]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
IB/uverbs: Expose UAPI to query MR
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
f6316032
LR
62#include <linux/irqflags.h>
63#include <linux/preempt.h>
da662979 64#include <linux/dim.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
413d3347 66#include <rdma/rdma_counter.h>
02d8883f 67#include <rdma/restrack.h>
36b1e47f 68#include <rdma/signature.h>
0ede73bc 69#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 70#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 71
9abb0d1b
LR
72#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
73
b5231b01 74struct ib_umem_odp;
620d3f81 75struct ib_uqp_object;
9fbe334c 76struct ib_usrq_object;
e04dd131 77struct ib_uwq_object;
211cd945 78struct rdma_cm_id;
b5231b01 79
f0626710 80extern struct workqueue_struct *ib_wq;
14d3a3b2 81extern struct workqueue_struct *ib_comp_wq;
f794809a 82extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 83
5bd48c18
JG
84struct ib_ucq_object;
85
923abb9d
GP
86__printf(3, 4) __cold
87void ibdev_printk(const char *level, const struct ib_device *ibdev,
88 const char *format, ...);
89__printf(2, 3) __cold
90void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
91__printf(2, 3) __cold
92void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
93__printf(2, 3) __cold
94void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
95__printf(2, 3) __cold
96void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
97__printf(2, 3) __cold
98void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
99__printf(2, 3) __cold
100void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
101__printf(2, 3) __cold
102void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
103
ceabef7d
OZ
104#if defined(CONFIG_DYNAMIC_DEBUG) || \
105 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
923abb9d
GP
106#define ibdev_dbg(__dev, format, args...) \
107 dynamic_ibdev_dbg(__dev, format, ##args)
923abb9d
GP
108#else
109__printf(2, 3) __cold
110static inline
111void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
112#endif
113
05bb411a
GP
114#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
115do { \
116 static DEFINE_RATELIMIT_STATE(_rs, \
117 DEFAULT_RATELIMIT_INTERVAL, \
118 DEFAULT_RATELIMIT_BURST); \
119 if (__ratelimit(&_rs)) \
120 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
121} while (0)
122
123#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
124 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
125#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
126 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
127#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
128 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
129#define ibdev_err_ratelimited(ibdev, fmt, ...) \
130 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
131#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
132 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
133#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
134 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
135#define ibdev_info_ratelimited(ibdev, fmt, ...) \
136 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
137
ceabef7d
OZ
138#if defined(CONFIG_DYNAMIC_DEBUG) || \
139 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
05bb411a
GP
140/* descriptor check is first to prevent flooding with "callbacks suppressed" */
141#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
142do { \
143 static DEFINE_RATELIMIT_STATE(_rs, \
144 DEFAULT_RATELIMIT_INTERVAL, \
145 DEFAULT_RATELIMIT_BURST); \
146 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
147 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
148 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
149 ##__VA_ARGS__); \
150} while (0)
151#else
152__printf(2, 3) __cold
153static inline
154void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
155#endif
156
1da177e4
LT
157union ib_gid {
158 u8 raw[16];
159 struct {
97f52eb4
SH
160 __be64 subnet_prefix;
161 __be64 interface_id;
1da177e4
LT
162 } global;
163};
164
e26be1bf
MS
165extern union ib_gid zgid;
166
b39ffa1d
MB
167enum ib_gid_type {
168 /* If link layer is Ethernet, this is RoCE V1 */
169 IB_GID_TYPE_IB = 0,
170 IB_GID_TYPE_ROCE = 0,
7766a99f 171 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
172 IB_GID_TYPE_SIZE
173};
174
7ead4bcb 175#define ROCE_V2_UDP_DPORT 4791
03db3a2d 176struct ib_gid_attr {
943bd984 177 struct net_device __rcu *ndev;
598ff6ba 178 struct ib_device *device;
b150c386 179 union ib_gid gid;
598ff6ba
PP
180 enum ib_gid_type gid_type;
181 u16 index;
182 u8 port_num;
03db3a2d
MB
183};
184
a0c1b2a3
EC
185enum {
186 /* set the local administered indication */
187 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
188};
189
07ebafba
TT
190enum rdma_transport_type {
191 RDMA_TRANSPORT_IB,
180771a3 192 RDMA_TRANSPORT_IWARP,
248567f7 193 RDMA_TRANSPORT_USNIC,
f95be3d2
GP
194 RDMA_TRANSPORT_USNIC_UDP,
195 RDMA_TRANSPORT_UNSPECIFIED,
07ebafba
TT
196};
197
6b90a6d6
MW
198enum rdma_protocol_type {
199 RDMA_PROTOCOL_IB,
200 RDMA_PROTOCOL_IBOE,
201 RDMA_PROTOCOL_IWARP,
202 RDMA_PROTOCOL_USNIC_UDP
203};
204
8385fd84 205__attribute_const__ enum rdma_transport_type
5d60c111 206rdma_node_get_transport(unsigned int node_type);
07ebafba 207
c865f246
SK
208enum rdma_network_type {
209 RDMA_NETWORK_IB,
210 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
211 RDMA_NETWORK_IPV4,
212 RDMA_NETWORK_IPV6
213};
214
215static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
216{
217 if (network_type == RDMA_NETWORK_IPV4 ||
218 network_type == RDMA_NETWORK_IPV6)
219 return IB_GID_TYPE_ROCE_UDP_ENCAP;
220
221 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
222 return IB_GID_TYPE_IB;
223}
224
47ec3866
PP
225static inline enum rdma_network_type
226rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 227{
47ec3866 228 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
229 return RDMA_NETWORK_IB;
230
47ec3866 231 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
232 return RDMA_NETWORK_IPV4;
233 else
234 return RDMA_NETWORK_IPV6;
235}
236
a3f5adaf
EC
237enum rdma_link_layer {
238 IB_LINK_LAYER_UNSPECIFIED,
239 IB_LINK_LAYER_INFINIBAND,
240 IB_LINK_LAYER_ETHERNET,
241};
242
1da177e4 243enum ib_device_cap_flags {
7ca0bc53
LR
244 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
245 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
246 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
247 IB_DEVICE_RAW_MULTI = (1 << 3),
248 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
249 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
250 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
251 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
252 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 253 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
254 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
255 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
256 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
257 IB_DEVICE_SRQ_RESIZE = (1 << 13),
258 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
259
260 /*
261 * This device supports a per-device lkey or stag that can be
262 * used without performing a memory registration for the local
263 * memory. Note that ULPs should never check this flag, but
264 * instead of use the local_dma_lkey flag in the ib_pd structure,
265 * which will always contain a usable lkey.
266 */
7ca0bc53 267 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 268 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 269 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
270 /*
271 * Devices should set IB_DEVICE_UD_IP_SUM if they support
272 * insertion of UDP and TCP checksum on outgoing UD IPoIB
273 * messages and can verify the validity of checksum for
274 * incoming messages. Setting this flag implies that the
275 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
276 */
7ca0bc53
LR
277 IB_DEVICE_UD_IP_CSUM = (1 << 18),
278 IB_DEVICE_UD_TSO = (1 << 19),
279 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
280
281 /*
282 * This device supports the IB "base memory management extension",
283 * which includes support for fast registrations (IB_WR_REG_MR,
284 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
285 * also be set by any iWarp device which must support FRs to comply
286 * to the iWarp verbs spec. iWarp devices also support the
287 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
288 * stag.
289 */
7ca0bc53
LR
290 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
291 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
292 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
293 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
294 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 295 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 296 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
297 /*
298 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
299 * support execution of WQEs that involve synchronization
300 * of I/O operations with single completion queue managed
301 * by hardware.
302 */
78b57f95 303 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53 304 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
c0a6cbb9 305 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
47355b3c 306 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 307 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 308 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 309 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 310 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
7f90a5a0 311 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
e1d2e887
NO
312 /* The device supports padding incoming writes to cacheline. */
313 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 314 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
315};
316
1da177e4
LT
317enum ib_atomic_cap {
318 IB_ATOMIC_NONE,
319 IB_ATOMIC_HCA,
320 IB_ATOMIC_GLOB
321};
322
860f10a7 323enum ib_odp_general_cap_bits {
25bf14d6
AK
324 IB_ODP_SUPPORT = 1 << 0,
325 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
326};
327
328enum ib_odp_transport_cap_bits {
329 IB_ODP_SUPPORT_SEND = 1 << 0,
330 IB_ODP_SUPPORT_RECV = 1 << 1,
331 IB_ODP_SUPPORT_WRITE = 1 << 2,
332 IB_ODP_SUPPORT_READ = 1 << 3,
333 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 334 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
335};
336
337struct ib_odp_caps {
338 uint64_t general_caps;
339 struct {
340 uint32_t rc_odp_caps;
341 uint32_t uc_odp_caps;
342 uint32_t ud_odp_caps;
52a72e2a 343 uint32_t xrc_odp_caps;
860f10a7
SG
344 } per_transport_caps;
345};
346
ccf20562
YH
347struct ib_rss_caps {
348 /* Corresponding bit will be set if qp type from
349 * 'enum ib_qp_type' is supported, e.g.
350 * supported_qpts |= 1 << IB_QPT_UD
351 */
352 u32 supported_qpts;
353 u32 max_rwq_indirection_tables;
354 u32 max_rwq_indirection_table_size;
355};
356
6938fc1e 357enum ib_tm_cap_flags {
89705e92
DG
358 /* Support tag matching with rendezvous offload for RC transport */
359 IB_TM_CAP_RNDV_RC = 1 << 0,
6938fc1e
AK
360};
361
78b1beb0 362struct ib_tm_caps {
6938fc1e
AK
363 /* Max size of RNDV header */
364 u32 max_rndv_hdr_size;
365 /* Max number of entries in tag matching list */
366 u32 max_num_tags;
367 /* From enum ib_tm_cap_flags */
368 u32 flags;
369 /* Max number of outstanding list operations */
370 u32 max_ops;
371 /* Max number of SGE in tag matching entry */
372 u32 max_sge;
373};
374
bcf4c1ea
MB
375struct ib_cq_init_attr {
376 unsigned int cqe;
a9018adf 377 u32 comp_vector;
bcf4c1ea
MB
378 u32 flags;
379};
380
869ddcf8
YC
381enum ib_cq_attr_mask {
382 IB_CQ_MODERATE = 1 << 0,
383};
384
18bd9072
YC
385struct ib_cq_caps {
386 u16 max_cq_moderation_count;
387 u16 max_cq_moderation_period;
388};
389
be934cca
AL
390struct ib_dm_mr_attr {
391 u64 length;
392 u64 offset;
393 u32 access_flags;
394};
395
bee76d7a
AL
396struct ib_dm_alloc_attr {
397 u64 length;
398 u32 alignment;
399 u32 flags;
400};
401
1da177e4
LT
402struct ib_device_attr {
403 u64 fw_ver;
97f52eb4 404 __be64 sys_image_guid;
1da177e4
LT
405 u64 max_mr_size;
406 u64 page_size_cap;
407 u32 vendor_id;
408 u32 vendor_part_id;
409 u32 hw_ver;
410 int max_qp;
411 int max_qp_wr;
fb532d6a 412 u64 device_cap_flags;
33023fb8
SW
413 int max_send_sge;
414 int max_recv_sge;
1da177e4
LT
415 int max_sge_rd;
416 int max_cq;
417 int max_cqe;
418 int max_mr;
419 int max_pd;
420 int max_qp_rd_atom;
421 int max_ee_rd_atom;
422 int max_res_rd_atom;
423 int max_qp_init_rd_atom;
424 int max_ee_init_rd_atom;
425 enum ib_atomic_cap atomic_cap;
5e80ba8f 426 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
427 int max_ee;
428 int max_rdd;
429 int max_mw;
430 int max_raw_ipv6_qp;
431 int max_raw_ethy_qp;
432 int max_mcast_grp;
433 int max_mcast_qp_attach;
434 int max_total_mcast_qp_attach;
435 int max_ah;
1da177e4
LT
436 int max_srq;
437 int max_srq_wr;
438 int max_srq_sge;
00f7ec36 439 unsigned int max_fast_reg_page_list_len;
62e3c379 440 unsigned int max_pi_fast_reg_page_list_len;
1da177e4
LT
441 u16 max_pkeys;
442 u8 local_ca_ack_delay;
1b01d335
SG
443 int sig_prot_cap;
444 int sig_guard_cap;
860f10a7 445 struct ib_odp_caps odp_caps;
24306dc6
MB
446 uint64_t timestamp_mask;
447 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
448 struct ib_rss_caps rss_caps;
449 u32 max_wq_type_rq;
ebaaee25 450 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 451 struct ib_tm_caps tm_caps;
18bd9072 452 struct ib_cq_caps cq_caps;
1d8eeb9f 453 u64 max_dm_size;
00bd1439
YF
454 /* Max entries for sgl for optimized performance per READ */
455 u32 max_sgl_rd;
1da177e4
LT
456};
457
458enum ib_mtu {
459 IB_MTU_256 = 1,
460 IB_MTU_512 = 2,
461 IB_MTU_1024 = 3,
462 IB_MTU_2048 = 4,
463 IB_MTU_4096 = 5
464};
465
6d72344c
KW
466enum opa_mtu {
467 OPA_MTU_8192 = 6,
468 OPA_MTU_10240 = 7
469};
470
1da177e4
LT
471static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
472{
473 switch (mtu) {
474 case IB_MTU_256: return 256;
475 case IB_MTU_512: return 512;
476 case IB_MTU_1024: return 1024;
477 case IB_MTU_2048: return 2048;
478 case IB_MTU_4096: return 4096;
479 default: return -1;
480 }
481}
482
d3f4aadd
AR
483static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
484{
485 if (mtu >= 4096)
486 return IB_MTU_4096;
487 else if (mtu >= 2048)
488 return IB_MTU_2048;
489 else if (mtu >= 1024)
490 return IB_MTU_1024;
491 else if (mtu >= 512)
492 return IB_MTU_512;
493 else
494 return IB_MTU_256;
495}
496
6d72344c
KW
497static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
498{
499 switch (mtu) {
500 case OPA_MTU_8192:
501 return 8192;
502 case OPA_MTU_10240:
503 return 10240;
504 default:
505 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
506 }
507}
508
509static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
510{
511 if (mtu >= 10240)
512 return OPA_MTU_10240;
513 else if (mtu >= 8192)
514 return OPA_MTU_8192;
515 else
516 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
517}
518
1da177e4
LT
519enum ib_port_state {
520 IB_PORT_NOP = 0,
521 IB_PORT_DOWN = 1,
522 IB_PORT_INIT = 2,
523 IB_PORT_ARMED = 3,
524 IB_PORT_ACTIVE = 4,
525 IB_PORT_ACTIVE_DEFER = 5
526};
527
72a7720f
KH
528enum ib_port_phys_state {
529 IB_PORT_PHYS_STATE_SLEEP = 1,
530 IB_PORT_PHYS_STATE_POLLING = 2,
531 IB_PORT_PHYS_STATE_DISABLED = 3,
532 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
533 IB_PORT_PHYS_STATE_LINK_UP = 5,
534 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
535 IB_PORT_PHYS_STATE_PHY_TEST = 7,
536};
537
1da177e4
LT
538enum ib_port_width {
539 IB_WIDTH_1X = 1,
dbabf685 540 IB_WIDTH_2X = 16,
1da177e4
LT
541 IB_WIDTH_4X = 2,
542 IB_WIDTH_8X = 4,
543 IB_WIDTH_12X = 8
544};
545
546static inline int ib_width_enum_to_int(enum ib_port_width width)
547{
548 switch (width) {
549 case IB_WIDTH_1X: return 1;
dbabf685 550 case IB_WIDTH_2X: return 2;
1da177e4
LT
551 case IB_WIDTH_4X: return 4;
552 case IB_WIDTH_8X: return 8;
553 case IB_WIDTH_12X: return 12;
554 default: return -1;
555 }
556}
557
2e96691c
OG
558enum ib_port_speed {
559 IB_SPEED_SDR = 1,
560 IB_SPEED_DDR = 2,
561 IB_SPEED_QDR = 4,
562 IB_SPEED_FDR10 = 8,
563 IB_SPEED_FDR = 16,
12113a35
NO
564 IB_SPEED_EDR = 32,
565 IB_SPEED_HDR = 64
2e96691c
OG
566};
567
b40f4757
CL
568/**
569 * struct rdma_hw_stats
e945130b
MB
570 * @lock - Mutex to protect parallel write access to lifespan and values
571 * of counters, which are 64bits and not guaranteeed to be written
572 * atomicaly on 32bits systems.
b40f4757
CL
573 * @timestamp - Used by the core code to track when the last update was
574 * @lifespan - Used by the core code to determine how old the counters
575 * should be before being updated again. Stored in jiffies, defaults
576 * to 10 milliseconds, drivers can override the default be specifying
577 * their own value during their allocation routine.
578 * @name - Array of pointers to static names used for the counters in
579 * directory.
580 * @num_counters - How many hardware counters there are. If name is
581 * shorter than this number, a kernel oops will result. Driver authors
582 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
583 * in their code to prevent this.
584 * @value - Array of u64 counters that are accessed by the sysfs code and
585 * filled in by the drivers get_stats routine
586 */
587struct rdma_hw_stats {
e945130b 588 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
589 unsigned long timestamp;
590 unsigned long lifespan;
591 const char * const *names;
592 int num_counters;
593 u64 value[];
7f624d02
SW
594};
595
b40f4757
CL
596#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
597/**
598 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
599 * for drivers.
600 * @names - Array of static const char *
601 * @num_counters - How many elements in array
602 * @lifespan - How many milliseconds between updates
603 */
604static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
605 const char * const *names, int num_counters,
606 unsigned long lifespan)
607{
608 struct rdma_hw_stats *stats;
609
610 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
611 GFP_KERNEL);
612 if (!stats)
613 return NULL;
614 stats->names = names;
615 stats->num_counters = num_counters;
616 stats->lifespan = msecs_to_jiffies(lifespan);
617
618 return stats;
619}
620
621
f9b22e35
IW
622/* Define bits for the various functionality this port needs to be supported by
623 * the core.
