]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
IB/uverbs: Refactor kern_spec_to_ib_spec_filter
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
2fc77572 58#include <linux/netdevice.h>
e2773c06 59
50174a7f 60#include <linux/if_link.h>
60063497 61#include <linux/atomic.h>
882214e2 62#include <linux/mmu_notifier.h>
7c0f6ba6 63#include <linux/uaccess.h>
43579b5f 64#include <linux/cgroup_rdma.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
02d8883f 66#include <rdma/restrack.h>
0ede73bc 67#include <uapi/rdma/rdma_user_ioctl.h>
1da177e4 68
9abb0d1b
LR
69#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
70
f0626710 71extern struct workqueue_struct *ib_wq;
14d3a3b2 72extern struct workqueue_struct *ib_comp_wq;
f0626710 73
1da177e4
LT
74union ib_gid {
75 u8 raw[16];
76 struct {
97f52eb4
SH
77 __be64 subnet_prefix;
78 __be64 interface_id;
1da177e4
LT
79 } global;
80};
81
e26be1bf
MS
82extern union ib_gid zgid;
83
b39ffa1d
MB
84enum ib_gid_type {
85 /* If link layer is Ethernet, this is RoCE V1 */
86 IB_GID_TYPE_IB = 0,
87 IB_GID_TYPE_ROCE = 0,
7766a99f 88 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
89 IB_GID_TYPE_SIZE
90};
91
7ead4bcb 92#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
93struct ib_gid_attr {
94 struct net_device *ndev;
598ff6ba
PP
95 struct ib_device *device;
96 enum ib_gid_type gid_type;
97 u16 index;
98 u8 port_num;
03db3a2d
MB
99};
100
07ebafba
TT
101enum rdma_node_type {
102 /* IB values map to NodeInfo:NodeType. */
103 RDMA_NODE_IB_CA = 1,
104 RDMA_NODE_IB_SWITCH,
105 RDMA_NODE_IB_ROUTER,
180771a3
UM
106 RDMA_NODE_RNIC,
107 RDMA_NODE_USNIC,
5db5765e 108 RDMA_NODE_USNIC_UDP,
1da177e4
LT
109};
110
a0c1b2a3
EC
111enum {
112 /* set the local administered indication */
113 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
114};
115
07ebafba
TT
116enum rdma_transport_type {
117 RDMA_TRANSPORT_IB,
180771a3 118 RDMA_TRANSPORT_IWARP,
248567f7
UM
119 RDMA_TRANSPORT_USNIC,
120 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
121};
122
6b90a6d6
MW
123enum rdma_protocol_type {
124 RDMA_PROTOCOL_IB,
125 RDMA_PROTOCOL_IBOE,
126 RDMA_PROTOCOL_IWARP,
127 RDMA_PROTOCOL_USNIC_UDP
128};
129
8385fd84
RD
130__attribute_const__ enum rdma_transport_type
131rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 132
c865f246
SK
133enum rdma_network_type {
134 RDMA_NETWORK_IB,
135 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
136 RDMA_NETWORK_IPV4,
137 RDMA_NETWORK_IPV6
138};
139
140static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
141{
142 if (network_type == RDMA_NETWORK_IPV4 ||
143 network_type == RDMA_NETWORK_IPV6)
144 return IB_GID_TYPE_ROCE_UDP_ENCAP;
145
146 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
147 return IB_GID_TYPE_IB;
148}
149
150static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
151 union ib_gid *gid)
152{
153 if (gid_type == IB_GID_TYPE_IB)
154 return RDMA_NETWORK_IB;
155
156 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
157 return RDMA_NETWORK_IPV4;
158 else
159 return RDMA_NETWORK_IPV6;
160}
161
a3f5adaf
EC
162enum rdma_link_layer {
163 IB_LINK_LAYER_UNSPECIFIED,
164 IB_LINK_LAYER_INFINIBAND,
165 IB_LINK_LAYER_ETHERNET,
166};
167
1da177e4 168enum ib_device_cap_flags {
7ca0bc53
LR
169 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
170 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
171 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
172 IB_DEVICE_RAW_MULTI = (1 << 3),
173 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
174 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
175 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
176 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
177 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 178 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
179 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
180 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
181 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
182 IB_DEVICE_SRQ_RESIZE = (1 << 13),
183 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
184
185 /*
186 * This device supports a per-device lkey or stag that can be
187 * used without performing a memory registration for the local
188 * memory. Note that ULPs should never check this flag, but
189 * instead of use the local_dma_lkey flag in the ib_pd structure,
190 * which will always contain a usable lkey.
191 */
7ca0bc53 192 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 193 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 194 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
195 /*
196 * Devices should set IB_DEVICE_UD_IP_SUM if they support
197 * insertion of UDP and TCP checksum on outgoing UD IPoIB
198 * messages and can verify the validity of checksum for
199 * incoming messages. Setting this flag implies that the
200 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
201 */
7ca0bc53
LR
202 IB_DEVICE_UD_IP_CSUM = (1 << 18),
203 IB_DEVICE_UD_TSO = (1 << 19),
204 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
205
206 /*
207 * This device supports the IB "base memory management extension",
208 * which includes support for fast registrations (IB_WR_REG_MR,
209 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
210 * also be set by any iWarp device which must support FRs to comply
211 * to the iWarp verbs spec. iWarp devices also support the
212 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
213 * stag.
214 */
7ca0bc53
LR
215 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
216 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
217 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
218 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
219 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 220 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 221 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
222 /*
223 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
224 * support execution of WQEs that involve synchronization
225 * of I/O operations with single completion queue managed
226 * by hardware.
227 */
78b57f95 228 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
229 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
230 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 231 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 232 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 233 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 234 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 235 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 236 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
237 /* The device supports padding incoming writes to cacheline. */
238 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
239};
240
241enum ib_signature_prot_cap {
242 IB_PROT_T10DIF_TYPE_1 = 1,
243 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
244 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
245};
246
247enum ib_signature_guard_cap {
248 IB_GUARD_T10DIF_CRC = 1,
249 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
250};
251
252enum ib_atomic_cap {
253 IB_ATOMIC_NONE,
254 IB_ATOMIC_HCA,
255 IB_ATOMIC_GLOB
256};
257
860f10a7 258enum ib_odp_general_cap_bits {
25bf14d6
AK
259 IB_ODP_SUPPORT = 1 << 0,
260 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
261};
262
263enum ib_odp_transport_cap_bits {
264 IB_ODP_SUPPORT_SEND = 1 << 0,
265 IB_ODP_SUPPORT_RECV = 1 << 1,
266 IB_ODP_SUPPORT_WRITE = 1 << 2,
267 IB_ODP_SUPPORT_READ = 1 << 3,
268 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
269};
270
271struct ib_odp_caps {
272 uint64_t general_caps;
273 struct {
274 uint32_t rc_odp_caps;
275 uint32_t uc_odp_caps;
276 uint32_t ud_odp_caps;
277 } per_transport_caps;
278};
279
ccf20562
YH
280struct ib_rss_caps {
281 /* Corresponding bit will be set if qp type from
282 * 'enum ib_qp_type' is supported, e.g.
283 * supported_qpts |= 1 << IB_QPT_UD
284 */
285 u32 supported_qpts;
286 u32 max_rwq_indirection_tables;
287 u32 max_rwq_indirection_table_size;
288};
289
6938fc1e
AK
290enum ib_tm_cap_flags {
291 /* Support tag matching on RC transport */
292 IB_TM_CAP_RC = 1 << 0,
293};
294
78b1beb0 295struct ib_tm_caps {
6938fc1e
AK
296 /* Max size of RNDV header */
297 u32 max_rndv_hdr_size;
298 /* Max number of entries in tag matching list */
299 u32 max_num_tags;
300 /* From enum ib_tm_cap_flags */
301 u32 flags;
302 /* Max number of outstanding list operations */
303 u32 max_ops;
304 /* Max number of SGE in tag matching entry */
305 u32 max_sge;
306};
307
bcf4c1ea
MB
308struct ib_cq_init_attr {
309 unsigned int cqe;
310 int comp_vector;
311 u32 flags;
312};
313
869ddcf8
YC
314enum ib_cq_attr_mask {
315 IB_CQ_MODERATE = 1 << 0,
316};
317
18bd9072
YC
318struct ib_cq_caps {
319 u16 max_cq_moderation_count;
320 u16 max_cq_moderation_period;
321};
322
1da177e4
LT
323struct ib_device_attr {
324 u64 fw_ver;
97f52eb4 325 __be64 sys_image_guid;
1da177e4
LT
326 u64 max_mr_size;
327 u64 page_size_cap;
328 u32 vendor_id;
329 u32 vendor_part_id;
330 u32 hw_ver;
331 int max_qp;
332 int max_qp_wr;
fb532d6a 333 u64 device_cap_flags;
1da177e4
LT
334 int max_sge;
335 int max_sge_rd;
336 int max_cq;
337 int max_cqe;
338 int max_mr;
339 int max_pd;
340 int max_qp_rd_atom;
341 int max_ee_rd_atom;
342 int max_res_rd_atom;
343 int max_qp_init_rd_atom;
344 int max_ee_init_rd_atom;
345 enum ib_atomic_cap atomic_cap;
5e80ba8f 346 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
347 int max_ee;
348 int max_rdd;
349 int max_mw;
350 int max_raw_ipv6_qp;
351 int max_raw_ethy_qp;
352 int max_mcast_grp;
353 int max_mcast_qp_attach;
354 int max_total_mcast_qp_attach;
355 int max_ah;
356 int max_fmr;
357 int max_map_per_fmr;
358 int max_srq;
359 int max_srq_wr;
360 int max_srq_sge;
00f7ec36 361 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
362 u16 max_pkeys;
363 u8 local_ca_ack_delay;
1b01d335
SG
364 int sig_prot_cap;
365 int sig_guard_cap;
860f10a7 366 struct ib_odp_caps odp_caps;
24306dc6
MB
367 uint64_t timestamp_mask;
368 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
369 struct ib_rss_caps rss_caps;
370 u32 max_wq_type_rq;
ebaaee25 371 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 372 struct ib_tm_caps tm_caps;
18bd9072 373 struct ib_cq_caps cq_caps;
1da177e4
LT
374};
375
376enum ib_mtu {
377 IB_MTU_256 = 1,
378 IB_MTU_512 = 2,
379 IB_MTU_1024 = 3,
380 IB_MTU_2048 = 4,
381 IB_MTU_4096 = 5
382};
383
384static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
385{
386 switch (mtu) {
387 case IB_MTU_256: return 256;
388 case IB_MTU_512: return 512;
389 case IB_MTU_1024: return 1024;
390 case IB_MTU_2048: return 2048;
391 case IB_MTU_4096: return 4096;
392 default: return -1;
393 }
394}
395
d3f4aadd
AR
396static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
397{
398 if (mtu >= 4096)
399 return IB_MTU_4096;
400 else if (mtu >= 2048)
401 return IB_MTU_2048;
402 else if (mtu >= 1024)
403 return IB_MTU_1024;
404 else if (mtu >= 512)
405 return IB_MTU_512;
406 else
407 return IB_MTU_256;
408}
409
1da177e4
LT
410enum ib_port_state {
411 IB_PORT_NOP = 0,
412 IB_PORT_DOWN = 1,
413 IB_PORT_INIT = 2,
414 IB_PORT_ARMED = 3,
415 IB_PORT_ACTIVE = 4,
416 IB_PORT_ACTIVE_DEFER = 5
417};
418
419enum ib_port_cap_flags {
420 IB_PORT_SM = 1 << 1,
421 IB_PORT_NOTICE_SUP = 1 << 2,
422 IB_PORT_TRAP_SUP = 1 << 3,
423 IB_PORT_OPT_IPD_SUP = 1 << 4,
424 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
425 IB_PORT_SL_MAP_SUP = 1 << 6,
426 IB_PORT_MKEY_NVRAM = 1 << 7,
427 IB_PORT_PKEY_NVRAM = 1 << 8,
428 IB_PORT_LED_INFO_SUP = 1 << 9,
429 IB_PORT_SM_DISABLED = 1 << 10,
430 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
431 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 432 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
433 IB_PORT_CM_SUP = 1 << 16,
434 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
435 IB_PORT_REINIT_SUP = 1 << 18,
436 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
437 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
438 IB_PORT_DR_NOTICE_SUP = 1 << 21,
439 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
440 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
441 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 442 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 443 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
444};
445
446enum ib_port_width {
447 IB_WIDTH_1X = 1,
448 IB_WIDTH_4X = 2,
449 IB_WIDTH_8X = 4,
450 IB_WIDTH_12X = 8
451};
452
453static inline int ib_width_enum_to_int(enum ib_port_width width)
454{
455 switch (width) {
456 case IB_WIDTH_1X: return 1;
457 case IB_WIDTH_4X: return 4;
458 case IB_WIDTH_8X: return 8;
459 case IB_WIDTH_12X: return 12;
460 default: return -1;
461 }
462}
463
2e96691c
OG
464enum ib_port_speed {
465 IB_SPEED_SDR = 1,
466 IB_SPEED_DDR = 2,
467 IB_SPEED_QDR = 4,
468 IB_SPEED_FDR10 = 8,
469 IB_SPEED_FDR = 16,
12113a35
NO
470 IB_SPEED_EDR = 32,
471 IB_SPEED_HDR = 64
2e96691c
OG
472};
473
b40f4757
CL
474/**
475 * struct rdma_hw_stats
e945130b
MB
476 * @lock - Mutex to protect parallel write access to lifespan and values
477 * of counters, which are 64bits and not guaranteeed to be written
478 * atomicaly on 32bits systems.
b40f4757
CL
479 * @timestamp - Used by the core code to track when the last update was
480 * @lifespan - Used by the core code to determine how old the counters
481 * should be before being updated again. Stored in jiffies, defaults
482 * to 10 milliseconds, drivers can override the default be specifying
483 * their own value during their allocation routine.
