,
721 IB_EVENT_GID_CHANGE,
f213c052 722 IB_EVENT_WQ_FATAL,
1da177e4
LT
723};
724
db7489e0 725const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 726
1da177e4
LT
727struct ib_event {
728 struct ib_device *device;
729 union {
730 struct ib_cq *cq;
731 struct ib_qp *qp;
d41fcc67 732 struct ib_srq *srq;
f213c052 733 struct ib_wq *wq;
1da177e4
LT
734 u8 port_num;
735 } element;
736 enum ib_event_type event;
737};
738
739struct ib_event_handler {
740 struct ib_device *device;
741 void (*handler)(struct ib_event_handler *, struct ib_event *);
742 struct list_head list;
743};
744
745#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
746 do { \
747 (_ptr)->device = _device; \
748 (_ptr)->handler = _handler; \
749 INIT_LIST_HEAD(&(_ptr)->list); \
750 } while (0)
751
752struct ib_global_route {
8d9ec9ad 753 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
754 union ib_gid dgid;
755 u32 flow_label;
756 u8 sgid_index;
757 u8 hop_limit;
758 u8 traffic_class;
759};
760
513789ed 761struct ib_grh {
97f52eb4
SH
762 __be32 version_tclass_flow;
763 __be16 paylen;
513789ed
HR
764 u8 next_hdr;
765 u8 hop_limit;
766 union ib_gid sgid;
767 union ib_gid dgid;
768};
769
c865f246
SK
770union rdma_network_hdr {
771 struct ib_grh ibgrh;
772 struct {
773 /* The IB spec states that if it's IPv4, the header
774 * is located in the last 20 bytes of the header.
775 */
776 u8 reserved[20];
777 struct iphdr roce4grh;
778 };
779};
780
7dafbab3
DH
781#define IB_QPN_MASK 0xFFFFFF
782
1da177e4
LT
783enum {
784 IB_MULTICAST_QPN = 0xffffff
785};
786
f3a7c66b 787#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 788#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 789
1da177e4
LT
790enum ib_ah_flags {
791 IB_AH_GRH = 1
792};
793
bf6a9e31
JM
794enum ib_rate {
795 IB_RATE_PORT_CURRENT = 0,
796 IB_RATE_2_5_GBPS = 2,
797 IB_RATE_5_GBPS = 5,
798 IB_RATE_10_GBPS = 3,
799 IB_RATE_20_GBPS = 6,
800 IB_RATE_30_GBPS = 4,
801 IB_RATE_40_GBPS = 7,
802 IB_RATE_60_GBPS = 8,
803 IB_RATE_80_GBPS = 9,
71eeba16
MA
804 IB_RATE_120_GBPS = 10,
805 IB_RATE_14_GBPS = 11,
806 IB_RATE_56_GBPS = 12,
807 IB_RATE_112_GBPS = 13,
808 IB_RATE_168_GBPS = 14,
809 IB_RATE_25_GBPS = 15,
810 IB_RATE_100_GBPS = 16,
811 IB_RATE_200_GBPS = 17,
a5a5d199
MG
812 IB_RATE_300_GBPS = 18,
813 IB_RATE_28_GBPS = 19,
814 IB_RATE_50_GBPS = 20,
815 IB_RATE_400_GBPS = 21,
816 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
817};
818
819/**
820 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
821 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
822 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
823 * @rate: rate to convert.
824 */
8385fd84 825__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 826
71eeba16
MA
827/**
828 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
829 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
830 * @rate: rate to convert.
831 */
8385fd84 832__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 833
17cd3a2d
SG
834
835/**
9bee178b
SG
836 * enum ib_mr_type - memory region type
837 * @IB_MR_TYPE_MEM_REG: memory region that is used for
838 * normal registration
f5aa9159
SG
839 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
840 * register any arbitrary sg lists (without
841 * the normal mr constraints - see
842 * ib_map_mr_sg)
a0bc099a
MG
843 * @IB_MR_TYPE_DM: memory region that is used for device
844 * memory registration
845 * @IB_MR_TYPE_USER: memory region that is used for the user-space
846 * application
847 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
848 * without address translations (VA=PA)
26bc7eae
IR
849 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
850 * data integrity operations
17cd3a2d 851 */
9bee178b
SG
852enum ib_mr_type {
853 IB_MR_TYPE_MEM_REG,
f5aa9159 854 IB_MR_TYPE_SG_GAPS,
a0bc099a
MG
855 IB_MR_TYPE_DM,
856 IB_MR_TYPE_USER,
857 IB_MR_TYPE_DMA,
26bc7eae 858 IB_MR_TYPE_INTEGRITY,
17cd3a2d
SG
859};
860
1b01d335
SG
861enum ib_mr_status_check {
862 IB_MR_CHECK_SIG_STATUS = 1,
863};
864
865/**
866 * struct ib_mr_status - Memory region status container
867 *
868 * @fail_status: Bitmask of MR checks status. For each
869 * failed check a corresponding status bit is set.
870 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
871 * failure.
872 */
873struct ib_mr_status {
874 u32 fail_status;
875 struct ib_sig_err sig_err;
876};
877
bf6a9e31
JM
878/**
879 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
880 * enum.
881 * @mult: multiple to convert.
882 */
8385fd84 883__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 884
fa5d010c
MG
885struct rdma_ah_init_attr {
886 struct rdma_ah_attr *ah_attr;
887 u32 flags;
51aab126 888 struct net_device *xmit_slave;
fa5d010c
MG
889};
890
44c58487 891enum rdma_ah_attr_type {
87daac68 892 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
893 RDMA_AH_ATTR_TYPE_IB,
894 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 895 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
896};
897
898struct ib_ah_attr {
899 u16 dlid;
900 u8 src_path_bits;
901};
902
903struct roce_ah_attr {
904 u8 dmac[ETH_ALEN];
905};
906
64b4646e
DC
907struct opa_ah_attr {
908 u32 dlid;
909 u8 src_path_bits;
d98bb7f7 910 bool make_grd;
64b4646e
DC
911};
912
90898850 913struct rdma_ah_attr {
1da177e4 914 struct ib_global_route grh;
1da177e4 915 u8 sl;
1da177e4 916 u8 static_rate;
1da177e4 917 u8 port_num;
44c58487
DC
918 u8 ah_flags;
919 enum rdma_ah_attr_type type;
920 union {
921 struct ib_ah_attr ib;
922 struct roce_ah_attr roce;
64b4646e 923 struct opa_ah_attr opa;
44c58487 924 };
1da177e4
LT
925};
926
927enum ib_wc_status {
928 IB_WC_SUCCESS,
929 IB_WC_LOC_LEN_ERR,
930 IB_WC_LOC_QP_OP_ERR,
931 IB_WC_LOC_EEC_OP_ERR,
932 IB_WC_LOC_PROT_ERR,
933 IB_WC_WR_FLUSH_ERR,
934 IB_WC_MW_BIND_ERR,
935 IB_WC_BAD_RESP_ERR,
936 IB_WC_LOC_ACCESS_ERR,
937 IB_WC_REM_INV_REQ_ERR,
938 IB_WC_REM_ACCESS_ERR,
939 IB_WC_REM_OP_ERR,
940 IB_WC_RETRY_EXC_ERR,
941 IB_WC_RNR_RETRY_EXC_ERR,
942 IB_WC_LOC_RDD_VIOL_ERR,
943 IB_WC_REM_INV_RD_REQ_ERR,
944 IB_WC_REM_ABORT_ERR,
945 IB_WC_INV_EECN_ERR,
946 IB_WC_INV_EEC_STATE_ERR,
947 IB_WC_FATAL_ERR,
948 IB_WC_RESP_TIMEOUT_ERR,
949 IB_WC_GENERAL_ERR
950};
951
db7489e0 952const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 953
1da177e4
LT
954enum ib_wc_opcode {
955 IB_WC_SEND,
956 IB_WC_RDMA_WRITE,
957 IB_WC_RDMA_READ,
958 IB_WC_COMP_SWAP,
959 IB_WC_FETCH_ADD,
c93570f2 960 IB_WC_LSO,
00f7ec36 961 IB_WC_LOCAL_INV,
4c67e2bf 962 IB_WC_REG_MR,
5e80ba8f
VS
963 IB_WC_MASKED_COMP_SWAP,
964 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
965/*
966 * Set value of IB_WC_RECV so consumers can test if a completion is a
967 * receive by testing (opcode & IB_WC_RECV).
968 */
969 IB_WC_RECV = 1 << 7,
970 IB_WC_RECV_RDMA_WITH_IMM
971};
972
973enum ib_wc_flags {
974 IB_WC_GRH = 1,
00f7ec36
SW
975 IB_WC_WITH_IMM = (1<<1),
976 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 977 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
978 IB_WC_WITH_SMAC = (1<<4),
979 IB_WC_WITH_VLAN = (1<<5),
c865f246 980 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
981};
982
983struct ib_wc {
14d3a3b2
CH
984 union {
985 u64 wr_id;
986 struct ib_cqe *wr_cqe;
987 };
1da177e4
LT
988 enum ib_wc_status status;
989 enum ib_wc_opcode opcode;
990 u32 vendor_err;
991 u32 byte_len;
062dbb69 992 struct ib_qp *qp;
00f7ec36
SW
993 union {
994 __be32 imm_data;
995 u32 invalidate_rkey;
996 } ex;
1da177e4 997 u32 src_qp;
cd2a6e7d 998 u32 slid;
1da177e4
LT
999 int wc_flags;
1000 u16 pkey_index;
1da177e4
LT
1001 u8 sl;
1002 u8 dlid_path_bits;
1003 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1004 u8 smac[ETH_ALEN];
1005 u16 vlan_id;
c865f246 1006 u8 network_hdr_type;
1da177e4
LT
1007};
1008
ed23a727
RD
1009enum ib_cq_notify_flags {
1010 IB_CQ_SOLICITED = 1 << 0,
1011 IB_CQ_NEXT_COMP = 1 << 1,
1012 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1013 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1014};
1015
96104eda 1016enum ib_srq_type {
175ba58d
YH
1017 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1018 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1019 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
96104eda
SH
1020};
1021
1a56ff6d
AK
1022static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1023{
9c2c8496
AK
1024 return srq_type == IB_SRQT_XRC ||
1025 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1026}
1027
d41fcc67
RD
1028enum ib_srq_attr_mask {
1029 IB_SRQ_MAX_WR = 1 << 0,
1030 IB_SRQ_LIMIT = 1 << 1,
1031};
1032
1033struct ib_srq_attr {
1034 u32 max_wr;
1035 u32 max_sge;
1036 u32 srq_limit;
1037};
1038
1039struct ib_srq_init_attr {
1040 void (*event_handler)(struct ib_event *, void *);
1041 void *srq_context;
1042 struct ib_srq_attr attr;
96104eda 1043 enum ib_srq_type srq_type;
418d5130 1044
1a56ff6d
AK
1045 struct {
1046 struct ib_cq *cq;
1047 union {
1048 struct {
1049 struct ib_xrcd *xrcd;
1050 } xrc;
9c2c8496
AK
1051
1052 struct {
1053 u32 max_num_tags;
1054 } tag_matching;
1a56ff6d 1055 };
418d5130 1056 } ext;
d41fcc67
RD
1057};
1058
1da177e4
LT
1059struct ib_qp_cap {
1060 u32 max_send_wr;
1061 u32 max_recv_wr;
1062 u32 max_send_sge;
1063 u32 max_recv_sge;
1064 u32 max_inline_data;
a060b562
CH
1065
1066 /*
1067 * Maximum number of rdma_rw_ctx structures in flight at a time.
1068 * ib_create_qp() will calculate the right amount of neededed WRs
1069 * and MRs based on this.
1070 */
1071 u32 max_rdma_ctxs;
1da177e4
LT
1072};
1073
1074enum ib_sig_type {
1075 IB_SIGNAL_ALL_WR,
1076 IB_SIGNAL_REQ_WR
1077};
1078
1079enum ib_qp_type {
1080 /*
1081 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1082 * here (and in that order) since the MAD layer uses them as
1083 * indices into a 2-entry table.
1084 */
1085 IB_QPT_SMI,
1086 IB_QPT_GSI,
1087
175ba58d
YH
1088 IB_QPT_RC = IB_UVERBS_QPT_RC,
1089 IB_QPT_UC = IB_UVERBS_QPT_UC,
1090 IB_QPT_UD = IB_UVERBS_QPT_UD,
1da177e4 1091 IB_QPT_RAW_IPV6,
b42b63cf 1092 IB_QPT_RAW_ETHERTYPE,
175ba58d
YH
1093 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1094 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1095 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
0134f16b 1096 IB_QPT_MAX,
175ba58d 1097 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
0134f16b
JM
1098 /* Reserve a range for qp types internal to the low level driver.
1099 * These qp types will not be visible at the IB core layer, so the
1100 * IB_QPT_MAX usages should not be affected in the core layer
1101 */
1102 IB_QPT_RESERVED1 = 0x1000,
1103 IB_QPT_RESERVED2,
1104 IB_QPT_RESERVED3,
1105 IB_QPT_RESERVED4,
1106 IB_QPT_RESERVED5,
1107 IB_QPT_RESERVED6,
1108 IB_QPT_RESERVED7,
1109 IB_QPT_RESERVED8,
1110 IB_QPT_RESERVED9,
1111 IB_QPT_RESERVED10,
1da177e4
LT
1112};
1113
b846f25a 1114enum ib_qp_create_flags {
47ee1b9f 1115 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
175ba58d
YH
1116 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1117 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
8a06ce59
LR
1118 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1119 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1120 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1121 IB_QP_CREATE_NETIF_QP = 1 << 5,
c0a6cbb9 1122 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
7f90a5a0 1123 IB_QP_CREATE_NETDEV_USE = 1 << 7,
175ba58d
YH
1124 IB_QP_CREATE_SCATTER_FCS =
1125 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1126 IB_QP_CREATE_CVLAN_STRIPPING =
1127 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
02984cc7 1128 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
175ba58d
YH
1129 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1130 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
d2b57063
JM
1131 /* reserve bits 26-31 for low level drivers' internal use */
1132 IB_QP_CREATE_RESERVED_START = 1 << 26,
1133 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1134};
1135
73c40c61
YH
1136/*
1137 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1138 * callback to destroy the passed in QP.
1139 */
1140
1da177e4 1141struct ib_qp_init_attr {
eb93c82e 1142 /* Consumer's event_handler callback must not block */
1da177e4 1143 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1144
1da177e4
LT
1145 void *qp_context;
1146 struct ib_cq *send_cq;
1147 struct ib_cq *recv_cq;
1148 struct ib_srq *srq;
b42b63cf 1149 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1150 struct ib_qp_cap cap;
1151 enum ib_sig_type sq_sig_type;
1152 enum ib_qp_type qp_type;
b56511c1 1153 u32 create_flags;
a060b562
CH
1154
1155 /*
1156 * Only needed for special QP types, or when using the RW API.