624 */
625/* Management 0x00000FFF */
626#define RDMA_CORE_CAP_IB_MAD 0x00000001
627#define RDMA_CORE_CAP_IB_SMI 0x00000002
628#define RDMA_CORE_CAP_IB_CM 0x00000004
629#define RDMA_CORE_CAP_IW_CM 0x00000008
630#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 631#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
632
633/* Address format 0x000FF000 */
634#define RDMA_CORE_CAP_AF_IB 0x00001000
635#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 636#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 637#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
638
639/* Protocol 0xFFF00000 */
640#define RDMA_CORE_CAP_PROT_IB 0x00100000
641#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
642#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 643#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 644#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 645#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 646
b02289b3
AK
647#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648 | RDMA_CORE_CAP_PROT_ROCE \
649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650
f9b22e35
IW
651#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
652 | RDMA_CORE_CAP_IB_MAD \
653 | RDMA_CORE_CAP_IB_SMI \
654 | RDMA_CORE_CAP_IB_CM \
655 | RDMA_CORE_CAP_IB_SA \
656 | RDMA_CORE_CAP_AF_IB)
657#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
658 | RDMA_CORE_CAP_IB_MAD \
659 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
660 | RDMA_CORE_CAP_AF_IB \
661 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
662#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664 | RDMA_CORE_CAP_IB_MAD \
665 | RDMA_CORE_CAP_IB_CM \
666 | RDMA_CORE_CAP_AF_IB \
667 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
668#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
669 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
670#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
671 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 672
aa773bd4
OG
673#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
674
ce1e055f
OG
675#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
676
1da177e4 677struct ib_port_attr {
fad61ad4 678 u64 subnet_prefix;
1da177e4
LT
679 enum ib_port_state state;
680 enum ib_mtu max_mtu;
681 enum ib_mtu active_mtu;
6d72344c 682 u32 phys_mtu;
1da177e4 683 int gid_tbl_len;
2f944c0f
JG
684 unsigned int ip_gids:1;
685 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
686 u32 port_cap_flags;
687 u32 max_msg_sz;
688 u32 bad_pkey_cntr;
689 u32 qkey_viol_cntr;
690 u16 pkey_tbl_len;
db58540b 691 u32 sm_lid;
582faf31 692 u32 lid;
1da177e4
LT
693 u8 lmc;
694 u8 max_vl_num;
695 u8 sm_sl;
696 u8 subnet_timeout;
697 u8 init_type_reply;
698 u8 active_width;
699 u8 active_speed;
700 u8 phys_state;
1e8f43b7 701 u16 port_cap_flags2;
1da177e4
LT
702};
703
704enum ib_device_modify_flags {
c5bcbbb9
RD
705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
707};
708
bd99fdea
YS
709#define IB_DEVICE_NODE_DESC_MAX 64
710
1da177e4
LT
711struct ib_device_modify {
712 u64 sys_image_guid;
bd99fdea 713 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
714};
715
716enum ib_port_modify_flags {
717 IB_PORT_SHUTDOWN = 1,
718 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
719 IB_PORT_RESET_QKEY_CNTR = (1<<3),
720 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
721};
722
723struct ib_port_modify {
724 u32 set_port_cap_mask;
725 u32 clr_port_cap_mask;
726 u8 init_type;
727};
728
729enum ib_event_type {
730 IB_EVENT_CQ_ERR,
731 IB_EVENT_QP_FATAL,
732 IB_EVENT_QP_REQ_ERR,
733 IB_EVENT_QP_ACCESS_ERR,
734 IB_EVENT_COMM_EST,
735 IB_EVENT_SQ_DRAINED,
736 IB_EVENT_PATH_MIG,
737 IB_EVENT_PATH_MIG_ERR,
738 IB_EVENT_DEVICE_FATAL,
739 IB_EVENT_PORT_ACTIVE,
740 IB_EVENT_PORT_ERR,
741 IB_EVENT_LID_CHANGE,
742 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
743 IB_EVENT_SM_CHANGE,
744 IB_EVENT_SRQ_ERR,
745 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 746 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
747 IB_EVENT_CLIENT_REREGISTER,
748 IB_EVENT_GID_CHANGE,
f213c052 749 IB_EVENT_WQ_FATAL,
1da177e4
LT
750};
751
db7489e0 752const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 753
1da177e4
LT
754struct ib_event {
755 struct ib_device *device;
756 union {
757 struct ib_cq *cq;
758 struct ib_qp *qp;
d41fcc67 759 struct ib_srq *srq;
f213c052 760 struct ib_wq *wq;
1da177e4
LT
761 u8 port_num;
762 } element;
763 enum ib_event_type event;
764};
765
766struct ib_event_handler {
767 struct ib_device *device;
768 void (*handler)(struct ib_event_handler *, struct ib_event *);
769 struct list_head list;
770};
771
772#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
773 do { \
774 (_ptr)->device = _device; \
775 (_ptr)->handler = _handler; \
776 INIT_LIST_HEAD(&(_ptr)->list); \
777 } while (0)
778
779struct ib_global_route {
8d9ec9ad 780 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
781 union ib_gid dgid;
782 u32 flow_label;
783 u8 sgid_index;
784 u8 hop_limit;
785 u8 traffic_class;
786};
787
513789ed 788struct ib_grh {
97f52eb4
SH
789 __be32 version_tclass_flow;
790 __be16 paylen;
513789ed
HR
791 u8 next_hdr;
792 u8 hop_limit;
793 union ib_gid sgid;
794 union ib_gid dgid;
795};
796
c865f246
SK
797union rdma_network_hdr {
798 struct ib_grh ibgrh;
799 struct {
800 /* The IB spec states that if it's IPv4, the header
801 * is located in the last 20 bytes of the header.
802 */
803 u8 reserved[20];
804 struct iphdr roce4grh;
805 };
806};
807
7dafbab3
DH
808#define IB_QPN_MASK 0xFFFFFF
809
1da177e4
LT
810enum {
811 IB_MULTICAST_QPN = 0xffffff
812};
813
f3a7c66b 814#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 815#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 816
1da177e4
LT
817enum ib_ah_flags {
818 IB_AH_GRH = 1
819};
820
bf6a9e31
JM
821enum ib_rate {
822 IB_RATE_PORT_CURRENT = 0,
823 IB_RATE_2_5_GBPS = 2,
824 IB_RATE_5_GBPS = 5,
825 IB_RATE_10_GBPS = 3,
826 IB_RATE_20_GBPS = 6,
827 IB_RATE_30_GBPS = 4,
828 IB_RATE_40_GBPS = 7,
829 IB_RATE_60_GBPS = 8,
830 IB_RATE_80_GBPS = 9,
71eeba16
MA
831 IB_RATE_120_GBPS = 10,
832 IB_RATE_14_GBPS = 11,
833 IB_RATE_56_GBPS = 12,
834 IB_RATE_112_GBPS = 13,
835 IB_RATE_168_GBPS = 14,
836 IB_RATE_25_GBPS = 15,
837 IB_RATE_100_GBPS = 16,
838 IB_RATE_200_GBPS = 17,
a5a5d199
MG
839 IB_RATE_300_GBPS = 18,
840 IB_RATE_28_GBPS = 19,
841 IB_RATE_50_GBPS = 20,
842 IB_RATE_400_GBPS = 21,
843 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
844};
845
846/**
847 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
848 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
849 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
850 * @rate: rate to convert.
851 */
8385fd84 852__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 853
71eeba16
MA
854/**
855 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
856 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
857 * @rate: rate to convert.
858 */
8385fd84 859__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 860
17cd3a2d
SG
861
862/**
9bee178b
SG
863 * enum ib_mr_type - memory region type
864 * @IB_MR_TYPE_MEM_REG: memory region that is used for
865 * normal registration
f5aa9159
SG
866 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
867 * register any arbitrary sg lists (without
868 * the normal mr constraints - see
869 * ib_map_mr_sg)
a0bc099a
MG
870 * @IB_MR_TYPE_DM: memory region that is used for device
871 * memory registration
872 * @IB_MR_TYPE_USER: memory region that is used for the user-space
873 * application
874 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
875 * without address translations (VA=PA)
26bc7eae
IR
876 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
877 * data integrity operations
17cd3a2d 878 */
9bee178b
SG
879enum ib_mr_type {
880 IB_MR_TYPE_MEM_REG,
f5aa9159 881 IB_MR_TYPE_SG_GAPS,
a0bc099a
MG
882 IB_MR_TYPE_DM,
883 IB_MR_TYPE_USER,
884 IB_MR_TYPE_DMA,
26bc7eae 885 IB_MR_TYPE_INTEGRITY,
17cd3a2d
SG
886};
887
1b01d335
SG
888enum ib_mr_status_check {
889 IB_MR_CHECK_SIG_STATUS = 1,
890};
891
892/**
893 * struct ib_mr_status - Memory region status container
894 *
895 * @fail_status: Bitmask of MR checks status. For each
896 * failed check a corresponding status bit is set.
897 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
898 * failure.
899 */
900struct ib_mr_status {
901 u32 fail_status;
902 struct ib_sig_err sig_err;
903};
904
bf6a9e31
JM
905/**
906 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
907 * enum.
908 * @mult: multiple to convert.
909 */
8385fd84 910__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 911
fa5d010c
MG
912struct rdma_ah_init_attr {
913 struct rdma_ah_attr *ah_attr;
914 u32 flags;
51aab126 915 struct net_device *xmit_slave;
fa5d010c
MG
916};
917
44c58487 918enum rdma_ah_attr_type {
87daac68 919 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
920 RDMA_AH_ATTR_TYPE_IB,
921 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 922 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
923};
924
925struct ib_ah_attr {
926 u16 dlid;
927 u8 src_path_bits;
928};
929
930struct roce_ah_attr {
931 u8 dmac[ETH_ALEN];
932};
933
64b4646e
DC
934struct opa_ah_attr {
935 u32 dlid;
936 u8 src_path_bits;
d98bb7f7 937 bool make_grd;
64b4646e
DC
938};
939
90898850 940struct rdma_ah_attr {
1da177e4 941 struct ib_global_route grh;
1da177e4 942 u8 sl;
1da177e4 943 u8 static_rate;
1da177e4 944 u8 port_num;
44c58487
DC
945 u8 ah_flags;
946 enum rdma_ah_attr_type type;
947 union {
948 struct ib_ah_attr ib;
949 struct roce_ah_attr roce;
64b4646e 950 struct opa_ah_attr opa;
44c58487 951 };
1da177e4
LT
952};
953
954enum ib_wc_status {
955 IB_WC_SUCCESS,
956 IB_WC_LOC_LEN_ERR,
957 IB_WC_LOC_QP_OP_ERR,
958 IB_WC_LOC_EEC_OP_ERR,
959 IB_WC_LOC_PROT_ERR,
960 IB_WC_WR_FLUSH_ERR,
961 IB_WC_MW_BIND_ERR,
962 IB_WC_BAD_RESP_ERR,
963 IB_WC_LOC_ACCESS_ERR,
964 IB_WC_REM_INV_REQ_ERR,
965 IB_WC_REM_ACCESS_ERR,
966 IB_WC_REM_OP_ERR,
967 IB_WC_RETRY_EXC_ERR,
968 IB_WC_RNR_RETRY_EXC_ERR,
969 IB_WC_LOC_RDD_VIOL_ERR,
970 IB_WC_REM_INV_RD_REQ_ERR,
971 IB_WC_REM_ABORT_ERR,
972 IB_WC_INV_EECN_ERR,
973 IB_WC_INV_EEC_STATE_ERR,
974 IB_WC_FATAL_ERR,
975 IB_WC_RESP_TIMEOUT_ERR,
976 IB_WC_GENERAL_ERR
977};
978
db7489e0 979const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 980
1da177e4
LT
981enum ib_wc_opcode {
982 IB_WC_SEND,
983 IB_WC_RDMA_WRITE,
984 IB_WC_RDMA_READ,
985 IB_WC_COMP_SWAP,
986 IB_WC_FETCH_ADD,
c93570f2 987 IB_WC_LSO,
00f7ec36 988 IB_WC_LOCAL_INV,
4c67e2bf 989 IB_WC_REG_MR,
5e80ba8f
VS
990 IB_WC_MASKED_COMP_SWAP,
991 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
992/*
993 * Set value of IB_WC_RECV so consumers can test if a completion is a
994 * receive by testing (opcode & IB_WC_RECV).
995 */
996 IB_WC_RECV = 1 << 7,
997 IB_WC_RECV_RDMA_WITH_IMM
998};
999
1000enum ib_wc_flags {
1001 IB_WC_GRH = 1,
00f7ec36
SW
1002 IB_WC_WITH_IMM = (1<<1),
1003 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 1004 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
1005 IB_WC_WITH_SMAC = (1<<4),
1006 IB_WC_WITH_VLAN = (1<<5),
c865f246 1007 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
1008};
1009
1010struct ib_wc {
14d3a3b2
CH
1011 union {
1012 u64 wr_id;
1013 struct ib_cqe *wr_cqe;
1014 };
1da177e4
LT
1015 enum ib_wc_status status;
1016 enum ib_wc_opcode opcode;
1017 u32 vendor_err;
1018 u32 byte_len;
062dbb69 1019 struct ib_qp *qp;
00f7ec36
SW
1020 union {
1021 __be32 imm_data;
1022 u32 invalidate_rkey;
1023 } ex;
1da177e4 1024 u32 src_qp;
cd2a6e7d 1025 u32 slid;
1da177e4
LT
1026 int wc_flags;
1027 u16 pkey_index;
1da177e4
LT
1028 u8 sl;
1029 u8 dlid_path_bits;
1030 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1031 u8 smac[ETH_ALEN];
1032 u16 vlan_id;
c865f246 1033 u8 network_hdr_type;
1da177e4
LT
1034};
1035
ed23a727
RD
1036enum ib_cq_notify_flags {
1037 IB_CQ_SOLICITED = 1 << 0,
1038 IB_CQ_NEXT_COMP = 1 << 1,
1039 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1040 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1041};
1042
96104eda 1043enum ib_srq_type {
175ba58d
YH
1044 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1045 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1046 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
96104eda
SH
1047};
1048
1a56ff6d
AK
1049static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1050{
9c2c8496
AK
1051 return srq_type == IB_SRQT_XRC ||
1052 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1053}
1054
d41fcc67
RD
1055enum ib_srq_attr_mask {
1056 IB_SRQ_MAX_WR = 1 << 0,
1057 IB_SRQ_LIMIT = 1 << 1,
1058};
1059
1060struct ib_srq_attr {
1061 u32 max_wr;
1062 u32 max_sge;
1063 u32 srq_limit;
1064};
1065
1066struct ib_srq_init_attr {
1067 void (*event_handler)(struct ib_event *, void *);
1068 void *srq_context;
1069 struct ib_srq_attr attr;
96104eda 1070 enum ib_srq_type srq_type;
418d5130 1071
1a56ff6d
AK
1072 struct {
1073 struct ib_cq *cq;
1074 union {
1075 struct {
1076 struct ib_xrcd *xrcd;
1077 } xrc;
9c2c8496
AK
1078
1079 struct {
1080 u32 max_num_tags;
1081 } tag_matching;
1a56ff6d 1082 };
418d5130 1083 } ext;
d41fcc67
RD
1084};
1085
1da177e4
LT
1086struct ib_qp_cap {
1087 u32 max_send_wr;
1088 u32 max_recv_wr;
1089 u32 max_send_sge;
1090 u32 max_recv_sge;
1091 u32 max_inline_data;
a060b562
CH
1092
1093 /*
1094 * Maximum number of rdma_rw_ctx structures in flight at a time.
1095 * ib_create_qp() will calculate the right amount of neededed WRs
1096 * and MRs based on this.
1097 */
1098 u32 max_rdma_ctxs;
1da177e4
LT
1099};
1100
1101enum ib_sig_type {
1102 IB_SIGNAL_ALL_WR,
1103 IB_SIGNAL_REQ_WR
1104};
1105
1106enum ib_qp_type {
1107 /*
1108 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1109 * here (and in that order) since the MAD layer uses them as
1110 * indices into a 2-entry table.
1111 */
1112 IB_QPT_SMI,
1113 IB_QPT_GSI,
1114
175ba58d
YH
1115 IB_QPT_RC = IB_UVERBS_QPT_RC,
1116 IB_QPT_UC = IB_UVERBS_QPT_UC,
1117 IB_QPT_UD = IB_UVERBS_QPT_UD,
1da177e4 1118 IB_QPT_RAW_IPV6,
b42b63cf 1119 IB_QPT_RAW_ETHERTYPE,
175ba58d
YH
1120 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1121 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1122 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
0134f16b 1123 IB_QPT_MAX,
175ba58d 1124 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
0134f16b
JM
1125 /* Reserve a range for qp types internal to the low level driver.
1126 * These qp types will not be visible at the IB core layer, so the
1127 * IB_QPT_MAX usages should not be affected in the core layer
1128 */
1129 IB_QPT_RESERVED1 = 0x1000,
1130 IB_QPT_RESERVED2,
1131 IB_QPT_RESERVED3,
1132 IB_QPT_RESERVED4,
1133 IB_QPT_RESERVED5,
1134 IB_QPT_RESERVED6,
1135 IB_QPT_RESERVED7,
1136 IB_QPT_RESERVED8,
1137 IB_QPT_RESERVED9,
1138 IB_QPT_RESERVED10,
1da177e4
LT
1139};
1140
b846f25a 1141enum ib_qp_create_flags {
47ee1b9f 1142 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
175ba58d
YH
1143 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1144 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
8a06ce59
LR
1145 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1146 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1147 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1148 IB_QP_CREATE_NETIF_QP = 1 << 5,
c0a6cbb9 1149 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
7f90a5a0 1150 IB_QP_CREATE_NETDEV_USE = 1 << 7,
175ba58d
YH
1151 IB_QP_CREATE_SCATTER_FCS =
1152 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1153 IB_QP_CREATE_CVLAN_STRIPPING =
1154 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
02984cc7 1155 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
175ba58d
YH
1156 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1157 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
d2b57063
JM
1158 /* reserve bits 26-31 for low level drivers' internal use */
1159 IB_QP_CREATE_RESERVED_START = 1 << 26,
1160 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1161};
1162
73c40c61
YH
1163/*
1164 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1165 * callback to destroy the passed in QP.
1166 */
1167
1da177e4 1168struct ib_qp_init_attr {
eb93c82e 1169 /* Consumer's event_handler callback must not block */
1da177e4 1170 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1171
1da177e4
LT
1172 void *qp_context;
1173 struct ib_cq *send_cq;
1174 struct ib_cq *recv_cq;
1175 struct ib_srq *srq;
b42b63cf 1176 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1177 struct ib_qp_cap cap;
1178 enum ib_sig_type sq_sig_type;
1179 enum ib_qp_type qp_type;
b56511c1 1180 u32 create_flags;
a060b562
CH
1181
1182 /*
1183 * Only needed for special QP types, or when using the RW API.