484 * @name - Array of pointers to static names used for the counters in
485 * directory.
486 * @num_counters - How many hardware counters there are. If name is
487 * shorter than this number, a kernel oops will result. Driver authors
488 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
489 * in their code to prevent this.
490 * @value - Array of u64 counters that are accessed by the sysfs code and
491 * filled in by the drivers get_stats routine
492 */
493struct rdma_hw_stats {
e945130b 494 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
495 unsigned long timestamp;
496 unsigned long lifespan;
497 const char * const *names;
498 int num_counters;
499 u64 value[];
7f624d02
SW
500};
501
b40f4757
CL
502#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
503/**
504 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
505 * for drivers.
506 * @names - Array of static const char *
507 * @num_counters - How many elements in array
508 * @lifespan - How many milliseconds between updates
509 */
510static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
511 const char * const *names, int num_counters,
512 unsigned long lifespan)
513{
514 struct rdma_hw_stats *stats;
515
516 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
517 GFP_KERNEL);
518 if (!stats)
519 return NULL;
520 stats->names = names;
521 stats->num_counters = num_counters;
522 stats->lifespan = msecs_to_jiffies(lifespan);
523
524 return stats;
525}
526
527
f9b22e35
IW
528/* Define bits for the various functionality this port needs to be supported by
529 * the core.
530 */
531/* Management 0x00000FFF */
532#define RDMA_CORE_CAP_IB_MAD 0x00000001
533#define RDMA_CORE_CAP_IB_SMI 0x00000002
534#define RDMA_CORE_CAP_IB_CM 0x00000004
535#define RDMA_CORE_CAP_IW_CM 0x00000008
536#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 537#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
538
539/* Address format 0x000FF000 */
540#define RDMA_CORE_CAP_AF_IB 0x00001000
541#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 542#define RDMA_CORE_CAP_OPA_AH 0x00004000
f9b22e35
IW
543
544/* Protocol 0xFFF00000 */
545#define RDMA_CORE_CAP_PROT_IB 0x00100000
546#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
547#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 548#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 549#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 550#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35
IW
551
552#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
553 | RDMA_CORE_CAP_IB_MAD \
554 | RDMA_CORE_CAP_IB_SMI \
555 | RDMA_CORE_CAP_IB_CM \
556 | RDMA_CORE_CAP_IB_SA \
557 | RDMA_CORE_CAP_AF_IB)
558#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
559 | RDMA_CORE_CAP_IB_MAD \
560 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
561 | RDMA_CORE_CAP_AF_IB \
562 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
563#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
564 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
565 | RDMA_CORE_CAP_IB_MAD \
566 | RDMA_CORE_CAP_IB_CM \
567 | RDMA_CORE_CAP_AF_IB \
568 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
569#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
570 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
571#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
572 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 573
aa773bd4
OG
574#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
575
ce1e055f
OG
576#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
577
1da177e4 578struct ib_port_attr {
fad61ad4 579 u64 subnet_prefix;
1da177e4
LT
580 enum ib_port_state state;
581 enum ib_mtu max_mtu;
582 enum ib_mtu active_mtu;
583 int gid_tbl_len;
584 u32 port_cap_flags;
585 u32 max_msg_sz;
586 u32 bad_pkey_cntr;
587 u32 qkey_viol_cntr;
588 u16 pkey_tbl_len;
db58540b 589 u32 sm_lid;
582faf31 590 u32 lid;
1da177e4
LT
591 u8 lmc;
592 u8 max_vl_num;
593 u8 sm_sl;
594 u8 subnet_timeout;
595 u8 init_type_reply;
596 u8 active_width;
597 u8 active_speed;
598 u8 phys_state;
a0c1b2a3 599 bool grh_required;
1da177e4
LT
600};
601
602enum ib_device_modify_flags {
c5bcbbb9
RD
603 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
604 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
605};
606
bd99fdea
YS
607#define IB_DEVICE_NODE_DESC_MAX 64
608
1da177e4
LT
609struct ib_device_modify {
610 u64 sys_image_guid;
bd99fdea 611 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
612};
613
614enum ib_port_modify_flags {
615 IB_PORT_SHUTDOWN = 1,
616 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
617 IB_PORT_RESET_QKEY_CNTR = (1<<3),
618 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
619};
620
621struct ib_port_modify {
622 u32 set_port_cap_mask;
623 u32 clr_port_cap_mask;
624 u8 init_type;
625};
626
627enum ib_event_type {
628 IB_EVENT_CQ_ERR,
629 IB_EVENT_QP_FATAL,
630 IB_EVENT_QP_REQ_ERR,
631 IB_EVENT_QP_ACCESS_ERR,
632 IB_EVENT_COMM_EST,
633 IB_EVENT_SQ_DRAINED,
634 IB_EVENT_PATH_MIG,
635 IB_EVENT_PATH_MIG_ERR,
636 IB_EVENT_DEVICE_FATAL,
637 IB_EVENT_PORT_ACTIVE,
638 IB_EVENT_PORT_ERR,
639 IB_EVENT_LID_CHANGE,
640 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
641 IB_EVENT_SM_CHANGE,
642 IB_EVENT_SRQ_ERR,
643 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 644 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
645 IB_EVENT_CLIENT_REREGISTER,
646 IB_EVENT_GID_CHANGE,
f213c052 647 IB_EVENT_WQ_FATAL,
1da177e4
LT
648};
649
db7489e0 650const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 651
1da177e4
LT
652struct ib_event {
653 struct ib_device *device;
654 union {
655 struct ib_cq *cq;
656 struct ib_qp *qp;
d41fcc67 657 struct ib_srq *srq;
f213c052 658 struct ib_wq *wq;
1da177e4
LT
659 u8 port_num;
660 } element;
661 enum ib_event_type event;
662};
663
664struct ib_event_handler {
665 struct ib_device *device;
666 void (*handler)(struct ib_event_handler *, struct ib_event *);
667 struct list_head list;
668};
669
670#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
671 do { \
672 (_ptr)->device = _device; \
673 (_ptr)->handler = _handler; \
674 INIT_LIST_HEAD(&(_ptr)->list); \
675 } while (0)
676
677struct ib_global_route {
678 union ib_gid dgid;
679 u32 flow_label;
680 u8 sgid_index;
681 u8 hop_limit;
682 u8 traffic_class;
683};
684
513789ed 685struct ib_grh {
97f52eb4
SH
686 __be32 version_tclass_flow;
687 __be16 paylen;
513789ed
HR
688 u8 next_hdr;
689 u8 hop_limit;
690 union ib_gid sgid;
691 union ib_gid dgid;
692};
693
c865f246
SK
694union rdma_network_hdr {
695 struct ib_grh ibgrh;
696 struct {
697 /* The IB spec states that if it's IPv4, the header
698 * is located in the last 20 bytes of the header.
699 */
700 u8 reserved[20];
701 struct iphdr roce4grh;
702 };
703};
704
7dafbab3
DH
705#define IB_QPN_MASK 0xFFFFFF
706
1da177e4
LT
707enum {
708 IB_MULTICAST_QPN = 0xffffff
709};
710
f3a7c66b 711#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 712#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 713
1da177e4
LT
714enum ib_ah_flags {
715 IB_AH_GRH = 1
716};
717
bf6a9e31
JM
718enum ib_rate {
719 IB_RATE_PORT_CURRENT = 0,
720 IB_RATE_2_5_GBPS = 2,
721 IB_RATE_5_GBPS = 5,
722 IB_RATE_10_GBPS = 3,
723 IB_RATE_20_GBPS = 6,
724 IB_RATE_30_GBPS = 4,
725 IB_RATE_40_GBPS = 7,
726 IB_RATE_60_GBPS = 8,
727 IB_RATE_80_GBPS = 9,
71eeba16
MA
728 IB_RATE_120_GBPS = 10,
729 IB_RATE_14_GBPS = 11,
730 IB_RATE_56_GBPS = 12,
731 IB_RATE_112_GBPS = 13,
732 IB_RATE_168_GBPS = 14,
733 IB_RATE_25_GBPS = 15,
734 IB_RATE_100_GBPS = 16,
735 IB_RATE_200_GBPS = 17,
736 IB_RATE_300_GBPS = 18
bf6a9e31
JM
737};
738
739/**
740 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
741 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
742 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
743 * @rate: rate to convert.
744 */
8385fd84 745__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 746
71eeba16
MA
747/**
748 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
749 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
750 * @rate: rate to convert.
751 */
8385fd84 752__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 753
17cd3a2d
SG
754
755/**
9bee178b
SG
756 * enum ib_mr_type - memory region type
757 * @IB_MR_TYPE_MEM_REG: memory region that is used for
758 * normal registration
759 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
760 * signature operations (data-integrity
761 * capable regions)
f5aa9159
SG
762 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
763 * register any arbitrary sg lists (without
764 * the normal mr constraints - see
765 * ib_map_mr_sg)
17cd3a2d 766 */
9bee178b
SG
767enum ib_mr_type {
768 IB_MR_TYPE_MEM_REG,
769 IB_MR_TYPE_SIGNATURE,
f5aa9159 770 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
771};
772
1b01d335 773/**
78eda2bb
SG
774 * Signature types
775 * IB_SIG_TYPE_NONE: Unprotected.
776 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 777 */
78eda2bb
SG
778enum ib_signature_type {
779 IB_SIG_TYPE_NONE,
780 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
781};
782
783/**
784 * Signature T10-DIF block-guard types
785 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
786 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
787 */
788enum ib_t10_dif_bg_type {
789 IB_T10DIF_CRC,
790 IB_T10DIF_CSUM
791};
792
793/**
794 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
795 * domain.
1b01d335
SG
796 * @bg_type: T10-DIF block guard type (CRC|CSUM)
797 * @pi_interval: protection information interval.
798 * @bg: seed of guard computation.
799 * @app_tag: application tag of guard block
800 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
801 * @ref_remap: Indicate wethear the reftag increments each block
802 * @app_escape: Indicate to skip block check if apptag=0xffff
803 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
804 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
805 */
806struct ib_t10_dif_domain {
1b01d335
SG
807 enum ib_t10_dif_bg_type bg_type;
808 u16 pi_interval;
809 u16 bg;
810 u16 app_tag;
811 u32 ref_tag;
78eda2bb
SG
812 bool ref_remap;
813 bool app_escape;
814 bool ref_escape;
815 u16 apptag_check_mask;
1b01d335
SG
816};
817
818/**
819 * struct ib_sig_domain - Parameters for signature domain
820 * @sig_type: specific signauture type
821 * @sig: union of all signature domain attributes that may
822 * be used to set domain layout.
823 */
824struct ib_sig_domain {
825 enum ib_signature_type sig_type;
826 union {
827 struct ib_t10_dif_domain dif;
828 } sig;
829};
830
831/**
832 * struct ib_sig_attrs - Parameters for signature handover operation
833 * @check_mask: bitmask for signature byte check (8 bytes)
834 * @mem: memory domain layout desciptor.
835 * @wire: wire domain layout desciptor.
836 */
837struct ib_sig_attrs {
838 u8 check_mask;
839 struct ib_sig_domain mem;
840 struct ib_sig_domain wire;
841};
842
843enum ib_sig_err_type {
844 IB_SIG_BAD_GUARD,
845 IB_SIG_BAD_REFTAG,
846 IB_SIG_BAD_APPTAG,
847};
848
849/**
850 * struct ib_sig_err - signature error descriptor
851 */
852struct ib_sig_err {
853 enum ib_sig_err_type err_type;
854 u32 expected;
855 u32 actual;
856 u64 sig_err_offset;
857 u32 key;
858};
859
860enum ib_mr_status_check {
861 IB_MR_CHECK_SIG_STATUS = 1,
862};
863
864/**
865 * struct ib_mr_status - Memory region status container
866 *
867 * @fail_status: Bitmask of MR checks status. For each
868 * failed check a corresponding status bit is set.
869 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
870 * failure.
871 */
872struct ib_mr_status {
873 u32 fail_status;
874 struct ib_sig_err sig_err;
875};
876
bf6a9e31
JM
877/**
878 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
879 * enum.
880 * @mult: multiple to convert.