1157 */
1158 u8 port_num;
a9017e23 1159 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1160 u32 source_qpn;
1da177e4
LT
1161};
1162
0e0ec7e0
SH
1163struct ib_qp_open_attr {
1164 void (*event_handler)(struct ib_event *, void *);
1165 void *qp_context;
1166 u32 qp_num;
1167 enum ib_qp_type qp_type;
1168};
1169
1da177e4
LT
1170enum ib_rnr_timeout {
1171 IB_RNR_TIMER_655_36 = 0,
1172 IB_RNR_TIMER_000_01 = 1,
1173 IB_RNR_TIMER_000_02 = 2,
1174 IB_RNR_TIMER_000_03 = 3,
1175 IB_RNR_TIMER_000_04 = 4,
1176 IB_RNR_TIMER_000_06 = 5,
1177 IB_RNR_TIMER_000_08 = 6,
1178 IB_RNR_TIMER_000_12 = 7,
1179 IB_RNR_TIMER_000_16 = 8,
1180 IB_RNR_TIMER_000_24 = 9,
1181 IB_RNR_TIMER_000_32 = 10,
1182 IB_RNR_TIMER_000_48 = 11,
1183 IB_RNR_TIMER_000_64 = 12,
1184 IB_RNR_TIMER_000_96 = 13,
1185 IB_RNR_TIMER_001_28 = 14,
1186 IB_RNR_TIMER_001_92 = 15,
1187 IB_RNR_TIMER_002_56 = 16,
1188 IB_RNR_TIMER_003_84 = 17,
1189 IB_RNR_TIMER_005_12 = 18,
1190 IB_RNR_TIMER_007_68 = 19,
1191 IB_RNR_TIMER_010_24 = 20,
1192 IB_RNR_TIMER_015_36 = 21,
1193 IB_RNR_TIMER_020_48 = 22,
1194 IB_RNR_TIMER_030_72 = 23,
1195 IB_RNR_TIMER_040_96 = 24,
1196 IB_RNR_TIMER_061_44 = 25,
1197 IB_RNR_TIMER_081_92 = 26,
1198 IB_RNR_TIMER_122_88 = 27,
1199 IB_RNR_TIMER_163_84 = 28,
1200 IB_RNR_TIMER_245_76 = 29,
1201 IB_RNR_TIMER_327_68 = 30,
1202 IB_RNR_TIMER_491_52 = 31
1203};
1204
1205enum ib_qp_attr_mask {
1206 IB_QP_STATE = 1,
1207 IB_QP_CUR_STATE = (1<<1),
1208 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1209 IB_QP_ACCESS_FLAGS = (1<<3),
1210 IB_QP_PKEY_INDEX = (1<<4),
1211 IB_QP_PORT = (1<<5),
1212 IB_QP_QKEY = (1<<6),
1213 IB_QP_AV = (1<<7),
1214 IB_QP_PATH_MTU = (1<<8),
1215 IB_QP_TIMEOUT = (1<<9),
1216 IB_QP_RETRY_CNT = (1<<10),
1217 IB_QP_RNR_RETRY = (1<<11),
1218 IB_QP_RQ_PSN = (1<<12),
1219 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1220 IB_QP_ALT_PATH = (1<<14),
1221 IB_QP_MIN_RNR_TIMER = (1<<15),
1222 IB_QP_SQ_PSN = (1<<16),
1223 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1224 IB_QP_PATH_MIG_STATE = (1<<18),
1225 IB_QP_CAP = (1<<19),
dd5f03be 1226 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1227 IB_QP_RESERVED1 = (1<<21),
1228 IB_QP_RESERVED2 = (1<<22),
1229 IB_QP_RESERVED3 = (1<<23),
1230 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1231 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1232};
1233
1234enum ib_qp_state {
1235 IB_QPS_RESET,
1236 IB_QPS_INIT,
1237 IB_QPS_RTR,
1238 IB_QPS_RTS,
1239 IB_QPS_SQD,
1240 IB_QPS_SQE,
1241 IB_QPS_ERR
1242};
1243
1244enum ib_mig_state {
1245 IB_MIG_MIGRATED,
1246 IB_MIG_REARM,
1247 IB_MIG_ARMED
1248};
1249
7083e42e
SM
1250enum ib_mw_type {
1251 IB_MW_TYPE_1 = 1,
1252 IB_MW_TYPE_2 = 2
1253};
1254
1da177e4
LT
1255struct ib_qp_attr {
1256 enum ib_qp_state qp_state;
1257 enum ib_qp_state cur_qp_state;
1258 enum ib_mtu path_mtu;
1259 enum ib_mig_state path_mig_state;
1260 u32 qkey;
1261 u32 rq_psn;
1262 u32 sq_psn;
1263 u32 dest_qp_num;
1264 int qp_access_flags;
1265 struct ib_qp_cap cap;
90898850
DC
1266 struct rdma_ah_attr ah_attr;
1267 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1268 u16 pkey_index;
1269 u16 alt_pkey_index;
1270 u8 en_sqd_async_notify;
1271 u8 sq_draining;
1272 u8 max_rd_atomic;
1273 u8 max_dest_rd_atomic;
1274 u8 min_rnr_timer;
1275 u8 port_num;
1276 u8 timeout;
1277 u8 retry_cnt;
1278 u8 rnr_retry;
1279 u8 alt_port_num;
1280 u8 alt_timeout;
528e5a1b 1281 u32 rate_limit;
51aab126 1282 struct net_device *xmit_slave;
1da177e4
LT
1283};
1284
1285enum ib_wr_opcode {
9a59739b
JG
1286 /* These are shared with userspace */
1287 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1288 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1289 IB_WR_SEND = IB_UVERBS_WR_SEND,
1290 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1291 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1292 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1293 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1294 IB_WR_LSO = IB_UVERBS_WR_TSO,
1295 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1296 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1297 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1298 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1299 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1300 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1301 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1302
1303 /* These are kernel only and can not be issued by userspace */
1304 IB_WR_REG_MR = 0x20,
38ca87c6 1305 IB_WR_REG_MR_INTEGRITY,
9a59739b 1306
0134f16b
JM
1307 /* reserve values for low level drivers' internal use.
1308 * These values will not be used at all in the ib core layer.
1309 */
1310 IB_WR_RESERVED1 = 0xf0,
1311 IB_WR_RESERVED2,
1312 IB_WR_RESERVED3,
1313 IB_WR_RESERVED4,
1314 IB_WR_RESERVED5,
1315 IB_WR_RESERVED6,
1316 IB_WR_RESERVED7,
1317 IB_WR_RESERVED8,
1318 IB_WR_RESERVED9,
1319 IB_WR_RESERVED10,
1da177e4
LT
1320};
1321
1322enum ib_send_flags {
1323 IB_SEND_FENCE = 1,
1324 IB_SEND_SIGNALED = (1<<1),
1325 IB_SEND_SOLICITED = (1<<2),
e0605d91 1326 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1327 IB_SEND_IP_CSUM = (1<<4),
1328
1329 /* reserve bits 26-31 for low level drivers' internal use */
1330 IB_SEND_RESERVED_START = (1 << 26),
1331 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1332};
1333
1334struct ib_sge {
1335 u64 addr;
1336 u32 length;
1337 u32 lkey;
1338};
1339
14d3a3b2
CH
1340struct ib_cqe {
1341 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1342};
1343
1da177e4
LT
1344struct ib_send_wr {
1345 struct ib_send_wr *next;
14d3a3b2
CH
1346 union {
1347 u64 wr_id;
1348 struct ib_cqe *wr_cqe;
1349 };
1da177e4
LT
1350 struct ib_sge *sg_list;
1351 int num_sge;
1352 enum ib_wr_opcode opcode;
1353 int send_flags;
0f39cf3d
RD
1354 union {
1355 __be32 imm_data;
1356 u32 invalidate_rkey;
1357 } ex;
1da177e4
LT
1358};
1359
e622f2f4
CH
1360struct ib_rdma_wr {
1361 struct ib_send_wr wr;
1362 u64 remote_addr;
1363 u32 rkey;
1364};
1365
f696bf6d 1366static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1367{
1368 return container_of(wr, struct ib_rdma_wr, wr);
1369}
1370
1371struct ib_atomic_wr {
1372 struct ib_send_wr wr;
1373 u64 remote_addr;
1374 u64 compare_add;
1375 u64 swap;
1376 u64 compare_add_mask;
1377 u64 swap_mask;
1378 u32 rkey;
1379};
1380
f696bf6d 1381static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1382{
1383 return container_of(wr, struct ib_atomic_wr, wr);
1384}
1385
1386struct ib_ud_wr {
1387 struct ib_send_wr wr;
1388 struct ib_ah *ah;
1389 void *header;
1390 int hlen;
1391 int mss;
1392 u32 remote_qpn;
1393 u32 remote_qkey;
1394 u16 pkey_index; /* valid for GSI only */
1395 u8 port_num; /* valid for DR SMPs on switch only */
1396};
1397
f696bf6d 1398static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1399{
1400 return container_of(wr, struct ib_ud_wr, wr);
1401}
1402
4c67e2bf
SG
1403struct ib_reg_wr {
1404 struct ib_send_wr wr;
1405 struct ib_mr *mr;
1406 u32 key;
1407 int access;
1408};
1409
f696bf6d 1410static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1411{
1412 return container_of(wr, struct ib_reg_wr, wr);
1413}
1414
1da177e4
LT
1415struct ib_recv_wr {
1416 struct ib_recv_wr *next;
14d3a3b2
CH
1417 union {
1418 u64 wr_id;
1419 struct ib_cqe *wr_cqe;
1420 };
1da177e4
LT
1421 struct ib_sge *sg_list;
1422 int num_sge;
1423};
1424
1425enum ib_access_flags {
4fca0377
JG
1426 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1427 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1428 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1429 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1430 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1431 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1432 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1433 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
2233c660 1434 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
4fca0377 1435
68d384b9
MG
1436 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1437 IB_ACCESS_SUPPORTED =
1438 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1da177e4
LT
1439};
1440
b7d3e0a9
CH
1441/*
1442 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1443 * are hidden here instead of a uapi header!
1444 */
1da177e4
LT
1445enum ib_mr_rereg_flags {
1446 IB_MR_REREG_TRANS = 1,
1447 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1448 IB_MR_REREG_ACCESS = (1<<2),
1449 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1450};
1451
882214e2
HE
1452struct ib_umem;
1453
38321256 1454enum rdma_remove_reason {
1c77483e
YH
1455 /*
1456 * Userspace requested uobject deletion or initial try
1457 * to remove uobject via cleanup. Call could fail
1458 */
38321256
MB
1459 RDMA_REMOVE_DESTROY,
1460 /* Context deletion. This call should delete the actual object itself */
1461 RDMA_REMOVE_CLOSE,
1462 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1463 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1464 /* uobj is being cleaned-up before being committed */
1465 RDMA_REMOVE_ABORT,
0ac8903c
JG
1466 /*
1467 * uobj has been fully created, with the uobj->object set, but is being
1468 * cleaned up before being comitted
1469 */
1470 RDMA_REMOVE_ABORT_HWOBJ,
38321256
MB
1471};
1472
43579b5f
PP
1473struct ib_rdmacg_object {
1474#ifdef CONFIG_CGROUP_RDMA
1475 struct rdma_cgroup *cg; /* owner rdma cgroup */
1476#endif
1477};
1478
e2773c06
RD
1479struct ib_ucontext {
1480 struct ib_device *device;
771addf6 1481 struct ib_uverbs_file *ufile;
e951747a
JG
1482 /*
1483 * 'closing' can be read by the driver only during a destroy callback,
1484 * it is set when we are closing the file descriptor and indicates
1485 * that mm_sem may be locked.
1486 */
6ceb6331 1487 bool closing;
8ada2c1c 1488
1c77483e 1489 bool cleanup_retryable;
38321256 1490
43579b5f 1491 struct ib_rdmacg_object cg_obj;
60615210
LR
1492 /*
1493 * Implementation details of the RDMA core, don't use in drivers:
1494 */
1495 struct rdma_restrack_entry res;
3411f9f0 1496 struct xarray mmap_xa;
e2773c06
RD
1497};
1498
1499struct ib_uobject {
1500 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1501 /* ufile & ucontext owning this object */
1502 struct ib_uverbs_file *ufile;
1503 /* FIXME, save memory: ufile->context == context */
e2773c06 1504 struct ib_ucontext *context; /* associated user context */
9ead190b 1505 void *object; /* containing object */
e2773c06 1506 struct list_head list; /* link to context's list */
43579b5f 1507 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1508 int id; /* index into kernel idr */
9ead190b 1509 struct kref ref;
38321256 1510 atomic_t usecnt; /* protects exclusive access */
d144da8c 1511 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1512
6b0d08f4 1513 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1514};
1515
e2773c06 1516struct ib_udata {
309243ec 1517 const void __user *inbuf;
e2773c06
RD
1518 void __user *outbuf;
1519 size_t inlen;
1520 size_t outlen;
1521};
1522
1da177e4 1523struct ib_pd {
96249d70 1524 u32 local_dma_lkey;
ed082d36 1525 u32 flags;
e2773c06
RD
1526 struct ib_device *device;
1527 struct ib_uobject *uobject;
1528 atomic_t usecnt; /* count all resources */
50d46335 1529
ed082d36
CH
1530 u32 unsafe_global_rkey;
1531
50d46335
CH
1532 /*
1533 * Implementation details of the RDMA core, don't use in drivers:
1534 */
1535 struct ib_mr *__internal_mr;
02d8883f 1536 struct rdma_restrack_entry res;
1da177e4
LT
1537};
1538
59991f94
SH
1539struct ib_xrcd {
1540 struct ib_device *device;
d3d72d90 1541 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1542 struct inode *inode;
6f3ca6f4
MG
1543 struct rw_semaphore tgt_qps_rwsem;
1544 struct xarray tgt_qps;
59991f94
SH
1545};
1546
1da177e4
LT
1547struct ib_ah {
1548 struct ib_device *device;
1549 struct ib_pd *pd;
e2773c06 1550 struct ib_uobject *uobject;
1a1f460f 1551 const struct ib_gid_attr *sgid_attr;
44c58487 1552 enum rdma_ah_attr_type type;
1da177e4
LT
1553};
1554
1555typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556
14d3a3b2 1557enum ib_poll_context {
f794809a
JM
1558 IB_POLL_SOFTIRQ, /* poll from softirq context */
1559 IB_POLL_WORKQUEUE, /* poll from workqueue */
1560 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
c7ff819a
YF
1561 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562
1563 IB_POLL_DIRECT, /* caller context, no hw completions */
14d3a3b2
CH
1564};
1565
1da177e4 1566struct ib_cq {
e2773c06 1567 struct ib_device *device;
5bd48c18 1568 struct ib_ucq_object *uobject;
e2773c06
RD
1569 ib_comp_handler comp_handler;
1570 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1571 void *cq_context;
e2773c06 1572 int cqe;
c7ff819a 1573 unsigned int cqe_used;
e2773c06 1574 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1575 enum ib_poll_context poll_ctx;
1576 struct ib_wc *wc;
c7ff819a 1577 struct list_head pool_entry;
14d3a3b2
CH
1578 union {
1579 struct irq_poll iop;
1580 struct work_struct work;
1581 };
f794809a 1582 struct workqueue_struct *comp_wq;
da662979 1583 struct dim *dim;
3e5901cb
CL
1584
1585 /* updated only by trace points */
1586 ktime_t timestamp;
3446cbd2
YF
1587 u8 interrupt:1;
1588 u8 shared:1;
c7ff819a 1589 unsigned int comp_vector;
3e5901cb 1590
02d8883f
LR
1591 /*
1592 * Implementation details of the RDMA core, don't use in drivers:
1593 */
1594 struct rdma_restrack_entry res;
1da177e4
LT
1595};
1596
1597struct ib_srq {
d41fcc67
RD
1598 struct ib_device *device;
1599 struct ib_pd *pd;
9fbe334c 1600 struct ib_usrq_object *uobject;
d41fcc67
RD
1601 void (*event_handler)(struct ib_event *, void *);
1602 void *srq_context;
96104eda 1603 enum ib_srq_type srq_type;
1da177e4 1604 atomic_t usecnt;
418d5130 1605
1a56ff6d
AK
1606 struct {
1607 struct ib_cq *cq;
1608 union {
1609 struct {
1610 struct ib_xrcd *xrcd;
1611 u32 srq_num;
1612 } xrc;
1613 };
418d5130 1614 } ext;
1da177e4
LT
1615};
1616
ebaaee25
NO
1617enum ib_raw_packet_caps {
1618 /* Strip cvlan from incoming packet and report it in the matching work
1619 * completion is supported.
1620 */
1621 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1622 /* Scatter FCS field of an incoming packet to host memory is supported.
1623 */
1624 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1625 /* Checksum offloads are supported (for both send and receive). */
1626 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1627 /* When a packet is received for an RQ with no receive WQEs, the
1628 * packet processing is delayed.
1629 */
1630 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1631};
1632
5fd251c8 1633enum ib_wq_type {
175ba58d 1634 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
5fd251c8
YH
1635};
1636
1637enum ib_wq_state {
1638 IB_WQS_RESET,
1639 IB_WQS_RDY,
1640 IB_WQS_ERR
1641};
1642
1643struct ib_wq {
1644 struct ib_device *device;
e04dd131 1645 struct ib_uwq_object *uobject;
5fd251c8
YH
1646 void *wq_context;
1647 void (*event_handler)(struct ib_event *, void *);
1648 struct ib_pd *pd;
1649 struct ib_cq *cq;
1650 u32 wq_num;
1651 enum ib_wq_state state;
1652 enum ib_wq_type wq_type;
1653 atomic_t usecnt;
1654};
1655
10bac72b 1656enum ib_wq_flags {
175ba58d
YH
1657 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1658 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1659 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1660 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1661 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
10bac72b
NO
1662};
1663
5fd251c8
YH
1664struct ib_wq_init_attr {
1665 void *wq_context;
1666 enum ib_wq_type wq_type;
1667 u32 max_wr;
1668 u32 max_sge;
1669 struct ib_cq *cq;
1670 void (*event_handler)(struct ib_event *, void *);
10bac72b 1671 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1672};
1673
1674enum ib_wq_attr_mask {
10bac72b
NO
1675 IB_WQ_STATE = 1 << 0,
1676 IB_WQ_CUR_STATE = 1 << 1,
1677 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1678};
1679
1680struct ib_wq_attr {
1681 enum ib_wq_state wq_state;
1682 enum ib_wq_state curr_wq_state;
10bac72b
NO
1683 u32 flags; /* Use enum ib_wq_flags */
1684 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1685};
1686
6d39786b
YH
1687struct ib_rwq_ind_table {
1688 struct ib_device *device;
1689 struct ib_uobject *uobject;
1690 atomic_t usecnt;
1691 u32 ind_tbl_num;
1692 u32 log_ind_tbl_size;
1693 struct ib_wq **ind_tbl;
1694};
1695
1696struct ib_rwq_ind_table_init_attr {
1697 u32 log_ind_tbl_size;
1698 /* Each entry is a pointer to Receive Work Queue */
1699 struct ib_wq **ind_tbl;
1700};
1701
d291f1a6
DJ
1702enum port_pkey_state {
1703 IB_PORT_PKEY_NOT_VALID = 0,
1704 IB_PORT_PKEY_VALID = 1,
1705 IB_PORT_PKEY_LISTED = 2,
1706};
1707
1708struct ib_qp_security;
1709
1710struct ib_port_pkey {
1711 enum port_pkey_state state;
1712 u16 pkey_index;
1713 u8 port_num;
1714 struct list_head qp_list;
1715 struct list_head to_error_list;
1716 struct ib_qp_security *sec;
1717};
1718
1719struct ib_ports_pkeys {
1720 struct ib_port_pkey main;
1721 struct ib_port_pkey alt;
1722};
1723
1724struct ib_qp_security {
1725 struct ib_qp *qp;
1726 struct ib_device *dev;
1727 /* Hold this mutex when changing port and pkey settings. */
1728 struct mutex mutex;
1729 struct ib_ports_pkeys *ports_pkeys;
1730 /* A list of all open shared QP handles. Required to enforce security
1731 * properly for all users of a shared QP.