1184 */
1185 u8 port_num;
a9017e23 1186 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1187 u32 source_qpn;
1da177e4
LT
1188};
1189
0e0ec7e0
SH
1190struct ib_qp_open_attr {
1191 void (*event_handler)(struct ib_event *, void *);
1192 void *qp_context;
1193 u32 qp_num;
1194 enum ib_qp_type qp_type;
1195};
1196
1da177e4
LT
1197enum ib_rnr_timeout {
1198 IB_RNR_TIMER_655_36 = 0,
1199 IB_RNR_TIMER_000_01 = 1,
1200 IB_RNR_TIMER_000_02 = 2,
1201 IB_RNR_TIMER_000_03 = 3,
1202 IB_RNR_TIMER_000_04 = 4,
1203 IB_RNR_TIMER_000_06 = 5,
1204 IB_RNR_TIMER_000_08 = 6,
1205 IB_RNR_TIMER_000_12 = 7,
1206 IB_RNR_TIMER_000_16 = 8,
1207 IB_RNR_TIMER_000_24 = 9,
1208 IB_RNR_TIMER_000_32 = 10,
1209 IB_RNR_TIMER_000_48 = 11,
1210 IB_RNR_TIMER_000_64 = 12,
1211 IB_RNR_TIMER_000_96 = 13,
1212 IB_RNR_TIMER_001_28 = 14,
1213 IB_RNR_TIMER_001_92 = 15,
1214 IB_RNR_TIMER_002_56 = 16,
1215 IB_RNR_TIMER_003_84 = 17,
1216 IB_RNR_TIMER_005_12 = 18,
1217 IB_RNR_TIMER_007_68 = 19,
1218 IB_RNR_TIMER_010_24 = 20,
1219 IB_RNR_TIMER_015_36 = 21,
1220 IB_RNR_TIMER_020_48 = 22,
1221 IB_RNR_TIMER_030_72 = 23,
1222 IB_RNR_TIMER_040_96 = 24,
1223 IB_RNR_TIMER_061_44 = 25,
1224 IB_RNR_TIMER_081_92 = 26,
1225 IB_RNR_TIMER_122_88 = 27,
1226 IB_RNR_TIMER_163_84 = 28,
1227 IB_RNR_TIMER_245_76 = 29,
1228 IB_RNR_TIMER_327_68 = 30,
1229 IB_RNR_TIMER_491_52 = 31
1230};
1231
1232enum ib_qp_attr_mask {
1233 IB_QP_STATE = 1,
1234 IB_QP_CUR_STATE = (1<<1),
1235 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1236 IB_QP_ACCESS_FLAGS = (1<<3),
1237 IB_QP_PKEY_INDEX = (1<<4),
1238 IB_QP_PORT = (1<<5),
1239 IB_QP_QKEY = (1<<6),
1240 IB_QP_AV = (1<<7),
1241 IB_QP_PATH_MTU = (1<<8),
1242 IB_QP_TIMEOUT = (1<<9),
1243 IB_QP_RETRY_CNT = (1<<10),
1244 IB_QP_RNR_RETRY = (1<<11),
1245 IB_QP_RQ_PSN = (1<<12),
1246 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1247 IB_QP_ALT_PATH = (1<<14),
1248 IB_QP_MIN_RNR_TIMER = (1<<15),
1249 IB_QP_SQ_PSN = (1<<16),
1250 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1251 IB_QP_PATH_MIG_STATE = (1<<18),
1252 IB_QP_CAP = (1<<19),
dd5f03be 1253 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1254 IB_QP_RESERVED1 = (1<<21),
1255 IB_QP_RESERVED2 = (1<<22),
1256 IB_QP_RESERVED3 = (1<<23),
1257 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1258 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1259};
1260
1261enum ib_qp_state {
1262 IB_QPS_RESET,
1263 IB_QPS_INIT,
1264 IB_QPS_RTR,
1265 IB_QPS_RTS,
1266 IB_QPS_SQD,
1267 IB_QPS_SQE,
1268 IB_QPS_ERR
1269};
1270
1271enum ib_mig_state {
1272 IB_MIG_MIGRATED,
1273 IB_MIG_REARM,
1274 IB_MIG_ARMED
1275};
1276
7083e42e
SM
1277enum ib_mw_type {
1278 IB_MW_TYPE_1 = 1,
1279 IB_MW_TYPE_2 = 2
1280};
1281
1da177e4
LT
1282struct ib_qp_attr {
1283 enum ib_qp_state qp_state;
1284 enum ib_qp_state cur_qp_state;
1285 enum ib_mtu path_mtu;
1286 enum ib_mig_state path_mig_state;
1287 u32 qkey;
1288 u32 rq_psn;
1289 u32 sq_psn;
1290 u32 dest_qp_num;
1291 int qp_access_flags;
1292 struct ib_qp_cap cap;
90898850
DC
1293 struct rdma_ah_attr ah_attr;
1294 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1295 u16 pkey_index;
1296 u16 alt_pkey_index;
1297 u8 en_sqd_async_notify;
1298 u8 sq_draining;
1299 u8 max_rd_atomic;
1300 u8 max_dest_rd_atomic;
1301 u8 min_rnr_timer;
1302 u8 port_num;
1303 u8 timeout;
1304 u8 retry_cnt;
1305 u8 rnr_retry;
1306 u8 alt_port_num;
1307 u8 alt_timeout;
528e5a1b 1308 u32 rate_limit;
51aab126 1309 struct net_device *xmit_slave;
1da177e4
LT
1310};
1311
1312enum ib_wr_opcode {
9a59739b
JG
1313 /* These are shared with userspace */
1314 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1315 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1316 IB_WR_SEND = IB_UVERBS_WR_SEND,
1317 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1318 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1319 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1320 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1321 IB_WR_LSO = IB_UVERBS_WR_TSO,
1322 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1323 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1324 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1325 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1326 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1327 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1328 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1329
1330 /* These are kernel only and can not be issued by userspace */
1331 IB_WR_REG_MR = 0x20,
38ca87c6 1332 IB_WR_REG_MR_INTEGRITY,
9a59739b 1333
0134f16b
JM
1334 /* reserve values for low level drivers' internal use.
1335 * These values will not be used at all in the ib core layer.
1336 */
1337 IB_WR_RESERVED1 = 0xf0,
1338 IB_WR_RESERVED2,
1339 IB_WR_RESERVED3,
1340 IB_WR_RESERVED4,
1341 IB_WR_RESERVED5,
1342 IB_WR_RESERVED6,
1343 IB_WR_RESERVED7,
1344 IB_WR_RESERVED8,
1345 IB_WR_RESERVED9,
1346 IB_WR_RESERVED10,
1da177e4
LT
1347};
1348
1349enum ib_send_flags {
1350 IB_SEND_FENCE = 1,
1351 IB_SEND_SIGNALED = (1<<1),
1352 IB_SEND_SOLICITED = (1<<2),
e0605d91 1353 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1354 IB_SEND_IP_CSUM = (1<<4),
1355
1356 /* reserve bits 26-31 for low level drivers' internal use */
1357 IB_SEND_RESERVED_START = (1 << 26),
1358 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1359};
1360
1361struct ib_sge {
1362 u64 addr;
1363 u32 length;
1364 u32 lkey;
1365};
1366
14d3a3b2
CH
1367struct ib_cqe {
1368 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1369};
1370
1da177e4
LT
1371struct ib_send_wr {
1372 struct ib_send_wr *next;
14d3a3b2
CH
1373 union {
1374 u64 wr_id;
1375 struct ib_cqe *wr_cqe;
1376 };
1da177e4
LT
1377 struct ib_sge *sg_list;
1378 int num_sge;
1379 enum ib_wr_opcode opcode;
1380 int send_flags;
0f39cf3d
RD
1381 union {
1382 __be32 imm_data;
1383 u32 invalidate_rkey;
1384 } ex;
1da177e4
LT
1385};
1386
e622f2f4
CH
1387struct ib_rdma_wr {
1388 struct ib_send_wr wr;
1389 u64 remote_addr;
1390 u32 rkey;
1391};
1392
f696bf6d 1393static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1394{
1395 return container_of(wr, struct ib_rdma_wr, wr);
1396}
1397
1398struct ib_atomic_wr {
1399 struct ib_send_wr wr;
1400 u64 remote_addr;
1401 u64 compare_add;
1402 u64 swap;
1403 u64 compare_add_mask;
1404 u64 swap_mask;
1405 u32 rkey;
1406};
1407
f696bf6d 1408static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1409{
1410 return container_of(wr, struct ib_atomic_wr, wr);
1411}
1412
1413struct ib_ud_wr {
1414 struct ib_send_wr wr;
1415 struct ib_ah *ah;
1416 void *header;
1417 int hlen;
1418 int mss;
1419 u32 remote_qpn;
1420 u32 remote_qkey;
1421 u16 pkey_index; /* valid for GSI only */
1422 u8 port_num; /* valid for DR SMPs on switch only */
1423};
1424
f696bf6d 1425static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1426{
1427 return container_of(wr, struct ib_ud_wr, wr);
1428}
1429
4c67e2bf
SG
1430struct ib_reg_wr {
1431 struct ib_send_wr wr;
1432 struct ib_mr *mr;
1433 u32 key;
1434 int access;
1435};
1436
f696bf6d 1437static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1438{
1439 return container_of(wr, struct ib_reg_wr, wr);
1440}
1441
1da177e4
LT
1442struct ib_recv_wr {
1443 struct ib_recv_wr *next;
14d3a3b2
CH
1444 union {
1445 u64 wr_id;
1446 struct ib_cqe *wr_cqe;
1447 };
1da177e4
LT
1448 struct ib_sge *sg_list;
1449 int num_sge;
1450};
1451
1452enum ib_access_flags {
4fca0377
JG
1453 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1454 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1455 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1456 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1457 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1458 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1459 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1460 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
2233c660 1461 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
4fca0377 1462
68d384b9
MG
1463 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1464 IB_ACCESS_SUPPORTED =
1465 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1da177e4
LT
1466};
1467
b7d3e0a9
CH
1468/*
1469 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1470 * are hidden here instead of a uapi header!
1471 */
1da177e4
LT
1472enum ib_mr_rereg_flags {
1473 IB_MR_REREG_TRANS = 1,
1474 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1475 IB_MR_REREG_ACCESS = (1<<2),
1476 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1477};
1478
882214e2
HE
1479struct ib_umem;
1480
38321256 1481enum rdma_remove_reason {
1c77483e
YH
1482 /*
1483 * Userspace requested uobject deletion or initial try
1484 * to remove uobject via cleanup. Call could fail
1485 */
38321256
MB
1486 RDMA_REMOVE_DESTROY,
1487 /* Context deletion. This call should delete the actual object itself */
1488 RDMA_REMOVE_CLOSE,
1489 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1490 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1491 /* uobj is being cleaned-up before being committed */
1492 RDMA_REMOVE_ABORT,
0ac8903c
JG
1493 /*
1494 * uobj has been fully created, with the uobj->object set, but is being
1495 * cleaned up before being comitted
1496 */
1497 RDMA_REMOVE_ABORT_HWOBJ,
38321256
MB
1498};
1499
43579b5f
PP
1500struct ib_rdmacg_object {
1501#ifdef CONFIG_CGROUP_RDMA
1502 struct rdma_cgroup *cg; /* owner rdma cgroup */
1503#endif
1504};
1505
e2773c06
RD
1506struct ib_ucontext {
1507 struct ib_device *device;
771addf6 1508 struct ib_uverbs_file *ufile;
e951747a
JG
1509 /*
1510 * 'closing' can be read by the driver only during a destroy callback,
1511 * it is set when we are closing the file descriptor and indicates
1512 * that mm_sem may be locked.
1513 */
6ceb6331 1514 bool closing;
8ada2c1c 1515
1c77483e 1516 bool cleanup_retryable;
38321256 1517
43579b5f 1518 struct ib_rdmacg_object cg_obj;
60615210
LR
1519 /*
1520 * Implementation details of the RDMA core, don't use in drivers:
1521 */
1522 struct rdma_restrack_entry res;
3411f9f0 1523 struct xarray mmap_xa;
e2773c06
RD
1524};
1525
1526struct ib_uobject {
1527 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1528 /* ufile & ucontext owning this object */
1529 struct ib_uverbs_file *ufile;
1530 /* FIXME, save memory: ufile->context == context */
e2773c06 1531 struct ib_ucontext *context; /* associated user context */
9ead190b 1532 void *object; /* containing object */
e2773c06 1533 struct list_head list; /* link to context's list */
43579b5f 1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1535 int id; /* index into kernel idr */
9ead190b 1536 struct kref ref;
38321256 1537 atomic_t usecnt; /* protects exclusive access */
d144da8c 1538 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1539
6b0d08f4 1540 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1541};
1542
e2773c06 1543struct ib_udata {
309243ec 1544 const void __user *inbuf;
e2773c06
RD
1545 void __user *outbuf;
1546 size_t inlen;
1547 size_t outlen;
1548};
1549
1da177e4 1550struct ib_pd {
96249d70 1551 u32 local_dma_lkey;
ed082d36 1552 u32 flags;
e2773c06
RD
1553 struct ib_device *device;
1554 struct ib_uobject *uobject;
1555 atomic_t usecnt; /* count all resources */
50d46335 1556
ed082d36
CH
1557 u32 unsafe_global_rkey;
1558
50d46335
CH
1559 /*
1560 * Implementation details of the RDMA core, don't use in drivers:
1561 */
1562 struct ib_mr *__internal_mr;
02d8883f 1563 struct rdma_restrack_entry res;
1da177e4
LT
1564};
1565
59991f94
SH
1566struct ib_xrcd {
1567 struct ib_device *device;
d3d72d90 1568 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1569 struct inode *inode;
6f3ca6f4
MG
1570 struct rw_semaphore tgt_qps_rwsem;
1571 struct xarray tgt_qps;
59991f94
SH
1572};
1573
1da177e4
LT
1574struct ib_ah {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
e2773c06 1577 struct ib_uobject *uobject;
1a1f460f 1578 const struct ib_gid_attr *sgid_attr;
44c58487 1579 enum rdma_ah_attr_type type;
1da177e4
LT
1580};
1581
1582typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
14d3a3b2 1584enum ib_poll_context {
f794809a
JM
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
c7ff819a
YF
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
14d3a3b2
CH
1591};
1592
1da177e4 1593struct ib_cq {
e2773c06 1594 struct ib_device *device;
5bd48c18 1595 struct ib_ucq_object *uobject;
e2773c06
RD
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1598 void *cq_context;
e2773c06 1599 int cqe;
c7ff819a 1600 unsigned int cqe_used;
e2773c06 1601 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1602 enum ib_poll_context poll_ctx;
1603 struct ib_wc *wc;
c7ff819a 1604 struct list_head pool_entry;
14d3a3b2
CH
1605 union {
1606 struct irq_poll iop;
1607 struct work_struct work;
1608 };
f794809a 1609 struct workqueue_struct *comp_wq;
da662979 1610 struct dim *dim;
3e5901cb
CL
1611
1612 /* updated only by trace points */
1613 ktime_t timestamp;
3446cbd2
YF
1614 u8 interrupt:1;
1615 u8 shared:1;
c7ff819a 1616 unsigned int comp_vector;
3e5901cb 1617
02d8883f
LR
1618 /*
1619 * Implementation details of the RDMA core, don't use in drivers:
1620 */
1621 struct rdma_restrack_entry res;
1da177e4
LT
1622};
1623
1624struct ib_srq {
d41fcc67
RD
1625 struct ib_device *device;
1626 struct ib_pd *pd;
9fbe334c 1627 struct ib_usrq_object *uobject;
d41fcc67
RD
1628 void (*event_handler)(struct ib_event *, void *);
1629 void *srq_context;
96104eda 1630 enum ib_srq_type srq_type;
1da177e4 1631 atomic_t usecnt;
418d5130 1632
1a56ff6d
AK
1633 struct {
1634 struct ib_cq *cq;
1635 union {
1636 struct {
1637 struct ib_xrcd *xrcd;
1638 u32 srq_num;
1639 } xrc;
1640 };
418d5130 1641 } ext;
1da177e4
LT
1642};
1643
ebaaee25
NO
1644enum ib_raw_packet_caps {
1645 /* Strip cvlan from incoming packet and report it in the matching work
1646 * completion is supported.
1647 */
1648 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1649 /* Scatter FCS field of an incoming packet to host memory is supported.
1650 */
1651 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1652 /* Checksum offloads are supported (for both send and receive). */
1653 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1654 /* When a packet is received for an RQ with no receive WQEs, the
1655 * packet processing is delayed.
1656 */
1657 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1658};
1659
5fd251c8 1660enum ib_wq_type {
175ba58d 1661 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
5fd251c8
YH
1662};
1663
1664enum ib_wq_state {
1665 IB_WQS_RESET,
1666 IB_WQS_RDY,
1667 IB_WQS_ERR
1668};
1669
1670struct ib_wq {
1671 struct ib_device *device;
e04dd131 1672 struct ib_uwq_object *uobject;
5fd251c8
YH
1673 void *wq_context;
1674 void (*event_handler)(struct ib_event *, void *);
1675 struct ib_pd *pd;
1676 struct ib_cq *cq;
1677 u32 wq_num;
1678 enum ib_wq_state state;
1679 enum ib_wq_type wq_type;
1680 atomic_t usecnt;
1681};
1682
10bac72b 1683enum ib_wq_flags {
175ba58d
YH
1684 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1685 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1686 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1687 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1688 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
10bac72b
NO
1689};
1690
5fd251c8
YH
1691struct ib_wq_init_attr {
1692 void *wq_context;
1693 enum ib_wq_type wq_type;
1694 u32 max_wr;
1695 u32 max_sge;
1696 struct ib_cq *cq;
1697 void (*event_handler)(struct ib_event *, void *);
10bac72b 1698 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1699};
1700
1701enum ib_wq_attr_mask {
10bac72b
NO
1702 IB_WQ_STATE = 1 << 0,
1703 IB_WQ_CUR_STATE = 1 << 1,
1704 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1705};
1706
1707struct ib_wq_attr {
1708 enum ib_wq_state wq_state;
1709 enum ib_wq_state curr_wq_state;
10bac72b
NO
1710 u32 flags; /* Use enum ib_wq_flags */
1711 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1712};
1713
6d39786b
YH
1714struct ib_rwq_ind_table {
1715 struct ib_device *device;
1716 struct ib_uobject *uobject;
1717 atomic_t usecnt;
1718 u32 ind_tbl_num;
1719 u32 log_ind_tbl_size;
1720 struct ib_wq **ind_tbl;
1721};
1722
1723struct ib_rwq_ind_table_init_attr {
1724 u32 log_ind_tbl_size;
1725 /* Each entry is a pointer to Receive Work Queue */
1726 struct ib_wq **ind_tbl;
1727};
1728
d291f1a6
DJ
1729enum port_pkey_state {
1730 IB_PORT_PKEY_NOT_VALID = 0,
1731 IB_PORT_PKEY_VALID = 1,
1732 IB_PORT_PKEY_LISTED = 2,
1733};
1734
1735struct ib_qp_security;
1736
1737struct ib_port_pkey {
1738 enum port_pkey_state state;
1739 u16 pkey_index;
1740 u8 port_num;
1741 struct list_head qp_list;
1742 struct list_head to_error_list;
1743 struct ib_qp_security *sec;
1744};
1745
1746struct ib_ports_pkeys {
1747 struct ib_port_pkey main;
1748 struct ib_port_pkey alt;
1749};
1750
1751struct ib_qp_security {
1752 struct ib_qp *qp;
1753 struct ib_device *dev;
1754 /* Hold this mutex when changing port and pkey settings. */
1755 struct mutex mutex;
1756 struct ib_ports_pkeys *ports_pkeys;
1757 /* A list of all open shared QP handles. Required to enforce security
1758 * properly for all users of a shared QP.