881 */
8385fd84 882__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 883
44c58487 884enum rdma_ah_attr_type {
87daac68 885 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
886 RDMA_AH_ATTR_TYPE_IB,
887 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 888 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
889};
890
891struct ib_ah_attr {
892 u16 dlid;
893 u8 src_path_bits;
894};
895
896struct roce_ah_attr {
897 u8 dmac[ETH_ALEN];
898};
899
64b4646e
DC
900struct opa_ah_attr {
901 u32 dlid;
902 u8 src_path_bits;
d98bb7f7 903 bool make_grd;
64b4646e
DC
904};
905
90898850 906struct rdma_ah_attr {
1da177e4 907 struct ib_global_route grh;
1da177e4 908 u8 sl;
1da177e4 909 u8 static_rate;
1da177e4 910 u8 port_num;
44c58487
DC
911 u8 ah_flags;
912 enum rdma_ah_attr_type type;
913 union {
914 struct ib_ah_attr ib;
915 struct roce_ah_attr roce;
64b4646e 916 struct opa_ah_attr opa;
44c58487 917 };
1da177e4
LT
918};
919
920enum ib_wc_status {
921 IB_WC_SUCCESS,
922 IB_WC_LOC_LEN_ERR,
923 IB_WC_LOC_QP_OP_ERR,
924 IB_WC_LOC_EEC_OP_ERR,
925 IB_WC_LOC_PROT_ERR,
926 IB_WC_WR_FLUSH_ERR,
927 IB_WC_MW_BIND_ERR,
928 IB_WC_BAD_RESP_ERR,
929 IB_WC_LOC_ACCESS_ERR,
930 IB_WC_REM_INV_REQ_ERR,
931 IB_WC_REM_ACCESS_ERR,
932 IB_WC_REM_OP_ERR,
933 IB_WC_RETRY_EXC_ERR,
934 IB_WC_RNR_RETRY_EXC_ERR,
935 IB_WC_LOC_RDD_VIOL_ERR,
936 IB_WC_REM_INV_RD_REQ_ERR,
937 IB_WC_REM_ABORT_ERR,
938 IB_WC_INV_EECN_ERR,
939 IB_WC_INV_EEC_STATE_ERR,
940 IB_WC_FATAL_ERR,
941 IB_WC_RESP_TIMEOUT_ERR,
942 IB_WC_GENERAL_ERR
943};
944
db7489e0 945const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 946
1da177e4
LT
947enum ib_wc_opcode {
948 IB_WC_SEND,
949 IB_WC_RDMA_WRITE,
950 IB_WC_RDMA_READ,
951 IB_WC_COMP_SWAP,
952 IB_WC_FETCH_ADD,
c93570f2 953 IB_WC_LSO,
00f7ec36 954 IB_WC_LOCAL_INV,
4c67e2bf 955 IB_WC_REG_MR,
5e80ba8f
VS
956 IB_WC_MASKED_COMP_SWAP,
957 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
958/*
959 * Set value of IB_WC_RECV so consumers can test if a completion is a
960 * receive by testing (opcode & IB_WC_RECV).
961 */
962 IB_WC_RECV = 1 << 7,
963 IB_WC_RECV_RDMA_WITH_IMM
964};
965
966enum ib_wc_flags {
967 IB_WC_GRH = 1,
00f7ec36
SW
968 IB_WC_WITH_IMM = (1<<1),
969 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 970 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
971 IB_WC_WITH_SMAC = (1<<4),
972 IB_WC_WITH_VLAN = (1<<5),
c865f246 973 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
974};
975
976struct ib_wc {
14d3a3b2
CH
977 union {
978 u64 wr_id;
979 struct ib_cqe *wr_cqe;
980 };
1da177e4
LT
981 enum ib_wc_status status;
982 enum ib_wc_opcode opcode;
983 u32 vendor_err;
984 u32 byte_len;
062dbb69 985 struct ib_qp *qp;
00f7ec36
SW
986 union {
987 __be32 imm_data;
988 u32 invalidate_rkey;
989 } ex;
1da177e4 990 u32 src_qp;
cd2a6e7d 991 u32 slid;
1da177e4
LT
992 int wc_flags;
993 u16 pkey_index;
1da177e4
LT
994 u8 sl;
995 u8 dlid_path_bits;
996 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
997 u8 smac[ETH_ALEN];
998 u16 vlan_id;
c865f246 999 u8 network_hdr_type;
1da177e4
LT
1000};
1001
ed23a727
RD
1002enum ib_cq_notify_flags {
1003 IB_CQ_SOLICITED = 1 << 0,
1004 IB_CQ_NEXT_COMP = 1 << 1,
1005 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1006 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1007};
1008
96104eda 1009enum ib_srq_type {
418d5130 1010 IB_SRQT_BASIC,
9c2c8496
AK
1011 IB_SRQT_XRC,
1012 IB_SRQT_TM,
96104eda
SH
1013};
1014
1a56ff6d
AK
1015static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1016{
9c2c8496
AK
1017 return srq_type == IB_SRQT_XRC ||
1018 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1019}
1020
d41fcc67
RD
1021enum ib_srq_attr_mask {
1022 IB_SRQ_MAX_WR = 1 << 0,
1023 IB_SRQ_LIMIT = 1 << 1,
1024};
1025
1026struct ib_srq_attr {
1027 u32 max_wr;
1028 u32 max_sge;
1029 u32 srq_limit;
1030};
1031
1032struct ib_srq_init_attr {
1033 void (*event_handler)(struct ib_event *, void *);
1034 void *srq_context;
1035 struct ib_srq_attr attr;
96104eda 1036 enum ib_srq_type srq_type;
418d5130 1037
1a56ff6d
AK
1038 struct {
1039 struct ib_cq *cq;
1040 union {
1041 struct {
1042 struct ib_xrcd *xrcd;
1043 } xrc;
9c2c8496
AK
1044
1045 struct {
1046 u32 max_num_tags;
1047 } tag_matching;
1a56ff6d 1048 };
418d5130 1049 } ext;
d41fcc67
RD
1050};
1051
1da177e4
LT
1052struct ib_qp_cap {
1053 u32 max_send_wr;
1054 u32 max_recv_wr;
1055 u32 max_send_sge;
1056 u32 max_recv_sge;
1057 u32 max_inline_data;
a060b562
CH
1058
1059 /*
1060 * Maximum number of rdma_rw_ctx structures in flight at a time.
1061 * ib_create_qp() will calculate the right amount of neededed WRs
1062 * and MRs based on this.
1063 */
1064 u32 max_rdma_ctxs;
1da177e4
LT
1065};
1066
1067enum ib_sig_type {
1068 IB_SIGNAL_ALL_WR,
1069 IB_SIGNAL_REQ_WR
1070};
1071
1072enum ib_qp_type {
1073 /*
1074 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1075 * here (and in that order) since the MAD layer uses them as
1076 * indices into a 2-entry table.
1077 */
1078 IB_QPT_SMI,
1079 IB_QPT_GSI,
1080
1081 IB_QPT_RC,
1082 IB_QPT_UC,
1083 IB_QPT_UD,
1084 IB_QPT_RAW_IPV6,
b42b63cf 1085 IB_QPT_RAW_ETHERTYPE,
c938a616 1086 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1087 IB_QPT_XRC_INI = 9,
1088 IB_QPT_XRC_TGT,
0134f16b 1089 IB_QPT_MAX,
8011c1e3 1090 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1091 /* Reserve a range for qp types internal to the low level driver.
1092 * These qp types will not be visible at the IB core layer, so the
1093 * IB_QPT_MAX usages should not be affected in the core layer
1094 */
1095 IB_QPT_RESERVED1 = 0x1000,
1096 IB_QPT_RESERVED2,
1097 IB_QPT_RESERVED3,
1098 IB_QPT_RESERVED4,
1099 IB_QPT_RESERVED5,
1100 IB_QPT_RESERVED6,
1101 IB_QPT_RESERVED7,
1102 IB_QPT_RESERVED8,
1103 IB_QPT_RESERVED9,
1104 IB_QPT_RESERVED10,
1da177e4
LT
1105};
1106
b846f25a 1107enum ib_qp_create_flags {
47ee1b9f
RL
1108 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1109 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1110 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1111 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1112 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1113 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1114 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1115 /* FREE = 1 << 7, */
b531b909 1116 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1117 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1118 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1119 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1120 /* reserve bits 26-31 for low level drivers' internal use */
1121 IB_QP_CREATE_RESERVED_START = 1 << 26,
1122 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1123};
1124
73c40c61
YH
1125/*
1126 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1127 * callback to destroy the passed in QP.
1128 */
1129
1da177e4
LT
1130struct ib_qp_init_attr {
1131 void (*event_handler)(struct ib_event *, void *);
1132 void *qp_context;
1133 struct ib_cq *send_cq;
1134 struct ib_cq *recv_cq;
1135 struct ib_srq *srq;
b42b63cf 1136 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1137 struct ib_qp_cap cap;
1138 enum ib_sig_type sq_sig_type;
1139 enum ib_qp_type qp_type;
b846f25a 1140 enum ib_qp_create_flags create_flags;
a060b562
CH
1141
1142 /*
1143 * Only needed for special QP types, or when using the RW API.
1144 */
1145 u8 port_num;
a9017e23 1146 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1147 u32 source_qpn;
1da177e4
LT
1148};
1149
0e0ec7e0
SH
1150struct ib_qp_open_attr {
1151 void (*event_handler)(struct ib_event *, void *);
1152 void *qp_context;
1153 u32 qp_num;
1154 enum ib_qp_type qp_type;
1155};
1156
1da177e4
LT
1157enum ib_rnr_timeout {
1158 IB_RNR_TIMER_655_36 = 0,
1159 IB_RNR_TIMER_000_01 = 1,
1160 IB_RNR_TIMER_000_02 = 2,
1161 IB_RNR_TIMER_000_03 = 3,
1162 IB_RNR_TIMER_000_04 = 4,
1163 IB_RNR_TIMER_000_06 = 5,
1164 IB_RNR_TIMER_000_08 = 6,
1165 IB_RNR_TIMER_000_12 = 7,
1166 IB_RNR_TIMER_000_16 = 8,
1167 IB_RNR_TIMER_000_24 = 9,
1168 IB_RNR_TIMER_000_32 = 10,
1169 IB_RNR_TIMER_000_48 = 11,
1170 IB_RNR_TIMER_000_64 = 12,
1171 IB_RNR_TIMER_000_96 = 13,
1172 IB_RNR_TIMER_001_28 = 14,
1173 IB_RNR_TIMER_001_92 = 15,
1174 IB_RNR_TIMER_002_56 = 16,
1175 IB_RNR_TIMER_003_84 = 17,
1176 IB_RNR_TIMER_005_12 = 18,
1177 IB_RNR_TIMER_007_68 = 19,
1178 IB_RNR_TIMER_010_24 = 20,
1179 IB_RNR_TIMER_015_36 = 21,
1180 IB_RNR_TIMER_020_48 = 22,
1181 IB_RNR_TIMER_030_72 = 23,
1182 IB_RNR_TIMER_040_96 = 24,
1183 IB_RNR_TIMER_061_44 = 25,
1184 IB_RNR_TIMER_081_92 = 26,
1185 IB_RNR_TIMER_122_88 = 27,
1186 IB_RNR_TIMER_163_84 = 28,
1187 IB_RNR_TIMER_245_76 = 29,
1188 IB_RNR_TIMER_327_68 = 30,
1189 IB_RNR_TIMER_491_52 = 31
1190};
1191
1192enum ib_qp_attr_mask {
1193 IB_QP_STATE = 1,
1194 IB_QP_CUR_STATE = (1<<1),
1195 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1196 IB_QP_ACCESS_FLAGS = (1<<3),
1197 IB_QP_PKEY_INDEX = (1<<4),
1198 IB_QP_PORT = (1<<5),
1199 IB_QP_QKEY = (1<<6),
1200 IB_QP_AV = (1<<7),
1201 IB_QP_PATH_MTU = (1<<8),
1202 IB_QP_TIMEOUT = (1<<9),
1203 IB_QP_RETRY_CNT = (1<<10),
1204 IB_QP_RNR_RETRY = (1<<11),
1205 IB_QP_RQ_PSN = (1<<12),
1206 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1207 IB_QP_ALT_PATH = (1<<14),
1208 IB_QP_MIN_RNR_TIMER = (1<<15),
1209 IB_QP_SQ_PSN = (1<<16),
1210 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1211 IB_QP_PATH_MIG_STATE = (1<<18),
1212 IB_QP_CAP = (1<<19),
dd5f03be 1213 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1214 IB_QP_RESERVED1 = (1<<21),
1215 IB_QP_RESERVED2 = (1<<22),
1216 IB_QP_RESERVED3 = (1<<23),
1217 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1218 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1219};
1220
1221enum ib_qp_state {
1222 IB_QPS_RESET,
1223 IB_QPS_INIT,
1224 IB_QPS_RTR,
1225 IB_QPS_RTS,
1226 IB_QPS_SQD,
1227 IB_QPS_SQE,
1228 IB_QPS_ERR
1229};
1230
1231enum ib_mig_state {
1232 IB_MIG_MIGRATED,
1233 IB_MIG_REARM,
1234 IB_MIG_ARMED
1235};
1236
7083e42e
SM
1237enum ib_mw_type {
1238 IB_MW_TYPE_1 = 1,
1239 IB_MW_TYPE_2 = 2
1240};
1241
1da177e4
LT
1242struct ib_qp_attr {
1243 enum ib_qp_state qp_state;
1244 enum ib_qp_state cur_qp_state;
1245 enum ib_mtu path_mtu;
1246 enum ib_mig_state path_mig_state;
1247 u32 qkey;
1248 u32 rq_psn;
1249 u32 sq_psn;
1250 u32 dest_qp_num;
1251 int qp_access_flags;
1252 struct ib_qp_cap cap;
90898850
DC
1253 struct rdma_ah_attr ah_attr;
1254 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1255 u16 pkey_index;
1256 u16 alt_pkey_index;
1257 u8 en_sqd_async_notify;
1258 u8 sq_draining;
1259 u8 max_rd_atomic;
1260 u8 max_dest_rd_atomic;
1261 u8 min_rnr_timer;
1262 u8 port_num;
1263 u8 timeout;
1264 u8 retry_cnt;
1265 u8 rnr_retry;
1266 u8 alt_port_num;
1267 u8 alt_timeout;
528e5a1b 1268 u32 rate_limit;
1da177e4
LT
1269};
1270
1271enum ib_wr_opcode {
1272 IB_WR_RDMA_WRITE,
1273 IB_WR_RDMA_WRITE_WITH_IMM,
1274 IB_WR_SEND,
1275 IB_WR_SEND_WITH_IMM,
1276 IB_WR_RDMA_READ,
1277 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1278 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1279 IB_WR_LSO,
1280 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1281 IB_WR_RDMA_READ_WITH_INV,
1282 IB_WR_LOCAL_INV,
4c67e2bf 1283 IB_WR_REG_MR,
5e80ba8f
VS
1284 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1285 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1286 IB_WR_REG_SIG_MR,
0134f16b
JM
1287 /* reserve values for low level drivers' internal use.