1732 */
1733 struct list_head shared_qp_list;
1734 void *security;
1735 bool destroying;
1736 atomic_t error_list_count;
1737 struct completion error_complete;
1738 int error_comps_pending;
1739};
1740
632bc3f6
BVA
1741/*
1742 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1743 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1744 */
1da177e4
LT
1745struct ib_qp {
1746 struct ib_device *device;
1747 struct ib_pd *pd;
1748 struct ib_cq *send_cq;
1749 struct ib_cq *recv_cq;
fffb0383
CH
1750 spinlock_t mr_lock;
1751 int mrs_used;
a060b562 1752 struct list_head rdma_mrs;
0e353e34 1753 struct list_head sig_mrs;
1da177e4 1754 struct ib_srq *srq;
b42b63cf 1755 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1756 struct list_head xrcd_list;
fffb0383 1757
319a441d
HHZ
1758 /* count times opened, mcast attaches, flow attaches */
1759 atomic_t usecnt;
0e0ec7e0
SH
1760 struct list_head open_list;
1761 struct ib_qp *real_qp;
620d3f81 1762 struct ib_uqp_object *uobject;
1da177e4
LT
1763 void (*event_handler)(struct ib_event *, void *);
1764 void *qp_context;
1a1f460f
JG
1765 /* sgid_attrs associated with the AV's */
1766 const struct ib_gid_attr *av_sgid_attr;
1767 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1768 u32 qp_num;
632bc3f6
BVA
1769 u32 max_write_sge;
1770 u32 max_read_sge;
1da177e4 1771 enum ib_qp_type qp_type;
a9017e23 1772 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1773 struct ib_qp_security *qp_sec;
498ca3c8 1774 u8 port;
02d8883f 1775
185eddc4 1776 bool integrity_en;
02d8883f
LR
1777 /*
1778 * Implementation details of the RDMA core, don't use in drivers:
1779 */
1780 struct rdma_restrack_entry res;
99fa331d
MZ
1781
1782 /* The counter the qp is bind to */
1783 struct rdma_counter *counter;
1da177e4
LT
1784};
1785
bee76d7a
AL
1786struct ib_dm {
1787 struct ib_device *device;
1788 u32 length;
1789 u32 flags;
1790 struct ib_uobject *uobject;
1791 atomic_t usecnt;
1792};
1793
1da177e4 1794struct ib_mr {
e2773c06
RD
1795 struct ib_device *device;
1796 struct ib_pd *pd;
e2773c06
RD
1797 u32 lkey;
1798 u32 rkey;
4c67e2bf 1799 u64 iova;
edd31551 1800 u64 length;
4c67e2bf 1801 unsigned int page_size;
a0bc099a 1802 enum ib_mr_type type;
d4a85c30 1803 bool need_inval;
fffb0383
CH
1804 union {
1805 struct ib_uobject *uobject; /* user */
1806 struct list_head qp_entry; /* FR */
1807 };
fccec5b8 1808
be934cca 1809 struct ib_dm *dm;
7c717d3a 1810 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
fccec5b8
SW
1811 /*
1812 * Implementation details of the RDMA core, don't use in drivers:
1813 */
1814 struct rdma_restrack_entry res;
1da177e4
LT
1815};
1816
1817struct ib_mw {
1818 struct ib_device *device;
1819 struct ib_pd *pd;
e2773c06 1820 struct ib_uobject *uobject;
1da177e4 1821 u32 rkey;
7083e42e 1822 enum ib_mw_type type;
1da177e4
LT
1823};
1824
319a441d
HHZ
1825/* Supported steering options */
1826enum ib_flow_attr_type {
1827 /* steering according to rule specifications */
1828 IB_FLOW_ATTR_NORMAL = 0x0,
1829 /* default unicast and multicast rule -
1830 * receive all Eth traffic which isn't steered to any QP
1831 */
1832 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1833 /* default multicast rule -
1834 * receive all Eth multicast traffic which isn't steered to any QP
1835 */
1836 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1837 /* sniffer rule - receive all port traffic */
1838 IB_FLOW_ATTR_SNIFFER = 0x3
1839};
1840
1841/* Supported steering header types */
1842enum ib_flow_spec_type {
1843 /* L2 headers*/
76bd23b3
MR
1844 IB_FLOW_SPEC_ETH = 0x20,
1845 IB_FLOW_SPEC_IB = 0x22,
319a441d 1846 /* L3 header*/
76bd23b3
MR
1847 IB_FLOW_SPEC_IPV4 = 0x30,
1848 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1849 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1850 /* L4 headers*/
76bd23b3
MR
1851 IB_FLOW_SPEC_TCP = 0x40,
1852 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1853 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1854 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1855 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1856 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1857 /* Actions */
1858 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1859 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1860 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1861 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1862};
240ae00e 1863#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1864#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1865
319a441d
HHZ
1866/* Flow steering rule priority is set according to it's domain.
1867 * Lower domain value means higher priority.
1868 */
1869enum ib_flow_domain {
1870 IB_FLOW_DOMAIN_USER,
1871 IB_FLOW_DOMAIN_ETHTOOL,
1872 IB_FLOW_DOMAIN_RFS,
1873 IB_FLOW_DOMAIN_NIC,
1874 IB_FLOW_DOMAIN_NUM /* Must be last */
1875};
1876
a3100a78
MV
1877enum ib_flow_flags {
1878 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1879 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1880 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1881};
1882
319a441d
HHZ
1883struct ib_flow_eth_filter {
1884 u8 dst_mac[6];
1885 u8 src_mac[6];
1886 __be16 ether_type;
1887 __be16 vlan_tag;
15dfbd6b 1888 /* Must be last */
5b361328 1889 u8 real_sz[];
319a441d
HHZ
1890};
1891
1892struct ib_flow_spec_eth {
fbf46860 1893 u32 type;
319a441d
HHZ
1894 u16 size;
1895 struct ib_flow_eth_filter val;
1896 struct ib_flow_eth_filter mask;
1897};
1898
240ae00e
MB
1899struct ib_flow_ib_filter {
1900 __be16 dlid;
1901 __u8 sl;
15dfbd6b 1902 /* Must be last */
5b361328 1903 u8 real_sz[];
240ae00e
MB
1904};
1905
1906struct ib_flow_spec_ib {
fbf46860 1907 u32 type;
240ae00e
MB
1908 u16 size;
1909 struct ib_flow_ib_filter val;
1910 struct ib_flow_ib_filter mask;
1911};
1912
989a3a8f
MG
1913/* IPv4 header flags */
1914enum ib_ipv4_flags {
1915 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1916 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1917 last have this flag set */
1918};
1919
319a441d
HHZ
1920struct ib_flow_ipv4_filter {
1921 __be32 src_ip;
1922 __be32 dst_ip;
989a3a8f
MG
1923 u8 proto;
1924 u8 tos;
1925 u8 ttl;
1926 u8 flags;
15dfbd6b 1927 /* Must be last */
5b361328 1928 u8 real_sz[];
319a441d
HHZ
1929};
1930
1931struct ib_flow_spec_ipv4 {
fbf46860 1932 u32 type;
319a441d
HHZ
1933 u16 size;
1934 struct ib_flow_ipv4_filter val;
1935 struct ib_flow_ipv4_filter mask;
1936};
1937
4c2aae71
MG
1938struct ib_flow_ipv6_filter {
1939 u8 src_ip[16];
1940 u8 dst_ip[16];
a72c6a2b
MG
1941 __be32 flow_label;
1942 u8 next_hdr;
1943 u8 traffic_class;
1944 u8 hop_limit;
15dfbd6b 1945 /* Must be last */
5b361328 1946 u8 real_sz[];
4c2aae71
MG
1947};
1948
1949struct ib_flow_spec_ipv6 {
fbf46860 1950 u32 type;
4c2aae71
MG
1951 u16 size;
1952 struct ib_flow_ipv6_filter val;
1953 struct ib_flow_ipv6_filter mask;
1954};
1955
319a441d
HHZ
1956struct ib_flow_tcp_udp_filter {
1957 __be16 dst_port;
1958 __be16 src_port;
15dfbd6b 1959 /* Must be last */
5b361328 1960 u8 real_sz[];
319a441d
HHZ
1961};
1962
1963struct ib_flow_spec_tcp_udp {
fbf46860 1964 u32 type;
319a441d
HHZ
1965 u16 size;
1966 struct ib_flow_tcp_udp_filter val;
1967 struct ib_flow_tcp_udp_filter mask;
1968};
1969
0dbf3332
MR
1970struct ib_flow_tunnel_filter {
1971 __be32 tunnel_id;
5b361328 1972 u8 real_sz[];
0dbf3332
MR
1973};
1974
1975/* ib_flow_spec_tunnel describes the Vxlan tunnel
1976 * the tunnel_id from val has the vni value
1977 */
1978struct ib_flow_spec_tunnel {
fbf46860 1979 u32 type;
0dbf3332
MR
1980 u16 size;
1981 struct ib_flow_tunnel_filter val;
1982 struct ib_flow_tunnel_filter mask;
1983};
1984
56ab0b38
MB
1985struct ib_flow_esp_filter {
1986 __be32 spi;
1987 __be32 seq;
1988 /* Must be last */
5b361328 1989 u8 real_sz[];
56ab0b38
MB
1990};
1991
1992struct ib_flow_spec_esp {
1993 u32 type;
1994 u16 size;
1995 struct ib_flow_esp_filter val;
1996 struct ib_flow_esp_filter mask;
1997};
1998
d90e5e50
AL
1999struct ib_flow_gre_filter {
2000 __be16 c_ks_res0_ver;
2001 __be16 protocol;
2002 __be32 key;
2003 /* Must be last */
5b361328 2004 u8 real_sz[];
d90e5e50
AL
2005};
2006
2007struct ib_flow_spec_gre {
2008 u32 type;
2009 u16 size;
2010 struct ib_flow_gre_filter val;
2011 struct ib_flow_gre_filter mask;
2012};
2013
b04f0f03
AL
2014struct ib_flow_mpls_filter {
2015 __be32 tag;
2016 /* Must be last */
5b361328 2017 u8 real_sz[];
b04f0f03
AL
2018};
2019
2020struct ib_flow_spec_mpls {
2021 u32 type;
2022 u16 size;
2023 struct ib_flow_mpls_filter val;
2024 struct ib_flow_mpls_filter mask;
2025};
2026
460d0198
MR
2027struct ib_flow_spec_action_tag {
2028 enum ib_flow_spec_type type;
2029 u16 size;
2030 u32 tag_id;
2031};
2032
483a3966
SS
2033struct ib_flow_spec_action_drop {
2034 enum ib_flow_spec_type type;
2035 u16 size;
2036};
2037
9b828441
MB
2038struct ib_flow_spec_action_handle {
2039 enum ib_flow_spec_type type;
2040 u16 size;
2041 struct ib_flow_action *act;
2042};
2043
7eea23a5
RS
2044enum ib_counters_description {
2045 IB_COUNTER_PACKETS,
2046 IB_COUNTER_BYTES,
2047};
2048
2049struct ib_flow_spec_action_count {
2050 enum ib_flow_spec_type type;
2051 u16 size;
2052 struct ib_counters *counters;
2053};
2054
319a441d
HHZ
2055union ib_flow_spec {
2056 struct {
fbf46860 2057 u32 type;
319a441d
HHZ
2058 u16 size;
2059 };
2060 struct ib_flow_spec_eth eth;
240ae00e 2061 struct ib_flow_spec_ib ib;
319a441d
HHZ
2062 struct ib_flow_spec_ipv4 ipv4;
2063 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2064 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2065 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2066 struct ib_flow_spec_esp esp;
d90e5e50 2067 struct ib_flow_spec_gre gre;
b04f0f03 2068 struct ib_flow_spec_mpls mpls;
460d0198 2069 struct ib_flow_spec_action_tag flow_tag;
483a3966 2070 struct ib_flow_spec_action_drop drop;
9b828441 2071 struct ib_flow_spec_action_handle action;
7eea23a5 2072 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2073};
2074
2075struct ib_flow_attr {
2076 enum ib_flow_attr_type type;
2077 u16 size;
2078 u16 priority;
2079 u32 flags;
2080 u8 num_of_specs;
2081 u8 port;
7654cb1b 2082 union ib_flow_spec flows[];
319a441d
HHZ
2083};
2084
2085struct ib_flow {
2086 struct ib_qp *qp;
6cd080a6 2087 struct ib_device *device;
319a441d
HHZ
2088 struct ib_uobject *uobject;
2089};
2090
2eb9beae
MB
2091enum ib_flow_action_type {
2092 IB_FLOW_ACTION_UNSPECIFIED,
2093 IB_FLOW_ACTION_ESP = 1,
2094};
2095
2096struct ib_flow_action_attrs_esp_keymats {
2097 enum ib_uverbs_flow_action_esp_keymat protocol;
2098 union {
2099 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2100 } keymat;
2101};
2102
2103struct ib_flow_action_attrs_esp_replays {
2104 enum ib_uverbs_flow_action_esp_replay protocol;
2105 union {
2106 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2107 } replay;
2108};
2109
2110enum ib_flow_action_attrs_esp_flags {
2111 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2112 * This is done in order to share the same flags between user-space and
2113 * kernel and spare an unnecessary translation.
2114 */
2115
2116 /* Kernel flags */
2117 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2118 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2119};
2120
2121struct ib_flow_spec_list {
2122 struct ib_flow_spec_list *next;
2123 union ib_flow_spec spec;
2124};
2125
2126struct ib_flow_action_attrs_esp {
2127 struct ib_flow_action_attrs_esp_keymats *keymat;
2128 struct ib_flow_action_attrs_esp_replays *replay;
2129 struct ib_flow_spec_list *encap;
2130 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2131 * Value of 0 is a valid value.
2132 */
2133 u32 esn;
2134 u32 spi;
2135 u32 seq;
2136 u32 tfc_pad;
2137 /* Use enum ib_flow_action_attrs_esp_flags */
2138 u64 flags;
2139 u64 hard_limit_pkts;
2140};
2141
2142struct ib_flow_action {
2143 struct ib_device *device;
2144 struct ib_uobject *uobject;
2145 enum ib_flow_action_type type;
2146 atomic_t usecnt;
2147};
2148
e26e7b88 2149struct ib_mad;
1da177e4
LT
2150struct ib_grh;
2151
2152enum ib_process_mad_flags {
2153 IB_MAD_IGNORE_MKEY = 1,
2154 IB_MAD_IGNORE_BKEY = 2,
2155 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2156};
2157
2158enum ib_mad_result {
2159 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2160 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2161 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2162 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2163};
2164
21d6454a 2165struct ib_port_cache {
883c71fe 2166 u64 subnet_prefix;
21d6454a
JW
2167 struct ib_pkey_cache *pkey;
2168 struct ib_gid_table *gid;
2169 u8 lmc;
2170 enum ib_port_state port_state;
2171};
2172
7738613e
IW
2173struct ib_port_immutable {
2174 int pkey_tbl_len;
2175 int gid_tbl_len;
f9b22e35 2176 u32 core_cap_flags;
337877a4 2177 u32 max_mad_size;
7738613e
IW
2178};
2179
8ceb1357 2180struct ib_port_data {
324e227e
JG
2181 struct ib_device *ib_dev;
2182
8ceb1357
JG
2183 struct ib_port_immutable immutable;
2184
2185 spinlock_t pkey_list_lock;
2186 struct list_head pkey_list;
8faea9fd
JG
2187
2188 struct ib_port_cache cache;
c2261dd7
JG
2189
2190 spinlock_t netdev_lock;
324e227e
JG
2191 struct net_device __rcu *netdev;
2192 struct hlist_node ndev_hash_link;
413d3347 2193 struct rdma_port_counter port_counter;
6e7be47a 2194 struct rdma_hw_stats *hw_stats;
8ceb1357
JG
2195};
2196
2fc77572
VN
2197/* rdma netdev type - specifies protocol type */
2198enum rdma_netdev_t {
f0ad83ac
NV
2199 RDMA_NETDEV_OPA_VNIC,
2200 RDMA_NETDEV_IPOIB,
2fc77572
VN
2201};
2202
2203/**
2204 * struct rdma_netdev - rdma netdev
2205 * For cases where netstack interfacing is required.