1759 */
1760 struct list_head shared_qp_list;
1761 void *security;
1762 bool destroying;
1763 atomic_t error_list_count;
1764 struct completion error_complete;
1765 int error_comps_pending;
1766};
1767
632bc3f6
BVA
1768/*
1769 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1770 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1771 */
1da177e4
LT
1772struct ib_qp {
1773 struct ib_device *device;
1774 struct ib_pd *pd;
1775 struct ib_cq *send_cq;
1776 struct ib_cq *recv_cq;
fffb0383
CH
1777 spinlock_t mr_lock;
1778 int mrs_used;
a060b562 1779 struct list_head rdma_mrs;
0e353e34 1780 struct list_head sig_mrs;
1da177e4 1781 struct ib_srq *srq;
b42b63cf 1782 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1783 struct list_head xrcd_list;
fffb0383 1784
319a441d
HHZ
1785 /* count times opened, mcast attaches, flow attaches */
1786 atomic_t usecnt;
0e0ec7e0
SH
1787 struct list_head open_list;
1788 struct ib_qp *real_qp;
620d3f81 1789 struct ib_uqp_object *uobject;
1da177e4
LT
1790 void (*event_handler)(struct ib_event *, void *);
1791 void *qp_context;
1a1f460f
JG
1792 /* sgid_attrs associated with the AV's */
1793 const struct ib_gid_attr *av_sgid_attr;
1794 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1795 u32 qp_num;
632bc3f6
BVA
1796 u32 max_write_sge;
1797 u32 max_read_sge;
1da177e4 1798 enum ib_qp_type qp_type;
a9017e23 1799 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1800 struct ib_qp_security *qp_sec;
498ca3c8 1801 u8 port;
02d8883f 1802
185eddc4 1803 bool integrity_en;
02d8883f
LR
1804 /*
1805 * Implementation details of the RDMA core, don't use in drivers:
1806 */
1807 struct rdma_restrack_entry res;
99fa331d
MZ
1808
1809 /* The counter the qp is bind to */
1810 struct rdma_counter *counter;
1da177e4
LT
1811};
1812
bee76d7a
AL
1813struct ib_dm {
1814 struct ib_device *device;
1815 u32 length;
1816 u32 flags;
1817 struct ib_uobject *uobject;
1818 atomic_t usecnt;
1819};
1820
1da177e4 1821struct ib_mr {
e2773c06
RD
1822 struct ib_device *device;
1823 struct ib_pd *pd;
e2773c06
RD
1824 u32 lkey;
1825 u32 rkey;
4c67e2bf 1826 u64 iova;
edd31551 1827 u64 length;
4c67e2bf 1828 unsigned int page_size;
a0bc099a 1829 enum ib_mr_type type;
d4a85c30 1830 bool need_inval;
fffb0383
CH
1831 union {
1832 struct ib_uobject *uobject; /* user */
1833 struct list_head qp_entry; /* FR */
1834 };
fccec5b8 1835
be934cca 1836 struct ib_dm *dm;
7c717d3a 1837 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
fccec5b8
SW
1838 /*
1839 * Implementation details of the RDMA core, don't use in drivers:
1840 */
1841 struct rdma_restrack_entry res;
1da177e4
LT
1842};
1843
1844struct ib_mw {
1845 struct ib_device *device;
1846 struct ib_pd *pd;
e2773c06 1847 struct ib_uobject *uobject;
1da177e4 1848 u32 rkey;
7083e42e 1849 enum ib_mw_type type;
1da177e4
LT
1850};
1851
319a441d
HHZ
1852/* Supported steering options */
1853enum ib_flow_attr_type {
1854 /* steering according to rule specifications */
1855 IB_FLOW_ATTR_NORMAL = 0x0,
1856 /* default unicast and multicast rule -
1857 * receive all Eth traffic which isn't steered to any QP
1858 */
1859 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1860 /* default multicast rule -
1861 * receive all Eth multicast traffic which isn't steered to any QP
1862 */
1863 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1864 /* sniffer rule - receive all port traffic */
1865 IB_FLOW_ATTR_SNIFFER = 0x3
1866};
1867
1868/* Supported steering header types */
1869enum ib_flow_spec_type {
1870 /* L2 headers*/
76bd23b3
MR
1871 IB_FLOW_SPEC_ETH = 0x20,
1872 IB_FLOW_SPEC_IB = 0x22,
319a441d 1873 /* L3 header*/
76bd23b3
MR
1874 IB_FLOW_SPEC_IPV4 = 0x30,
1875 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1876 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1877 /* L4 headers*/
76bd23b3
MR
1878 IB_FLOW_SPEC_TCP = 0x40,
1879 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1880 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1881 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1882 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1883 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1884 /* Actions */
1885 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1886 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1887 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1888 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1889};
240ae00e 1890#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1891#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1892
319a441d
HHZ
1893/* Flow steering rule priority is set according to it's domain.
1894 * Lower domain value means higher priority.
1895 */
1896enum ib_flow_domain {
1897 IB_FLOW_DOMAIN_USER,
1898 IB_FLOW_DOMAIN_ETHTOOL,
1899 IB_FLOW_DOMAIN_RFS,
1900 IB_FLOW_DOMAIN_NIC,
1901 IB_FLOW_DOMAIN_NUM /* Must be last */
1902};
1903
a3100a78
MV
1904enum ib_flow_flags {
1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1908};
1909
319a441d
HHZ
1910struct ib_flow_eth_filter {
1911 u8 dst_mac[6];
1912 u8 src_mac[6];
1913 __be16 ether_type;
1914 __be16 vlan_tag;
15dfbd6b 1915 /* Must be last */
5b361328 1916 u8 real_sz[];
319a441d
HHZ
1917};
1918
1919struct ib_flow_spec_eth {
fbf46860 1920 u32 type;
319a441d
HHZ
1921 u16 size;
1922 struct ib_flow_eth_filter val;
1923 struct ib_flow_eth_filter mask;
1924};
1925
240ae00e
MB
1926struct ib_flow_ib_filter {
1927 __be16 dlid;
1928 __u8 sl;
15dfbd6b 1929 /* Must be last */
5b361328 1930 u8 real_sz[];
240ae00e
MB
1931};
1932
1933struct ib_flow_spec_ib {
fbf46860 1934 u32 type;
240ae00e
MB
1935 u16 size;
1936 struct ib_flow_ib_filter val;
1937 struct ib_flow_ib_filter mask;
1938};
1939
989a3a8f
MG
1940/* IPv4 header flags */
1941enum ib_ipv4_flags {
1942 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1943 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1944 last have this flag set */
1945};
1946
319a441d
HHZ
1947struct ib_flow_ipv4_filter {
1948 __be32 src_ip;
1949 __be32 dst_ip;
989a3a8f
MG
1950 u8 proto;
1951 u8 tos;
1952 u8 ttl;
1953 u8 flags;
15dfbd6b 1954 /* Must be last */
5b361328 1955 u8 real_sz[];
319a441d
HHZ
1956};
1957
1958struct ib_flow_spec_ipv4 {
fbf46860 1959 u32 type;
319a441d
HHZ
1960 u16 size;
1961 struct ib_flow_ipv4_filter val;
1962 struct ib_flow_ipv4_filter mask;
1963};
1964
4c2aae71
MG
1965struct ib_flow_ipv6_filter {
1966 u8 src_ip[16];
1967 u8 dst_ip[16];
a72c6a2b
MG
1968 __be32 flow_label;
1969 u8 next_hdr;
1970 u8 traffic_class;
1971 u8 hop_limit;
15dfbd6b 1972 /* Must be last */
5b361328 1973 u8 real_sz[];
4c2aae71
MG
1974};
1975
1976struct ib_flow_spec_ipv6 {
fbf46860 1977 u32 type;
4c2aae71
MG
1978 u16 size;
1979 struct ib_flow_ipv6_filter val;
1980 struct ib_flow_ipv6_filter mask;
1981};
1982
319a441d
HHZ
1983struct ib_flow_tcp_udp_filter {
1984 __be16 dst_port;
1985 __be16 src_port;
15dfbd6b 1986 /* Must be last */
5b361328 1987 u8 real_sz[];
319a441d
HHZ
1988};
1989
1990struct ib_flow_spec_tcp_udp {
fbf46860 1991 u32 type;
319a441d
HHZ
1992 u16 size;
1993 struct ib_flow_tcp_udp_filter val;
1994 struct ib_flow_tcp_udp_filter mask;
1995};
1996
0dbf3332
MR
1997struct ib_flow_tunnel_filter {
1998 __be32 tunnel_id;
5b361328 1999 u8 real_sz[];
0dbf3332
MR
2000};
2001
2002/* ib_flow_spec_tunnel describes the Vxlan tunnel
2003 * the tunnel_id from val has the vni value
2004 */
2005struct ib_flow_spec_tunnel {
fbf46860 2006 u32 type;
0dbf3332
MR
2007 u16 size;
2008 struct ib_flow_tunnel_filter val;
2009 struct ib_flow_tunnel_filter mask;
2010};
2011
56ab0b38
MB
2012struct ib_flow_esp_filter {
2013 __be32 spi;
2014 __be32 seq;
2015 /* Must be last */
5b361328 2016 u8 real_sz[];
56ab0b38
MB
2017};
2018
2019struct ib_flow_spec_esp {
2020 u32 type;
2021 u16 size;
2022 struct ib_flow_esp_filter val;
2023 struct ib_flow_esp_filter mask;
2024};
2025
d90e5e50
AL
2026struct ib_flow_gre_filter {
2027 __be16 c_ks_res0_ver;
2028 __be16 protocol;
2029 __be32 key;
2030 /* Must be last */
5b361328 2031 u8 real_sz[];
d90e5e50
AL
2032};
2033
2034struct ib_flow_spec_gre {
2035 u32 type;
2036 u16 size;
2037 struct ib_flow_gre_filter val;
2038 struct ib_flow_gre_filter mask;
2039};
2040
b04f0f03
AL
2041struct ib_flow_mpls_filter {
2042 __be32 tag;
2043 /* Must be last */
5b361328 2044 u8 real_sz[];
b04f0f03
AL
2045};
2046
2047struct ib_flow_spec_mpls {
2048 u32 type;
2049 u16 size;
2050 struct ib_flow_mpls_filter val;
2051 struct ib_flow_mpls_filter mask;
2052};
2053
460d0198
MR
2054struct ib_flow_spec_action_tag {
2055 enum ib_flow_spec_type type;
2056 u16 size;
2057 u32 tag_id;
2058};
2059
483a3966
SS
2060struct ib_flow_spec_action_drop {
2061 enum ib_flow_spec_type type;
2062 u16 size;
2063};
2064
9b828441
MB
2065struct ib_flow_spec_action_handle {
2066 enum ib_flow_spec_type type;
2067 u16 size;
2068 struct ib_flow_action *act;
2069};
2070
7eea23a5
RS
2071enum ib_counters_description {
2072 IB_COUNTER_PACKETS,
2073 IB_COUNTER_BYTES,
2074};
2075
2076struct ib_flow_spec_action_count {
2077 enum ib_flow_spec_type type;
2078 u16 size;
2079 struct ib_counters *counters;
2080};
2081
319a441d
HHZ
2082union ib_flow_spec {
2083 struct {
fbf46860 2084 u32 type;
319a441d
HHZ
2085 u16 size;
2086 };
2087 struct ib_flow_spec_eth eth;
240ae00e 2088 struct ib_flow_spec_ib ib;
319a441d
HHZ
2089 struct ib_flow_spec_ipv4 ipv4;
2090 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2091 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2092 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2093 struct ib_flow_spec_esp esp;
d90e5e50 2094 struct ib_flow_spec_gre gre;
b04f0f03 2095 struct ib_flow_spec_mpls mpls;
460d0198 2096 struct ib_flow_spec_action_tag flow_tag;
483a3966 2097 struct ib_flow_spec_action_drop drop;
9b828441 2098 struct ib_flow_spec_action_handle action;
7eea23a5 2099 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2100};
2101
2102struct ib_flow_attr {
2103 enum ib_flow_attr_type type;
2104 u16 size;
2105 u16 priority;
2106 u32 flags;
2107 u8 num_of_specs;
2108 u8 port;
7654cb1b 2109 union ib_flow_spec flows[];
319a441d
HHZ
2110};
2111
2112struct ib_flow {
2113 struct ib_qp *qp;
6cd080a6 2114 struct ib_device *device;
319a441d
HHZ
2115 struct ib_uobject *uobject;
2116};
2117
2eb9beae
MB
2118enum ib_flow_action_type {
2119 IB_FLOW_ACTION_UNSPECIFIED,
2120 IB_FLOW_ACTION_ESP = 1,
2121};
2122
2123struct ib_flow_action_attrs_esp_keymats {
2124 enum ib_uverbs_flow_action_esp_keymat protocol;
2125 union {
2126 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2127 } keymat;
2128};
2129
2130struct ib_flow_action_attrs_esp_replays {
2131 enum ib_uverbs_flow_action_esp_replay protocol;
2132 union {
2133 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2134 } replay;
2135};
2136
2137enum ib_flow_action_attrs_esp_flags {
2138 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2139 * This is done in order to share the same flags between user-space and
2140 * kernel and spare an unnecessary translation.
2141 */
2142
2143 /* Kernel flags */
2144 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2145 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2146};
2147
2148struct ib_flow_spec_list {
2149 struct ib_flow_spec_list *next;
2150 union ib_flow_spec spec;
2151};
2152
2153struct ib_flow_action_attrs_esp {
2154 struct ib_flow_action_attrs_esp_keymats *keymat;
2155 struct ib_flow_action_attrs_esp_replays *replay;
2156 struct ib_flow_spec_list *encap;
2157 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2158 * Value of 0 is a valid value.
2159 */
2160 u32 esn;
2161 u32 spi;
2162 u32 seq;
2163 u32 tfc_pad;
2164 /* Use enum ib_flow_action_attrs_esp_flags */
2165 u64 flags;
2166 u64 hard_limit_pkts;
2167};
2168
2169struct ib_flow_action {
2170 struct ib_device *device;
2171 struct ib_uobject *uobject;
2172 enum ib_flow_action_type type;
2173 atomic_t usecnt;
2174};
2175
e26e7b88 2176struct ib_mad;
1da177e4
LT
2177struct ib_grh;
2178
2179enum ib_process_mad_flags {
2180 IB_MAD_IGNORE_MKEY = 1,
2181 IB_MAD_IGNORE_BKEY = 2,
2182 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2183};
2184
2185enum ib_mad_result {
2186 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2187 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2188 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2189 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2190};
2191
21d6454a 2192struct ib_port_cache {
883c71fe 2193 u64 subnet_prefix;
21d6454a
JW
2194 struct ib_pkey_cache *pkey;
2195 struct ib_gid_table *gid;
2196 u8 lmc;
2197 enum ib_port_state port_state;
2198};
2199
7738613e
IW
2200struct ib_port_immutable {
2201 int pkey_tbl_len;
2202 int gid_tbl_len;
f9b22e35 2203 u32 core_cap_flags;
337877a4 2204 u32 max_mad_size;
7738613e
IW
2205};
2206
8ceb1357 2207struct ib_port_data {
324e227e
JG
2208 struct ib_device *ib_dev;
2209
8ceb1357
JG
2210 struct ib_port_immutable immutable;
2211
2212 spinlock_t pkey_list_lock;
2213 struct list_head pkey_list;
8faea9fd
JG
2214
2215 struct ib_port_cache cache;
c2261dd7
JG
2216
2217 spinlock_t netdev_lock;
324e227e
JG
2218 struct net_device __rcu *netdev;
2219 struct hlist_node ndev_hash_link;
413d3347 2220 struct rdma_port_counter port_counter;
6e7be47a 2221 struct rdma_hw_stats *hw_stats;
8ceb1357
JG
2222};
2223
2fc77572
VN
2224/* rdma netdev type - specifies protocol type */
2225enum rdma_netdev_t {
f0ad83ac
NV
2226 RDMA_NETDEV_OPA_VNIC,
2227 RDMA_NETDEV_IPOIB,
2fc77572
VN
2228};
2229
2230/**
2231 * struct rdma_netdev - rdma netdev
2232 * For cases where netstack interfacing is required.
2233 */
2234struct rdma_netdev {
2235 void *clnt_priv;
2236 struct ib_device *hca;
2237 u8 port_num;
d99dc602 2238 int mtu;
2fc77572 2239
9f49a5b5
JG
2240 /*
2241 * cleanup function must be specified.
2242 * FIXME: This is only used for OPA_VNIC and that usage should be
2243 * removed too.
2244 */
8e959601
NV
2245 void (*free_rdma_netdev)(struct net_device *netdev);
2246
2fc77572
VN
2247 /* control functions */
2248 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2249 /* send packet */
2250 int (*send)(struct net_device *dev, struct sk_buff *skb,
2251 struct ib_ah *address, u32 dqpn);
2252 /* multicast */
2253 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2254 union ib_gid *gid, u16 mlid,
2255 int set_qkey, u32 qkey);
2256 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2257 union ib_gid *gid, u16 mlid);
2fc77572
VN
2258};
2259
f6a8a19b
DD
2260struct rdma_netdev_alloc_params {
2261 size_t sizeof_priv;
2262 unsigned int txqs;
2263 unsigned int rxqs;
2264 void *param;
2265
2266 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2267 struct net_device *netdev, void *param);
2268};
2269
a3de94e3
EA
2270struct ib_odp_counters {
2271 atomic64_t faults;
2272 atomic64_t invalidations;
d473f4dc 2273 atomic64_t prefetch;
a3de94e3
EA
2274};
2275
fa9b1802
RS
2276struct ib_counters {
2277 struct ib_device *device;
2278 struct ib_uobject *uobject;
2279 /* num of objects attached */
2280 atomic_t usecnt;
2281};
2282
51d7a538
RS
2283struct ib_counters_read_attr {
2284 u64 *counters_buff;
2285 u32 ncounters;
2286 u32 flags; /* use enum ib_read_counters_flags */
2287};
2288
2eb9beae 2289struct uverbs_attr_bundle;
dd05cb82
KH
2290struct iw_cm_id;
2291struct iw_cm_conn_param;
2eb9beae 2292
30471d4b
LR
2293#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2294 .size_##ib_struct = \
2295 (sizeof(struct drv_struct) + \
2296 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2297 BUILD_BUG_ON_ZERO( \
2298 !__same_type(((struct drv_struct *)NULL)->member, \
2299 struct ib_struct)))
2300
f6316032
LR
2301#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2302 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2303
30471d4b 2304#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2305 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2306
2307#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2308
3411f9f0
MK
2309struct rdma_user_mmap_entry {
2310 struct kref ref;
2311 struct ib_ucontext *ucontext;
2312 unsigned long start_pgoff;
2313 size_t npages;
2314 bool driver_removed;
2315};
2316
2317/* Return the offset (in bytes) the user should pass to libc's mmap() */
2318static inline u64
2319rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2320{
2321 return (u64)entry->start_pgoff << PAGE_SHIFT;
2322}
2323
521ed0d9
KH
2324/**
2325 * struct ib_device_ops - InfiniBand device operations
2326 * This structure defines all the InfiniBand device operations, providers will
2327 * need to define the supported operations, otherwise they will be set to null.
2328 */
2329struct ib_device_ops {
7a154142 2330 struct module *owner;
b9560a41 2331 enum rdma_driver_id driver_id;
72c6ec18 2332 u32 uverbs_abi_ver;
8f71bb00 2333 unsigned int uverbs_no_driver_id_binding:1;
b9560a41 2334
521ed0d9
KH
2335 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336 const struct ib_send_wr **bad_send_wr);
2337 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338 const struct ib_recv_wr **bad_recv_wr);
2339 void (*drain_rq)(struct ib_qp *qp);
2340 void (*drain_sq)(struct ib_qp *qp);
2341 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2345 int (*post_srq_recv)(struct ib_srq *srq,
2346 const struct ib_recv_wr *recv_wr,
2347 const struct ib_recv_wr **bad_recv_wr);
2348 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2349 u8 port_num, const struct ib_wc *in_wc,
2350 const struct ib_grh *in_grh,
e26e7b88
LR
2351 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2352 size_t *out_mad_size, u16 *out_mad_pkey_index);
521ed0d9
KH
2353 int (*query_device)(struct ib_device *device,
2354 struct ib_device_attr *device_attr,
2355 struct ib_udata *udata);
2356 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2357 struct ib_device_modify *device_modify);
2358 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2359 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2360 int comp_vector);
2361 int (*query_port)(struct ib_device *device, u8 port_num,
2362 struct ib_port_attr *port_attr);
2363 int (*modify_port)(struct ib_device *device, u8 port_num,
2364 int port_modify_mask,
2365 struct ib_port_modify *port_modify);
2366 /**
2367 * The following mandatory functions are used only at device
2368 * registration. Keep functions such as these at the end of this
2369 * structure to avoid cache line misses when accessing struct ib_device
2370 * in fast paths.