1288 * These values will not be used at all in the ib core layer.
1289 */
1290 IB_WR_RESERVED1 = 0xf0,
1291 IB_WR_RESERVED2,
1292 IB_WR_RESERVED3,
1293 IB_WR_RESERVED4,
1294 IB_WR_RESERVED5,
1295 IB_WR_RESERVED6,
1296 IB_WR_RESERVED7,
1297 IB_WR_RESERVED8,
1298 IB_WR_RESERVED9,
1299 IB_WR_RESERVED10,
1da177e4
LT
1300};
1301
1302enum ib_send_flags {
1303 IB_SEND_FENCE = 1,
1304 IB_SEND_SIGNALED = (1<<1),
1305 IB_SEND_SOLICITED = (1<<2),
e0605d91 1306 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1307 IB_SEND_IP_CSUM = (1<<4),
1308
1309 /* reserve bits 26-31 for low level drivers' internal use */
1310 IB_SEND_RESERVED_START = (1 << 26),
1311 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1312};
1313
1314struct ib_sge {
1315 u64 addr;
1316 u32 length;
1317 u32 lkey;
1318};
1319
14d3a3b2
CH
1320struct ib_cqe {
1321 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1322};
1323
1da177e4
LT
1324struct ib_send_wr {
1325 struct ib_send_wr *next;
14d3a3b2
CH
1326 union {
1327 u64 wr_id;
1328 struct ib_cqe *wr_cqe;
1329 };
1da177e4
LT
1330 struct ib_sge *sg_list;
1331 int num_sge;
1332 enum ib_wr_opcode opcode;
1333 int send_flags;
0f39cf3d
RD
1334 union {
1335 __be32 imm_data;
1336 u32 invalidate_rkey;
1337 } ex;
1da177e4
LT
1338};
1339
e622f2f4
CH
1340struct ib_rdma_wr {
1341 struct ib_send_wr wr;
1342 u64 remote_addr;
1343 u32 rkey;
1344};
1345
1346static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1347{
1348 return container_of(wr, struct ib_rdma_wr, wr);
1349}
1350
1351struct ib_atomic_wr {
1352 struct ib_send_wr wr;
1353 u64 remote_addr;
1354 u64 compare_add;
1355 u64 swap;
1356 u64 compare_add_mask;
1357 u64 swap_mask;
1358 u32 rkey;
1359};
1360
1361static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1362{
1363 return container_of(wr, struct ib_atomic_wr, wr);
1364}
1365
1366struct ib_ud_wr {
1367 struct ib_send_wr wr;
1368 struct ib_ah *ah;
1369 void *header;
1370 int hlen;
1371 int mss;
1372 u32 remote_qpn;
1373 u32 remote_qkey;
1374 u16 pkey_index; /* valid for GSI only */
1375 u8 port_num; /* valid for DR SMPs on switch only */
1376};
1377
1378static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1379{
1380 return container_of(wr, struct ib_ud_wr, wr);
1381}
1382
4c67e2bf
SG
1383struct ib_reg_wr {
1384 struct ib_send_wr wr;
1385 struct ib_mr *mr;
1386 u32 key;
1387 int access;
1388};
1389
1390static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1391{
1392 return container_of(wr, struct ib_reg_wr, wr);
1393}
1394
e622f2f4
CH
1395struct ib_sig_handover_wr {
1396 struct ib_send_wr wr;
1397 struct ib_sig_attrs *sig_attrs;
1398 struct ib_mr *sig_mr;
1399 int access_flags;
1400 struct ib_sge *prot;
1401};
1402
1403static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1404{
1405 return container_of(wr, struct ib_sig_handover_wr, wr);
1406}
1407
1da177e4
LT
1408struct ib_recv_wr {
1409 struct ib_recv_wr *next;
14d3a3b2
CH
1410 union {
1411 u64 wr_id;
1412 struct ib_cqe *wr_cqe;
1413 };
1da177e4
LT
1414 struct ib_sge *sg_list;
1415 int num_sge;
1416};
1417
1418enum ib_access_flags {
1419 IB_ACCESS_LOCAL_WRITE = 1,
1420 IB_ACCESS_REMOTE_WRITE = (1<<1),
1421 IB_ACCESS_REMOTE_READ = (1<<2),
1422 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1423 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1424 IB_ZERO_BASED = (1<<5),
1425 IB_ACCESS_ON_DEMAND = (1<<6),
0008b84e 1426 IB_ACCESS_HUGETLB = (1<<7),
1da177e4
LT
1427};
1428
b7d3e0a9
CH
1429/*
1430 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1431 * are hidden here instead of a uapi header!
1432 */
1da177e4
LT
1433enum ib_mr_rereg_flags {
1434 IB_MR_REREG_TRANS = 1,
1435 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1436 IB_MR_REREG_ACCESS = (1<<2),
1437 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1438};
1439
1da177e4
LT
1440struct ib_fmr_attr {
1441 int max_pages;
1442 int max_maps;
d36f34aa 1443 u8 page_shift;
1da177e4
LT
1444};
1445
882214e2
HE
1446struct ib_umem;
1447
38321256
MB
1448enum rdma_remove_reason {
1449 /* Userspace requested uobject deletion. Call could fail */
1450 RDMA_REMOVE_DESTROY,
1451 /* Context deletion. This call should delete the actual object itself */
1452 RDMA_REMOVE_CLOSE,
1453 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1454 RDMA_REMOVE_DRIVER_REMOVE,
1455 /* Context is being cleaned-up, but commit was just completed */
1456 RDMA_REMOVE_DURING_CLEANUP,
1457};
1458
43579b5f
PP
1459struct ib_rdmacg_object {
1460#ifdef CONFIG_CGROUP_RDMA
1461 struct rdma_cgroup *cg; /* owner rdma cgroup */
1462#endif
1463};
1464
e2773c06
RD
1465struct ib_ucontext {
1466 struct ib_device *device;
771addf6 1467 struct ib_uverbs_file *ufile;
f7c6a7b5 1468 int closing;
8ada2c1c 1469
38321256
MB
1470 /* locking the uobjects_list */
1471 struct mutex uobjects_lock;
1472 struct list_head uobjects;
1473 /* protects cleanup process from other actions */
1474 struct rw_semaphore cleanup_rwsem;
1475 enum rdma_remove_reason cleanup_reason;
1476
8ada2c1c 1477 struct pid *tgid;
882214e2 1478#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
f808c13f 1479 struct rb_root_cached umem_tree;
882214e2
HE
1480 /*
1481 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1482 * mmu notifiers registration.
1483 */
1484 struct rw_semaphore umem_rwsem;
1485 void (*invalidate_range)(struct ib_umem *umem,
1486 unsigned long start, unsigned long end);
1487
1488 struct mmu_notifier mn;
1489 atomic_t notifier_count;
1490 /* A list of umems that don't have private mmu notifier counters yet. */
1491 struct list_head no_private_counters;
1492 int odp_mrs_count;
1493#endif
43579b5f
PP
1494
1495 struct ib_rdmacg_object cg_obj;
e2773c06
RD
1496};
1497
1498struct ib_uobject {
1499 u64 user_handle; /* handle given to us by userspace */
1500 struct ib_ucontext *context; /* associated user context */
9ead190b 1501 void *object; /* containing object */
e2773c06 1502 struct list_head list; /* link to context's list */
43579b5f 1503 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1504 int id; /* index into kernel idr */
9ead190b 1505 struct kref ref;
38321256 1506 atomic_t usecnt; /* protects exclusive access */
d144da8c 1507 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256
MB
1508
1509 const struct uverbs_obj_type *type;
e2773c06
RD
1510};
1511
cf8966b3
MB
1512struct ib_uobject_file {
1513 struct ib_uobject uobj;
1514 /* ufile contains the lock between context release and file close */
1515 struct ib_uverbs_file *ufile;
e2773c06
RD
1516};
1517
e2773c06 1518struct ib_udata {
309243ec 1519 const void __user *inbuf;
e2773c06
RD
1520 void __user *outbuf;
1521 size_t inlen;
1522 size_t outlen;
1523};
1524
1da177e4 1525struct ib_pd {
96249d70 1526 u32 local_dma_lkey;
ed082d36 1527 u32 flags;
e2773c06
RD
1528 struct ib_device *device;
1529 struct ib_uobject *uobject;
1530 atomic_t usecnt; /* count all resources */
50d46335 1531
ed082d36
CH
1532 u32 unsafe_global_rkey;
1533
50d46335
CH
1534 /*
1535 * Implementation details of the RDMA core, don't use in drivers:
1536 */
1537 struct ib_mr *__internal_mr;
02d8883f 1538 struct rdma_restrack_entry res;
1da177e4
LT
1539};
1540
59991f94
SH
1541struct ib_xrcd {
1542 struct ib_device *device;
d3d72d90 1543 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1544 struct inode *inode;
d3d72d90
SH
1545
1546 struct mutex tgt_qp_mutex;
1547 struct list_head tgt_qp_list;
02d8883f
LR
1548 /*
1549 * Implementation details of the RDMA core, don't use in drivers:
1550 */
1551 struct rdma_restrack_entry res;
59991f94
SH
1552};
1553
1da177e4
LT
1554struct ib_ah {
1555 struct ib_device *device;
1556 struct ib_pd *pd;
e2773c06 1557 struct ib_uobject *uobject;
44c58487 1558 enum rdma_ah_attr_type type;
1da177e4
LT
1559};
1560
1561typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1562
14d3a3b2
CH
1563enum ib_poll_context {
1564 IB_POLL_DIRECT, /* caller context, no hw completions */
1565 IB_POLL_SOFTIRQ, /* poll from softirq context */
1566 IB_POLL_WORKQUEUE, /* poll from workqueue */
1567};
1568
1da177e4 1569struct ib_cq {
e2773c06
RD
1570 struct ib_device *device;
1571 struct ib_uobject *uobject;
1572 ib_comp_handler comp_handler;
1573 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1574 void *cq_context;
e2773c06
RD
1575 int cqe;
1576 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1577 enum ib_poll_context poll_ctx;
1578 struct ib_wc *wc;
1579 union {
1580 struct irq_poll iop;
1581 struct work_struct work;
1582 };
02d8883f
LR
1583 /*
1584 * Implementation details of the RDMA core, don't use in drivers:
1585 */
1586 struct rdma_restrack_entry res;
1da177e4
LT
1587};
1588
1589struct ib_srq {
d41fcc67
RD
1590 struct ib_device *device;
1591 struct ib_pd *pd;
1592 struct ib_uobject *uobject;
1593 void (*event_handler)(struct ib_event *, void *);
1594 void *srq_context;
96104eda 1595 enum ib_srq_type srq_type;
1da177e4 1596 atomic_t usecnt;
418d5130 1597
1a56ff6d
AK
1598 struct {
1599 struct ib_cq *cq;
1600 union {
1601 struct {
1602 struct ib_xrcd *xrcd;
1603 u32 srq_num;
1604 } xrc;
1605 };
418d5130 1606 } ext;
1da177e4
LT
1607};
1608
ebaaee25
NO
1609enum ib_raw_packet_caps {
1610 /* Strip cvlan from incoming packet and report it in the matching work
1611 * completion is supported.
1612 */
1613 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1614 /* Scatter FCS field of an incoming packet to host memory is supported.
1615 */
1616 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1617 /* Checksum offloads are supported (for both send and receive). */
1618 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1619 /* When a packet is received for an RQ with no receive WQEs, the
1620 * packet processing is delayed.