2206 */
2207struct rdma_netdev {
2208 void *clnt_priv;
2209 struct ib_device *hca;
2210 u8 port_num;
d99dc602 2211 int mtu;
2fc77572 2212
9f49a5b5
JG
2213 /*
2214 * cleanup function must be specified.
2215 * FIXME: This is only used for OPA_VNIC and that usage should be
2216 * removed too.
2217 */
8e959601
NV
2218 void (*free_rdma_netdev)(struct net_device *netdev);
2219
2fc77572
VN
2220 /* control functions */
2221 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2222 /* send packet */
2223 int (*send)(struct net_device *dev, struct sk_buff *skb,
2224 struct ib_ah *address, u32 dqpn);
2225 /* multicast */
2226 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2227 union ib_gid *gid, u16 mlid,
2228 int set_qkey, u32 qkey);
2229 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2230 union ib_gid *gid, u16 mlid);
2fc77572
VN
2231};
2232
f6a8a19b
DD
2233struct rdma_netdev_alloc_params {
2234 size_t sizeof_priv;
2235 unsigned int txqs;
2236 unsigned int rxqs;
2237 void *param;
2238
2239 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2240 struct net_device *netdev, void *param);
2241};
2242
a3de94e3
EA
2243struct ib_odp_counters {
2244 atomic64_t faults;
2245 atomic64_t invalidations;
d473f4dc 2246 atomic64_t prefetch;
a3de94e3
EA
2247};
2248
fa9b1802
RS
2249struct ib_counters {
2250 struct ib_device *device;
2251 struct ib_uobject *uobject;
2252 /* num of objects attached */
2253 atomic_t usecnt;
2254};
2255
51d7a538
RS
2256struct ib_counters_read_attr {
2257 u64 *counters_buff;
2258 u32 ncounters;
2259 u32 flags; /* use enum ib_read_counters_flags */
2260};
2261
2eb9beae 2262struct uverbs_attr_bundle;
dd05cb82
KH
2263struct iw_cm_id;
2264struct iw_cm_conn_param;
2eb9beae 2265
30471d4b
LR
2266#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2267 .size_##ib_struct = \
2268 (sizeof(struct drv_struct) + \
2269 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2270 BUILD_BUG_ON_ZERO( \
2271 !__same_type(((struct drv_struct *)NULL)->member, \
2272 struct ib_struct)))
2273
f6316032
LR
2274#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2275 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2276
30471d4b 2277#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2278 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2279
2280#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2281
3411f9f0
MK
2282struct rdma_user_mmap_entry {
2283 struct kref ref;
2284 struct ib_ucontext *ucontext;
2285 unsigned long start_pgoff;
2286 size_t npages;
2287 bool driver_removed;
2288};
2289
2290/* Return the offset (in bytes) the user should pass to libc's mmap() */
2291static inline u64
2292rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2293{
2294 return (u64)entry->start_pgoff << PAGE_SHIFT;
2295}
2296
521ed0d9
KH
2297/**
2298 * struct ib_device_ops - InfiniBand device operations
2299 * This structure defines all the InfiniBand device operations, providers will
2300 * need to define the supported operations, otherwise they will be set to null.
2301 */
2302struct ib_device_ops {
7a154142 2303 struct module *owner;
b9560a41 2304 enum rdma_driver_id driver_id;
72c6ec18 2305 u32 uverbs_abi_ver;
8f71bb00 2306 unsigned int uverbs_no_driver_id_binding:1;
b9560a41 2307
521ed0d9
KH
2308 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2309 const struct ib_send_wr **bad_send_wr);
2310 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2311 const struct ib_recv_wr **bad_recv_wr);
2312 void (*drain_rq)(struct ib_qp *qp);
2313 void (*drain_sq)(struct ib_qp *qp);
2314 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2315 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2316 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2317 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2318 int (*post_srq_recv)(struct ib_srq *srq,
2319 const struct ib_recv_wr *recv_wr,
2320 const struct ib_recv_wr **bad_recv_wr);
2321 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2322 u8 port_num, const struct ib_wc *in_wc,
2323 const struct ib_grh *in_grh,
e26e7b88
LR
2324 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2325 size_t *out_mad_size, u16 *out_mad_pkey_index);
521ed0d9
KH
2326 int (*query_device)(struct ib_device *device,
2327 struct ib_device_attr *device_attr,
2328 struct ib_udata *udata);
2329 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2330 struct ib_device_modify *device_modify);
2331 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2332 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2333 int comp_vector);
2334 int (*query_port)(struct ib_device *device, u8 port_num,
2335 struct ib_port_attr *port_attr);
2336 int (*modify_port)(struct ib_device *device, u8 port_num,
2337 int port_modify_mask,
2338 struct ib_port_modify *port_modify);
2339 /**
2340 * The following mandatory functions are used only at device
2341 * registration. Keep functions such as these at the end of this
2342 * structure to avoid cache line misses when accessing struct ib_device
2343 * in fast paths.
2344 */
2345 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2346 struct ib_port_immutable *immutable);
2347 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2348 u8 port_num);
2349 /**
2350 * When calling get_netdev, the HW vendor's driver should return the
2351 * net device of device @device at port @port_num or NULL if such
2352 * a net device doesn't exist. The vendor driver should call dev_hold
2353 * on this net device. The HW vendor's device driver must guarantee
2354 * that this function returns NULL before the net device has finished
2355 * NETDEV_UNREGISTER state.
2356 */
2357 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2358 /**
2359 * rdma netdev operation
2360 *
2361 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2362 * must return -EOPNOTSUPP if it doesn't support the specified type.
2363 */
2364 struct net_device *(*alloc_rdma_netdev)(
2365 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2366 const char *name, unsigned char name_assign_type,
2367 void (*setup)(struct net_device *));
2368
2369 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2370 enum rdma_netdev_t type,
2371 struct rdma_netdev_alloc_params *params);
2372 /**
2373 * query_gid should be return GID value for @device, when @port_num
2374 * link layer is either IB or iWarp. It is no-op if @port_num port
2375 * is RoCE link layer.
2376 */
2377 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2378 union ib_gid *gid);
2379 /**
2380 * When calling add_gid, the HW vendor's driver should add the gid
2381 * of device of port at gid index available at @attr. Meta-info of
2382 * that gid (for example, the network device related to this gid) is
2383 * available at @attr. @context allows the HW vendor driver to store
2384 * extra information together with a GID entry. The HW vendor driver may
2385 * allocate memory to contain this information and store it in @context
2386 * when a new GID entry is written to. Params are consistent until the
2387 * next call of add_gid or delete_gid. The function should return 0 on
2388 * success or error otherwise. The function could be called
2389 * concurrently for different ports. This function is only called when
2390 * roce_gid_table is used.
2391 */
2392 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2393 /**
2394 * When calling del_gid, the HW vendor's driver should delete the
2395 * gid of device @device at gid index gid_index of port port_num
2396 * available in @attr.
2397 * Upon the deletion of a GID entry, the HW vendor must free any
2398 * allocated memory. The caller will clear @context afterwards.
2399 * This function is only called when roce_gid_table is used.
2400 */
2401 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2402 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2403 u16 *pkey);
a2a074ef
LR
2404 int (*alloc_ucontext)(struct ib_ucontext *context,
2405 struct ib_udata *udata);
2406 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9 2407 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
3411f9f0
MK
2408 /**
2409 * This will be called once refcount of an entry in mmap_xa reaches
2410 * zero. The type of the memory that was mapped may differ between
2411 * entries and is opaque to the rdma_user_mmap interface.
2412 * Therefore needs to be implemented by the driver in mmap_free.
2413 */
2414 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
521ed0d9 2415 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2416 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2417 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
fa5d010c
MG
2418 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2419 struct ib_udata *udata);
521ed0d9
KH
2420 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2421 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
d3456914 2422 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2423 int (*create_srq)(struct ib_srq *srq,
2424 struct ib_srq_init_attr *srq_init_attr,
2425 struct ib_udata *udata);
521ed0d9
KH
2426 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2427 enum ib_srq_attr_mask srq_attr_mask,
2428 struct ib_udata *udata);
2429 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
68e326de 2430 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
521ed0d9
KH
2431 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2432 struct ib_qp_init_attr *qp_init_attr,
2433 struct ib_udata *udata);
2434 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2435 int qp_attr_mask, struct ib_udata *udata);
2436 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2437 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2438 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
e39afe3d
LR
2439 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2440 struct ib_udata *udata);
521ed0d9 2441 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
a52c8e24 2442 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2443 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2444 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2445 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2446 u64 virt_addr, int mr_access_flags,
2447 struct ib_udata *udata);
2448 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2449 u64 virt_addr, int mr_access_flags,
2450 struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2451 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2452 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
42a3b153 2453 u32 max_num_sg);
26bc7eae
IR
2454 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2455 u32 max_num_data_sg,
2456 u32 max_num_meta_sg);
ad8a4496
MS
2457 int (*advise_mr)(struct ib_pd *pd,
2458 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2459 struct ib_sge *sg_list, u32 num_sge,
2460 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2461 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2462 unsigned int *sg_offset);
2463 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2464 struct ib_mr_status *mr_status);
2465 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2466 struct ib_udata *udata);
2467 int (*dealloc_mw)(struct ib_mw *mw);
521ed0d9
KH
2468 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2469 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
28ad5f65
LR
2470 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2471 void (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2472 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2473 struct ib_flow_attr *flow_attr,
2474 int domain, struct ib_udata *udata);
2475 int (*destroy_flow)(struct ib_flow *flow_id);
2476 struct ib_flow_action *(*create_flow_action_esp)(
2477 struct ib_device *device,
2478 const struct ib_flow_action_attrs_esp *attr,
2479 struct uverbs_attr_bundle *attrs);
2480 int (*destroy_flow_action)(struct ib_flow_action *action);
2481 int (*modify_flow_action_esp)(
2482 struct ib_flow_action *action,
2483 const struct ib_flow_action_attrs_esp *attr,
2484 struct uverbs_attr_bundle *attrs);
2485 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2486 int state);
2487 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2488 struct ifla_vf_info *ivf);
2489 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2490 struct ifla_vf_stats *stats);
bfcb3c5d
DG
2491 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2492 struct ifla_vf_guid *node_guid,
2493 struct ifla_vf_guid *port_guid);
521ed0d9
KH
2494 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2495 int type);
2496 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2497 struct ib_wq_init_attr *init_attr,
2498 struct ib_udata *udata);
a49b1dc7 2499 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2500 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2501 u32 wq_attr_mask, struct ib_udata *udata);
2502 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2503 struct ib_device *device,
2504 struct ib_rwq_ind_table_init_attr *init_attr,
2505 struct ib_udata *udata);
2506 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2507 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2508 struct ib_ucontext *context,
2509 struct ib_dm_alloc_attr *attr,
2510 struct uverbs_attr_bundle *attrs);
c4367a26 2511 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2512 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2513 struct ib_dm_mr_attr *attr,
2514 struct uverbs_attr_bundle *attrs);
3b023e1b
LR
2515 int (*create_counters)(struct ib_counters *counters,
2516 struct uverbs_attr_bundle *attrs);
2517 void (*destroy_counters)(struct ib_counters *counters);
521ed0d9
KH
2518 int (*read_counters)(struct ib_counters *counters,
2519 struct ib_counters_read_attr *counters_read_attr,
2520 struct uverbs_attr_bundle *attrs);
2cdfcdd8
MG
2521 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2522 int data_sg_nents, unsigned int *data_sg_offset,
2523 struct scatterlist *meta_sg, int meta_sg_nents,
2524 unsigned int *meta_sg_offset);
2525
521ed0d9
KH
2526 /**
2527 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2528 * driver initialized data. The struct is kfree()'ed by the sysfs
2529 * core when the device is removed. A lifespan of -1 in the return
2530 * struct tells the core to set a default lifespan.
2531 */
2532 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2533 u8 port_num);
2534 /**
2535 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2536 * @index - The index in the value array we wish to have updated, or
2537 * num_counters if we want all stats updated
2538 * Return codes -
2539 * < 0 - Error, no counters updated
2540 * index - Updated the single counter pointed to by index
2541 * num_counters - Updated all counters (will reset the timestamp
2542 * and prevent further calls for lifespan milliseconds)
2543 * Drivers are allowed to update all counters in leiu of just the
2544 * one given in index at their option
2545 */
2546 int (*get_hw_stats)(struct ib_device *device,
2547 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2548 /*
2549 * This function is called once for each port when a ib device is
2550 * registered.
2551 */
2552 int (*init_port)(struct ib_device *device, u8 port_num,
2553 struct kobject *port_sysfs);
02da3750
LR
2554 /**
2555 * Allows rdma drivers to add their own restrack attributes.
2556 */
f4434529 2557 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
65959522 2558 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
9e2a187a 2559 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
65959522 2560 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
5cc34116 2561 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
65959522 2562 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
211cd945 2563 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
21a428a0 2564
d0899892 2565 /* Device lifecycle callbacks */
ca22354b
JG
2566 /*
2567 * Called after the device becomes registered, before clients are
2568 * attached
2569 */
2570 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2571 /*
2572 * This is called as part of ib_dealloc_device().
2573 */
2574 void (*dealloc_driver)(struct ib_device *dev);
2575
dd05cb82
KH
2576 /* iWarp CM callbacks */
2577 void (*iw_add_ref)(struct ib_qp *qp);
2578 void (*iw_rem_ref)(struct ib_qp *qp);
2579 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2580 int (*iw_connect)(struct iw_cm_id *cm_id,
2581 struct iw_cm_conn_param *conn_param);
2582 int (*iw_accept)(struct iw_cm_id *cm_id,
2583 struct iw_cm_conn_param *conn_param);
2584 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2585 u8 pdata_len);
2586 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2587 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
99fa331d
MZ
2588 /**
2589 * counter_bind_qp - Bind a QP to a counter.
2590 * @counter - The counter to be bound. If counter->id is zero then
2591 * the driver needs to allocate a new counter and set counter->id
2592 */
2593 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2594 /**
2595 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2596 * counter and bind it onto the default one
2597 */
2598 int (*counter_unbind_qp)(struct ib_qp *qp);
2599 /**
2600 * counter_dealloc -De-allocate the hw counter
2601 */
2602 int (*counter_dealloc)(struct rdma_counter *counter);
c4ffee7c
MZ
2603 /**
2604 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2605 * the driver initialized data.
2606 */
2607 struct rdma_hw_stats *(*counter_alloc_stats)(
2608 struct rdma_counter *counter);
2609 /**
2610 * counter_update_stats - Query the stats value of this counter
2611 */
2612 int (*counter_update_stats)(struct rdma_counter *counter);
dd05cb82 2613
4061ff7a
EA
2614 /**
2615 * Allows rdma drivers to add their own restrack attributes
2616 * dumped via 'rdma stat' iproute2 command.
2617 */
f4434529 2618 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
4061ff7a 2619
1c8fb1ea
YH
2620 /* query driver for its ucontext properties */
2621 int (*query_ucontext)(struct ib_ucontext *context,
2622 struct uverbs_attr_bundle *attrs);
2623
d3456914 2624 DECLARE_RDMA_OBJ_SIZE(ib_ah);
3b023e1b 2625 DECLARE_RDMA_OBJ_SIZE(ib_counters);
e39afe3d 2626 DECLARE_RDMA_OBJ_SIZE(ib_cq);
21a428a0 2627 DECLARE_RDMA_OBJ_SIZE(ib_pd);
68e326de 2628 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2629 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
28ad5f65 2630 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
521ed0d9
KH
2631};
2632
cebe556b
PP
2633struct ib_core_device {
2634 /* device must be the first element in structure until,
2635 * union of ib_core_device and device exists in ib_device.