2371 */
2372 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2373 struct ib_port_immutable *immutable);
2374 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2375 u8 port_num);
2376 /**
2377 * When calling get_netdev, the HW vendor's driver should return the
2378 * net device of device @device at port @port_num or NULL if such
2379 * a net device doesn't exist. The vendor driver should call dev_hold
2380 * on this net device. The HW vendor's device driver must guarantee
2381 * that this function returns NULL before the net device has finished
2382 * NETDEV_UNREGISTER state.
2383 */
2384 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2385 /**
2386 * rdma netdev operation
2387 *
2388 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389 * must return -EOPNOTSUPP if it doesn't support the specified type.
2390 */
2391 struct net_device *(*alloc_rdma_netdev)(
2392 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2393 const char *name, unsigned char name_assign_type,
2394 void (*setup)(struct net_device *));
2395
2396 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2397 enum rdma_netdev_t type,
2398 struct rdma_netdev_alloc_params *params);
2399 /**
2400 * query_gid should be return GID value for @device, when @port_num
2401 * link layer is either IB or iWarp. It is no-op if @port_num port
2402 * is RoCE link layer.
2403 */
2404 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2405 union ib_gid *gid);
2406 /**
2407 * When calling add_gid, the HW vendor's driver should add the gid
2408 * of device of port at gid index available at @attr. Meta-info of
2409 * that gid (for example, the network device related to this gid) is
2410 * available at @attr. @context allows the HW vendor driver to store
2411 * extra information together with a GID entry. The HW vendor driver may
2412 * allocate memory to contain this information and store it in @context
2413 * when a new GID entry is written to. Params are consistent until the
2414 * next call of add_gid or delete_gid. The function should return 0 on
2415 * success or error otherwise. The function could be called
2416 * concurrently for different ports. This function is only called when
2417 * roce_gid_table is used.
2418 */
2419 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420 /**
2421 * When calling del_gid, the HW vendor's driver should delete the
2422 * gid of device @device at gid index gid_index of port port_num
2423 * available in @attr.
2424 * Upon the deletion of a GID entry, the HW vendor must free any
2425 * allocated memory. The caller will clear @context afterwards.
2426 * This function is only called when roce_gid_table is used.
2427 */
2428 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2430 u16 *pkey);
a2a074ef
LR
2431 int (*alloc_ucontext)(struct ib_ucontext *context,
2432 struct ib_udata *udata);
2433 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9 2434 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
3411f9f0
MK
2435 /**
2436 * This will be called once refcount of an entry in mmap_xa reaches
2437 * zero. The type of the memory that was mapped may differ between
2438 * entries and is opaque to the rdma_user_mmap interface.
2439 * Therefore needs to be implemented by the driver in mmap_free.
2440 */
2441 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
521ed0d9 2442 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2443 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2444 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
fa5d010c
MG
2445 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446 struct ib_udata *udata);
521ed0d9
KH
2447 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2448 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
d3456914 2449 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2450 int (*create_srq)(struct ib_srq *srq,
2451 struct ib_srq_init_attr *srq_init_attr,
2452 struct ib_udata *udata);
521ed0d9
KH
2453 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2454 enum ib_srq_attr_mask srq_attr_mask,
2455 struct ib_udata *udata);
2456 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
68e326de 2457 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
521ed0d9
KH
2458 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2459 struct ib_qp_init_attr *qp_init_attr,
2460 struct ib_udata *udata);
2461 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2462 int qp_attr_mask, struct ib_udata *udata);
2463 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2464 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2465 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
e39afe3d
LR
2466 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2467 struct ib_udata *udata);
521ed0d9 2468 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
a52c8e24 2469 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2470 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2471 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2472 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2473 u64 virt_addr, int mr_access_flags,
2474 struct ib_udata *udata);
2475 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2476 u64 virt_addr, int mr_access_flags,
2477 struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2478 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2479 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
42a3b153 2480 u32 max_num_sg);
26bc7eae
IR
2481 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2482 u32 max_num_data_sg,
2483 u32 max_num_meta_sg);
ad8a4496
MS
2484 int (*advise_mr)(struct ib_pd *pd,
2485 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2486 struct ib_sge *sg_list, u32 num_sge,
2487 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2488 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2489 unsigned int *sg_offset);
2490 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2491 struct ib_mr_status *mr_status);
2492 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2493 struct ib_udata *udata);
2494 int (*dealloc_mw)(struct ib_mw *mw);
521ed0d9
KH
2495 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2496 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2497 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
521ed0d9 2498 struct ib_udata *udata);
c4367a26 2499 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2500 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2501 struct ib_flow_attr *flow_attr,
2502 int domain, struct ib_udata *udata);
2503 int (*destroy_flow)(struct ib_flow *flow_id);
2504 struct ib_flow_action *(*create_flow_action_esp)(
2505 struct ib_device *device,
2506 const struct ib_flow_action_attrs_esp *attr,
2507 struct uverbs_attr_bundle *attrs);
2508 int (*destroy_flow_action)(struct ib_flow_action *action);
2509 int (*modify_flow_action_esp)(
2510 struct ib_flow_action *action,
2511 const struct ib_flow_action_attrs_esp *attr,
2512 struct uverbs_attr_bundle *attrs);
2513 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2514 int state);
2515 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2516 struct ifla_vf_info *ivf);
2517 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2518 struct ifla_vf_stats *stats);
bfcb3c5d
DG
2519 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2520 struct ifla_vf_guid *node_guid,
2521 struct ifla_vf_guid *port_guid);
521ed0d9
KH
2522 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2523 int type);
2524 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2525 struct ib_wq_init_attr *init_attr,
2526 struct ib_udata *udata);
a49b1dc7 2527 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2528 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2529 u32 wq_attr_mask, struct ib_udata *udata);
2530 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2531 struct ib_device *device,
2532 struct ib_rwq_ind_table_init_attr *init_attr,
2533 struct ib_udata *udata);
2534 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2535 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2536 struct ib_ucontext *context,
2537 struct ib_dm_alloc_attr *attr,
2538 struct uverbs_attr_bundle *attrs);
c4367a26 2539 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2540 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2541 struct ib_dm_mr_attr *attr,
2542 struct uverbs_attr_bundle *attrs);
2543 struct ib_counters *(*create_counters)(
2544 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2545 int (*destroy_counters)(struct ib_counters *counters);
2546 int (*read_counters)(struct ib_counters *counters,
2547 struct ib_counters_read_attr *counters_read_attr,
2548 struct uverbs_attr_bundle *attrs);
2cdfcdd8
MG
2549 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2550 int data_sg_nents, unsigned int *data_sg_offset,
2551 struct scatterlist *meta_sg, int meta_sg_nents,
2552 unsigned int *meta_sg_offset);
2553
521ed0d9
KH
2554 /**
2555 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2556 * driver initialized data. The struct is kfree()'ed by the sysfs
2557 * core when the device is removed. A lifespan of -1 in the return
2558 * struct tells the core to set a default lifespan.
2559 */
2560 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2561 u8 port_num);
2562 /**
2563 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2564 * @index - The index in the value array we wish to have updated, or
2565 * num_counters if we want all stats updated
2566 * Return codes -
2567 * < 0 - Error, no counters updated
2568 * index - Updated the single counter pointed to by index
2569 * num_counters - Updated all counters (will reset the timestamp
2570 * and prevent further calls for lifespan milliseconds)
2571 * Drivers are allowed to update all counters in leiu of just the
2572 * one given in index at their option
2573 */
2574 int (*get_hw_stats)(struct ib_device *device,
2575 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2576 /*
2577 * This function is called once for each port when a ib device is
2578 * registered.
2579 */
2580 int (*init_port)(struct ib_device *device, u8 port_num,
2581 struct kobject *port_sysfs);
02da3750
LR
2582 /**
2583 * Allows rdma drivers to add their own restrack attributes.
2584 */
f4434529 2585 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
65959522 2586 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
9e2a187a 2587 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
65959522 2588 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
5cc34116 2589 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
65959522 2590 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
211cd945 2591 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
21a428a0 2592
d0899892 2593 /* Device lifecycle callbacks */
ca22354b
JG
2594 /*
2595 * Called after the device becomes registered, before clients are
2596 * attached
2597 */
2598 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2599 /*
2600 * This is called as part of ib_dealloc_device().
2601 */
2602 void (*dealloc_driver)(struct ib_device *dev);
2603
dd05cb82
KH
2604 /* iWarp CM callbacks */
2605 void (*iw_add_ref)(struct ib_qp *qp);
2606 void (*iw_rem_ref)(struct ib_qp *qp);
2607 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2608 int (*iw_connect)(struct iw_cm_id *cm_id,
2609 struct iw_cm_conn_param *conn_param);
2610 int (*iw_accept)(struct iw_cm_id *cm_id,
2611 struct iw_cm_conn_param *conn_param);
2612 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2613 u8 pdata_len);
2614 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2615 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
99fa331d
MZ
2616 /**
2617 * counter_bind_qp - Bind a QP to a counter.
2618 * @counter - The counter to be bound. If counter->id is zero then
2619 * the driver needs to allocate a new counter and set counter->id
2620 */
2621 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2622 /**
2623 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2624 * counter and bind it onto the default one
2625 */
2626 int (*counter_unbind_qp)(struct ib_qp *qp);
2627 /**
2628 * counter_dealloc -De-allocate the hw counter
2629 */
2630 int (*counter_dealloc)(struct rdma_counter *counter);
c4ffee7c
MZ
2631 /**
2632 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2633 * the driver initialized data.
2634 */
2635 struct rdma_hw_stats *(*counter_alloc_stats)(
2636 struct rdma_counter *counter);
2637 /**
2638 * counter_update_stats - Query the stats value of this counter
2639 */
2640 int (*counter_update_stats)(struct rdma_counter *counter);
dd05cb82 2641
4061ff7a
EA
2642 /**
2643 * Allows rdma drivers to add their own restrack attributes
2644 * dumped via 'rdma stat' iproute2 command.
2645 */
f4434529 2646 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
4061ff7a 2647
1c8fb1ea
YH
2648 /* query driver for its ucontext properties */
2649 int (*query_ucontext)(struct ib_ucontext *context,
2650 struct uverbs_attr_bundle *attrs);
2651
d3456914 2652 DECLARE_RDMA_OBJ_SIZE(ib_ah);
e39afe3d 2653 DECLARE_RDMA_OBJ_SIZE(ib_cq);
21a428a0 2654 DECLARE_RDMA_OBJ_SIZE(ib_pd);
68e326de 2655 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2656 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
521ed0d9
KH
2657};
2658
cebe556b
PP
2659struct ib_core_device {
2660 /* device must be the first element in structure until,
2661 * union of ib_core_device and device exists in ib_device.
2662 */
2663 struct device dev;
4e0f7b90 2664 possible_net_t rdma_net;
cebe556b
PP
2665 struct kobject *ports_kobj;
2666 struct list_head port_list;
2667 struct ib_device *owner; /* reach back to owner ib_device */
2668};
41eda65c 2669
cebe556b 2670struct rdma_restrack_root;
1da177e4 2671struct ib_device {
0957c29f
BVA
2672 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2673 struct device *dma_device;
3023a1e9 2674 struct ib_device_ops ops;
1da177e4 2675 char name[IB_DEVICE_NAME_MAX];
324e227e 2676 struct rcu_head rcu_head;
1da177e4
LT
2677
2678 struct list_head event_handler_list;
6b57cea9
PP
2679 /* Protects event_handler_list */
2680 struct rw_semaphore event_handler_rwsem;
2681
2682 /* Protects QP's event_handler calls and open_qp list */
40adf686 2683 spinlock_t qp_open_list_lock;
1da177e4 2684
921eab11 2685 struct rw_semaphore client_data_rwsem;
0df91bb6 2686 struct xarray client_data;
d0899892 2687 struct mutex unregistration_lock;
1da177e4 2688
17e10646
PP
2689 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2690 rwlock_t cache_lock;
7738613e 2691 /**
8ceb1357 2692 * port_data is indexed by port number
7738613e 2693 */
8ceb1357 2694 struct ib_port_data *port_data;
1da177e4 2695
f4fd0b22
MT
2696 int num_comp_vectors;
2697
cebe556b
PP
2698 union {
2699 struct device dev;
2700 struct ib_core_device coredev;
2701 };
2702
d4122f5a
PP
2703 /* First group for device attributes,
2704 * Second group for driver provided attributes (optional).
2705 * It is NULL terminated array.
2706 */
2707 const struct attribute_group *groups[3];
adee9f3f 2708
17a55f79 2709 u64 uverbs_cmd_mask;
f21519b2 2710 u64 uverbs_ex_cmd_mask;
274c0891 2711
bd99fdea 2712 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2713 __be64 node_guid;
96f15c03 2714 u32 local_dma_lkey;
4139032b 2715 u16 is_switch:1;
6780c4fa
GP
2716 /* Indicates kernel verbs support, should not be used in drivers */
2717 u16 kverbs_provider:1;
da662979
YF
2718 /* CQ adaptive moderation (RDMA DIM) */
2719 u16 use_cq_dim:1;
1da177e4
LT
2720 u8 node_type;
2721 u8 phys_port_cnt;
3e153a93 2722 struct ib_device_attr attrs;
b40f4757
CL
2723 struct attribute_group *hw_stats_ag;
2724 struct rdma_hw_stats *hw_stats;
7738613e 2725
43579b5f
PP
2726#ifdef CONFIG_CGROUP_RDMA
2727 struct rdmacg_device cg_device;
2728#endif
2729
ecc82c53 2730 u32 index;
c7ff819a
YF
2731
2732 spinlock_t cq_pools_lock;
2733 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2734
41eda65c 2735 struct rdma_restrack_root *res;
ecc82c53 2736
0cbf432d 2737 const struct uapi_definition *driver_def;
d79af724 2738
01b67117 2739 /*
d79af724
JG
2740 * Positive refcount indicates that the device is currently
2741 * registered and cannot be unregistered.
01b67117
PP
2742 */
2743 refcount_t refcount;
2744 struct completion unreg_completion;
d0899892 2745 struct work_struct unregistration_work;
3856ec4b
SW
2746
2747 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2748
2749 /* Protects compat_devs xarray modifications */
2750 struct mutex compat_devs_mutex;
2751 /* Maintains compat devices for each net namespace */
2752 struct xarray compat_devs;
dd05cb82
KH
2753
2754 /* Used by iWarp CM */
2755 char iw_ifname[IFNAMSIZ];
2756 u32 iw_driver_flags;
bd3920ea 2757 u32 lag_flags;
1da177e4
LT
2758};
2759
0e2d00eb 2760struct ib_client_nl_info;
1da177e4 2761struct ib_client {
e59178d8 2762 const char *name;
11a0ae4c 2763 int (*add)(struct ib_device *ibdev);
7c1eb45a 2764 void (*remove)(struct ib_device *, void *client_data);
dc1435c0 2765 void (*rename)(struct ib_device *dev, void *client_data);
0e2d00eb
JG
2766 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2767 struct ib_client_nl_info *res);
2768 int (*get_global_nl_info)(struct ib_client_nl_info *res);
1da177e4 2769
9268f72d
YK
2770 /* Returns the net_dev belonging to this ib_client and matching the
2771 * given parameters.
2772 * @dev: An RDMA device that the net_dev use for communication.
2773 * @port: A physical port number on the RDMA device.
2774 * @pkey: P_Key that the net_dev uses if applicable.
2775 * @gid: A GID that the net_dev uses to communicate.
2776 * @addr: An IP address the net_dev is configured with.
2777 * @client_data: The device's client data set by ib_set_client_data().
2778 *
2779 * An ib_client that implements a net_dev on top of RDMA devices
2780 * (such as IP over IB) should implement this callback, allowing the
2781 * rdma_cm module to find the right net_dev for a given request.
2782 *
2783 * The caller is responsible for calling dev_put on the returned
2784 * netdev. */
2785 struct net_device *(*get_net_dev_by_params)(
2786 struct ib_device *dev,
2787 u8 port,
2788 u16 pkey,
2789 const union ib_gid *gid,
2790 const struct sockaddr *addr,
2791 void *client_data);
621e55ff
JG
2792
2793 refcount_t uses;
2794 struct completion uses_zero;
e59178d8 2795 u32 client_id;
6780c4fa
GP
2796
2797 /* kverbs are not required by the client */
2798 u8 no_kverbs_req:1;
1da177e4
LT
2799};
2800
a808273a
SS
2801/*
2802 * IB block DMA iterator
2803 *
2804 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2805 * to a HW supported page size.
2806 */
2807struct ib_block_iter {
2808 /* internal states */
2809 struct scatterlist *__sg; /* sg holding the current aligned block */
2810 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2811 unsigned int __sg_nents; /* number of SG entries */
2812 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2813 unsigned int __pg_bit; /* alignment of current block */
2814};
2815
459cc69f
LR
2816struct ib_device *_ib_alloc_device(size_t size);
2817#define ib_alloc_device(drv_struct, member) \
2818 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2819 BUILD_BUG_ON_ZERO(offsetof( \
2820 struct drv_struct, member))), \
2821 struct drv_struct, member)
2822
1da177e4
LT
2823void ib_dealloc_device(struct ib_device *device);
2824
9abb0d1b 2825void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2826
ea4baf7f 2827int ib_register_device(struct ib_device *device, const char *name);
1da177e4 2828void ib_unregister_device(struct ib_device *device);
d0899892
JG
2829void ib_unregister_driver(enum rdma_driver_id driver_id);
2830void ib_unregister_device_and_put(struct ib_device *device);
2831void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2832
2833int ib_register_client (struct ib_client *client);
2834void ib_unregister_client(struct ib_client *client);
2835
a808273a
SS
2836void __rdma_block_iter_start(struct ib_block_iter *biter,
2837 struct scatterlist *sglist,
2838 unsigned int nents,
2839 unsigned long pgsz);
2840bool __rdma_block_iter_next(struct ib_block_iter *biter);
2841
2842/**
2843 * rdma_block_iter_dma_address - get the aligned dma address of the current
2844 * block held by the block iterator.
2845 * @biter: block iterator holding the memory block
2846 */
2847static inline dma_addr_t
2848rdma_block_iter_dma_address(struct ib_block_iter *biter)
2849{
2850 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2851}
2852
2853/**
2854 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2855 * @sglist: sglist to iterate over
2856 * @biter: block iterator holding the memory block
2857 * @nents: maximum number of sg entries to iterate over
2858 * @pgsz: best HW supported page size to use
2859 *
2860 * Callers may use rdma_block_iter_dma_address() to get each
2861 * blocks aligned DMA address.
2862 */
2863#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2864 for (__rdma_block_iter_start(biter, sglist, nents, \
2865 pgsz); \
2866 __rdma_block_iter_next(biter);)
2867
0df91bb6
JG
2868/**
2869 * ib_get_client_data - Get IB client context
2870 * @device:Device to get context for
2871 * @client:Client to get context for
2872 *
2873 * ib_get_client_data() returns the client context data set with
2874 * ib_set_client_data(). This can only be called while the client is
2875 * registered to the device, once the ib_client remove() callback returns this
2876 * cannot be called.