1621 */
1622 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1623};
1624
5fd251c8
YH
1625enum ib_wq_type {
1626 IB_WQT_RQ
1627};
1628
1629enum ib_wq_state {
1630 IB_WQS_RESET,
1631 IB_WQS_RDY,
1632 IB_WQS_ERR
1633};
1634
1635struct ib_wq {
1636 struct ib_device *device;
1637 struct ib_uobject *uobject;
1638 void *wq_context;
1639 void (*event_handler)(struct ib_event *, void *);
1640 struct ib_pd *pd;
1641 struct ib_cq *cq;
1642 u32 wq_num;
1643 enum ib_wq_state state;
1644 enum ib_wq_type wq_type;
1645 atomic_t usecnt;
1646};
1647
10bac72b
NO
1648enum ib_wq_flags {
1649 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1650 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1651 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1652 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1653};
1654
5fd251c8
YH
1655struct ib_wq_init_attr {
1656 void *wq_context;
1657 enum ib_wq_type wq_type;
1658 u32 max_wr;
1659 u32 max_sge;
1660 struct ib_cq *cq;
1661 void (*event_handler)(struct ib_event *, void *);
10bac72b 1662 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1663};
1664
1665enum ib_wq_attr_mask {
10bac72b
NO
1666 IB_WQ_STATE = 1 << 0,
1667 IB_WQ_CUR_STATE = 1 << 1,
1668 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1669};
1670
1671struct ib_wq_attr {
1672 enum ib_wq_state wq_state;
1673 enum ib_wq_state curr_wq_state;
10bac72b
NO
1674 u32 flags; /* Use enum ib_wq_flags */
1675 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1676};
1677
6d39786b
YH
1678struct ib_rwq_ind_table {
1679 struct ib_device *device;
1680 struct ib_uobject *uobject;
1681 atomic_t usecnt;
1682 u32 ind_tbl_num;
1683 u32 log_ind_tbl_size;
1684 struct ib_wq **ind_tbl;
1685};
1686
1687struct ib_rwq_ind_table_init_attr {
1688 u32 log_ind_tbl_size;
1689 /* Each entry is a pointer to Receive Work Queue */
1690 struct ib_wq **ind_tbl;
1691};
1692
d291f1a6
DJ
1693enum port_pkey_state {
1694 IB_PORT_PKEY_NOT_VALID = 0,
1695 IB_PORT_PKEY_VALID = 1,
1696 IB_PORT_PKEY_LISTED = 2,
1697};
1698
1699struct ib_qp_security;
1700
1701struct ib_port_pkey {
1702 enum port_pkey_state state;
1703 u16 pkey_index;
1704 u8 port_num;
1705 struct list_head qp_list;
1706 struct list_head to_error_list;
1707 struct ib_qp_security *sec;
1708};
1709
1710struct ib_ports_pkeys {
1711 struct ib_port_pkey main;
1712 struct ib_port_pkey alt;
1713};
1714
1715struct ib_qp_security {
1716 struct ib_qp *qp;
1717 struct ib_device *dev;
1718 /* Hold this mutex when changing port and pkey settings. */
1719 struct mutex mutex;
1720 struct ib_ports_pkeys *ports_pkeys;
1721 /* A list of all open shared QP handles. Required to enforce security
1722 * properly for all users of a shared QP.
1723 */
1724 struct list_head shared_qp_list;
1725 void *security;
1726 bool destroying;
1727 atomic_t error_list_count;
1728 struct completion error_complete;
1729 int error_comps_pending;
1730};
1731
632bc3f6
BVA
1732/*
1733 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1734 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1735 */
1da177e4
LT
1736struct ib_qp {
1737 struct ib_device *device;
1738 struct ib_pd *pd;
1739 struct ib_cq *send_cq;
1740 struct ib_cq *recv_cq;
fffb0383
CH
1741 spinlock_t mr_lock;
1742 int mrs_used;
a060b562 1743 struct list_head rdma_mrs;
0e353e34 1744 struct list_head sig_mrs;
1da177e4 1745 struct ib_srq *srq;
b42b63cf 1746 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1747 struct list_head xrcd_list;
fffb0383 1748
319a441d
HHZ
1749 /* count times opened, mcast attaches, flow attaches */
1750 atomic_t usecnt;
0e0ec7e0
SH
1751 struct list_head open_list;
1752 struct ib_qp *real_qp;
e2773c06 1753 struct ib_uobject *uobject;
1da177e4
LT
1754 void (*event_handler)(struct ib_event *, void *);
1755 void *qp_context;
1756 u32 qp_num;
632bc3f6
BVA
1757 u32 max_write_sge;
1758 u32 max_read_sge;
1da177e4 1759 enum ib_qp_type qp_type;
a9017e23 1760 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1761 struct ib_qp_security *qp_sec;
498ca3c8 1762 u8 port;
02d8883f
LR
1763
1764 /*
1765 * Implementation details of the RDMA core, don't use in drivers:
1766 */
1767 struct rdma_restrack_entry res;
1da177e4
LT
1768};
1769
1770struct ib_mr {
e2773c06
RD
1771 struct ib_device *device;
1772 struct ib_pd *pd;
e2773c06
RD
1773 u32 lkey;
1774 u32 rkey;
4c67e2bf 1775 u64 iova;
edd31551 1776 u64 length;
4c67e2bf 1777 unsigned int page_size;
d4a85c30 1778 bool need_inval;
fffb0383
CH
1779 union {
1780 struct ib_uobject *uobject; /* user */
1781 struct list_head qp_entry; /* FR */
1782 };
fccec5b8
SW
1783
1784 /*
1785 * Implementation details of the RDMA core, don't use in drivers:
1786 */
1787 struct rdma_restrack_entry res;
1da177e4
LT
1788};
1789
1790struct ib_mw {
1791 struct ib_device *device;
1792 struct ib_pd *pd;
e2773c06 1793 struct ib_uobject *uobject;
1da177e4 1794 u32 rkey;
7083e42e 1795 enum ib_mw_type type;
1da177e4
LT
1796};
1797
1798struct ib_fmr {
1799 struct ib_device *device;
1800 struct ib_pd *pd;
1801 struct list_head list;
1802 u32 lkey;
1803 u32 rkey;
1804};
1805
319a441d
HHZ
1806/* Supported steering options */
1807enum ib_flow_attr_type {
1808 /* steering according to rule specifications */
1809 IB_FLOW_ATTR_NORMAL = 0x0,
1810 /* default unicast and multicast rule -
1811 * receive all Eth traffic which isn't steered to any QP
1812 */
1813 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1814 /* default multicast rule -
1815 * receive all Eth multicast traffic which isn't steered to any QP
1816 */
1817 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1818 /* sniffer rule - receive all port traffic */
1819 IB_FLOW_ATTR_SNIFFER = 0x3
1820};
1821
1822/* Supported steering header types */
1823enum ib_flow_spec_type {
1824 /* L2 headers*/
76bd23b3
MR
1825 IB_FLOW_SPEC_ETH = 0x20,
1826 IB_FLOW_SPEC_IB = 0x22,
319a441d 1827 /* L3 header*/
76bd23b3
MR
1828 IB_FLOW_SPEC_IPV4 = 0x30,
1829 IB_FLOW_SPEC_IPV6 = 0x31,
319a441d 1830 /* L4 headers*/
76bd23b3
MR
1831 IB_FLOW_SPEC_TCP = 0x40,
1832 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1833 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
fbf46860 1834 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1835 /* Actions */
1836 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1837 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
319a441d 1838};
240ae00e 1839#define IB_FLOW_SPEC_LAYER_MASK 0xF0
fbf46860 1840#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
22878dbc 1841
319a441d
HHZ
1842/* Flow steering rule priority is set according to it's domain.
1843 * Lower domain value means higher priority.
1844 */
1845enum ib_flow_domain {
1846 IB_FLOW_DOMAIN_USER,
1847 IB_FLOW_DOMAIN_ETHTOOL,
1848 IB_FLOW_DOMAIN_RFS,
1849 IB_FLOW_DOMAIN_NIC,
1850 IB_FLOW_DOMAIN_NUM /* Must be last */
1851};
1852
a3100a78
MV
1853enum ib_flow_flags {
1854 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1855 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1856};
1857
319a441d
HHZ
1858struct ib_flow_eth_filter {
1859 u8 dst_mac[6];
1860 u8 src_mac[6];
1861 __be16 ether_type;
1862 __be16 vlan_tag;
15dfbd6b
MG
1863 /* Must be last */
1864 u8 real_sz[0];
319a441d
HHZ
1865};
1866
1867struct ib_flow_spec_eth {
fbf46860 1868 u32 type;
319a441d
HHZ
1869 u16 size;
1870 struct ib_flow_eth_filter val;
1871 struct ib_flow_eth_filter mask;
1872};
1873
240ae00e
MB
1874struct ib_flow_ib_filter {
1875 __be16 dlid;
1876 __u8 sl;
15dfbd6b
MG
1877 /* Must be last */
1878 u8 real_sz[0];
240ae00e
MB
1879};
1880
1881struct ib_flow_spec_ib {
fbf46860 1882 u32 type;
240ae00e
MB
1883 u16 size;
1884 struct ib_flow_ib_filter val;
1885 struct ib_flow_ib_filter mask;
1886};
1887
989a3a8f
MG
1888/* IPv4 header flags */
1889enum ib_ipv4_flags {
1890 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1891 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1892 last have this flag set */
1893};
1894
319a441d
HHZ
1895struct ib_flow_ipv4_filter {
1896 __be32 src_ip;
1897 __be32 dst_ip;
989a3a8f
MG
1898 u8 proto;
1899 u8 tos;
1900 u8 ttl;
1901 u8 flags;
15dfbd6b
MG
1902 /* Must be last */
1903 u8 real_sz[0];
319a441d
HHZ
1904};
1905
1906struct ib_flow_spec_ipv4 {
fbf46860 1907 u32 type;
319a441d
HHZ
1908 u16 size;
1909 struct ib_flow_ipv4_filter val;
1910 struct ib_flow_ipv4_filter mask;
1911};
1912
4c2aae71
MG
1913struct ib_flow_ipv6_filter {
1914 u8 src_ip[16];
1915 u8 dst_ip[16];
a72c6a2b
MG
1916 __be32 flow_label;
1917 u8 next_hdr;
1918 u8 traffic_class;
1919 u8 hop_limit;
15dfbd6b
MG
1920 /* Must be last */
1921 u8 real_sz[0];
4c2aae71
MG
1922};
1923
1924struct ib_flow_spec_ipv6 {
fbf46860 1925 u32 type;
4c2aae71
MG
1926 u16 size;
1927 struct ib_flow_ipv6_filter val;
1928 struct ib_flow_ipv6_filter mask;
1929};
1930
319a441d
HHZ
1931struct ib_flow_tcp_udp_filter {
1932 __be16 dst_port;
1933 __be16 src_port;
15dfbd6b
MG
1934 /* Must be last */
1935 u8 real_sz[0];
319a441d
HHZ
1936};
1937
1938struct ib_flow_spec_tcp_udp {
fbf46860 1939 u32 type;
319a441d
HHZ
1940 u16 size;
1941 struct ib_flow_tcp_udp_filter val;
1942 struct ib_flow_tcp_udp_filter mask;
1943};
1944
0dbf3332
MR
1945struct ib_flow_tunnel_filter {
1946 __be32 tunnel_id;
1947 u8 real_sz[0];
1948};
1949
1950/* ib_flow_spec_tunnel describes the Vxlan tunnel
1951 * the tunnel_id from val has the vni value
1952 */
1953struct ib_flow_spec_tunnel {
fbf46860 1954 u32 type;
0dbf3332
MR
1955 u16 size;
1956 struct ib_flow_tunnel_filter val;
1957 struct ib_flow_tunnel_filter mask;
1958};
1959
460d0198
MR
1960struct ib_flow_spec_action_tag {
1961 enum ib_flow_spec_type type;
1962 u16 size;
1963 u32 tag_id;
1964};
1965
483a3966
SS
1966struct ib_flow_spec_action_drop {
1967 enum ib_flow_spec_type type;
1968 u16 size;
1969};
1970
319a441d
HHZ
1971union ib_flow_spec {
1972 struct {
fbf46860 1973 u32 type;
319a441d
HHZ
1974 u16 size;
1975 };
1976 struct ib_flow_spec_eth eth;
240ae00e 1977 struct ib_flow_spec_ib ib;
319a441d
HHZ
1978 struct ib_flow_spec_ipv4 ipv4;
1979 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 1980 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 1981 struct ib_flow_spec_tunnel tunnel;
460d0198 1982 struct ib_flow_spec_action_tag flow_tag;
483a3966 1983 struct ib_flow_spec_action_drop drop;
319a441d
HHZ
1984};
1985
1986struct ib_flow_attr {
1987 enum ib_flow_attr_type type;
1988 u16 size;
1989 u16 priority;
1990 u32 flags;
1991 u8 num_of_specs;
1992 u8 port;
1993 /* Following are the optional layers according to user request
1994 * struct ib_flow_spec_xxx
1995 * struct ib_flow_spec_yyy
1996 */
1997};
1998
1999struct ib_flow {
2000 struct ib_qp *qp;
2001 struct ib_uobject *uobject;
2002};
2003
4cd7c947 2004struct ib_mad_hdr;
1da177e4
LT
2005struct ib_grh;
2006
2007enum ib_process_mad_flags {
2008 IB_MAD_IGNORE_MKEY = 1,
2009 IB_MAD_IGNORE_BKEY = 2,
2010 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2011};
2012
2013enum ib_mad_result {
2014 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2015 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2016 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2017 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2018};
2019
21d6454a 2020struct ib_port_cache {
883c71fe 2021 u64 subnet_prefix;
21d6454a
JW
2022 struct ib_pkey_cache *pkey;
2023 struct ib_gid_table *gid;
2024 u8 lmc;
2025 enum ib_port_state port_state;
2026};
2027
1da177e4
LT
2028struct ib_cache {
2029 rwlock_t lock;
2030 struct ib_event_handler event_handler;
21d6454a 2031 struct ib_port_cache *ports;
1da177e4
LT
2032};
2033
07ebafba
TT
2034struct iw_cm_verbs;
2035
7738613e
IW
2036struct ib_port_immutable {
2037 int pkey_tbl_len;
2038 int gid_tbl_len;
f9b22e35 2039 u32 core_cap_flags;
337877a4 2040 u32 max_mad_size;
7738613e
IW
2041};
2042
2fc77572
VN
2043/* rdma netdev type - specifies protocol type */
2044enum rdma_netdev_t {
f0ad83ac
NV
2045 RDMA_NETDEV_OPA_VNIC,
2046 RDMA_NETDEV_IPOIB,
2fc77572
VN
2047};
2048
2049/**
2050 * struct rdma_netdev - rdma netdev
2051 * For cases where netstack interfacing is required.