2636 */
2637 struct device dev;
4e0f7b90 2638 possible_net_t rdma_net;
cebe556b
PP
2639 struct kobject *ports_kobj;
2640 struct list_head port_list;
2641 struct ib_device *owner; /* reach back to owner ib_device */
2642};
41eda65c 2643
cebe556b 2644struct rdma_restrack_root;
1da177e4 2645struct ib_device {
0957c29f
BVA
2646 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2647 struct device *dma_device;
3023a1e9 2648 struct ib_device_ops ops;
1da177e4 2649 char name[IB_DEVICE_NAME_MAX];
324e227e 2650 struct rcu_head rcu_head;
1da177e4
LT
2651
2652 struct list_head event_handler_list;
6b57cea9
PP
2653 /* Protects event_handler_list */
2654 struct rw_semaphore event_handler_rwsem;
2655
2656 /* Protects QP's event_handler calls and open_qp list */
40adf686 2657 spinlock_t qp_open_list_lock;
1da177e4 2658
921eab11 2659 struct rw_semaphore client_data_rwsem;
0df91bb6 2660 struct xarray client_data;
d0899892 2661 struct mutex unregistration_lock;
1da177e4 2662
17e10646
PP
2663 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2664 rwlock_t cache_lock;
7738613e 2665 /**
8ceb1357 2666 * port_data is indexed by port number
7738613e 2667 */
8ceb1357 2668 struct ib_port_data *port_data;
1da177e4 2669
f4fd0b22
MT
2670 int num_comp_vectors;
2671
cebe556b
PP
2672 union {
2673 struct device dev;
2674 struct ib_core_device coredev;
2675 };
2676
d4122f5a
PP
2677 /* First group for device attributes,
2678 * Second group for driver provided attributes (optional).
2679 * It is NULL terminated array.
2680 */
2681 const struct attribute_group *groups[3];
adee9f3f 2682
17a55f79 2683 u64 uverbs_cmd_mask;
f21519b2 2684 u64 uverbs_ex_cmd_mask;
274c0891 2685
bd99fdea 2686 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2687 __be64 node_guid;
96f15c03 2688 u32 local_dma_lkey;
4139032b 2689 u16 is_switch:1;
6780c4fa
GP
2690 /* Indicates kernel verbs support, should not be used in drivers */
2691 u16 kverbs_provider:1;
da662979
YF
2692 /* CQ adaptive moderation (RDMA DIM) */
2693 u16 use_cq_dim:1;
1da177e4
LT
2694 u8 node_type;
2695 u8 phys_port_cnt;
3e153a93 2696 struct ib_device_attr attrs;
b40f4757
CL
2697 struct attribute_group *hw_stats_ag;
2698 struct rdma_hw_stats *hw_stats;
7738613e 2699
43579b5f
PP
2700#ifdef CONFIG_CGROUP_RDMA
2701 struct rdmacg_device cg_device;
2702#endif
2703
ecc82c53 2704 u32 index;
c7ff819a
YF
2705
2706 spinlock_t cq_pools_lock;
2707 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2708
41eda65c 2709 struct rdma_restrack_root *res;
ecc82c53 2710
0cbf432d 2711 const struct uapi_definition *driver_def;
d79af724 2712
01b67117 2713 /*
d79af724
JG
2714 * Positive refcount indicates that the device is currently
2715 * registered and cannot be unregistered.
01b67117
PP
2716 */
2717 refcount_t refcount;
2718 struct completion unreg_completion;
d0899892 2719 struct work_struct unregistration_work;
3856ec4b
SW
2720
2721 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2722
2723 /* Protects compat_devs xarray modifications */
2724 struct mutex compat_devs_mutex;
2725 /* Maintains compat devices for each net namespace */
2726 struct xarray compat_devs;
dd05cb82
KH
2727
2728 /* Used by iWarp CM */
2729 char iw_ifname[IFNAMSIZ];
2730 u32 iw_driver_flags;
bd3920ea 2731 u32 lag_flags;
1da177e4
LT
2732};
2733
0e2d00eb 2734struct ib_client_nl_info;
1da177e4 2735struct ib_client {
e59178d8 2736 const char *name;
11a0ae4c 2737 int (*add)(struct ib_device *ibdev);
7c1eb45a 2738 void (*remove)(struct ib_device *, void *client_data);
dc1435c0 2739 void (*rename)(struct ib_device *dev, void *client_data);
0e2d00eb
JG
2740 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2741 struct ib_client_nl_info *res);
2742 int (*get_global_nl_info)(struct ib_client_nl_info *res);
1da177e4 2743
9268f72d
YK
2744 /* Returns the net_dev belonging to this ib_client and matching the
2745 * given parameters.
2746 * @dev: An RDMA device that the net_dev use for communication.
2747 * @port: A physical port number on the RDMA device.
2748 * @pkey: P_Key that the net_dev uses if applicable.
2749 * @gid: A GID that the net_dev uses to communicate.
2750 * @addr: An IP address the net_dev is configured with.
2751 * @client_data: The device's client data set by ib_set_client_data().
2752 *
2753 * An ib_client that implements a net_dev on top of RDMA devices
2754 * (such as IP over IB) should implement this callback, allowing the
2755 * rdma_cm module to find the right net_dev for a given request.
2756 *
2757 * The caller is responsible for calling dev_put on the returned
2758 * netdev. */
2759 struct net_device *(*get_net_dev_by_params)(
2760 struct ib_device *dev,
2761 u8 port,
2762 u16 pkey,
2763 const union ib_gid *gid,
2764 const struct sockaddr *addr,
2765 void *client_data);
621e55ff
JG
2766
2767 refcount_t uses;
2768 struct completion uses_zero;
e59178d8 2769 u32 client_id;
6780c4fa
GP
2770
2771 /* kverbs are not required by the client */
2772 u8 no_kverbs_req:1;
1da177e4
LT
2773};
2774
a808273a
SS
2775/*
2776 * IB block DMA iterator
2777 *
2778 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2779 * to a HW supported page size.
2780 */
2781struct ib_block_iter {
2782 /* internal states */
2783 struct scatterlist *__sg; /* sg holding the current aligned block */
2784 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2785 unsigned int __sg_nents; /* number of SG entries */
2786 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2787 unsigned int __pg_bit; /* alignment of current block */
2788};
2789
459cc69f
LR
2790struct ib_device *_ib_alloc_device(size_t size);
2791#define ib_alloc_device(drv_struct, member) \
2792 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2793 BUILD_BUG_ON_ZERO(offsetof( \
2794 struct drv_struct, member))), \
2795 struct drv_struct, member)
2796
1da177e4
LT
2797void ib_dealloc_device(struct ib_device *device);
2798
9abb0d1b 2799void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2800
ea4baf7f 2801int ib_register_device(struct ib_device *device, const char *name);
1da177e4 2802void ib_unregister_device(struct ib_device *device);
d0899892
JG
2803void ib_unregister_driver(enum rdma_driver_id driver_id);
2804void ib_unregister_device_and_put(struct ib_device *device);
2805void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2806
2807int ib_register_client (struct ib_client *client);
2808void ib_unregister_client(struct ib_client *client);
2809
a808273a
SS
2810void __rdma_block_iter_start(struct ib_block_iter *biter,
2811 struct scatterlist *sglist,
2812 unsigned int nents,
2813 unsigned long pgsz);
2814bool __rdma_block_iter_next(struct ib_block_iter *biter);
2815
2816/**
2817 * rdma_block_iter_dma_address - get the aligned dma address of the current
2818 * block held by the block iterator.
2819 * @biter: block iterator holding the memory block
2820 */
2821static inline dma_addr_t
2822rdma_block_iter_dma_address(struct ib_block_iter *biter)
2823{
2824 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2825}
2826
2827/**
2828 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2829 * @sglist: sglist to iterate over
2830 * @biter: block iterator holding the memory block
2831 * @nents: maximum number of sg entries to iterate over
2832 * @pgsz: best HW supported page size to use
2833 *
2834 * Callers may use rdma_block_iter_dma_address() to get each
2835 * blocks aligned DMA address.
2836 */
2837#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2838 for (__rdma_block_iter_start(biter, sglist, nents, \
2839 pgsz); \
2840 __rdma_block_iter_next(biter);)
2841
0df91bb6
JG
2842/**
2843 * ib_get_client_data - Get IB client context
2844 * @device:Device to get context for
2845 * @client:Client to get context for
2846 *
2847 * ib_get_client_data() returns the client context data set with
2848 * ib_set_client_data(). This can only be called while the client is
2849 * registered to the device, once the ib_client remove() callback returns this
2850 * cannot be called.
2851 */
2852static inline void *ib_get_client_data(struct ib_device *device,
2853 struct ib_client *client)
2854{
2855 return xa_load(&device->client_data, client->client_id);
2856}
1da177e4
LT
2857void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2858 void *data);
521ed0d9
KH
2859void ib_set_device_ops(struct ib_device *device,
2860 const struct ib_device_ops *ops);
1da177e4 2861
5f9794dc 2862int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
c043ff2c
MK
2863 unsigned long pfn, unsigned long size, pgprot_t prot,
2864 struct rdma_user_mmap_entry *entry);
3411f9f0
MK
2865int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2866 struct rdma_user_mmap_entry *entry,
2867 size_t length);
7a763d18
YH
2868int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2869 struct rdma_user_mmap_entry *entry,
2870 size_t length, u32 min_pgoff,
2871 u32 max_pgoff);
2872
3411f9f0
MK
2873struct rdma_user_mmap_entry *
2874rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2875 unsigned long pgoff);
2876struct rdma_user_mmap_entry *
2877rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2878 struct vm_area_struct *vma);
2879void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2880
2881void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
5f9794dc 2882
e2773c06
RD
2883static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2884{
2885 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2886}
2887
2888static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2889{
43c61165 2890 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2891}
2892
c66db311
MB
2893static inline bool ib_is_buffer_cleared(const void __user *p,
2894 size_t len)
301a721e 2895{
92d27ae6 2896 bool ret;
301a721e
MB
2897 u8 *buf;
2898
2899 if (len > USHRT_MAX)
2900 return false;
2901
92d27ae6
ME
2902 buf = memdup_user(p, len);
2903 if (IS_ERR(buf))
301a721e
MB
2904 return false;
2905
301a721e 2906 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2907 kfree(buf);
2908 return ret;
2909}
2910
c66db311
MB
2911static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2912 size_t offset,
2913 size_t len)
2914{
2915 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2916}
2917
1c77483e
YH
2918/**
2919 * ib_is_destroy_retryable - Check whether the uobject destruction
2920 * is retryable.
2921 * @ret: The initial destruction return code
2922 * @why: remove reason
2923 * @uobj: The uobject that is destroyed
2924 *
2925 * This function is a helper function that IB layer and low-level drivers
2926 * can use to consider whether the destruction of the given uobject is
2927 * retry-able.
2928 * It checks the original return code, if it wasn't success the destruction
2929 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2930 * the remove reason. (i.e. why).
2931 * Must be called with the object locked for destroy.
2932 */
2933static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2934 struct ib_uobject *uobj)
2935{
2936 return ret && (why == RDMA_REMOVE_DESTROY ||
2937 uobj->context->cleanup_retryable);
2938}
2939
2940/**
2941 * ib_destroy_usecnt - Called during destruction to check the usecnt
2942 * @usecnt: The usecnt atomic
2943 * @why: remove reason
2944 * @uobj: The uobject that is destroyed
2945 *
2946 * Non-zero usecnts will block destruction unless destruction was triggered by
2947 * a ucontext cleanup.
2948 */
2949static inline int ib_destroy_usecnt(atomic_t *usecnt,
2950 enum rdma_remove_reason why,
2951 struct ib_uobject *uobj)
2952{
2953 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2954 return -EBUSY;
2955 return 0;
2956}
2957
8a51866f
RD
2958/**
2959 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2960 * contains all required attributes and no attributes not allowed for
2961 * the given QP state transition.
2962 * @cur_state: Current QP state
2963 * @next_state: Next QP state
2964 * @type: QP type
2965 * @mask: Mask of supplied QP attributes
2966 *
2967 * This function is a helper function that a low-level driver's
2968 * modify_qp method can use to validate the consumer's input. It
2969 * checks that cur_state and next_state are valid QP states, that a
2970 * transition from cur_state to next_state is allowed by the IB spec,
2971 * and that the attribute mask supplied is allowed for the transition.
2972 */
19b1f540 2973bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2974 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2975
dcc9881e
LR
2976void ib_register_event_handler(struct ib_event_handler *event_handler);
2977void ib_unregister_event_handler(struct ib_event_handler *event_handler);
6b57cea9 2978void ib_dispatch_event(const struct ib_event *event);
1da177e4 2979
1da177e4
LT
2980int ib_query_port(struct ib_device *device,
2981 u8 port_num, struct ib_port_attr *port_attr);
2982
a3f5adaf
EC
2983enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2984 u8 port_num);
2985
4139032b
HR
2986/**
2987 * rdma_cap_ib_switch - Check if the device is IB switch
2988 * @device: Device to check
2989 *
2990 * Device driver is responsible for setting is_switch bit on
2991 * in ib_device structure at init time.
2992 *
2993 * Return: true if the device is IB switch.
2994 */
2995static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2996{
2997 return device->is_switch;
2998}
2999
0cf18d77
IW
3000/**
3001 * rdma_start_port - Return the first valid port number for the device
3002 * specified
3003 *
3004 * @device: Device to be checked
3005 *
3006 * Return start port number
3007 */
3008static inline u8 rdma_start_port(const struct ib_device *device)
3009{
4139032b 3010 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
3011}
3012
ea1075ed
JG
3013/**
3014 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3015 * @device - The struct ib_device * to iterate over
3016 * @iter - The unsigned int to store the port number
3017 */
3018#define rdma_for_each_port(device, iter) \
3019 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
3020 unsigned int, iter))); \
3021 iter <= rdma_end_port(device); (iter)++)
3022
0cf18d77
IW
3023/**
3024 * rdma_end_port - Return the last valid port number for the device
3025 * specified
3026 *
3027 * @device: Device to be checked
3028 *
3029 * Return last port number
3030 */
3031static inline u8 rdma_end_port(const struct ib_device *device)
3032{
4139032b 3033 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
3034}
3035
24dc831b
YS
3036static inline int rdma_is_port_valid(const struct ib_device *device,
3037 unsigned int port)
3038{
3039 return (port >= rdma_start_port(device) &&
3040 port <= rdma_end_port(device));
3041}
3042
b02289b3
AK
3043static inline bool rdma_is_grh_required(const struct ib_device *device,
3044 u8 port_num)
3045{
8ceb1357
JG
3046 return device->port_data[port_num].immutable.core_cap_flags &
3047 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
3048}
3049
5ede9289 3050static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 3051{
8ceb1357
JG
3052 return device->port_data[port_num].immutable.core_cap_flags &
3053 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
3054}
3055
5ede9289 3056static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f 3057{
8ceb1357
JG
3058 return device->port_data[port_num].immutable.core_cap_flags &
3059 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
3060}
3061
3062static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3063{
8ceb1357
JG
3064 return device->port_data[port_num].immutable.core_cap_flags &
3065 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
3066}
3067
3068static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 3069{
8ceb1357
JG
3070 return device->port_data[port_num].immutable.core_cap_flags &
3071 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
3072}
3073
5ede9289 3074static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 3075{
8ceb1357
JG
3076 return device->port_data[port_num].immutable.core_cap_flags &
3077 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
3078}
3079
5ede9289 3080static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 3081{
7766a99f
MB
3082 return rdma_protocol_ib(device, port_num) ||
3083 rdma_protocol_roce(device, port_num);
de66be94
MW
3084}
3085
aa773bd4
OG
3086static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3087{
8ceb1357
JG
3088 return device->port_data[port_num].immutable.core_cap_flags &
3089 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
3090}
3091
ce1e055f
OG
3092static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3093{
8ceb1357
JG
3094 return device->port_data[port_num].immutable.core_cap_flags &
3095 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
3096}
3097
c757dea8 3098/**
296ec009 3099 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 3100 * Management Datagrams.
296ec009
MW
3101 * @device: Device to check
3102 * @port_num: Port number to check
c757dea8 3103 *
296ec009
MW
3104 * Management Datagrams (MAD) are a required part of the InfiniBand
3105 * specification and are supported on all InfiniBand devices. A slightly
3106 * extended version are also supported on OPA interfaces.
c757dea8 3107 *
296ec009 3108 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3109 */
5ede9289 3110static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 3111{
8ceb1357
JG
3112 return device->port_data[port_num].immutable.core_cap_flags &
3113 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3114}
3115
65995fee
IW
3116/**
3117 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3118 * Management Datagrams.
3119 * @device: Device to check
3120 * @port_num: Port number to check
3121 *
3122 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3123 * datagrams with their own versions. These OPA MADs share many but not all of
3124 * the characteristics of InfiniBand MADs.
3125 *
3126 * OPA MADs differ in the following ways:
3127 *
3128 * 1) MADs are variable size up to 2K
3129 * IBTA defined MADs remain fixed at 256 bytes
3130 * 2) OPA SMPs must carry valid PKeys
3131 * 3) OPA SMP packets are a different format
3132 *
3133 * Return: true if the port supports OPA MAD packet formats.