2877 */
2878static inline void *ib_get_client_data(struct ib_device *device,
2879 struct ib_client *client)
2880{
2881 return xa_load(&device->client_data, client->client_id);
2882}
1da177e4
LT
2883void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2884 void *data);
521ed0d9
KH
2885void ib_set_device_ops(struct ib_device *device,
2886 const struct ib_device_ops *ops);
1da177e4 2887
5f9794dc 2888int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
c043ff2c
MK
2889 unsigned long pfn, unsigned long size, pgprot_t prot,
2890 struct rdma_user_mmap_entry *entry);
3411f9f0
MK
2891int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2892 struct rdma_user_mmap_entry *entry,
2893 size_t length);
7a763d18
YH
2894int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2895 struct rdma_user_mmap_entry *entry,
2896 size_t length, u32 min_pgoff,
2897 u32 max_pgoff);
2898
3411f9f0
MK
2899struct rdma_user_mmap_entry *
2900rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2901 unsigned long pgoff);
2902struct rdma_user_mmap_entry *
2903rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2904 struct vm_area_struct *vma);
2905void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2906
2907void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
5f9794dc 2908
e2773c06
RD
2909static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2910{
2911 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2912}
2913
2914static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2915{
43c61165 2916 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2917}
2918
c66db311
MB
2919static inline bool ib_is_buffer_cleared(const void __user *p,
2920 size_t len)
301a721e 2921{
92d27ae6 2922 bool ret;
301a721e
MB
2923 u8 *buf;
2924
2925 if (len > USHRT_MAX)
2926 return false;
2927
92d27ae6
ME
2928 buf = memdup_user(p, len);
2929 if (IS_ERR(buf))
301a721e
MB
2930 return false;
2931
301a721e 2932 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2933 kfree(buf);
2934 return ret;
2935}
2936
c66db311
MB
2937static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2938 size_t offset,
2939 size_t len)
2940{
2941 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2942}
2943
1c77483e
YH
2944/**
2945 * ib_is_destroy_retryable - Check whether the uobject destruction
2946 * is retryable.
2947 * @ret: The initial destruction return code
2948 * @why: remove reason
2949 * @uobj: The uobject that is destroyed
2950 *
2951 * This function is a helper function that IB layer and low-level drivers
2952 * can use to consider whether the destruction of the given uobject is
2953 * retry-able.
2954 * It checks the original return code, if it wasn't success the destruction
2955 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2956 * the remove reason. (i.e. why).
2957 * Must be called with the object locked for destroy.
2958 */
2959static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2960 struct ib_uobject *uobj)
2961{
2962 return ret && (why == RDMA_REMOVE_DESTROY ||
2963 uobj->context->cleanup_retryable);
2964}
2965
2966/**
2967 * ib_destroy_usecnt - Called during destruction to check the usecnt
2968 * @usecnt: The usecnt atomic
2969 * @why: remove reason
2970 * @uobj: The uobject that is destroyed
2971 *
2972 * Non-zero usecnts will block destruction unless destruction was triggered by
2973 * a ucontext cleanup.
2974 */
2975static inline int ib_destroy_usecnt(atomic_t *usecnt,
2976 enum rdma_remove_reason why,
2977 struct ib_uobject *uobj)
2978{
2979 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2980 return -EBUSY;
2981 return 0;
2982}
2983
8a51866f
RD
2984/**
2985 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2986 * contains all required attributes and no attributes not allowed for
2987 * the given QP state transition.
2988 * @cur_state: Current QP state
2989 * @next_state: Next QP state
2990 * @type: QP type
2991 * @mask: Mask of supplied QP attributes
2992 *
2993 * This function is a helper function that a low-level driver's
2994 * modify_qp method can use to validate the consumer's input. It
2995 * checks that cur_state and next_state are valid QP states, that a
2996 * transition from cur_state to next_state is allowed by the IB spec,
2997 * and that the attribute mask supplied is allowed for the transition.
2998 */
19b1f540 2999bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 3000 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 3001
dcc9881e
LR
3002void ib_register_event_handler(struct ib_event_handler *event_handler);
3003void ib_unregister_event_handler(struct ib_event_handler *event_handler);
6b57cea9 3004void ib_dispatch_event(const struct ib_event *event);
1da177e4 3005
1da177e4
LT
3006int ib_query_port(struct ib_device *device,
3007 u8 port_num, struct ib_port_attr *port_attr);
3008
a3f5adaf
EC
3009enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3010 u8 port_num);
3011
4139032b
HR
3012/**
3013 * rdma_cap_ib_switch - Check if the device is IB switch
3014 * @device: Device to check
3015 *
3016 * Device driver is responsible for setting is_switch bit on
3017 * in ib_device structure at init time.
3018 *
3019 * Return: true if the device is IB switch.
3020 */
3021static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3022{
3023 return device->is_switch;
3024}
3025
0cf18d77
IW
3026/**
3027 * rdma_start_port - Return the first valid port number for the device
3028 * specified
3029 *
3030 * @device: Device to be checked
3031 *
3032 * Return start port number
3033 */
3034static inline u8 rdma_start_port(const struct ib_device *device)
3035{
4139032b 3036 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
3037}
3038
ea1075ed
JG
3039/**
3040 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3041 * @device - The struct ib_device * to iterate over
3042 * @iter - The unsigned int to store the port number
3043 */
3044#define rdma_for_each_port(device, iter) \
3045 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
3046 unsigned int, iter))); \
3047 iter <= rdma_end_port(device); (iter)++)
3048
0cf18d77
IW
3049/**
3050 * rdma_end_port - Return the last valid port number for the device
3051 * specified
3052 *
3053 * @device: Device to be checked
3054 *
3055 * Return last port number
3056 */
3057static inline u8 rdma_end_port(const struct ib_device *device)
3058{
4139032b 3059 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
3060}
3061
24dc831b
YS
3062static inline int rdma_is_port_valid(const struct ib_device *device,
3063 unsigned int port)
3064{
3065 return (port >= rdma_start_port(device) &&
3066 port <= rdma_end_port(device));
3067}
3068
b02289b3
AK
3069static inline bool rdma_is_grh_required(const struct ib_device *device,
3070 u8 port_num)
3071{
8ceb1357
JG
3072 return device->port_data[port_num].immutable.core_cap_flags &
3073 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
3074}
3075
5ede9289 3076static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 3077{
8ceb1357
JG
3078 return device->port_data[port_num].immutable.core_cap_flags &
3079 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
3080}
3081
5ede9289 3082static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f 3083{
8ceb1357
JG
3084 return device->port_data[port_num].immutable.core_cap_flags &
3085 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
3086}
3087
3088static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3089{
8ceb1357
JG
3090 return device->port_data[port_num].immutable.core_cap_flags &
3091 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
3092}
3093
3094static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 3095{
8ceb1357
JG
3096 return device->port_data[port_num].immutable.core_cap_flags &
3097 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
3098}
3099
5ede9289 3100static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 3101{
8ceb1357
JG
3102 return device->port_data[port_num].immutable.core_cap_flags &
3103 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
3104}
3105
5ede9289 3106static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 3107{
7766a99f
MB
3108 return rdma_protocol_ib(device, port_num) ||
3109 rdma_protocol_roce(device, port_num);
de66be94
MW
3110}
3111
aa773bd4
OG
3112static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3113{
8ceb1357
JG
3114 return device->port_data[port_num].immutable.core_cap_flags &
3115 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
3116}
3117
ce1e055f
OG
3118static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3119{
8ceb1357
JG
3120 return device->port_data[port_num].immutable.core_cap_flags &
3121 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
3122}
3123
c757dea8 3124/**
296ec009 3125 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 3126 * Management Datagrams.
296ec009
MW
3127 * @device: Device to check
3128 * @port_num: Port number to check
c757dea8 3129 *
296ec009
MW
3130 * Management Datagrams (MAD) are a required part of the InfiniBand
3131 * specification and are supported on all InfiniBand devices. A slightly
3132 * extended version are also supported on OPA interfaces.
c757dea8 3133 *
296ec009 3134 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3135 */
5ede9289 3136static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 3137{
8ceb1357
JG
3138 return device->port_data[port_num].immutable.core_cap_flags &
3139 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3140}
3141
65995fee
IW
3142/**
3143 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3144 * Management Datagrams.
3145 * @device: Device to check
3146 * @port_num: Port number to check
3147 *
3148 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3149 * datagrams with their own versions. These OPA MADs share many but not all of
3150 * the characteristics of InfiniBand MADs.
3151 *
3152 * OPA MADs differ in the following ways:
3153 *
3154 * 1) MADs are variable size up to 2K
3155 * IBTA defined MADs remain fixed at 256 bytes
3156 * 2) OPA SMPs must carry valid PKeys
3157 * 3) OPA SMP packets are a different format
3158 *
3159 * Return: true if the port supports OPA MAD packet formats.
3160 */
3161static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3162{
d3243da8
LR
3163 return device->port_data[port_num].immutable.core_cap_flags &
3164 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3165}
3166
29541e3a 3167/**
296ec009
MW
3168 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3169 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3170 * @device: Device to check
3171 * @port_num: Port number to check
29541e3a 3172 *
296ec009
MW
3173 * Each InfiniBand node is required to provide a Subnet Management Agent
3174 * that the subnet manager can access. Prior to the fabric being fully
3175 * configured by the subnet manager, the SMA is accessed via a well known
3176 * interface called the Subnet Management Interface (SMI). This interface
3177 * uses directed route packets to communicate with the SM to get around the
3178 * chicken and egg problem of the SM needing to know what's on the fabric
3179 * in order to configure the fabric, and needing to configure the fabric in
3180 * order to send packets to the devices on the fabric. These directed
3181 * route packets do not need the fabric fully configured in order to reach
3182 * their destination. The SMI is the only method allowed to send
3183 * directed route packets on an InfiniBand fabric.
29541e3a 3184 *
296ec009 3185 * Return: true if the port provides an SMI.
29541e3a 3186 */
5ede9289 3187static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 3188{
8ceb1357
JG
3189 return device->port_data[port_num].immutable.core_cap_flags &
3190 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3191}
3192
72219cea
MW
3193/**
3194 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3195 * Communication Manager.
296ec009
MW
3196 * @device: Device to check
3197 * @port_num: Port number to check
72219cea 3198 *
296ec009
MW
3199 * The InfiniBand Communication Manager is one of many pre-defined General
3200 * Service Agents (GSA) that are accessed via the General Service
3201 * Interface (GSI). It's role is to facilitate establishment of connections
3202 * between nodes as well as other management related tasks for established
3203 * connections.
72219cea 3204 *
296ec009
MW
3205 * Return: true if the port supports an IB CM (this does not guarantee that
3206 * a CM is actually running however).
72219cea 3207 */
5ede9289 3208static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 3209{
8ceb1357
JG
3210 return device->port_data[port_num].immutable.core_cap_flags &
3211 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3212}
3213
04215330
MW
3214/**
3215 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3216 * Communication Manager.
296ec009
MW
3217 * @device: Device to check
3218 * @port_num: Port number to check
04215330 3219 *
296ec009
MW
3220 * Similar to above, but specific to iWARP connections which have a different
3221 * managment protocol than InfiniBand.
04215330 3222 *
296ec009
MW
3223 * Return: true if the port supports an iWARP CM (this does not guarantee that
3224 * a CM is actually running however).
04215330 3225 */
5ede9289 3226static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 3227{
8ceb1357
JG
3228 return device->port_data[port_num].immutable.core_cap_flags &
3229 RDMA_CORE_CAP_IW_CM;
04215330
MW
3230}
3231
fe53ba2f
MW
3232/**
3233 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3234 * Subnet Administration.
296ec009
MW
3235 * @device: Device to check
3236 * @port_num: Port number to check
fe53ba2f 3237 *
296ec009
MW
3238 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3239 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3240 * fabrics, devices should resolve routes to other hosts by contacting the
3241 * SA to query the proper route.
fe53ba2f 3242 *
296ec009
MW
3243 * Return: true if the port should act as a client to the fabric Subnet
3244 * Administration interface. This does not imply that the SA service is
3245 * running locally.
fe53ba2f 3246 */
5ede9289 3247static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3248{
8ceb1357
JG
3249 return device->port_data[port_num].immutable.core_cap_flags &
3250 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3251}
3252
a31ad3b0
MW
3253/**
3254 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3255 * Multicast.
296ec009
MW
3256 * @device: Device to check
3257 * @port_num: Port number to check
a31ad3b0 3258 *
296ec009
MW
3259 * InfiniBand multicast registration is more complex than normal IPv4 or
3260 * IPv6 multicast registration. Each Host Channel Adapter must register
3261 * with the Subnet Manager when it wishes to join a multicast group. It
3262 * should do so only once regardless of how many queue pairs it subscribes
3263 * to this group. And it should leave the group only after all queue pairs
3264 * attached to the group have been detached.
a31ad3b0 3265 *
296ec009
MW
3266 * Return: true if the port must undertake the additional adminstrative
3267 * overhead of registering/unregistering with the SM and tracking of the
3268 * total number of queue pairs attached to the multicast group.
a31ad3b0 3269 */
5ede9289 3270static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3271{
3272 return rdma_cap_ib_sa(device, port_num);
3273}
3274
30a74ef4
MW
3275/**
3276 * rdma_cap_af_ib - Check if the port of device has the capability
3277 * Native Infiniband Address.
296ec009
MW
3278 * @device: Device to check
3279 * @port_num: Port number to check
30a74ef4 3280 *
296ec009
MW
3281 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3282 * GID. RoCE uses a different mechanism, but still generates a GID via
3283 * a prescribed mechanism and port specific data.
30a74ef4 3284 *
296ec009
MW
3285 * Return: true if the port uses a GID address to identify devices on the
3286 * network.
30a74ef4 3287 */
5ede9289 3288static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3289{
8ceb1357
JG
3290 return device->port_data[port_num].immutable.core_cap_flags &
3291 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3292}
3293
227128fc
MW
3294/**
3295 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3296 * Ethernet Address Handle.
3297 * @device: Device to check
3298 * @port_num: Port number to check
227128fc 3299 *
296ec009
MW
3300 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3301 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3302 * port. Normally, packet headers are generated by the sending host
3303 * adapter, but when sending connectionless datagrams, we must manually
3304 * inject the proper headers for the fabric we are communicating over.
227128fc 3305 *
296ec009
MW
3306 * Return: true if we are running as a RoCE port and must force the
3307 * addition of a Global Route Header built from our Ethernet Address
3308 * Handle into our header list for connectionless packets.
227128fc 3309 */
5ede9289 3310static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3311{
8ceb1357
JG
3312 return device->port_data[port_num].immutable.core_cap_flags &
3313 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3314}
3315
94d595c5
DC
3316/**
3317 * rdma_cap_opa_ah - Check if the port of device supports
3318 * OPA Address handles
3319 * @device: Device to check
3320 * @port_num: Port number to check
3321 *
3322 * Return: true if we are running on an OPA device which supports
3323 * the extended OPA addressing.
3324 */
3325static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3326{
8ceb1357 3327 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3328 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3329}
3330
337877a4
IW
3331/**
3332 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3333 *
3334 * @device: Device
3335 * @port_num: Port number
3336 *
3337 * This MAD size includes the MAD headers and MAD payload. No other headers
3338 * are included.
3339 *
3340 * Return the max MAD size required by the Port. Will return 0 if the port
3341 * does not support MADs
3342 */
3343static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3344{
8ceb1357 3345 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3346}
3347
03db3a2d
MB
3348/**
3349 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3350 * @device: Device to check
3351 * @port_num: Port number to check
3352 *
3353 * RoCE GID table mechanism manages the various GIDs for a device.
3354 *
3355 * NOTE: if allocating the port's GID table has failed, this call will still
3356 * return true, but any RoCE GID table API will fail.
3357 *
3358 * Return: true if the port uses RoCE GID table mechanism in order to manage
3359 * its GIDs.
3360 */
3361static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3362 u8 port_num)
3363{
3364 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3365 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3366}
3367
002516ed
CH
3368/*
3369 * Check if the device supports READ W/ INVALIDATE.
3370 */
3371static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3372{
3373 /*
3374 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3375 * has support for it yet.
3376 */
3377 return rdma_protocol_iwarp(dev, port_num);
3378}
3379
4a353399
SS
3380/**
3381 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3382 *
3383 * @addr: address
3384 * @pgsz_bitmap: bitmap of HW supported page sizes
3385 */
3386static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3387 unsigned long pgsz_bitmap)
3388{
3389 unsigned long align;
3390 unsigned long pgsz;
3391
3392 align = addr & -addr;
3393
3394 /* Find page bit such that addr is aligned to the highest supported
3395 * HW page size
3396 */
3397 pgsz = pgsz_bitmap & ~(-align << 1);
3398 if (!pgsz)
3399 return __ffs(pgsz_bitmap);
3400
3401 return __fls(pgsz);
3402}
3403
6d72344c
KW
3404/**
3405 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3406 * @device: Device
3407 * @port_num: 1 based Port number
3408 *
3409 * Return true if port is an Intel OPA port , false if not
3410 */
3411static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3412 u32 port_num)
3413{
3414 return (device->port_data[port_num].immutable.core_cap_flags &
3415 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3416}
3417
3418/**
3419 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3420 * @device: Device
3421 * @port_num: Port number
3422 * @mtu: enum value of MTU
3423 *
3424 * Return the MTU size supported by the port as an integer value. Will return
3425 * -1 if enum value of mtu is not supported.
3426 */
3427static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3428 int mtu)
3429{
3430 if (rdma_core_cap_opa_port(device, port))
3431 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3432 else
3433 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3434}
3435
3436/**
3437 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3438 * @device: Device
3439 * @port_num: Port number
3440 * @attr: port attribute
3441 *
3442 * Return the MTU size supported by the port as an integer value.
3443 */
3444static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3445 struct ib_port_attr *attr)
3446{
3447 if (rdma_core_cap_opa_port(device, port))
3448 return attr->phys_mtu;
3449 else
3450 return ib_mtu_enum_to_int(attr->max_mtu);
3451}
3452
50174a7f
EC
3453int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3454 int state);
3455int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3456 struct ifla_vf_info *info);
3457int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3458 struct ifla_vf_stats *stats);
bfcb3c5d
DG
3459int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3460 struct ifla_vf_guid *node_guid,
3461 struct ifla_vf_guid *port_guid);
50174a7f
EC
3462int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3463 int type);
3464
1da177e4
LT
3465int ib_query_pkey(struct ib_device *device,
3466 u8 port_num, u16 index, u16 *pkey);
3467
3468int ib_modify_device(struct ib_device *device,
3469 int device_modify_mask,
3470 struct ib_device_modify *device_modify);
3471
3472int ib_modify_port(struct ib_device *device,
3473 u8 port_num, int port_modify_mask,
3474 struct ib_port_modify *port_modify);
3475
5eb620c8 3476int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3477 u8 *port_num, u16 *index);
5eb620c8
YE
3478
3479int ib_find_pkey(struct ib_device *device,
3480 u8 port_num, u16 pkey, u16 *index);
3481
ed082d36
CH
3482enum ib_pd_flags {
3483 /*
3484 * Create a memory registration for all memory in the system and place
3485 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3486 * ULPs to avoid the overhead of dynamic MRs.
3487 *
3488 * This flag is generally considered unsafe and must only be used in
3489 * extremly trusted environments. Every use of it will log a warning
3490 * in the kernel log.
3491 */
3492 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3493};
1da177e4 3494
ed082d36
CH
3495struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3496 const char *caller);
c4367a26 3497
ed082d36 3498#define ib_alloc_pd(device, flags) \
e4496447 3499 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26
SR
3500
3501/**
3502 * ib_dealloc_pd_user - Deallocate kernel/user PD
3503 * @pd: The protection domain
3504 * @udata: Valid user data or NULL for kernel objects
3505 */
3506void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3507
3508/**
3509 * ib_dealloc_pd - Deallocate kernel PD
3510 * @pd: The protection domain
3511 *
3512 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3513 */
3514static inline void ib_dealloc_pd(struct ib_pd *pd)
3515{
3516 ib_dealloc_pd_user(pd, NULL);
3517}
1da177e4 3518
b090c4e3
GP
3519enum rdma_create_ah_flags {
3520 /* In a sleepable context */
3521 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3522};
3523
1da177e4 3524/**
0a18cfe4 3525 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3526 * @pd: The protection domain associated with the address handle.