2052 */
2053struct rdma_netdev {
2054 void *clnt_priv;
2055 struct ib_device *hca;
2056 u8 port_num;
2057
8e959601
NV
2058 /* cleanup function must be specified */
2059 void (*free_rdma_netdev)(struct net_device *netdev);
2060
2fc77572
VN
2061 /* control functions */
2062 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2063 /* send packet */
2064 int (*send)(struct net_device *dev, struct sk_buff *skb,
2065 struct ib_ah *address, u32 dqpn);
2066 /* multicast */
2067 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2068 union ib_gid *gid, u16 mlid,
2069 int set_qkey, u32 qkey);
2070 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2071 union ib_gid *gid, u16 mlid);
2fc77572
VN
2072};
2073
d291f1a6
DJ
2074struct ib_port_pkey_list {
2075 /* Lock to hold while modifying the list. */
2076 spinlock_t list_lock;
2077 struct list_head pkey_list;
2078};
2079
1da177e4 2080struct ib_device {
0957c29f
BVA
2081 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2082 struct device *dma_device;
2083
1da177e4
LT
2084 char name[IB_DEVICE_NAME_MAX];
2085
2086 struct list_head event_handler_list;
2087 spinlock_t event_handler_lock;
2088
17a55f79 2089 spinlock_t client_data_lock;
1da177e4 2090 struct list_head core_list;
7c1eb45a
HE
2091 /* Access to the client_data_list is protected by the client_data_lock
2092 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 2093 struct list_head client_data_list;
1da177e4
LT
2094
2095 struct ib_cache cache;
7738613e
IW
2096 /**
2097 * port_immutable is indexed by port number
2098 */
2099 struct ib_port_immutable *port_immutable;
1da177e4 2100
f4fd0b22
MT
2101 int num_comp_vectors;
2102
d291f1a6
DJ
2103 struct ib_port_pkey_list *port_pkey_list;
2104
07ebafba
TT
2105 struct iw_cm_verbs *iwcm;
2106
b40f4757
CL
2107 /**
2108 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2109 * driver initialized data. The struct is kfree()'ed by the sysfs
2110 * core when the device is removed. A lifespan of -1 in the return
2111 * struct tells the core to set a default lifespan.
2112 */
2113 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2114 u8 port_num);
2115 /**
2116 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2117 * @index - The index in the value array we wish to have updated, or
2118 * num_counters if we want all stats updated
2119 * Return codes -
2120 * < 0 - Error, no counters updated
2121 * index - Updated the single counter pointed to by index
2122 * num_counters - Updated all counters (will reset the timestamp
2123 * and prevent further calls for lifespan milliseconds)
2124 * Drivers are allowed to update all counters in leiu of just the
2125 * one given in index at their option
2126 */
2127 int (*get_hw_stats)(struct ib_device *device,
2128 struct rdma_hw_stats *stats,
2129 u8 port, int index);
1da177e4 2130 int (*query_device)(struct ib_device *device,
2528e33e
MB
2131 struct ib_device_attr *device_attr,
2132 struct ib_udata *udata);
1da177e4
LT
2133 int (*query_port)(struct ib_device *device,
2134 u8 port_num,
2135 struct ib_port_attr *port_attr);
a3f5adaf
EC
2136 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2137 u8 port_num);
03db3a2d
MB
2138 /* When calling get_netdev, the HW vendor's driver should return the
2139 * net device of device @device at port @port_num or NULL if such
2140 * a net device doesn't exist. The vendor driver should call dev_hold
2141 * on this net device. The HW vendor's device driver must guarantee
2142 * that this function returns NULL before the net device reaches
2143 * NETDEV_UNREGISTER_FINAL state.
2144 */
2145 struct net_device *(*get_netdev)(struct ib_device *device,
2146 u8 port_num);
72e1ff0f
PP
2147 /* query_gid should be return GID value for @device, when @port_num
2148 * link layer is either IB or iWarp. It is no-op if @port_num port
2149 * is RoCE link layer.
2150 */
1da177e4
LT
2151 int (*query_gid)(struct ib_device *device,
2152 u8 port_num, int index,
2153 union ib_gid *gid);
414448d2
PP
2154 /* When calling add_gid, the HW vendor's driver should add the gid
2155 * of device of port at gid index available at @attr. Meta-info of
2156 * that gid (for example, the network device related to this gid) is
2157 * available at @attr. @context allows the HW vendor driver to store
2158 * extra information together with a GID entry. The HW vendor driver may
2159 * allocate memory to contain this information and store it in @context
2160 * when a new GID entry is written to. Params are consistent until the
2161 * next call of add_gid or delete_gid. The function should return 0 on
03db3a2d 2162 * success or error otherwise. The function could be called
414448d2
PP
2163 * concurrently for different ports. This function is only called when
2164 * roce_gid_table is used.
03db3a2d 2165 */
414448d2 2166 int (*add_gid)(const union ib_gid *gid,
03db3a2d
MB
2167 const struct ib_gid_attr *attr,
2168 void **context);
2169 /* When calling del_gid, the HW vendor's driver should delete the
414448d2
PP
2170 * gid of device @device at gid index gid_index of port port_num
2171 * available in @attr.
03db3a2d
MB
2172 * Upon the deletion of a GID entry, the HW vendor must free any
2173 * allocated memory. The caller will clear @context afterwards.
2174 * This function is only called when roce_gid_table is used.
2175 */
414448d2 2176 int (*del_gid)(const struct ib_gid_attr *attr,
03db3a2d 2177 void **context);
1da177e4
LT
2178 int (*query_pkey)(struct ib_device *device,
2179 u8 port_num, u16 index, u16 *pkey);
2180 int (*modify_device)(struct ib_device *device,
2181 int device_modify_mask,
2182 struct ib_device_modify *device_modify);
2183 int (*modify_port)(struct ib_device *device,
2184 u8 port_num, int port_modify_mask,
2185 struct ib_port_modify *port_modify);
e2773c06
RD
2186 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2187 struct ib_udata *udata);
2188 int (*dealloc_ucontext)(struct ib_ucontext *context);
2189 int (*mmap)(struct ib_ucontext *context,
2190 struct vm_area_struct *vma);
2191 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2192 struct ib_ucontext *context,
2193 struct ib_udata *udata);
1da177e4
LT
2194 int (*dealloc_pd)(struct ib_pd *pd);
2195 struct ib_ah * (*create_ah)(struct ib_pd *pd,
90898850 2196 struct rdma_ah_attr *ah_attr,
477864c8 2197 struct ib_udata *udata);
1da177e4 2198 int (*modify_ah)(struct ib_ah *ah,
90898850 2199 struct rdma_ah_attr *ah_attr);
1da177e4 2200 int (*query_ah)(struct ib_ah *ah,
90898850 2201 struct rdma_ah_attr *ah_attr);
1da177e4 2202 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2203 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2204 struct ib_srq_init_attr *srq_init_attr,
2205 struct ib_udata *udata);
2206 int (*modify_srq)(struct ib_srq *srq,
2207 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2208 enum ib_srq_attr_mask srq_attr_mask,
2209 struct ib_udata *udata);
d41fcc67
RD
2210 int (*query_srq)(struct ib_srq *srq,
2211 struct ib_srq_attr *srq_attr);
2212 int (*destroy_srq)(struct ib_srq *srq);
2213 int (*post_srq_recv)(struct ib_srq *srq,
2214 struct ib_recv_wr *recv_wr,
2215 struct ib_recv_wr **bad_recv_wr);
1da177e4 2216 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2217 struct ib_qp_init_attr *qp_init_attr,
2218 struct ib_udata *udata);
1da177e4
LT
2219 int (*modify_qp)(struct ib_qp *qp,
2220 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2221 int qp_attr_mask,
2222 struct ib_udata *udata);
1da177e4
LT
2223 int (*query_qp)(struct ib_qp *qp,
2224 struct ib_qp_attr *qp_attr,
2225 int qp_attr_mask,
2226 struct ib_qp_init_attr *qp_init_attr);
2227 int (*destroy_qp)(struct ib_qp *qp);
2228 int (*post_send)(struct ib_qp *qp,
2229 struct ib_send_wr *send_wr,
2230 struct ib_send_wr **bad_send_wr);
2231 int (*post_recv)(struct ib_qp *qp,
2232 struct ib_recv_wr *recv_wr,
2233 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2234 struct ib_cq * (*create_cq)(struct ib_device *device,
2235 const struct ib_cq_init_attr *attr,
e2773c06
RD
2236 struct ib_ucontext *context,
2237 struct ib_udata *udata);
2dd57162
EC
2238 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2239 u16 cq_period);
1da177e4 2240 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2241 int (*resize_cq)(struct ib_cq *cq, int cqe,
2242 struct ib_udata *udata);
1da177e4
LT
2243 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2244 struct ib_wc *wc);
2245 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2246 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2247 enum ib_cq_notify_flags flags);
1da177e4
LT
2248 int (*req_ncomp_notif)(struct ib_cq *cq,
2249 int wc_cnt);
2250 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2251 int mr_access_flags);
e2773c06 2252 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2253 u64 start, u64 length,
2254 u64 virt_addr,
e2773c06
RD
2255 int mr_access_flags,
2256 struct ib_udata *udata);
7e6edb9b
MB
2257 int (*rereg_user_mr)(struct ib_mr *mr,
2258 int flags,
2259 u64 start, u64 length,
2260 u64 virt_addr,
2261 int mr_access_flags,
2262 struct ib_pd *pd,
2263 struct ib_udata *udata);
1da177e4 2264 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2265 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2266 enum ib_mr_type mr_type,
2267 u32 max_num_sg);
4c67e2bf
SG
2268 int (*map_mr_sg)(struct ib_mr *mr,
2269 struct scatterlist *sg,
ff2ba993 2270 int sg_nents,
9aa8b321 2271 unsigned int *sg_offset);
7083e42e 2272 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2273 enum ib_mw_type type,
2274 struct ib_udata *udata);
1da177e4
LT
2275 int (*dealloc_mw)(struct ib_mw *mw);
2276 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2277 int mr_access_flags,
2278 struct ib_fmr_attr *fmr_attr);
2279 int (*map_phys_fmr)(struct ib_fmr *fmr,
2280 u64 *page_list, int list_len,
2281 u64 iova);
2282 int (*unmap_fmr)(struct list_head *fmr_list);
2283 int (*dealloc_fmr)(struct ib_fmr *fmr);
2284 int (*attach_mcast)(struct ib_qp *qp,
2285 union ib_gid *gid,
2286 u16 lid);
2287 int (*detach_mcast)(struct ib_qp *qp,
2288 union ib_gid *gid,
2289 u16 lid);
2290 int (*process_mad)(struct ib_device *device,
2291 int process_mad_flags,
2292 u8 port_num,
a97e2d86
IW
2293 const struct ib_wc *in_wc,
2294 const struct ib_grh *in_grh,
4cd7c947
IW
2295 const struct ib_mad_hdr *in_mad,
2296 size_t in_mad_size,
2297 struct ib_mad_hdr *out_mad,
2298 size_t *out_mad_size,
2299 u16 *out_mad_pkey_index);
59991f94
SH
2300 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2301 struct ib_ucontext *ucontext,
2302 struct ib_udata *udata);
2303 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2304 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2305 struct ib_flow_attr
2306 *flow_attr,
2307 int domain);
2308 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2309 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2310 struct ib_mr_status *mr_status);
036b1063 2311 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2312 void (*drain_rq)(struct ib_qp *qp);
2313 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2314 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2315 int state);
2316 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2317 struct ifla_vf_info *ivf);
2318 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2319 struct ifla_vf_stats *stats);
2320 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2321 int type);
5fd251c8
YH
2322 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2323 struct ib_wq_init_attr *init_attr,
2324 struct ib_udata *udata);
2325 int (*destroy_wq)(struct ib_wq *wq);
2326 int (*modify_wq)(struct ib_wq *wq,
2327 struct ib_wq_attr *attr,
2328 u32 wq_attr_mask,
2329 struct ib_udata *udata);
6d39786b
YH
2330 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2331 struct ib_rwq_ind_table_init_attr *init_attr,
2332 struct ib_udata *udata);
2333 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2fc77572 2334 /**
8e959601 2335 * rdma netdev operation
2fc77572
VN
2336 *
2337 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2338 * doesn't support the specified rdma netdev type.