3134 */
3135static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3136{
d3243da8
LR
3137 return device->port_data[port_num].immutable.core_cap_flags &
3138 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3139}
3140
29541e3a 3141/**
296ec009
MW
3142 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3143 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3144 * @device: Device to check
3145 * @port_num: Port number to check
29541e3a 3146 *
296ec009
MW
3147 * Each InfiniBand node is required to provide a Subnet Management Agent
3148 * that the subnet manager can access. Prior to the fabric being fully
3149 * configured by the subnet manager, the SMA is accessed via a well known
3150 * interface called the Subnet Management Interface (SMI). This interface
3151 * uses directed route packets to communicate with the SM to get around the
3152 * chicken and egg problem of the SM needing to know what's on the fabric
3153 * in order to configure the fabric, and needing to configure the fabric in
3154 * order to send packets to the devices on the fabric. These directed
3155 * route packets do not need the fabric fully configured in order to reach
3156 * their destination. The SMI is the only method allowed to send
3157 * directed route packets on an InfiniBand fabric.
29541e3a 3158 *
296ec009 3159 * Return: true if the port provides an SMI.
29541e3a 3160 */
5ede9289 3161static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 3162{
8ceb1357
JG
3163 return device->port_data[port_num].immutable.core_cap_flags &
3164 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3165}
3166
72219cea
MW
3167/**
3168 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3169 * Communication Manager.
296ec009
MW
3170 * @device: Device to check
3171 * @port_num: Port number to check
72219cea 3172 *
296ec009
MW
3173 * The InfiniBand Communication Manager is one of many pre-defined General
3174 * Service Agents (GSA) that are accessed via the General Service
3175 * Interface (GSI). It's role is to facilitate establishment of connections
3176 * between nodes as well as other management related tasks for established
3177 * connections.
72219cea 3178 *
296ec009
MW
3179 * Return: true if the port supports an IB CM (this does not guarantee that
3180 * a CM is actually running however).
72219cea 3181 */
5ede9289 3182static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 3183{
8ceb1357
JG
3184 return device->port_data[port_num].immutable.core_cap_flags &
3185 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3186}
3187
04215330
MW
3188/**
3189 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3190 * Communication Manager.
296ec009
MW
3191 * @device: Device to check
3192 * @port_num: Port number to check
04215330 3193 *
296ec009
MW
3194 * Similar to above, but specific to iWARP connections which have a different
3195 * managment protocol than InfiniBand.
04215330 3196 *
296ec009
MW
3197 * Return: true if the port supports an iWARP CM (this does not guarantee that
3198 * a CM is actually running however).
04215330 3199 */
5ede9289 3200static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 3201{
8ceb1357
JG
3202 return device->port_data[port_num].immutable.core_cap_flags &
3203 RDMA_CORE_CAP_IW_CM;
04215330
MW
3204}
3205
fe53ba2f
MW
3206/**
3207 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3208 * Subnet Administration.
296ec009
MW
3209 * @device: Device to check
3210 * @port_num: Port number to check
fe53ba2f 3211 *
296ec009
MW
3212 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3213 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3214 * fabrics, devices should resolve routes to other hosts by contacting the
3215 * SA to query the proper route.
fe53ba2f 3216 *
296ec009
MW
3217 * Return: true if the port should act as a client to the fabric Subnet
3218 * Administration interface. This does not imply that the SA service is
3219 * running locally.
fe53ba2f 3220 */
5ede9289 3221static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3222{
8ceb1357
JG
3223 return device->port_data[port_num].immutable.core_cap_flags &
3224 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3225}
3226
a31ad3b0
MW
3227/**
3228 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3229 * Multicast.
296ec009
MW
3230 * @device: Device to check
3231 * @port_num: Port number to check
a31ad3b0 3232 *
296ec009
MW
3233 * InfiniBand multicast registration is more complex than normal IPv4 or
3234 * IPv6 multicast registration. Each Host Channel Adapter must register
3235 * with the Subnet Manager when it wishes to join a multicast group. It
3236 * should do so only once regardless of how many queue pairs it subscribes
3237 * to this group. And it should leave the group only after all queue pairs
3238 * attached to the group have been detached.
a31ad3b0 3239 *
296ec009
MW
3240 * Return: true if the port must undertake the additional adminstrative
3241 * overhead of registering/unregistering with the SM and tracking of the
3242 * total number of queue pairs attached to the multicast group.
a31ad3b0 3243 */
5ede9289 3244static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3245{
3246 return rdma_cap_ib_sa(device, port_num);
3247}
3248
30a74ef4
MW
3249/**
3250 * rdma_cap_af_ib - Check if the port of device has the capability
3251 * Native Infiniband Address.
296ec009
MW
3252 * @device: Device to check
3253 * @port_num: Port number to check
30a74ef4 3254 *
296ec009
MW
3255 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3256 * GID. RoCE uses a different mechanism, but still generates a GID via
3257 * a prescribed mechanism and port specific data.
30a74ef4 3258 *
296ec009
MW
3259 * Return: true if the port uses a GID address to identify devices on the
3260 * network.
30a74ef4 3261 */
5ede9289 3262static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3263{
8ceb1357
JG
3264 return device->port_data[port_num].immutable.core_cap_flags &
3265 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3266}
3267
227128fc
MW
3268/**
3269 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3270 * Ethernet Address Handle.
3271 * @device: Device to check
3272 * @port_num: Port number to check
227128fc 3273 *
296ec009
MW
3274 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3275 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3276 * port. Normally, packet headers are generated by the sending host
3277 * adapter, but when sending connectionless datagrams, we must manually
3278 * inject the proper headers for the fabric we are communicating over.
227128fc 3279 *
296ec009
MW
3280 * Return: true if we are running as a RoCE port and must force the
3281 * addition of a Global Route Header built from our Ethernet Address
3282 * Handle into our header list for connectionless packets.
227128fc 3283 */
5ede9289 3284static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3285{
8ceb1357
JG
3286 return device->port_data[port_num].immutable.core_cap_flags &
3287 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3288}
3289
94d595c5
DC
3290/**
3291 * rdma_cap_opa_ah - Check if the port of device supports
3292 * OPA Address handles
3293 * @device: Device to check
3294 * @port_num: Port number to check
3295 *
3296 * Return: true if we are running on an OPA device which supports
3297 * the extended OPA addressing.
3298 */
3299static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3300{
8ceb1357 3301 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3302 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3303}
3304
337877a4
IW
3305/**
3306 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3307 *
3308 * @device: Device
3309 * @port_num: Port number
3310 *
3311 * This MAD size includes the MAD headers and MAD payload. No other headers
3312 * are included.
3313 *
3314 * Return the max MAD size required by the Port. Will return 0 if the port
3315 * does not support MADs
3316 */
3317static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3318{
8ceb1357 3319 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3320}
3321
03db3a2d
MB
3322/**
3323 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3324 * @device: Device to check
3325 * @port_num: Port number to check
3326 *
3327 * RoCE GID table mechanism manages the various GIDs for a device.
3328 *
3329 * NOTE: if allocating the port's GID table has failed, this call will still
3330 * return true, but any RoCE GID table API will fail.
3331 *
3332 * Return: true if the port uses RoCE GID table mechanism in order to manage
3333 * its GIDs.
3334 */
3335static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3336 u8 port_num)
3337{
3338 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3339 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3340}
3341
002516ed
CH
3342/*
3343 * Check if the device supports READ W/ INVALIDATE.
3344 */
3345static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3346{
3347 /*
3348 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3349 * has support for it yet.
3350 */
3351 return rdma_protocol_iwarp(dev, port_num);
3352}
3353
4a353399
SS
3354/**
3355 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3356 *
3357 * @addr: address
3358 * @pgsz_bitmap: bitmap of HW supported page sizes
3359 */
3360static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3361 unsigned long pgsz_bitmap)
3362{
3363 unsigned long align;
3364 unsigned long pgsz;
3365
3366 align = addr & -addr;
3367
3368 /* Find page bit such that addr is aligned to the highest supported
3369 * HW page size
3370 */
3371 pgsz = pgsz_bitmap & ~(-align << 1);
3372 if (!pgsz)
3373 return __ffs(pgsz_bitmap);
3374
3375 return __fls(pgsz);
3376}
3377
6d72344c
KW
3378/**
3379 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3380 * @device: Device
3381 * @port_num: 1 based Port number
3382 *
3383 * Return true if port is an Intel OPA port , false if not
3384 */
3385static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3386 u32 port_num)
3387{
3388 return (device->port_data[port_num].immutable.core_cap_flags &
3389 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3390}
3391
3392/**
3393 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3394 * @device: Device
3395 * @port_num: Port number
3396 * @mtu: enum value of MTU
3397 *
3398 * Return the MTU size supported by the port as an integer value. Will return
3399 * -1 if enum value of mtu is not supported.
3400 */
3401static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3402 int mtu)
3403{
3404 if (rdma_core_cap_opa_port(device, port))
3405 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3406 else
3407 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3408}
3409
3410/**
3411 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3412 * @device: Device
3413 * @port_num: Port number
3414 * @attr: port attribute
3415 *
3416 * Return the MTU size supported by the port as an integer value.
3417 */
3418static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3419 struct ib_port_attr *attr)
3420{
3421 if (rdma_core_cap_opa_port(device, port))
3422 return attr->phys_mtu;
3423 else
3424 return ib_mtu_enum_to_int(attr->max_mtu);
3425}
3426
50174a7f
EC
3427int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3428 int state);
3429int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3430 struct ifla_vf_info *info);
3431int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3432 struct ifla_vf_stats *stats);
bfcb3c5d
DG
3433int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3434 struct ifla_vf_guid *node_guid,
3435 struct ifla_vf_guid *port_guid);
50174a7f
EC
3436int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3437 int type);
3438
1da177e4
LT
3439int ib_query_pkey(struct ib_device *device,
3440 u8 port_num, u16 index, u16 *pkey);
3441
3442int ib_modify_device(struct ib_device *device,
3443 int device_modify_mask,
3444 struct ib_device_modify *device_modify);
3445
3446int ib_modify_port(struct ib_device *device,
3447 u8 port_num, int port_modify_mask,
3448 struct ib_port_modify *port_modify);
3449
5eb620c8 3450int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3451 u8 *port_num, u16 *index);
5eb620c8
YE
3452
3453int ib_find_pkey(struct ib_device *device,
3454 u8 port_num, u16 pkey, u16 *index);
3455
ed082d36
CH
3456enum ib_pd_flags {
3457 /*
3458 * Create a memory registration for all memory in the system and place
3459 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3460 * ULPs to avoid the overhead of dynamic MRs.
3461 *
3462 * This flag is generally considered unsafe and must only be used in
3463 * extremly trusted environments. Every use of it will log a warning
3464 * in the kernel log.
3465 */
3466 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3467};
1da177e4 3468
ed082d36
CH
3469struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3470 const char *caller);
c4367a26 3471
ed082d36 3472#define ib_alloc_pd(device, flags) \
e4496447 3473 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26
SR
3474
3475/**
3476 * ib_dealloc_pd_user - Deallocate kernel/user PD
3477 * @pd: The protection domain
3478 * @udata: Valid user data or NULL for kernel objects
3479 */
3480void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3481
3482/**
3483 * ib_dealloc_pd - Deallocate kernel PD
3484 * @pd: The protection domain
3485 *
3486 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3487 */
3488static inline void ib_dealloc_pd(struct ib_pd *pd)
3489{
3490 ib_dealloc_pd_user(pd, NULL);
3491}
1da177e4 3492
b090c4e3
GP
3493enum rdma_create_ah_flags {
3494 /* In a sleepable context */
3495 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3496};
3497
1da177e4 3498/**
0a18cfe4 3499 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3500 * @pd: The protection domain associated with the address handle.
3501 * @ah_attr: The attributes of the address vector.
b090c4e3 3502 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3503 *
3504 * The address handle is used to reference a local or global destination
3505 * in all UD QP post sends.
3506 */
b090c4e3
GP
3507struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3508 u32 flags);
1da177e4 3509
5cda6587
PP
3510/**
3511 * rdma_create_user_ah - Creates an address handle for the given address vector.
3512 * It resolves destination mac address for ah attribute of RoCE type.
3513 * @pd: The protection domain associated with the address handle.
3514 * @ah_attr: The attributes of the address vector.
3515 * @udata: pointer to user's input output buffer information need by
3516 * provider driver.
3517 *
3518 * It returns 0 on success and returns appropriate error code on error.
3519 * The address handle is used to reference a local or global destination
3520 * in all UD QP post sends.
3521 */
3522struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3523 struct rdma_ah_attr *ah_attr,
3524 struct ib_udata *udata);
850d8fd7
MS
3525/**
3526 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3527 * work completion.
3528 * @hdr: the L3 header to parse
3529 * @net_type: type of header to parse
3530 * @sgid: place to store source gid
3531 * @dgid: place to store destination gid
3532 */
3533int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3534 enum rdma_network_type net_type,
3535 union ib_gid *sgid, union ib_gid *dgid);
3536
3537/**
3538 * ib_get_rdma_header_version - Get the header version
3539 * @hdr: the L3 header to parse
3540 */
3541int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3542
4e00d694 3543/**
f6bdb142 3544 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3545 * work completion.
3546 * @device: Device on which the received message arrived.
3547 * @port_num: Port on which the received message arrived.
3548 * @wc: Work completion associated with the received message.
3549 * @grh: References the received global route header. This parameter is
3550 * ignored unless the work completion indicates that the GRH is valid.
3551 * @ah_attr: Returned attributes that can be used when creating an address
3552 * handle for replying to the message.
b7403217
PP
3553 * When ib_init_ah_attr_from_wc() returns success,
3554 * (a) for IB link layer it optionally contains a reference to SGID attribute
3555 * when GRH is present for IB link layer.
3556 * (b) for RoCE link layer it contains a reference to SGID attribute.
3557 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3558 * attributes which are initialized using ib_init_ah_attr_from_wc().
3559 *
4e00d694 3560 */
f6bdb142
PP
3561int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3562 const struct ib_wc *wc, const struct ib_grh *grh,
3563 struct rdma_ah_attr *ah_attr);
4e00d694 3564
513789ed
HR
3565/**
3566 * ib_create_ah_from_wc - Creates an address handle associated with the
3567 * sender of the specified work completion.
3568 * @pd: The protection domain associated with the address handle.
3569 * @wc: Work completion information associated with a received message.
3570 * @grh: References the received global route header. This parameter is
3571 * ignored unless the work completion indicates that the GRH is valid.
3572 * @port_num: The outbound port number to associate with the address.
3573 *
3574 * The address handle is used to reference a local or global destination
3575 * in all UD QP post sends.
3576 */
73cdaaee
IW
3577struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3578 const struct ib_grh *grh, u8 port_num);
513789ed 3579
1da177e4 3580/**
67b985b6 3581 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3582 * handle.
3583 * @ah: The address handle to modify.
3584 * @ah_attr: The new address vector attributes to associate with the
3585 * address handle.
3586 */
67b985b6 3587int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3588
3589/**
bfbfd661 3590 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3591 * handle.
3592 * @ah: The address handle to query.
3593 * @ah_attr: The address vector attributes associated with the address
3594 * handle.
3595 */
bfbfd661 3596int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3597
2553ba21
GP
3598enum rdma_destroy_ah_flags {
3599 /* In a sleepable context */
3600 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3601};
3602
1da177e4 3603/**
c4367a26 3604 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3605 * @ah: The address handle to destroy.
2553ba21 3606 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3607 * @udata: Valid user data or NULL for kernel objects
1da177e4 3608 */
c4367a26
SR
3609int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3610
3611/**
3612 * rdma_destroy_ah - Destroys an kernel address handle.
3613 * @ah: The address handle to destroy.
3614 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3615 *
3616 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3617 */
3618static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3619{
3620 return rdma_destroy_ah_user(ah, flags, NULL);
3621}
1da177e4 3622
b0810b03
JG
3623struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3624 struct ib_srq_init_attr *srq_init_attr,
3625 struct ib_usrq_object *uobject,
3626 struct ib_udata *udata);
3627static inline struct ib_srq *
3628ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3629{
3630 if (!pd->device->ops.create_srq)
3631 return ERR_PTR(-EOPNOTSUPP);
3632
3633 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3634}
d41fcc67
RD
3635
3636/**
3637 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3638 * @srq: The SRQ to modify.
3639 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3640 * the current values of selected SRQ attributes are returned.
3641 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3642 * are being modified.
3643 *
3644 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3645 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3646 * the number of receives queued drops below the limit.
3647 */
3648int ib_modify_srq(struct ib_srq *srq,
3649 struct ib_srq_attr *srq_attr,
3650 enum ib_srq_attr_mask srq_attr_mask);
3651
3652/**
3653 * ib_query_srq - Returns the attribute list and current values for the
3654 * specified SRQ.