3527 * @ah_attr: The attributes of the address vector.
b090c4e3 3528 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3529 *
3530 * The address handle is used to reference a local or global destination
3531 * in all UD QP post sends.
3532 */
b090c4e3
GP
3533struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3534 u32 flags);
1da177e4 3535
5cda6587
PP
3536/**
3537 * rdma_create_user_ah - Creates an address handle for the given address vector.
3538 * It resolves destination mac address for ah attribute of RoCE type.
3539 * @pd: The protection domain associated with the address handle.
3540 * @ah_attr: The attributes of the address vector.
3541 * @udata: pointer to user's input output buffer information need by
3542 * provider driver.
3543 *
3544 * It returns 0 on success and returns appropriate error code on error.
3545 * The address handle is used to reference a local or global destination
3546 * in all UD QP post sends.
3547 */
3548struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3549 struct rdma_ah_attr *ah_attr,
3550 struct ib_udata *udata);
850d8fd7
MS
3551/**
3552 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3553 * work completion.
3554 * @hdr: the L3 header to parse
3555 * @net_type: type of header to parse
3556 * @sgid: place to store source gid
3557 * @dgid: place to store destination gid
3558 */
3559int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3560 enum rdma_network_type net_type,
3561 union ib_gid *sgid, union ib_gid *dgid);
3562
3563/**
3564 * ib_get_rdma_header_version - Get the header version
3565 * @hdr: the L3 header to parse
3566 */
3567int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3568
4e00d694 3569/**
f6bdb142 3570 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3571 * work completion.
3572 * @device: Device on which the received message arrived.
3573 * @port_num: Port on which the received message arrived.
3574 * @wc: Work completion associated with the received message.
3575 * @grh: References the received global route header. This parameter is
3576 * ignored unless the work completion indicates that the GRH is valid.
3577 * @ah_attr: Returned attributes that can be used when creating an address
3578 * handle for replying to the message.
b7403217
PP
3579 * When ib_init_ah_attr_from_wc() returns success,
3580 * (a) for IB link layer it optionally contains a reference to SGID attribute
3581 * when GRH is present for IB link layer.
3582 * (b) for RoCE link layer it contains a reference to SGID attribute.
3583 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3584 * attributes which are initialized using ib_init_ah_attr_from_wc().
3585 *
4e00d694 3586 */
f6bdb142
PP
3587int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3588 const struct ib_wc *wc, const struct ib_grh *grh,
3589 struct rdma_ah_attr *ah_attr);
4e00d694 3590
513789ed
HR
3591/**
3592 * ib_create_ah_from_wc - Creates an address handle associated with the
3593 * sender of the specified work completion.
3594 * @pd: The protection domain associated with the address handle.
3595 * @wc: Work completion information associated with a received message.
3596 * @grh: References the received global route header. This parameter is
3597 * ignored unless the work completion indicates that the GRH is valid.
3598 * @port_num: The outbound port number to associate with the address.
3599 *
3600 * The address handle is used to reference a local or global destination
3601 * in all UD QP post sends.
3602 */
73cdaaee
IW
3603struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3604 const struct ib_grh *grh, u8 port_num);
513789ed 3605
1da177e4 3606/**
67b985b6 3607 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3608 * handle.
3609 * @ah: The address handle to modify.
3610 * @ah_attr: The new address vector attributes to associate with the
3611 * address handle.
3612 */
67b985b6 3613int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3614
3615/**
bfbfd661 3616 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3617 * handle.
3618 * @ah: The address handle to query.
3619 * @ah_attr: The address vector attributes associated with the address
3620 * handle.
3621 */
bfbfd661 3622int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3623
2553ba21
GP
3624enum rdma_destroy_ah_flags {
3625 /* In a sleepable context */
3626 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3627};
3628
1da177e4 3629/**
c4367a26 3630 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3631 * @ah: The address handle to destroy.
2553ba21 3632 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3633 * @udata: Valid user data or NULL for kernel objects
1da177e4 3634 */
c4367a26
SR
3635int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3636
3637/**
3638 * rdma_destroy_ah - Destroys an kernel address handle.
3639 * @ah: The address handle to destroy.
3640 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3641 *
3642 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3643 */
3644static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3645{
3646 return rdma_destroy_ah_user(ah, flags, NULL);
3647}
1da177e4 3648
b0810b03
JG
3649struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3650 struct ib_srq_init_attr *srq_init_attr,
3651 struct ib_usrq_object *uobject,
3652 struct ib_udata *udata);
3653static inline struct ib_srq *
3654ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3655{
3656 if (!pd->device->ops.create_srq)
3657 return ERR_PTR(-EOPNOTSUPP);
3658
3659 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3660}
d41fcc67
RD
3661
3662/**
3663 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3664 * @srq: The SRQ to modify.
3665 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3666 * the current values of selected SRQ attributes are returned.
3667 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3668 * are being modified.
3669 *
3670 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3671 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3672 * the number of receives queued drops below the limit.
3673 */
3674int ib_modify_srq(struct ib_srq *srq,
3675 struct ib_srq_attr *srq_attr,
3676 enum ib_srq_attr_mask srq_attr_mask);
3677
3678/**
3679 * ib_query_srq - Returns the attribute list and current values for the
3680 * specified SRQ.
3681 * @srq: The SRQ to query.
3682 * @srq_attr: The attributes of the specified SRQ.
3683 */
3684int ib_query_srq(struct ib_srq *srq,
3685 struct ib_srq_attr *srq_attr);
3686
3687/**
c4367a26
SR
3688 * ib_destroy_srq_user - Destroys the specified SRQ.
3689 * @srq: The SRQ to destroy.
3690 * @udata: Valid user data or NULL for kernel objects
3691 */
3692int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3693
3694/**
3695 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3696 * @srq: The SRQ to destroy.
c4367a26
SR
3697 *
3698 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3699 */
c4367a26
SR
3700static inline int ib_destroy_srq(struct ib_srq *srq)
3701{
3702 return ib_destroy_srq_user(srq, NULL);
3703}
d41fcc67
RD
3704
3705/**
3706 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3707 * @srq: The SRQ to post the work request on.
3708 * @recv_wr: A list of work requests to post on the receive queue.
3709 * @bad_recv_wr: On an immediate failure, this parameter will reference
3710 * the work request that failed to be posted on the QP.
3711 */
3712static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3713 const struct ib_recv_wr *recv_wr,
3714 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3715{
d34ac5cd 3716 const struct ib_recv_wr *dummy;
bb039a87 3717
3023a1e9
KH
3718 return srq->device->ops.post_srq_recv(srq, recv_wr,
3719 bad_recv_wr ? : &dummy);
d41fcc67
RD
3720}
3721
b72bfc96
JG
3722struct ib_qp *ib_create_qp(struct ib_pd *pd,
3723 struct ib_qp_init_attr *qp_init_attr);
1da177e4 3724
a512c2fb
PP
3725/**
3726 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3727 * @qp: The QP to modify.
3728 * @attr: On input, specifies the QP attributes to modify. On output,
3729 * the current values of selected QP attributes are returned.
3730 * @attr_mask: A bit-mask used to specify which attributes of the QP
3731 * are being modified.
3732 * @udata: pointer to user's input output buffer information
3733 * are being modified.
3734 * It returns 0 on success and returns appropriate error code on error.
3735 */
3736int ib_modify_qp_with_udata(struct ib_qp *qp,
3737 struct ib_qp_attr *attr,
3738 int attr_mask,
3739 struct ib_udata *udata);
3740
1da177e4
LT
3741/**
3742 * ib_modify_qp - Modifies the attributes for the specified QP and then
3743 * transitions the QP to the given state.
3744 * @qp: The QP to modify.
3745 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3746 * the current values of selected QP attributes are returned.
3747 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3748 * are being modified.
3749 */
3750int ib_modify_qp(struct ib_qp *qp,
3751 struct ib_qp_attr *qp_attr,
3752 int qp_attr_mask);
3753
3754/**
3755 * ib_query_qp - Returns the attribute list and current values for the
3756 * specified QP.
3757 * @qp: The QP to query.
3758 * @qp_attr: The attributes of the specified QP.
3759 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3760 * @qp_init_attr: Additional attributes of the selected QP.
3761 *
3762 * The qp_attr_mask may be used to limit the query to gathering only the
3763 * selected attributes.
3764 */
3765int ib_query_qp(struct ib_qp *qp,
3766 struct ib_qp_attr *qp_attr,
3767 int qp_attr_mask,
3768 struct ib_qp_init_attr *qp_init_attr);
3769
3770/**
3771 * ib_destroy_qp - Destroys the specified QP.
3772 * @qp: The QP to destroy.
c4367a26 3773 * @udata: Valid udata or NULL for kernel objects
1da177e4 3774 */
c4367a26
SR
3775int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3776
3777/**
3778 * ib_destroy_qp - Destroys the specified kernel QP.
3779 * @qp: The QP to destroy.
3780 *
3781 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3782 */
3783static inline int ib_destroy_qp(struct ib_qp *qp)
3784{
3785 return ib_destroy_qp_user(qp, NULL);
3786}
1da177e4 3787
d3d72d90 3788/**
0e0ec7e0
SH
3789 * ib_open_qp - Obtain a reference to an existing sharable QP.
3790 * @xrcd - XRC domain
3791 * @qp_open_attr: Attributes identifying the QP to open.
3792 *
3793 * Returns a reference to a sharable QP.
3794 */
3795struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3796 struct ib_qp_open_attr *qp_open_attr);
3797
3798/**
3799 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3800 * @qp: The QP handle to release
3801 *
0e0ec7e0
SH
3802 * The opened QP handle is released by the caller. The underlying
3803 * shared QP is not destroyed until all internal references are released.
d3d72d90 3804 */
0e0ec7e0 3805int ib_close_qp(struct ib_qp *qp);
d3d72d90 3806
1da177e4
LT
3807/**
3808 * ib_post_send - Posts a list of work requests to the send queue of
3809 * the specified QP.
3810 * @qp: The QP to post the work request on.
3811 * @send_wr: A list of work requests to post on the send queue.
3812 * @bad_send_wr: On an immediate failure, this parameter will reference
3813 * the work request that failed to be posted on the QP.
55464d46
BVA
3814 *
3815 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3816 * error is returned, the QP state shall not be affected,
3817 * ib_post_send() will return an immediate error after queueing any
3818 * earlier work requests in the list.
1da177e4
LT
3819 */
3820static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3821 const struct ib_send_wr *send_wr,
3822 const struct ib_send_wr **bad_send_wr)
1da177e4 3823{
d34ac5cd 3824 const struct ib_send_wr *dummy;
bb039a87 3825
3023a1e9 3826 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3827}
3828
3829/**
3830 * ib_post_recv - Posts a list of work requests to the receive queue of
3831 * the specified QP.
3832 * @qp: The QP to post the work request on.
3833 * @recv_wr: A list of work requests to post on the receive queue.
3834 * @bad_recv_wr: On an immediate failure, this parameter will reference
3835 * the work request that failed to be posted on the QP.
3836 */
3837static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3838 const struct ib_recv_wr *recv_wr,
3839 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3840{
d34ac5cd 3841 const struct ib_recv_wr *dummy;
bb039a87 3842
3023a1e9 3843 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3844}
3845
c4367a26
SR
3846struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3847 int nr_cqe, int comp_vector,
3848 enum ib_poll_context poll_ctx,
3849 const char *caller, struct ib_udata *udata);
3850
3851/**
3852 * ib_alloc_cq_user: Allocate kernel/user CQ
3853 * @dev: The IB device
3854 * @private: Private data attached to the CQE
3855 * @nr_cqe: Number of CQEs in the CQ
3856 * @comp_vector: Completion vector used for the IRQs
3857 * @poll_ctx: Context used for polling the CQ
3858 * @udata: Valid user data or NULL for kernel objects
3859 */
3860static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3861 void *private, int nr_cqe,
3862 int comp_vector,
3863 enum ib_poll_context poll_ctx,
3864 struct ib_udata *udata)
3865{
3866 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3867 KBUILD_MODNAME, udata);
3868}
3869
3870/**
3871 * ib_alloc_cq: Allocate kernel CQ
3872 * @dev: The IB device
3873 * @private: Private data attached to the CQE
3874 * @nr_cqe: Number of CQEs in the CQ
3875 * @comp_vector: Completion vector used for the IRQs
3876 * @poll_ctx: Context used for polling the CQ
3877 *
3878 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3879 */
3880static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3881 int nr_cqe, int comp_vector,
3882 enum ib_poll_context poll_ctx)
3883{
3884 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3885 NULL);
3886}
3887
20cf4e02
CL
3888struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3889 int nr_cqe, enum ib_poll_context poll_ctx,
3890 const char *caller);
3891
3892/**
3893 * ib_alloc_cq_any: Allocate kernel CQ
3894 * @dev: The IB device
3895 * @private: Private data attached to the CQE
3896 * @nr_cqe: Number of CQEs in the CQ
3897 * @poll_ctx: Context used for polling the CQ
3898 */
3899static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3900 void *private, int nr_cqe,
3901 enum ib_poll_context poll_ctx)
3902{
3903 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3904 KBUILD_MODNAME);
3905}
3906
c4367a26
SR
3907/**
3908 * ib_free_cq_user - Free kernel/user CQ
3909 * @cq: The CQ to free
3910 * @udata: Valid user data or NULL for kernel objects
3446cbd2
YF
3911 *
3912 * NOTE: This function shouldn't be called on shared CQs.
c4367a26
SR
3913 */
3914void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3915
3916/**
3917 * ib_free_cq - Free kernel CQ
3918 * @cq: The CQ to free
3919 *
3920 * NOTE: for user cq use ib_free_cq_user with valid udata!
3921 */
3922static inline void ib_free_cq(struct ib_cq *cq)
3923{
3924 ib_free_cq_user(cq, NULL);
3925}
f66c8ba4 3926
14d3a3b2
CH
3927int ib_process_cq_direct(struct ib_cq *cq, int budget);
3928
1da177e4
LT
3929/**
3930 * ib_create_cq - Creates a CQ on the specified device.
3931 * @device: The device on which to create the CQ.
3932 * @comp_handler: A user-specified callback that is invoked when a
3933 * completion event occurs on the CQ.
3934 * @event_handler: A user-specified callback that is invoked when an
3935 * asynchronous event not associated with a completion occurs on the CQ.
3936 * @cq_context: Context associated with the CQ returned to the user via
3937 * the associated completion and event handlers.
8e37210b 3938 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3939 *
3940 * Users can examine the cq structure to determine the actual CQ size.
3941 */
7350cdd0
BP
3942struct ib_cq *__ib_create_cq(struct ib_device *device,
3943 ib_comp_handler comp_handler,
3944 void (*event_handler)(struct ib_event *, void *),
3945 void *cq_context,
3946 const struct ib_cq_init_attr *cq_attr,
3947 const char *caller);
3948#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3949 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3950
3951/**
3952 * ib_resize_cq - Modifies the capacity of the CQ.
3953 * @cq: The CQ to resize.
3954 * @cqe: The minimum size of the CQ.
3955 *
3956 * Users can examine the cq structure to determine the actual CQ size.
3957 */
3958int ib_resize_cq(struct ib_cq *cq, int cqe);
3959
2dd57162 3960/**
4190b4e9 3961 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3962 * @cq: The CQ to modify.
3963 * @cq_count: number of CQEs that will trigger an event
3964 * @cq_period: max period of time in usec before triggering an event
3965 *
3966 */
4190b4e9 3967int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3968
1da177e4 3969/**
c4367a26 3970 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3971 * @cq: The CQ to destroy.
c4367a26 3972 * @udata: Valid user data or NULL for kernel objects
1da177e4 3973 */
c4367a26
SR
3974int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3975
3976/**
3977 * ib_destroy_cq - Destroys the specified kernel CQ.
3978 * @cq: The CQ to destroy.
3979 *
3980 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3981 */
890ac8d9 3982static inline void ib_destroy_cq(struct ib_cq *cq)
c4367a26 3983{
890ac8d9 3984 ib_destroy_cq_user(cq, NULL);
c4367a26 3985}
1da177e4
LT
3986
3987/**
3988 * ib_poll_cq - poll a CQ for completion(s)
3989 * @cq:the CQ being polled
3990 * @num_entries:maximum number of completions to return
3991 * @wc:array of at least @num_entries &struct ib_wc where completions
3992 * will be returned
3993 *
3994 * Poll a CQ for (possibly multiple) completions. If the return value
3995 * is < 0, an error occurred. If the return value is >= 0, it is the
3996 * number of completions returned. If the return value is
3997 * non-negative and < num_entries, then the CQ was emptied.
3998 */
3999static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4000 struct ib_wc *wc)
4001{
3023a1e9 4002 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
4003}
4004
1da177e4
LT
4005/**
4006 * ib_req_notify_cq - Request completion notification on a CQ.
4007 * @cq: The CQ to generate an event for.
ed23a727
RD
4008 * @flags:
4009 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4010 * to request an event on the next solicited event or next work
4011 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4012 * may also be |ed in to request a hint about missed events, as
4013 * described below.
4014 *
4015 * Return Value:
4016 * < 0 means an error occurred while requesting notification
4017 * == 0 means notification was requested successfully, and if
4018 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4019 * were missed and it is safe to wait for another event. In
4020 * this case is it guaranteed that any work completions added
4021 * to the CQ since the last CQ poll will trigger a completion
4022 * notification event.
4023 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4024 * in. It means that the consumer must poll the CQ again to
4025 * make sure it is empty to avoid missing an event because of a
4026 * race between requesting notification and an entry being
4027 * added to the CQ. This return value means it is possible
4028 * (but not guaranteed) that a work completion has been added
4029 * to the CQ since the last poll without triggering a
4030 * completion notification event.
1da177e4
LT
4031 */
4032static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 4033 enum ib_cq_notify_flags flags)
1da177e4 4034{
3023a1e9 4035 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
4036}
4037
c7ff819a
YF
4038struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4039 int comp_vector_hint,
4040 enum ib_poll_context poll_ctx);
4041
4042void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4043
1da177e4
LT
4044/**
4045 * ib_req_ncomp_notif - Request completion notification when there are
4046 * at least the specified number of unreaped completions on the CQ.
4047 * @cq: The CQ to generate an event for.
4048 * @wc_cnt: The number of unreaped completions that should be on the
4049 * CQ before an event is generated.
4050 */
4051static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
4052{
3023a1e9
KH
4053 return cq->device->ops.req_ncomp_notif ?