2339 */
2340 struct net_device *(*alloc_rdma_netdev)(
2341 struct ib_device *device,
2342 u8 port_num,
2343 enum rdma_netdev_t type,
2344 const char *name,
2345 unsigned char name_assign_type,
2346 void (*setup)(struct net_device *));
9b513090 2347
e2773c06 2348 struct module *owner;
f4e91eb4 2349 struct device dev;
35be0681 2350 struct kobject *ports_parent;
1da177e4
LT
2351 struct list_head port_list;
2352
2353 enum {
2354 IB_DEV_UNINITIALIZED,
2355 IB_DEV_REGISTERED,
2356 IB_DEV_UNREGISTERED
2357 } reg_state;
2358
274c0891 2359 int uverbs_abi_ver;
17a55f79 2360 u64 uverbs_cmd_mask;
f21519b2 2361 u64 uverbs_ex_cmd_mask;
274c0891 2362
bd99fdea 2363 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2364 __be64 node_guid;
96f15c03 2365 u32 local_dma_lkey;
4139032b 2366 u16 is_switch:1;
1da177e4
LT
2367 u8 node_type;
2368 u8 phys_port_cnt;
3e153a93 2369 struct ib_device_attr attrs;
b40f4757
CL
2370 struct attribute_group *hw_stats_ag;
2371 struct rdma_hw_stats *hw_stats;
7738613e 2372
43579b5f
PP
2373#ifdef CONFIG_CGROUP_RDMA
2374 struct rdmacg_device cg_device;
2375#endif
2376
ecc82c53 2377 u32 index;
02d8883f
LR
2378 /*
2379 * Implementation details of the RDMA core, don't use in drivers
2380 */
2381 struct rdma_restrack_root res;
ecc82c53 2382
7738613e
IW
2383 /**
2384 * The following mandatory functions are used only at device
2385 * registration. Keep functions such as these at the end of this
2386 * structure to avoid cache line misses when accessing struct ib_device
2387 * in fast paths.
2388 */
2389 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
9abb0d1b 2390 void (*get_dev_fw_str)(struct ib_device *, char *str);
c66cd353
SG
2391 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2392 int comp_vector);
fac9658c
MB
2393
2394 struct uverbs_root_spec *specs_root;
0ede73bc 2395 enum rdma_driver_id driver_id;
1da177e4
LT
2396};
2397
2398struct ib_client {
2399 char *name;
2400 void (*add) (struct ib_device *);
7c1eb45a 2401 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2402
9268f72d
YK
2403 /* Returns the net_dev belonging to this ib_client and matching the
2404 * given parameters.
2405 * @dev: An RDMA device that the net_dev use for communication.
2406 * @port: A physical port number on the RDMA device.
2407 * @pkey: P_Key that the net_dev uses if applicable.
2408 * @gid: A GID that the net_dev uses to communicate.
2409 * @addr: An IP address the net_dev is configured with.
2410 * @client_data: The device's client data set by ib_set_client_data().
2411 *
2412 * An ib_client that implements a net_dev on top of RDMA devices
2413 * (such as IP over IB) should implement this callback, allowing the
2414 * rdma_cm module to find the right net_dev for a given request.
2415 *
2416 * The caller is responsible for calling dev_put on the returned
2417 * netdev. */
2418 struct net_device *(*get_net_dev_by_params)(
2419 struct ib_device *dev,
2420 u8 port,
2421 u16 pkey,
2422 const union ib_gid *gid,
2423 const struct sockaddr *addr,
2424 void *client_data);
1da177e4
LT
2425 struct list_head list;
2426};
2427
2428struct ib_device *ib_alloc_device(size_t size);
2429void ib_dealloc_device(struct ib_device *device);
2430
9abb0d1b 2431void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2432
9a6edb60
RC
2433int ib_register_device(struct ib_device *device,
2434 int (*port_callback)(struct ib_device *,
2435 u8, struct kobject *));
1da177e4
LT
2436void ib_unregister_device(struct ib_device *device);
2437
2438int ib_register_client (struct ib_client *client);
2439void ib_unregister_client(struct ib_client *client);
2440
2441void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2442void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2443 void *data);
2444
e2773c06
RD
2445static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2446{
2447 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2448}
2449
2450static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2451{
43c61165 2452 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2453}
2454
c66db311
MB
2455static inline bool ib_is_buffer_cleared(const void __user *p,
2456 size_t len)
301a721e 2457{
92d27ae6 2458 bool ret;
301a721e
MB
2459 u8 *buf;
2460
2461 if (len > USHRT_MAX)
2462 return false;
2463
92d27ae6
ME
2464 buf = memdup_user(p, len);
2465 if (IS_ERR(buf))
301a721e
MB
2466 return false;
2467
301a721e 2468 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2469 kfree(buf);
2470 return ret;
2471}
2472
c66db311
MB
2473static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2474 size_t offset,
2475 size_t len)
2476{
2477 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2478}
2479
8a51866f
RD
2480/**
2481 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2482 * contains all required attributes and no attributes not allowed for
2483 * the given QP state transition.
2484 * @cur_state: Current QP state
2485 * @next_state: Next QP state
2486 * @type: QP type
2487 * @mask: Mask of supplied QP attributes
dd5f03be 2488 * @ll : link layer of port
8a51866f
RD
2489 *
2490 * This function is a helper function that a low-level driver's
2491 * modify_qp method can use to validate the consumer's input. It
2492 * checks that cur_state and next_state are valid QP states, that a
2493 * transition from cur_state to next_state is allowed by the IB spec,
2494 * and that the attribute mask supplied is allowed for the transition.
2495 */
19b1f540
LR
2496bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2497 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2498 enum rdma_link_layer ll);
8a51866f 2499
dcc9881e
LR
2500void ib_register_event_handler(struct ib_event_handler *event_handler);
2501void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2502void ib_dispatch_event(struct ib_event *event);
2503
1da177e4
LT
2504int ib_query_port(struct ib_device *device,
2505 u8 port_num, struct ib_port_attr *port_attr);
2506
a3f5adaf
EC
2507enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2508 u8 port_num);
2509
4139032b
HR
2510/**
2511 * rdma_cap_ib_switch - Check if the device is IB switch
2512 * @device: Device to check
2513 *
2514 * Device driver is responsible for setting is_switch bit on
2515 * in ib_device structure at init time.
2516 *
2517 * Return: true if the device is IB switch.
2518 */
2519static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2520{
2521 return device->is_switch;
2522}
2523
0cf18d77
IW
2524/**
2525 * rdma_start_port - Return the first valid port number for the device
2526 * specified
2527 *
2528 * @device: Device to be checked
2529 *
2530 * Return start port number
2531 */
2532static inline u8 rdma_start_port(const struct ib_device *device)
2533{
4139032b 2534 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2535}
2536
2537/**
2538 * rdma_end_port - Return the last valid port number for the device
2539 * specified
2540 *
2541 * @device: Device to be checked
2542 *
2543 * Return last port number
2544 */
2545static inline u8 rdma_end_port(const struct ib_device *device)
2546{
4139032b 2547 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2548}
2549
24dc831b
YS
2550static inline int rdma_is_port_valid(const struct ib_device *device,
2551 unsigned int port)
2552{
2553 return (port >= rdma_start_port(device) &&
2554 port <= rdma_end_port(device));
2555}
2556
5ede9289 2557static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2558{
f9b22e35 2559 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2560}
2561
5ede9289 2562static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2563{
2564 return device->port_immutable[port_num].core_cap_flags &
2565 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2566}
2567
2568static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2569{
2570 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2571}
2572
2573static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2574{
f9b22e35 2575 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2576}
2577
5ede9289 2578static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2579{
f9b22e35 2580 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2581}
2582
5ede9289 2583static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2584{
7766a99f
MB
2585 return rdma_protocol_ib(device, port_num) ||
2586 rdma_protocol_roce(device, port_num);
de66be94
MW
2587}
2588
aa773bd4
OG
2589static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2590{
2591 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2592}
2593
ce1e055f
OG
2594static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2595{
2596 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2597}
2598
c757dea8 2599/**
296ec009 2600 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2601 * Management Datagrams.
296ec009
MW
2602 * @device: Device to check
2603 * @port_num: Port number to check
c757dea8 2604 *
296ec009
MW
2605 * Management Datagrams (MAD) are a required part of the InfiniBand
2606 * specification and are supported on all InfiniBand devices. A slightly
2607 * extended version are also supported on OPA interfaces.
c757dea8 2608 *
296ec009 2609 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2610 */
5ede9289 2611static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2612{
f9b22e35 2613 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2614}
2615
65995fee
IW
2616/**
2617 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2618 * Management Datagrams.
2619 * @device: Device to check
2620 * @port_num: Port number to check
2621 *
2622 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2623 * datagrams with their own versions. These OPA MADs share many but not all of
2624 * the characteristics of InfiniBand MADs.
2625 *
2626 * OPA MADs differ in the following ways:
2627 *
2628 * 1) MADs are variable size up to 2K
2629 * IBTA defined MADs remain fixed at 256 bytes
2630 * 2) OPA SMPs must carry valid PKeys
2631 * 3) OPA SMP packets are a different format
2632 *
2633 * Return: true if the port supports OPA MAD packet formats.
2634 */
2635static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2636{
2637 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2638 == RDMA_CORE_CAP_OPA_MAD;
2639}
2640
29541e3a 2641/**
296ec009
MW
2642 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2643 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2644 * @device: Device to check
2645 * @port_num: Port number to check
29541e3a 2646 *
296ec009
MW
2647 * Each InfiniBand node is required to provide a Subnet Management Agent
2648 * that the subnet manager can access. Prior to the fabric being fully
2649 * configured by the subnet manager, the SMA is accessed via a well known
2650 * interface called the Subnet Management Interface (SMI). This interface
2651 * uses directed route packets to communicate with the SM to get around the
2652 * chicken and egg problem of the SM needing to know what's on the fabric
2653 * in order to configure the fabric, and needing to configure the fabric in
2654 * order to send packets to the devices on the fabric. These directed
2655 * route packets do not need the fabric fully configured in order to reach
2656 * their destination. The SMI is the only method allowed to send
2657 * directed route packets on an InfiniBand fabric.
29541e3a 2658 *
296ec009 2659 * Return: true if the port provides an SMI.
29541e3a 2660 */
5ede9289 2661static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2662{
f9b22e35 2663 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2664}
2665
72219cea
MW
2666/**
2667 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2668 * Communication Manager.
296ec009
MW
2669 * @device: Device to check
2670 * @port_num: Port number to check
72219cea 2671 *
296ec009
MW
2672 * The InfiniBand Communication Manager is one of many pre-defined General
2673 * Service Agents (GSA) that are accessed via the General Service
2674 * Interface (GSI). It's role is to facilitate establishment of connections
2675 * between nodes as well as other management related tasks for established
2676 * connections.
72219cea 2677 *
296ec009
MW
2678 * Return: true if the port supports an IB CM (this does not guarantee that
2679 * a CM is actually running however).
72219cea 2680 */
5ede9289 2681static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2682{
f9b22e35 2683 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2684}
2685
04215330
MW
2686/**
2687 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2688 * Communication Manager.
296ec009
MW
2689 * @device: Device to check
2690 * @port_num: Port number to check
04215330 2691 *
296ec009
MW
2692 * Similar to above, but specific to iWARP connections which have a different
2693 * managment protocol than InfiniBand.
04215330 2694 *
296ec009
MW
2695 * Return: true if the port supports an iWARP CM (this does not guarantee that
2696 * a CM is actually running however).
04215330 2697 */
5ede9289 2698static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2699{
f9b22e35 2700 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2701}
2702
fe53ba2f
MW
2703/**
2704 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2705 * Subnet Administration.
296ec009
MW
2706 * @device: Device to check
2707 * @port_num: Port number to check
fe53ba2f 2708 *
296ec009
MW
2709 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2710 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2711 * fabrics, devices should resolve routes to other hosts by contacting the
2712 * SA to query the proper route.
fe53ba2f 2713 *
296ec009
MW
2714 * Return: true if the port should act as a client to the fabric Subnet
2715 * Administration interface. This does not imply that the SA service is
2716 * running locally.
fe53ba2f 2717 */
5ede9289 2718static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2719{
f9b22e35 2720 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2721}
2722
a31ad3b0
MW
2723/**
2724 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2725 * Multicast.
296ec009
MW
2726 * @device: Device to check
2727 * @port_num: Port number to check
a31ad3b0 2728 *
296ec009
MW
2729 * InfiniBand multicast registration is more complex than normal IPv4 or
2730 * IPv6 multicast registration. Each Host Channel Adapter must register
2731 * with the Subnet Manager when it wishes to join a multicast group. It
2732 * should do so only once regardless of how many queue pairs it subscribes
2733 * to this group. And it should leave the group only after all queue pairs
2734 * attached to the group have been detached.
a31ad3b0 2735 *
296ec009
MW
2736 * Return: true if the port must undertake the additional adminstrative
2737 * overhead of registering/unregistering with the SM and tracking of the
2738 * total number of queue pairs attached to the multicast group.
a31ad3b0 2739 */
5ede9289 2740static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2741{
2742 return rdma_cap_ib_sa(device, port_num);
2743}
2744
30a74ef4
MW
2745/**
2746 * rdma_cap_af_ib - Check if the port of device has the capability
2747 * Native Infiniband Address.
296ec009
MW
2748 * @device: Device to check
2749 * @port_num: Port number to check
30a74ef4 2750 *
296ec009
MW
2751 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2752 * GID. RoCE uses a different mechanism, but still generates a GID via
2753 * a prescribed mechanism and port specific data.
30a74ef4 2754 *
296ec009
MW
2755 * Return: true if the port uses a GID address to identify devices on the
2756 * network.