3655 * @srq: The SRQ to query.
3656 * @srq_attr: The attributes of the specified SRQ.
3657 */
3658int ib_query_srq(struct ib_srq *srq,
3659 struct ib_srq_attr *srq_attr);
3660
3661/**
c4367a26
SR
3662 * ib_destroy_srq_user - Destroys the specified SRQ.
3663 * @srq: The SRQ to destroy.
3664 * @udata: Valid user data or NULL for kernel objects
3665 */
3666int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3667
3668/**
3669 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3670 * @srq: The SRQ to destroy.
c4367a26
SR
3671 *
3672 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3673 */
c4367a26
SR
3674static inline int ib_destroy_srq(struct ib_srq *srq)
3675{
3676 return ib_destroy_srq_user(srq, NULL);
3677}
d41fcc67
RD
3678
3679/**
3680 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3681 * @srq: The SRQ to post the work request on.
3682 * @recv_wr: A list of work requests to post on the receive queue.
3683 * @bad_recv_wr: On an immediate failure, this parameter will reference
3684 * the work request that failed to be posted on the QP.
3685 */
3686static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3687 const struct ib_recv_wr *recv_wr,
3688 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3689{
d34ac5cd 3690 const struct ib_recv_wr *dummy;
bb039a87 3691
3023a1e9
KH
3692 return srq->device->ops.post_srq_recv(srq, recv_wr,
3693 bad_recv_wr ? : &dummy);
d41fcc67
RD
3694}
3695
b72bfc96
JG
3696struct ib_qp *ib_create_qp(struct ib_pd *pd,
3697 struct ib_qp_init_attr *qp_init_attr);
1da177e4 3698
a512c2fb
PP
3699/**
3700 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3701 * @qp: The QP to modify.
3702 * @attr: On input, specifies the QP attributes to modify. On output,
3703 * the current values of selected QP attributes are returned.
3704 * @attr_mask: A bit-mask used to specify which attributes of the QP
3705 * are being modified.
3706 * @udata: pointer to user's input output buffer information
3707 * are being modified.
3708 * It returns 0 on success and returns appropriate error code on error.
3709 */
3710int ib_modify_qp_with_udata(struct ib_qp *qp,
3711 struct ib_qp_attr *attr,
3712 int attr_mask,
3713 struct ib_udata *udata);
3714
1da177e4
LT
3715/**
3716 * ib_modify_qp - Modifies the attributes for the specified QP and then
3717 * transitions the QP to the given state.
3718 * @qp: The QP to modify.
3719 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3720 * the current values of selected QP attributes are returned.
3721 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3722 * are being modified.
3723 */
3724int ib_modify_qp(struct ib_qp *qp,
3725 struct ib_qp_attr *qp_attr,
3726 int qp_attr_mask);
3727
3728/**
3729 * ib_query_qp - Returns the attribute list and current values for the
3730 * specified QP.
3731 * @qp: The QP to query.
3732 * @qp_attr: The attributes of the specified QP.
3733 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3734 * @qp_init_attr: Additional attributes of the selected QP.
3735 *
3736 * The qp_attr_mask may be used to limit the query to gathering only the
3737 * selected attributes.
3738 */
3739int ib_query_qp(struct ib_qp *qp,
3740 struct ib_qp_attr *qp_attr,
3741 int qp_attr_mask,
3742 struct ib_qp_init_attr *qp_init_attr);
3743
3744/**
3745 * ib_destroy_qp - Destroys the specified QP.
3746 * @qp: The QP to destroy.
c4367a26 3747 * @udata: Valid udata or NULL for kernel objects
1da177e4 3748 */
c4367a26
SR
3749int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3750
3751/**
3752 * ib_destroy_qp - Destroys the specified kernel QP.
3753 * @qp: The QP to destroy.
3754 *
3755 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3756 */
3757static inline int ib_destroy_qp(struct ib_qp *qp)
3758{
3759 return ib_destroy_qp_user(qp, NULL);
3760}
1da177e4 3761
d3d72d90 3762/**
0e0ec7e0
SH
3763 * ib_open_qp - Obtain a reference to an existing sharable QP.
3764 * @xrcd - XRC domain
3765 * @qp_open_attr: Attributes identifying the QP to open.
3766 *
3767 * Returns a reference to a sharable QP.
3768 */
3769struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3770 struct ib_qp_open_attr *qp_open_attr);
3771
3772/**
3773 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3774 * @qp: The QP handle to release
3775 *
0e0ec7e0
SH
3776 * The opened QP handle is released by the caller. The underlying
3777 * shared QP is not destroyed until all internal references are released.
d3d72d90 3778 */
0e0ec7e0 3779int ib_close_qp(struct ib_qp *qp);
d3d72d90 3780
1da177e4
LT
3781/**
3782 * ib_post_send - Posts a list of work requests to the send queue of
3783 * the specified QP.
3784 * @qp: The QP to post the work request on.
3785 * @send_wr: A list of work requests to post on the send queue.
3786 * @bad_send_wr: On an immediate failure, this parameter will reference
3787 * the work request that failed to be posted on the QP.
55464d46
BVA
3788 *
3789 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3790 * error is returned, the QP state shall not be affected,
3791 * ib_post_send() will return an immediate error after queueing any
3792 * earlier work requests in the list.
1da177e4
LT
3793 */
3794static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3795 const struct ib_send_wr *send_wr,
3796 const struct ib_send_wr **bad_send_wr)
1da177e4 3797{
d34ac5cd 3798 const struct ib_send_wr *dummy;
bb039a87 3799
3023a1e9 3800 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3801}
3802
3803/**
3804 * ib_post_recv - Posts a list of work requests to the receive queue of
3805 * the specified QP.
3806 * @qp: The QP to post the work request on.
3807 * @recv_wr: A list of work requests to post on the receive queue.
3808 * @bad_recv_wr: On an immediate failure, this parameter will reference
3809 * the work request that failed to be posted on the QP.
3810 */
3811static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3812 const struct ib_recv_wr *recv_wr,
3813 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3814{
d34ac5cd 3815 const struct ib_recv_wr *dummy;
bb039a87 3816
3023a1e9 3817 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3818}
3819
c4367a26
SR
3820struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3821 int nr_cqe, int comp_vector,
3822 enum ib_poll_context poll_ctx,
3823 const char *caller, struct ib_udata *udata);
3824
3825/**
3826 * ib_alloc_cq_user: Allocate kernel/user CQ
3827 * @dev: The IB device
3828 * @private: Private data attached to the CQE
3829 * @nr_cqe: Number of CQEs in the CQ
3830 * @comp_vector: Completion vector used for the IRQs
3831 * @poll_ctx: Context used for polling the CQ
3832 * @udata: Valid user data or NULL for kernel objects
3833 */
3834static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3835 void *private, int nr_cqe,
3836 int comp_vector,
3837 enum ib_poll_context poll_ctx,
3838 struct ib_udata *udata)
3839{
3840 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3841 KBUILD_MODNAME, udata);
3842}
3843
3844/**
3845 * ib_alloc_cq: Allocate kernel CQ
3846 * @dev: The IB device
3847 * @private: Private data attached to the CQE
3848 * @nr_cqe: Number of CQEs in the CQ
3849 * @comp_vector: Completion vector used for the IRQs
3850 * @poll_ctx: Context used for polling the CQ
3851 *
3852 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3853 */
3854static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3855 int nr_cqe, int comp_vector,
3856 enum ib_poll_context poll_ctx)
3857{
3858 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3859 NULL);
3860}
3861
20cf4e02
CL
3862struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3863 int nr_cqe, enum ib_poll_context poll_ctx,
3864 const char *caller);
3865
3866/**
3867 * ib_alloc_cq_any: Allocate kernel CQ
3868 * @dev: The IB device
3869 * @private: Private data attached to the CQE
3870 * @nr_cqe: Number of CQEs in the CQ
3871 * @poll_ctx: Context used for polling the CQ
3872 */
3873static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3874 void *private, int nr_cqe,
3875 enum ib_poll_context poll_ctx)
3876{
3877 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3878 KBUILD_MODNAME);
3879}
3880
c4367a26
SR
3881/**
3882 * ib_free_cq_user - Free kernel/user CQ
3883 * @cq: The CQ to free
3884 * @udata: Valid user data or NULL for kernel objects
3446cbd2
YF
3885 *
3886 * NOTE: This function shouldn't be called on shared CQs.
c4367a26
SR
3887 */
3888void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3889
3890/**
3891 * ib_free_cq - Free kernel CQ
3892 * @cq: The CQ to free
3893 *
3894 * NOTE: for user cq use ib_free_cq_user with valid udata!
3895 */
3896static inline void ib_free_cq(struct ib_cq *cq)
3897{
3898 ib_free_cq_user(cq, NULL);
3899}
f66c8ba4 3900
14d3a3b2
CH
3901int ib_process_cq_direct(struct ib_cq *cq, int budget);
3902
1da177e4
LT
3903/**
3904 * ib_create_cq - Creates a CQ on the specified device.
3905 * @device: The device on which to create the CQ.
3906 * @comp_handler: A user-specified callback that is invoked when a
3907 * completion event occurs on the CQ.
3908 * @event_handler: A user-specified callback that is invoked when an
3909 * asynchronous event not associated with a completion occurs on the CQ.
3910 * @cq_context: Context associated with the CQ returned to the user via
3911 * the associated completion and event handlers.
8e37210b 3912 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3913 *
3914 * Users can examine the cq structure to determine the actual CQ size.
3915 */
7350cdd0
BP
3916struct ib_cq *__ib_create_cq(struct ib_device *device,
3917 ib_comp_handler comp_handler,
3918 void (*event_handler)(struct ib_event *, void *),
3919 void *cq_context,
3920 const struct ib_cq_init_attr *cq_attr,
3921 const char *caller);
3922#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3923 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3924
3925/**
3926 * ib_resize_cq - Modifies the capacity of the CQ.
3927 * @cq: The CQ to resize.
3928 * @cqe: The minimum size of the CQ.
3929 *
3930 * Users can examine the cq structure to determine the actual CQ size.
3931 */
3932int ib_resize_cq(struct ib_cq *cq, int cqe);
3933
2dd57162 3934/**
4190b4e9 3935 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3936 * @cq: The CQ to modify.
3937 * @cq_count: number of CQEs that will trigger an event
3938 * @cq_period: max period of time in usec before triggering an event
3939 *
3940 */
4190b4e9 3941int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3942
1da177e4 3943/**
c4367a26 3944 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3945 * @cq: The CQ to destroy.
c4367a26 3946 * @udata: Valid user data or NULL for kernel objects
1da177e4 3947 */
c4367a26
SR
3948int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3949
3950/**
3951 * ib_destroy_cq - Destroys the specified kernel CQ.
3952 * @cq: The CQ to destroy.
3953 *
3954 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3955 */
890ac8d9 3956static inline void ib_destroy_cq(struct ib_cq *cq)
c4367a26 3957{
890ac8d9 3958 ib_destroy_cq_user(cq, NULL);
c4367a26 3959}
1da177e4
LT
3960
3961/**
3962 * ib_poll_cq - poll a CQ for completion(s)
3963 * @cq:the CQ being polled
3964 * @num_entries:maximum number of completions to return
3965 * @wc:array of at least @num_entries &struct ib_wc where completions
3966 * will be returned
3967 *
3968 * Poll a CQ for (possibly multiple) completions. If the return value
3969 * is < 0, an error occurred. If the return value is >= 0, it is the
3970 * number of completions returned. If the return value is
3971 * non-negative and < num_entries, then the CQ was emptied.
3972 */
3973static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3974 struct ib_wc *wc)
3975{
3023a1e9 3976 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3977}
3978
1da177e4
LT
3979/**
3980 * ib_req_notify_cq - Request completion notification on a CQ.
3981 * @cq: The CQ to generate an event for.
ed23a727
RD
3982 * @flags:
3983 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3984 * to request an event on the next solicited event or next work
3985 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3986 * may also be |ed in to request a hint about missed events, as
3987 * described below.
3988 *
3989 * Return Value:
3990 * < 0 means an error occurred while requesting notification
3991 * == 0 means notification was requested successfully, and if
3992 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3993 * were missed and it is safe to wait for another event. In
3994 * this case is it guaranteed that any work completions added
3995 * to the CQ since the last CQ poll will trigger a completion
3996 * notification event.
3997 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3998 * in. It means that the consumer must poll the CQ again to
3999 * make sure it is empty to avoid missing an event because of a
4000 * race between requesting notification and an entry being
4001 * added to the CQ. This return value means it is possible
4002 * (but not guaranteed) that a work completion has been added
4003 * to the CQ since the last poll without triggering a
4004 * completion notification event.
1da177e4
LT
4005 */
4006static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 4007 enum ib_cq_notify_flags flags)
1da177e4 4008{
3023a1e9 4009 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
4010}
4011
c7ff819a
YF
4012struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4013 int comp_vector_hint,
4014 enum ib_poll_context poll_ctx);
4015
4016void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4017
1da177e4
LT
4018/**
4019 * ib_req_ncomp_notif - Request completion notification when there are
4020 * at least the specified number of unreaped completions on the CQ.
4021 * @cq: The CQ to generate an event for.
4022 * @wc_cnt: The number of unreaped completions that should be on the
4023 * CQ before an event is generated.
4024 */
4025static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
4026{
3023a1e9
KH
4027 return cq->device->ops.req_ncomp_notif ?
4028 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
4029 -ENOSYS;
4030}
4031
9b513090
RC
4032/**
4033 * ib_dma_mapping_error - check a DMA addr for error
4034 * @dev: The device for which the dma_addr was created
4035 * @dma_addr: The DMA address to check
4036 */
4037static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4038{
0957c29f 4039 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
4040}
4041
4042/**
4043 * ib_dma_map_single - Map a kernel virtual address to DMA address
4044 * @dev: The device for which the dma_addr is to be created
4045 * @cpu_addr: The kernel virtual address
4046 * @size: The size of the region in bytes
4047 * @direction: The direction of the DMA
4048 */
4049static inline u64 ib_dma_map_single(struct ib_device *dev,
4050 void *cpu_addr, size_t size,
4051 enum dma_data_direction direction)
4052{
0957c29f 4053 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
4054}
4055
4056/**
4057 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4058 * @dev: The device for which the DMA address was created
4059 * @addr: The DMA address
4060 * @size: The size of the region in bytes
4061 * @direction: The direction of the DMA
4062 */
4063static inline void ib_dma_unmap_single(struct ib_device *dev,
4064 u64 addr, size_t size,
4065 enum dma_data_direction direction)
4066{
0957c29f 4067 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
4068}
4069
9b513090
RC
4070/**
4071 * ib_dma_map_page - Map a physical page to DMA address
4072 * @dev: The device for which the dma_addr is to be created
4073 * @page: The page to be mapped
4074 * @offset: The offset within the page
4075 * @size: The size of the region in bytes
4076 * @direction: The direction of the DMA
4077 */
4078static inline u64 ib_dma_map_page(struct ib_device *dev,
4079 struct page *page,
4080 unsigned long offset,
4081 size_t size,
4082 enum dma_data_direction direction)
4083{
0957c29f 4084 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
4085}
4086
4087/**
4088 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4089 * @dev: The device for which the DMA address was created
4090 * @addr: The DMA address
4091 * @size: The size of the region in bytes
4092 * @direction: The direction of the DMA
4093 */
4094static inline void ib_dma_unmap_page(struct ib_device *dev,
4095 u64 addr, size_t size,
4096 enum dma_data_direction direction)
4097{
0957c29f 4098 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
4099}
4100
4101/**
4102 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4103 * @dev: The device for which the DMA addresses are to be created
4104 * @sg: The array of scatter/gather entries
4105 * @nents: The number of scatter/gather entries
4106 * @direction: The direction of the DMA
4107 */
4108static inline int ib_dma_map_sg(struct ib_device *dev,
4109 struct scatterlist *sg, int nents,
4110 enum dma_data_direction direction)
4111{
0957c29f 4112 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4113}
4114
4115/**
4116 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4117 * @dev: The device for which the DMA addresses were created
4118 * @sg: The array of scatter/gather entries
4119 * @nents: The number of scatter/gather entries
4120 * @direction: The direction of the DMA
4121 */
4122static inline void ib_dma_unmap_sg(struct ib_device *dev,
4123 struct scatterlist *sg, int nents,
4124 enum dma_data_direction direction)
4125{
0957c29f 4126 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4127}
4128
cb9fbc5c
AK
4129static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4130 struct scatterlist *sg, int nents,
4131 enum dma_data_direction direction,
00085f1e 4132 unsigned long dma_attrs)
cb9fbc5c 4133{
0957c29f
BVA
4134 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4135 dma_attrs);
cb9fbc5c
AK
4136}
4137
4138static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4139 struct scatterlist *sg, int nents,
4140 enum dma_data_direction direction,
00085f1e 4141 unsigned long dma_attrs)
cb9fbc5c 4142{
0957c29f 4143 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 4144}
9b513090 4145
0b5cb330
BVA
4146/**
4147 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4148 * @dev: The device to query
4149 *
4150 * The returned value represents a size in bytes.