4054 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
4055 -ENOSYS;
4056}
4057
9b513090
RC
4058/**
4059 * ib_dma_mapping_error - check a DMA addr for error
4060 * @dev: The device for which the dma_addr was created
4061 * @dma_addr: The DMA address to check
4062 */
4063static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4064{
0957c29f 4065 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
4066}
4067
4068/**
4069 * ib_dma_map_single - Map a kernel virtual address to DMA address
4070 * @dev: The device for which the dma_addr is to be created
4071 * @cpu_addr: The kernel virtual address
4072 * @size: The size of the region in bytes
4073 * @direction: The direction of the DMA
4074 */
4075static inline u64 ib_dma_map_single(struct ib_device *dev,
4076 void *cpu_addr, size_t size,
4077 enum dma_data_direction direction)
4078{
0957c29f 4079 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
4080}
4081
4082/**
4083 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4084 * @dev: The device for which the DMA address was created
4085 * @addr: The DMA address
4086 * @size: The size of the region in bytes
4087 * @direction: The direction of the DMA
4088 */
4089static inline void ib_dma_unmap_single(struct ib_device *dev,
4090 u64 addr, size_t size,
4091 enum dma_data_direction direction)
4092{
0957c29f 4093 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
4094}
4095
9b513090
RC
4096/**
4097 * ib_dma_map_page - Map a physical page to DMA address
4098 * @dev: The device for which the dma_addr is to be created
4099 * @page: The page to be mapped
4100 * @offset: The offset within the page
4101 * @size: The size of the region in bytes
4102 * @direction: The direction of the DMA
4103 */
4104static inline u64 ib_dma_map_page(struct ib_device *dev,
4105 struct page *page,
4106 unsigned long offset,
4107 size_t size,
4108 enum dma_data_direction direction)
4109{
0957c29f 4110 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
4111}
4112
4113/**
4114 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4115 * @dev: The device for which the DMA address was created
4116 * @addr: The DMA address
4117 * @size: The size of the region in bytes
4118 * @direction: The direction of the DMA
4119 */
4120static inline void ib_dma_unmap_page(struct ib_device *dev,
4121 u64 addr, size_t size,
4122 enum dma_data_direction direction)
4123{
0957c29f 4124 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
4125}
4126
4127/**
4128 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4129 * @dev: The device for which the DMA addresses are to be created
4130 * @sg: The array of scatter/gather entries
4131 * @nents: The number of scatter/gather entries
4132 * @direction: The direction of the DMA
4133 */
4134static inline int ib_dma_map_sg(struct ib_device *dev,
4135 struct scatterlist *sg, int nents,
4136 enum dma_data_direction direction)
4137{
0957c29f 4138 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4139}
4140
4141/**
4142 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4143 * @dev: The device for which the DMA addresses were created
4144 * @sg: The array of scatter/gather entries
4145 * @nents: The number of scatter/gather entries
4146 * @direction: The direction of the DMA
4147 */
4148static inline void ib_dma_unmap_sg(struct ib_device *dev,
4149 struct scatterlist *sg, int nents,
4150 enum dma_data_direction direction)
4151{
0957c29f 4152 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4153}
4154
cb9fbc5c
AK
4155static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4156 struct scatterlist *sg, int nents,
4157 enum dma_data_direction direction,
00085f1e 4158 unsigned long dma_attrs)
cb9fbc5c 4159{
0957c29f
BVA
4160 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4161 dma_attrs);
cb9fbc5c
AK
4162}
4163
4164static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4165 struct scatterlist *sg, int nents,
4166 enum dma_data_direction direction,
00085f1e 4167 unsigned long dma_attrs)
cb9fbc5c 4168{
0957c29f 4169 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 4170}
9b513090 4171
0b5cb330
BVA
4172/**
4173 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4174 * @dev: The device to query
4175 *
4176 * The returned value represents a size in bytes.
4177 */
4178static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4179{
ecdfdfdb 4180 return dma_get_max_seg_size(dev->dma_device);
0b5cb330
BVA
4181}
4182
9b513090
RC
4183/**
4184 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4185 * @dev: The device for which the DMA address was created
4186 * @addr: The DMA address
4187 * @size: The size of the region in bytes
4188 * @dir: The direction of the DMA
4189 */
4190static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4191 u64 addr,
4192 size_t size,
4193 enum dma_data_direction dir)
4194{
0957c29f 4195 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
4196}
4197
4198/**
4199 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4200 * @dev: The device for which the DMA address was created
4201 * @addr: The DMA address
4202 * @size: The size of the region in bytes
4203 * @dir: The direction of the DMA
4204 */
4205static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4206 u64 addr,
4207 size_t size,
4208 enum dma_data_direction dir)
4209{
0957c29f 4210 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4211}
4212
4213/**
4214 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4215 * @dev: The device for which the DMA address is requested
4216 * @size: The size of the region to allocate in bytes
4217 * @dma_handle: A pointer for returning the DMA address of the region
4218 * @flag: memory allocator flags
4219 */
4220static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4221 size_t size,
d43dbacf 4222 dma_addr_t *dma_handle,
9b513090
RC
4223 gfp_t flag)
4224{
0957c29f 4225 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
4226}
4227
4228/**
4229 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4230 * @dev: The device for which the DMA addresses were allocated
4231 * @size: The size of the region
4232 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4233 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4234 */
4235static inline void ib_dma_free_coherent(struct ib_device *dev,
4236 size_t size, void *cpu_addr,
d43dbacf 4237 dma_addr_t dma_handle)
9b513090 4238{
0957c29f 4239 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
4240}
4241
33006bd4
MS
4242/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4243 * space. This function should be called when 'current' is the owning MM.
4244 */
4245struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4246 u64 virt_addr, int mr_access_flags);
4247
87d8069f
MS
4248/* ib_advise_mr - give an advice about an address range in a memory region */
4249int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4250 u32 flags, struct ib_sge *sg_list, u32 num_sge);
1da177e4 4251/**
c4367a26
SR
4252 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4253 * HCA translation table.
4254 * @mr: The memory region to deregister.
4255 * @udata: Valid user data or NULL for kernel object
4256 *
4257 * This function can fail, if the memory region has memory windows bound to it.
4258 */
4259int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4260
4261/**
4262 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4263 * HCA translation table.
4264 * @mr: The memory region to deregister.
7083e42e
SM
4265 *
4266 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4267 *
4268 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4269 */
c4367a26
SR
4270static inline int ib_dereg_mr(struct ib_mr *mr)
4271{
4272 return ib_dereg_mr_user(mr, NULL);
4273}
4274
b64b74b1
GP
4275struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4276 u32 max_num_sg);
00f7ec36 4277
26bc7eae
IR
4278struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4279 u32 max_num_data_sg,
4280 u32 max_num_meta_sg);
4281
00f7ec36
SW
4282/**
4283 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4284 * R_Key and L_Key.
4285 * @mr - struct ib_mr pointer to be updated.
4286 * @newkey - new key to be used.
4287 */
4288static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4289{
4290 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4291 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4292}
4293
7083e42e
SM
4294/**
4295 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4296 * for calculating a new rkey for type 2 memory windows.
4297 * @rkey - the rkey to increment.
4298 */
4299static inline u32 ib_inc_rkey(u32 rkey)
4300{
4301 const u32 mask = 0x000000ff;
4302 return ((rkey + 1) & mask) | (rkey & ~mask);
4303}
4304
1da177e4
LT
4305/**
4306 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4307 * @qp: QP to attach to the multicast group. The QP must be type
4308 * IB_QPT_UD.
4309 * @gid: Multicast group GID.
4310 * @lid: Multicast group LID in host byte order.
4311 *
4312 * In order to send and receive multicast packets, subnet
4313 * administration must have created the multicast group and configured
4314 * the fabric appropriately. The port associated with the specified
4315 * QP must also be a member of the multicast group.
4316 */
4317int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4318
4319/**
4320 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4321 * @qp: QP to detach from the multicast group.
4322 * @gid: Multicast group GID.
4323 * @lid: Multicast group LID in host byte order.
4324 */
4325int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4326
b73efcb2
MG
4327struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4328 struct inode *inode, struct ib_udata *udata);
4329int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4330
1c636f80
EC
4331static inline int ib_check_mr_access(int flags)
4332{
4333 /*
4334 * Local write permission is required if remote write or
4335 * remote atomic permission is also requested.
4336 */
4337 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4338 !(flags & IB_ACCESS_LOCAL_WRITE))
4339 return -EINVAL;
4340
ca95c141
MG
4341 if (flags & ~IB_ACCESS_SUPPORTED)
4342 return -EINVAL;
4343
1c636f80
EC
4344 return 0;
4345}
4346
08bb558a
JM
4347static inline bool ib_access_writable(int access_flags)
4348{
4349 /*
4350 * We have writable memory backing the MR if any of the following
4351 * access flags are set. "Local write" and "remote write" obviously
4352 * require write access. "Remote atomic" can do things like fetch and
4353 * add, which will modify memory, and "MW bind" can change permissions
4354 * by binding a window.
4355 */
4356 return access_flags &
4357 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4358 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4359}
4360
1b01d335
SG
4361/**
4362 * ib_check_mr_status: lightweight check of MR status.
4363 * This routine may provide status checks on a selected
4364 * ib_mr. first use is for signature status check.
4365 *
4366 * @mr: A memory region.
4367 * @check_mask: Bitmask of which checks to perform from
4368 * ib_mr_status_check enumeration.
4369 * @mr_status: The container of relevant status checks.
4370 * failed checks will be indicated in the status bitmask
4371 * and the relevant info shall be in the error item.
4372 */
4373int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4374 struct ib_mr_status *mr_status);
4375
d79af724
JG
4376/**
4377 * ib_device_try_get: Hold a registration lock
4378 * device: The device to lock
4379 *
4380 * A device under an active registration lock cannot become unregistered. It
4381 * is only possible to obtain a registration lock on a device that is fully
4382 * registered, otherwise this function returns false.
4383 *
4384 * The registration lock is only necessary for actions which require the
4385 * device to still be registered. Uses that only require the device pointer to
4386 * be valid should use get_device(&ibdev->dev) to hold the memory.
4387 *
4388 */
4389static inline bool ib_device_try_get(struct ib_device *dev)
4390{
4391 return refcount_inc_not_zero(&dev->refcount);
4392}
4393
4394void ib_device_put(struct ib_device *device);
324e227e
JG
4395struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4396 enum rdma_driver_id driver_id);
4397struct ib_device *ib_device_get_by_name(const char *name,
4398 enum rdma_driver_id driver_id);
9268f72d
YK
4399struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4400 u16 pkey, const union ib_gid *gid,
4401 const struct sockaddr *addr);
c2261dd7
JG
4402int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4403 unsigned int port);
4404struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4405
5fd251c8
YH
4406struct ib_wq *ib_create_wq(struct ib_pd *pd,
4407 struct ib_wq_init_attr *init_attr);
c4367a26 4408int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
5fd251c8
YH
4409int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4410 u32 wq_attr_mask);
6d39786b 4411int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 4412
ff2ba993 4413int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4414 unsigned int *sg_offset, unsigned int page_size);
2cdfcdd8
MG
4415int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4416 int data_sg_nents, unsigned int *data_sg_offset,
4417 struct scatterlist *meta_sg, int meta_sg_nents,
4418 unsigned int *meta_sg_offset, unsigned int page_size);
4c67e2bf
SG
4419
4420static inline int
ff2ba993 4421ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4422 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4423{
4424 int n;
4425
ff2ba993 4426 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4427 mr->iova = 0;
4428
4429 return n;
4430}
4431
ff2ba993 4432int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4433 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4434
765d6774
SW
4435void ib_drain_rq(struct ib_qp *qp);
4436void ib_drain_sq(struct ib_qp *qp);
4437void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4438
d4186194 4439int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4440
4441static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4442{
44c58487
DC
4443 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4444 return attr->roce.dmac;
4445 return NULL;
2224c47a
DC
4446}
4447
64b4646e 4448static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4449{
44c58487 4450 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4451 attr->ib.dlid = (u16)dlid;
4452 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4453 attr->opa.dlid = dlid;
2224c47a
DC
4454}
4455
64b4646e 4456static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4457{
44c58487
DC
4458 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4459 return attr->ib.dlid;
64b4646e
DC
4460 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4461 return attr->opa.dlid;
44c58487 4462 return 0;
2224c47a
DC
4463}
4464
4465static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4466{
4467 attr->sl = sl;
4468}
4469
4470static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4471{
4472 return attr->sl;
4473}
4474
4475static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4476 u8 src_path_bits)
4477{
44c58487
DC
4478 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4479 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4480 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4481 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4482}
4483
4484static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4485{
44c58487
DC
4486 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4487 return attr->ib.src_path_bits;
64b4646e
DC
4488 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4489 return attr->opa.src_path_bits;
44c58487 4490 return 0;
2224c47a
DC
4491}
4492
d98bb7f7
DH
4493static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4494 bool make_grd)
4495{
4496 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4497 attr->opa.make_grd = make_grd;
4498}
4499
4500static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4501{
4502 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4503 return attr->opa.make_grd;
4504 return false;
4505}
4506
2224c47a
DC
4507static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4508{
4509 attr->port_num = port_num;
4510}
4511
4512static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4513{
4514 return attr->port_num;
4515}
4516
4517static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4518 u8 static_rate)
4519{
4520 attr->static_rate = static_rate;
4521}
4522
4523static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4524{
4525 return attr->static_rate;
4526}
4527
4528static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4529 enum ib_ah_flags flag)
4530{
4531 attr->ah_flags = flag;
4532}
4533
4534static inline enum ib_ah_flags
4535 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4536{
4537 return attr->ah_flags;
4538}
4539
4540static inline const struct ib_global_route
4541 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4542{
4543 return &attr->grh;
4544}
4545
4546/*To retrieve and modify the grh */
4547static inline struct ib_global_route
4548 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4549{
4550 return &attr->grh;
4551}
4552
4553static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4554{
4555 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4556
4557 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4558}
4559
4560static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4561 __be64 prefix)
4562{
4563 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4564
4565 grh->dgid.global.subnet_prefix = prefix;
4566}
4567
4568static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4569 __be64 if_id)
4570{
4571 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4572
4573 grh->dgid.global.interface_id = if_id;
4574}
4575
4576static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4577 union ib_gid *dgid, u32 flow_label,
4578 u8 sgid_index, u8 hop_limit,
4579 u8 traffic_class)
4580{
4581 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4582
4583 attr->ah_flags = IB_AH_GRH;
4584 if (dgid)
4585 grh->dgid = *dgid;
4586 grh->flow_label = flow_label;
4587 grh->sgid_index = sgid_index;
4588 grh->hop_limit = hop_limit;
4589 grh->traffic_class = traffic_class;
8d9ec9ad 4590 grh->sgid_attr = NULL;
2224c47a 4591}
44c58487 4592
8d9ec9ad
JG
4593void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4594void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4595 u32 flow_label, u8 hop_limit, u8 traffic_class,
4596 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4597void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4598 const struct rdma_ah_attr *src);
4599void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4600 const struct rdma_ah_attr *new);
4601void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4602
87daac68
DH
4603/**
4604 * rdma_ah_find_type - Return address handle type.
4605 *
4606 * @dev: Device to be checked
4607 * @port_num: Port number
4608 */
44c58487 4609static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4610 u8 port_num)
44c58487 4611{
a6532e71 4612 if (rdma_protocol_roce(dev, port_num))
44c58487 4613 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4614 if (rdma_protocol_ib(dev, port_num)) {
4615 if (rdma_cap_opa_ah(dev, port_num))
4616 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4617 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4618 }
4619
4620 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4621}
7db20ecd 4622
62ede777
HD
4623/**
4624 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4625 * In the current implementation the only way to get
4626 * get the 32bit lid is from other sources for OPA.
4627 * For IB, lids will always be 16bits so cast the
4628 * value accordingly.
4629 *
4630 * @lid: A 32bit LID
4631 */
4632static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4633{
62ede777
HD
4634 WARN_ON_ONCE(lid & 0xFFFF0000);
4635 return (u16)lid;
7db20ecd
HD
4636}
4637
62ede777
HD
4638/**
4639 * ib_lid_be16 - Return lid in 16bit BE encoding.
4640 *
4641 * @lid: A 32bit LID
4642 */
4643static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4644{
62ede777
HD
4645 WARN_ON_ONCE(lid & 0xFFFF0000);
4646 return cpu_to_be16((u16)lid);
7db20ecd 4647}
32043830 4648
c66cd353
SG
4649/**
4650 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4651 * vector
4652 * @device: the rdma device
4653 * @comp_vector: index of completion vector
4654 *
4655 * Returns NULL on failure, otherwise a corresponding cpu map of the
4656 * completion vector (returns all-cpus map if the device driver doesn't
4657 * implement get_vector_affinity).
4658 */
4659static inline const struct cpumask *
4660ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4661{
4662 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4663 !device->ops.get_vector_affinity)
c66cd353
SG
4664 return NULL;
4665
3023a1e9 4666 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4667
4668}
4669
32f69e4b
DJ
4670/**
4671 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4672 * and add their gids, as needed, to the relevant RoCE devices.
4673 *
4674 * @device: the rdma device
4675 */
4676void rdma_roce_rescan_device(struct ib_device *ibdev);
4677
8313c10f 4678struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4679
15a1b4be 4680int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4681
4682struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4683 enum rdma_netdev_t type, const char *name,
4684 unsigned char name_assign_type,
4685 void (*setup)(struct net_device *));
5d6b0cb3
DD
4686
4687int rdma_init_netdev(struct ib_device *device, u8 port_num,
4688 enum rdma_netdev_t type, const char *name,
4689 unsigned char name_assign_type,
4690 void (*setup)(struct net_device *),
4691 struct net_device *netdev);
4692
d4122f5a
PP
4693/**
4694 * rdma_set_device_sysfs_group - Set device attributes group to have
4695 * driver specific sysfs entries at
4696 * for infiniband class.
4697 *
4698 * @device: device pointer for which attributes to be created
4699 * @group: Pointer to group which should be added when device
4700 * is registered with sysfs.
4701 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4702 * group per device to have sysfs attributes.
4703 *
4704 * NOTE: New drivers should not make use of this API; instead new device
4705 * parameter should be exposed via netlink command. This API and mechanism
4706 * exist only for existing drivers.
4707 */
4708static inline void
4709rdma_set_device_sysfs_group(struct ib_device *dev,
4710 const struct attribute_group *group)
4711{
4712 dev->groups[1] = group;
4713}
4714
54747231
PP
4715/**
4716 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4717 *
4718 * @device: device pointer for which ib_device pointer to retrieve
4719 *
4720 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4721 *
4722 */
4723static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4724{
cebe556b
PP
4725 struct ib_core_device *coredev =
4726 container_of(device, struct ib_core_device, dev);
4727
4728 return coredev->owner;
54747231
PP
4729}
4730
4731/**
4732 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4733 * ib_device holder structure from device pointer.
4734 *
4735 * NOTE: New drivers should not make use of this API; This API is only for
4736 * existing drivers who have exposed sysfs entries using
4737 * rdma_set_device_sysfs_group().
4738 */
4739#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4740 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4741
4742bool rdma_dev_access_netns(const struct ib_device *device,
4743 const struct net *net);
d5665a21
MZ
4744
4745#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4746#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4747
4748/**
4749 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4750 * on the flow_label
4751 *
4752 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4753 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4754 * convention.
4755 */
4756static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4757{
4758 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4759
4760 fl_low ^= fl_high >> 14;
4761 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4762}
4763
4764/**
4765 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4766 * local and remote qpn values
4767 *
4768 * This function folded the multiplication results of two qpns, 24 bit each,
4769 * fields, and converts it to a 20 bit results.
4770 *
4771 * This function will create symmetric flow_label value based on the local
4772 * and remote qpn values. this will allow both the requester and responder
4773 * to calculate the same flow_label for a given connection.
4774 *
4775 * This helper function should be used by driver in case the upper layer
4776 * provide a zero flow_label value. This is to improve entropy of RDMA
4777 * traffic in the network.
4778 */
4779static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4780{
4781 u64 v = (u64)lqpn * rqpn;
4782
4783 v ^= v >> 20;
4784 v ^= v >> 40;
4785
4786 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4787}
1da177e4 4788#endif /* IB_VERBS_H */