4151 */
4152static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4153{
ecdfdfdb 4154 return dma_get_max_seg_size(dev->dma_device);
0b5cb330
BVA
4155}
4156
9b513090
RC
4157/**
4158 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4159 * @dev: The device for which the DMA address was created
4160 * @addr: The DMA address
4161 * @size: The size of the region in bytes
4162 * @dir: The direction of the DMA
4163 */
4164static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4165 u64 addr,
4166 size_t size,
4167 enum dma_data_direction dir)
4168{
0957c29f 4169 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
4170}
4171
4172/**
4173 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4174 * @dev: The device for which the DMA address was created
4175 * @addr: The DMA address
4176 * @size: The size of the region in bytes
4177 * @dir: The direction of the DMA
4178 */
4179static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4180 u64 addr,
4181 size_t size,
4182 enum dma_data_direction dir)
4183{
0957c29f 4184 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4185}
4186
4187/**
4188 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4189 * @dev: The device for which the DMA address is requested
4190 * @size: The size of the region to allocate in bytes
4191 * @dma_handle: A pointer for returning the DMA address of the region
4192 * @flag: memory allocator flags
4193 */
4194static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4195 size_t size,
d43dbacf 4196 dma_addr_t *dma_handle,
9b513090
RC
4197 gfp_t flag)
4198{
0957c29f 4199 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
4200}
4201
4202/**
4203 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4204 * @dev: The device for which the DMA addresses were allocated
4205 * @size: The size of the region
4206 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4207 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4208 */
4209static inline void ib_dma_free_coherent(struct ib_device *dev,
4210 size_t size, void *cpu_addr,
d43dbacf 4211 dma_addr_t dma_handle)
9b513090 4212{
0957c29f 4213 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
4214}
4215
33006bd4
MS
4216/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4217 * space. This function should be called when 'current' is the owning MM.
4218 */
4219struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4220 u64 virt_addr, int mr_access_flags);
4221
87d8069f
MS
4222/* ib_advise_mr - give an advice about an address range in a memory region */
4223int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4224 u32 flags, struct ib_sge *sg_list, u32 num_sge);
1da177e4 4225/**
c4367a26
SR
4226 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4227 * HCA translation table.
4228 * @mr: The memory region to deregister.
4229 * @udata: Valid user data or NULL for kernel object
4230 *
4231 * This function can fail, if the memory region has memory windows bound to it.
4232 */
4233int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4234
4235/**
4236 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4237 * HCA translation table.
4238 * @mr: The memory region to deregister.
7083e42e
SM
4239 *
4240 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4241 *
4242 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4243 */
c4367a26
SR
4244static inline int ib_dereg_mr(struct ib_mr *mr)
4245{
4246 return ib_dereg_mr_user(mr, NULL);
4247}
4248
b64b74b1
GP
4249struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4250 u32 max_num_sg);
00f7ec36 4251
26bc7eae
IR
4252struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4253 u32 max_num_data_sg,
4254 u32 max_num_meta_sg);
4255
00f7ec36
SW
4256/**
4257 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4258 * R_Key and L_Key.
4259 * @mr - struct ib_mr pointer to be updated.
4260 * @newkey - new key to be used.
4261 */
4262static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4263{
4264 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4265 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4266}
4267
7083e42e
SM
4268/**
4269 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4270 * for calculating a new rkey for type 2 memory windows.
4271 * @rkey - the rkey to increment.
4272 */
4273static inline u32 ib_inc_rkey(u32 rkey)
4274{
4275 const u32 mask = 0x000000ff;
4276 return ((rkey + 1) & mask) | (rkey & ~mask);
4277}
4278
1da177e4
LT
4279/**
4280 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4281 * @qp: QP to attach to the multicast group. The QP must be type
4282 * IB_QPT_UD.
4283 * @gid: Multicast group GID.
4284 * @lid: Multicast group LID in host byte order.
4285 *
4286 * In order to send and receive multicast packets, subnet
4287 * administration must have created the multicast group and configured
4288 * the fabric appropriately. The port associated with the specified
4289 * QP must also be a member of the multicast group.
4290 */
4291int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4292
4293/**
4294 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4295 * @qp: QP to detach from the multicast group.
4296 * @gid: Multicast group GID.
4297 * @lid: Multicast group LID in host byte order.
4298 */
4299int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4300
b73efcb2
MG
4301struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4302 struct inode *inode, struct ib_udata *udata);
4303int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4304
1c636f80
EC
4305static inline int ib_check_mr_access(int flags)
4306{
4307 /*
4308 * Local write permission is required if remote write or
4309 * remote atomic permission is also requested.
4310 */
4311 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4312 !(flags & IB_ACCESS_LOCAL_WRITE))
4313 return -EINVAL;
4314
ca95c141
MG
4315 if (flags & ~IB_ACCESS_SUPPORTED)
4316 return -EINVAL;
4317
1c636f80
EC
4318 return 0;
4319}
4320
08bb558a
JM
4321static inline bool ib_access_writable(int access_flags)
4322{
4323 /*
4324 * We have writable memory backing the MR if any of the following
4325 * access flags are set. "Local write" and "remote write" obviously
4326 * require write access. "Remote atomic" can do things like fetch and
4327 * add, which will modify memory, and "MW bind" can change permissions
4328 * by binding a window.
4329 */
4330 return access_flags &
4331 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4332 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4333}
4334
1b01d335
SG
4335/**
4336 * ib_check_mr_status: lightweight check of MR status.
4337 * This routine may provide status checks on a selected
4338 * ib_mr. first use is for signature status check.
4339 *
4340 * @mr: A memory region.
4341 * @check_mask: Bitmask of which checks to perform from
4342 * ib_mr_status_check enumeration.
4343 * @mr_status: The container of relevant status checks.
4344 * failed checks will be indicated in the status bitmask
4345 * and the relevant info shall be in the error item.
4346 */
4347int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4348 struct ib_mr_status *mr_status);
4349
d79af724
JG
4350/**
4351 * ib_device_try_get: Hold a registration lock
4352 * device: The device to lock
4353 *
4354 * A device under an active registration lock cannot become unregistered. It
4355 * is only possible to obtain a registration lock on a device that is fully
4356 * registered, otherwise this function returns false.
4357 *
4358 * The registration lock is only necessary for actions which require the
4359 * device to still be registered. Uses that only require the device pointer to
4360 * be valid should use get_device(&ibdev->dev) to hold the memory.
4361 *
4362 */
4363static inline bool ib_device_try_get(struct ib_device *dev)
4364{
4365 return refcount_inc_not_zero(&dev->refcount);
4366}
4367
4368void ib_device_put(struct ib_device *device);
324e227e
JG
4369struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4370 enum rdma_driver_id driver_id);
4371struct ib_device *ib_device_get_by_name(const char *name,
4372 enum rdma_driver_id driver_id);
9268f72d
YK
4373struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4374 u16 pkey, const union ib_gid *gid,
4375 const struct sockaddr *addr);
c2261dd7
JG
4376int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4377 unsigned int port);
4378struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4379
5fd251c8
YH
4380struct ib_wq *ib_create_wq(struct ib_pd *pd,
4381 struct ib_wq_init_attr *init_attr);
c4367a26 4382int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
5fd251c8
YH
4383int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4384 u32 wq_attr_mask);
6d39786b 4385int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 4386
ff2ba993 4387int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4388 unsigned int *sg_offset, unsigned int page_size);
2cdfcdd8
MG
4389int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4390 int data_sg_nents, unsigned int *data_sg_offset,
4391 struct scatterlist *meta_sg, int meta_sg_nents,
4392 unsigned int *meta_sg_offset, unsigned int page_size);
4c67e2bf
SG
4393
4394static inline int
ff2ba993 4395ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4396 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4397{
4398 int n;
4399
ff2ba993 4400 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4401 mr->iova = 0;
4402
4403 return n;
4404}
4405
ff2ba993 4406int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4407 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4408
765d6774
SW
4409void ib_drain_rq(struct ib_qp *qp);
4410void ib_drain_sq(struct ib_qp *qp);
4411void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4412
d4186194 4413int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4414
4415static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4416{
44c58487
DC
4417 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4418 return attr->roce.dmac;
4419 return NULL;
2224c47a
DC
4420}
4421
64b4646e 4422static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4423{
44c58487 4424 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4425 attr->ib.dlid = (u16)dlid;
4426 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4427 attr->opa.dlid = dlid;
2224c47a
DC
4428}
4429
64b4646e 4430static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4431{
44c58487
DC
4432 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4433 return attr->ib.dlid;
64b4646e
DC
4434 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4435 return attr->opa.dlid;
44c58487 4436 return 0;
2224c47a
DC
4437}
4438
4439static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4440{
4441 attr->sl = sl;
4442}
4443
4444static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4445{
4446 return attr->sl;
4447}
4448
4449static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4450 u8 src_path_bits)
4451{
44c58487
DC
4452 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4453 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4454 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4455 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4456}
4457
4458static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4459{
44c58487
DC
4460 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4461 return attr->ib.src_path_bits;
64b4646e
DC
4462 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4463 return attr->opa.src_path_bits;
44c58487 4464 return 0;
2224c47a
DC
4465}
4466
d98bb7f7
DH
4467static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4468 bool make_grd)
4469{
4470 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4471 attr->opa.make_grd = make_grd;
4472}
4473
4474static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4475{
4476 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4477 return attr->opa.make_grd;
4478 return false;
4479}
4480
2224c47a
DC
4481static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4482{
4483 attr->port_num = port_num;
4484}
4485
4486static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4487{
4488 return attr->port_num;
4489}
4490
4491static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4492 u8 static_rate)
4493{
4494 attr->static_rate = static_rate;
4495}
4496
4497static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4498{
4499 return attr->static_rate;
4500}
4501
4502static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4503 enum ib_ah_flags flag)
4504{
4505 attr->ah_flags = flag;
4506}
4507
4508static inline enum ib_ah_flags
4509 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4510{
4511 return attr->ah_flags;
4512}
4513
4514static inline const struct ib_global_route
4515 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4516{
4517 return &attr->grh;
4518}
4519
4520/*To retrieve and modify the grh */
4521static inline struct ib_global_route
4522 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4523{
4524 return &attr->grh;
4525}
4526
4527static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4528{
4529 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4530
4531 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4532}
4533
4534static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4535 __be64 prefix)
4536{
4537 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4538
4539 grh->dgid.global.subnet_prefix = prefix;
4540}
4541
4542static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4543 __be64 if_id)
4544{
4545 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4546
4547 grh->dgid.global.interface_id = if_id;
4548}
4549
4550static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4551 union ib_gid *dgid, u32 flow_label,
4552 u8 sgid_index, u8 hop_limit,
4553 u8 traffic_class)
4554{
4555 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4556
4557 attr->ah_flags = IB_AH_GRH;
4558 if (dgid)
4559 grh->dgid = *dgid;
4560 grh->flow_label = flow_label;
4561 grh->sgid_index = sgid_index;
4562 grh->hop_limit = hop_limit;
4563 grh->traffic_class = traffic_class;
8d9ec9ad 4564 grh->sgid_attr = NULL;
2224c47a 4565}
44c58487 4566
8d9ec9ad
JG
4567void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4568void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4569 u32 flow_label, u8 hop_limit, u8 traffic_class,
4570 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4571void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4572 const struct rdma_ah_attr *src);
4573void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4574 const struct rdma_ah_attr *new);
4575void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4576
87daac68
DH
4577/**
4578 * rdma_ah_find_type - Return address handle type.
4579 *
4580 * @dev: Device to be checked
4581 * @port_num: Port number
4582 */
44c58487 4583static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4584 u8 port_num)
44c58487 4585{
a6532e71 4586 if (rdma_protocol_roce(dev, port_num))
44c58487 4587 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4588 if (rdma_protocol_ib(dev, port_num)) {
4589 if (rdma_cap_opa_ah(dev, port_num))
4590 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4591 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4592 }
4593
4594 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4595}
7db20ecd 4596
62ede777
HD
4597/**
4598 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4599 * In the current implementation the only way to get
4600 * get the 32bit lid is from other sources for OPA.
4601 * For IB, lids will always be 16bits so cast the
4602 * value accordingly.
4603 *
4604 * @lid: A 32bit LID
4605 */
4606static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4607{
62ede777
HD
4608 WARN_ON_ONCE(lid & 0xFFFF0000);
4609 return (u16)lid;
7db20ecd
HD
4610}
4611
62ede777
HD
4612/**
4613 * ib_lid_be16 - Return lid in 16bit BE encoding.
4614 *
4615 * @lid: A 32bit LID
4616 */
4617static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4618{
62ede777
HD
4619 WARN_ON_ONCE(lid & 0xFFFF0000);
4620 return cpu_to_be16((u16)lid);
7db20ecd 4621}
32043830 4622
c66cd353
SG
4623/**
4624 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4625 * vector
4626 * @device: the rdma device
4627 * @comp_vector: index of completion vector
4628 *
4629 * Returns NULL on failure, otherwise a corresponding cpu map of the
4630 * completion vector (returns all-cpus map if the device driver doesn't
4631 * implement get_vector_affinity).
4632 */
4633static inline const struct cpumask *
4634ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4635{
4636 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4637 !device->ops.get_vector_affinity)
c66cd353
SG
4638 return NULL;
4639
3023a1e9 4640 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4641
4642}
4643
32f69e4b
DJ
4644/**
4645 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4646 * and add their gids, as needed, to the relevant RoCE devices.
4647 *
4648 * @device: the rdma device
4649 */
4650void rdma_roce_rescan_device(struct ib_device *ibdev);
4651
8313c10f 4652struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4653
15a1b4be 4654int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4655
4656struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4657 enum rdma_netdev_t type, const char *name,
4658 unsigned char name_assign_type,
4659 void (*setup)(struct net_device *));
5d6b0cb3
DD
4660
4661int rdma_init_netdev(struct ib_device *device, u8 port_num,
4662 enum rdma_netdev_t type, const char *name,
4663 unsigned char name_assign_type,
4664 void (*setup)(struct net_device *),
4665 struct net_device *netdev);
4666
d4122f5a
PP
4667/**
4668 * rdma_set_device_sysfs_group - Set device attributes group to have
4669 * driver specific sysfs entries at
4670 * for infiniband class.
4671 *
4672 * @device: device pointer for which attributes to be created
4673 * @group: Pointer to group which should be added when device
4674 * is registered with sysfs.
4675 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4676 * group per device to have sysfs attributes.
4677 *
4678 * NOTE: New drivers should not make use of this API; instead new device
4679 * parameter should be exposed via netlink command. This API and mechanism
4680 * exist only for existing drivers.
4681 */
4682static inline void
4683rdma_set_device_sysfs_group(struct ib_device *dev,
4684 const struct attribute_group *group)
4685{
4686 dev->groups[1] = group;
4687}
4688
54747231
PP
4689/**
4690 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4691 *
4692 * @device: device pointer for which ib_device pointer to retrieve
4693 *
4694 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4695 *
4696 */
4697static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4698{
cebe556b
PP
4699 struct ib_core_device *coredev =
4700 container_of(device, struct ib_core_device, dev);
4701
4702 return coredev->owner;
54747231
PP
4703}
4704
4705/**
4706 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4707 * ib_device holder structure from device pointer.
4708 *
4709 * NOTE: New drivers should not make use of this API; This API is only for
4710 * existing drivers who have exposed sysfs entries using
4711 * rdma_set_device_sysfs_group().
4712 */
4713#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4714 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4715
4716bool rdma_dev_access_netns(const struct ib_device *device,
4717 const struct net *net);
d5665a21
MZ
4718
4719#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4720#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4721
4722/**
4723 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4724 * on the flow_label
4725 *
4726 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4727 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4728 * convention.
4729 */
4730static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4731{
4732 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4733
4734 fl_low ^= fl_high >> 14;
4735 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4736}
4737
4738/**
4739 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4740 * local and remote qpn values
4741 *
4742 * This function folded the multiplication results of two qpns, 24 bit each,
4743 * fields, and converts it to a 20 bit results.
4744 *
4745 * This function will create symmetric flow_label value based on the local
4746 * and remote qpn values. this will allow both the requester and responder
4747 * to calculate the same flow_label for a given connection.
4748 *
4749 * This helper function should be used by driver in case the upper layer
4750 * provide a zero flow_label value. This is to improve entropy of RDMA
4751 * traffic in the network.
4752 */
4753static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4754{
4755 u64 v = (u64)lqpn * rqpn;
4756
4757 v ^= v >> 20;
4758 v ^= v >> 40;
4759
4760 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4761}
1da177e4 4762#endif /* IB_VERBS_H */