30a74ef4 2757 */
5ede9289 2758static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2759{
f9b22e35 2760 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2761}
2762
227128fc
MW
2763/**
2764 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2765 * Ethernet Address Handle.
2766 * @device: Device to check
2767 * @port_num: Port number to check
227128fc 2768 *
296ec009
MW
2769 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2770 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2771 * port. Normally, packet headers are generated by the sending host
2772 * adapter, but when sending connectionless datagrams, we must manually
2773 * inject the proper headers for the fabric we are communicating over.
227128fc 2774 *
296ec009
MW
2775 * Return: true if we are running as a RoCE port and must force the
2776 * addition of a Global Route Header built from our Ethernet Address
2777 * Handle into our header list for connectionless packets.
227128fc 2778 */
5ede9289 2779static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2780{
f9b22e35 2781 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2782}
2783
94d595c5
DC
2784/**
2785 * rdma_cap_opa_ah - Check if the port of device supports
2786 * OPA Address handles
2787 * @device: Device to check
2788 * @port_num: Port number to check
2789 *
2790 * Return: true if we are running on an OPA device which supports
2791 * the extended OPA addressing.
2792 */
2793static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2794{
2795 return (device->port_immutable[port_num].core_cap_flags &
2796 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2797}
2798
337877a4
IW
2799/**
2800 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2801 *
2802 * @device: Device
2803 * @port_num: Port number
2804 *
2805 * This MAD size includes the MAD headers and MAD payload. No other headers
2806 * are included.
2807 *
2808 * Return the max MAD size required by the Port. Will return 0 if the port
2809 * does not support MADs
2810 */
2811static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2812{
2813 return device->port_immutable[port_num].max_mad_size;
2814}
2815
03db3a2d
MB
2816/**
2817 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2818 * @device: Device to check
2819 * @port_num: Port number to check
2820 *
2821 * RoCE GID table mechanism manages the various GIDs for a device.
2822 *
2823 * NOTE: if allocating the port's GID table has failed, this call will still
2824 * return true, but any RoCE GID table API will fail.
2825 *
2826 * Return: true if the port uses RoCE GID table mechanism in order to manage
2827 * its GIDs.
2828 */
2829static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2830 u8 port_num)
2831{
2832 return rdma_protocol_roce(device, port_num) &&
2833 device->add_gid && device->del_gid;
2834}
2835
002516ed
CH
2836/*
2837 * Check if the device supports READ W/ INVALIDATE.
2838 */
2839static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2840{
2841 /*
2842 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2843 * has support for it yet.
2844 */
2845 return rdma_protocol_iwarp(dev, port_num);
2846}
2847
1da177e4 2848int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2849 u8 port_num, int index, union ib_gid *gid,
2850 struct ib_gid_attr *attr);
1da177e4 2851
50174a7f
EC
2852int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2853 int state);
2854int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2855 struct ifla_vf_info *info);
2856int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2857 struct ifla_vf_stats *stats);
2858int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2859 int type);
2860
1da177e4
LT
2861int ib_query_pkey(struct ib_device *device,
2862 u8 port_num, u16 index, u16 *pkey);
2863
2864int ib_modify_device(struct ib_device *device,
2865 int device_modify_mask,
2866 struct ib_device_modify *device_modify);
2867
2868int ib_modify_port(struct ib_device *device,
2869 u8 port_num, int port_modify_mask,
2870 struct ib_port_modify *port_modify);
2871
5eb620c8 2872int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 2873 u8 *port_num, u16 *index);
5eb620c8
YE
2874
2875int ib_find_pkey(struct ib_device *device,
2876 u8 port_num, u16 pkey, u16 *index);
2877
ed082d36
CH
2878enum ib_pd_flags {
2879 /*
2880 * Create a memory registration for all memory in the system and place
2881 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2882 * ULPs to avoid the overhead of dynamic MRs.
2883 *
2884 * This flag is generally considered unsafe and must only be used in
2885 * extremly trusted environments. Every use of it will log a warning
2886 * in the kernel log.
2887 */
2888 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2889};
1da177e4 2890
ed082d36
CH
2891struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2892 const char *caller);
2893#define ib_alloc_pd(device, flags) \
e4496447 2894 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
7dd78647 2895void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2896
2897/**
0a18cfe4 2898 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
2899 * @pd: The protection domain associated with the address handle.
2900 * @ah_attr: The attributes of the address vector.
2901 *
2902 * The address handle is used to reference a local or global destination
2903 * in all UD QP post sends.
2904 */
0a18cfe4 2905struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 2906
5cda6587
PP
2907/**
2908 * rdma_create_user_ah - Creates an address handle for the given address vector.
2909 * It resolves destination mac address for ah attribute of RoCE type.
2910 * @pd: The protection domain associated with the address handle.
2911 * @ah_attr: The attributes of the address vector.
2912 * @udata: pointer to user's input output buffer information need by
2913 * provider driver.
2914 *
2915 * It returns 0 on success and returns appropriate error code on error.
2916 * The address handle is used to reference a local or global destination
2917 * in all UD QP post sends.
2918 */
2919struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2920 struct rdma_ah_attr *ah_attr,
2921 struct ib_udata *udata);
850d8fd7
MS
2922/**
2923 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2924 * work completion.
2925 * @hdr: the L3 header to parse
2926 * @net_type: type of header to parse
2927 * @sgid: place to store source gid
2928 * @dgid: place to store destination gid
2929 */
2930int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2931 enum rdma_network_type net_type,
2932 union ib_gid *sgid, union ib_gid *dgid);
2933
2934/**
2935 * ib_get_rdma_header_version - Get the header version
2936 * @hdr: the L3 header to parse
2937 */
2938int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2939
4e00d694 2940/**
f6bdb142 2941 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
2942 * work completion.
2943 * @device: Device on which the received message arrived.
2944 * @port_num: Port on which the received message arrived.
2945 * @wc: Work completion associated with the received message.
2946 * @grh: References the received global route header. This parameter is
2947 * ignored unless the work completion indicates that the GRH is valid.
2948 * @ah_attr: Returned attributes that can be used when creating an address
2949 * handle for replying to the message.
2950 */
f6bdb142
PP
2951int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
2952 const struct ib_wc *wc, const struct ib_grh *grh,
2953 struct rdma_ah_attr *ah_attr);
4e00d694 2954
513789ed
HR
2955/**
2956 * ib_create_ah_from_wc - Creates an address handle associated with the
2957 * sender of the specified work completion.
2958 * @pd: The protection domain associated with the address handle.
2959 * @wc: Work completion information associated with a received message.
2960 * @grh: References the received global route header. This parameter is
2961 * ignored unless the work completion indicates that the GRH is valid.
2962 * @port_num: The outbound port number to associate with the address.
2963 *
2964 * The address handle is used to reference a local or global destination
2965 * in all UD QP post sends.
2966 */
73cdaaee
IW
2967struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2968 const struct ib_grh *grh, u8 port_num);
513789ed 2969
1da177e4 2970/**
67b985b6 2971 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
2972 * handle.
2973 * @ah: The address handle to modify.
2974 * @ah_attr: The new address vector attributes to associate with the
2975 * address handle.
2976 */
67b985b6 2977int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
2978
2979/**
bfbfd661 2980 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
2981 * handle.
2982 * @ah: The address handle to query.
2983 * @ah_attr: The address vector attributes associated with the address
2984 * handle.
2985 */
bfbfd661 2986int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
2987
2988/**
36523159 2989 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
2990 * @ah: The address handle to destroy.
2991 */
36523159 2992int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 2993
d41fcc67
RD
2994/**
2995 * ib_create_srq - Creates a SRQ associated with the specified protection
2996 * domain.
2997 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2998 * @srq_init_attr: A list of initial attributes required to create the
2999 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3000 * the actual capabilities of the created SRQ.
d41fcc67
RD
3001 *
3002 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3003 * requested size of the SRQ, and set to the actual values allocated
3004 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3005 * will always be at least as large as the requested values.
3006 */
3007struct ib_srq *ib_create_srq(struct ib_pd *pd,
3008 struct ib_srq_init_attr *srq_init_attr);
3009
3010/**
3011 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3012 * @srq: The SRQ to modify.
3013 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3014 * the current values of selected SRQ attributes are returned.
3015 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3016 * are being modified.
3017 *
3018 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3019 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3020 * the number of receives queued drops below the limit.
3021 */
3022int ib_modify_srq(struct ib_srq *srq,
3023 struct ib_srq_attr *srq_attr,
3024 enum ib_srq_attr_mask srq_attr_mask);
3025
3026/**
3027 * ib_query_srq - Returns the attribute list and current values for the
3028 * specified SRQ.
3029 * @srq: The SRQ to query.
3030 * @srq_attr: The attributes of the specified SRQ.
3031 */
3032int ib_query_srq(struct ib_srq *srq,
3033 struct ib_srq_attr *srq_attr);
3034
3035/**
3036 * ib_destroy_srq - Destroys the specified SRQ.
3037 * @srq: The SRQ to destroy.
3038 */
3039int ib_destroy_srq(struct ib_srq *srq);
3040
3041/**
3042 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3043 * @srq: The SRQ to post the work request on.
3044 * @recv_wr: A list of work requests to post on the receive queue.
3045 * @bad_recv_wr: On an immediate failure, this parameter will reference
3046 * the work request that failed to be posted on the QP.
3047 */
3048static inline int ib_post_srq_recv(struct ib_srq *srq,
3049 struct ib_recv_wr *recv_wr,
3050 struct ib_recv_wr **bad_recv_wr)
3051{
3052 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3053}
3054
1da177e4
LT
3055/**
3056 * ib_create_qp - Creates a QP associated with the specified protection
3057 * domain.
3058 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3059 * @qp_init_attr: A list of initial attributes required to create the
3060 * QP. If QP creation succeeds, then the attributes are updated to
3061 * the actual capabilities of the created QP.
1da177e4
LT
3062 */
3063struct ib_qp *ib_create_qp(struct ib_pd *pd,
3064 struct ib_qp_init_attr *qp_init_attr);
3065
a512c2fb
PP
3066/**
3067 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3068 * @qp: The QP to modify.
3069 * @attr: On input, specifies the QP attributes to modify. On output,
3070 * the current values of selected QP attributes are returned.
3071 * @attr_mask: A bit-mask used to specify which attributes of the QP
3072 * are being modified.
3073 * @udata: pointer to user's input output buffer information
3074 * are being modified.
3075 * It returns 0 on success and returns appropriate error code on error.
3076 */
3077int ib_modify_qp_with_udata(struct ib_qp *qp,
3078 struct ib_qp_attr *attr,
3079 int attr_mask,
3080 struct ib_udata *udata);
3081
1da177e4
LT
3082/**
3083 * ib_modify_qp - Modifies the attributes for the specified QP and then
3084 * transitions the QP to the given state.
3085 * @qp: The QP to modify.
3086 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3087 * the current values of selected QP attributes are returned.
3088 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3089 * are being modified.
3090 */
3091int ib_modify_qp(struct ib_qp *qp,
3092 struct ib_qp_attr *qp_attr,
3093 int qp_attr_mask);
3094
3095/**
3096 * ib_query_qp - Returns the attribute list and current values for the
3097 * specified QP.
3098 * @qp: The QP to query.
3099 * @qp_attr: The attributes of the specified QP.
3100 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3101 * @qp_init_attr: Additional attributes of the selected QP.
3102 *
3103 * The qp_attr_mask may be used to limit the query to gathering only the
3104 * selected attributes.
3105 */
3106int ib_query_qp(struct ib_qp *qp,
3107 struct ib_qp_attr *qp_attr,
3108 int qp_attr_mask,
3109 struct ib_qp_init_attr *qp_init_attr);
3110
3111/**
3112 * ib_destroy_qp - Destroys the specified QP.
3113 * @qp: The QP to destroy.
3114 */
3115int ib_destroy_qp(struct ib_qp *qp);
3116
d3d72d90 3117/**
0e0ec7e0
SH
3118 * ib_open_qp - Obtain a reference to an existing sharable QP.
3119 * @xrcd - XRC domain
3120 * @qp_open_attr: Attributes identifying the QP to open.
3121 *
3122 * Returns a reference to a sharable QP.
3123 */
3124struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3125 struct ib_qp_open_attr *qp_open_attr);
3126
3127/**
3128 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3129 * @qp: The QP handle to release
3130 *
0e0ec7e0
SH
3131 * The opened QP handle is released by the caller. The underlying
3132 * shared QP is not destroyed until all internal references are released.
d3d72d90 3133 */
0e0ec7e0 3134int ib_close_qp(struct ib_qp *qp);
d3d72d90 3135
1da177e4
LT
3136/**
3137 * ib_post_send - Posts a list of work requests to the send queue of
3138 * the specified QP.
3139 * @qp: The QP to post the work request on.
3140 * @send_wr: A list of work requests to post on the send queue.
3141 * @bad_send_wr: On an immediate failure, this parameter will reference
3142 * the work request that failed to be posted on the QP.
55464d46
BVA
3143 *
3144 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3145 * error is returned, the QP state shall not be affected,
3146 * ib_post_send() will return an immediate error after queueing any
3147 * earlier work requests in the list.
1da177e4
LT
3148 */
3149static inline int ib_post_send(struct ib_qp *qp,
3150 struct ib_send_wr *send_wr,
3151 struct ib_send_wr **bad_send_wr)
3152{
3153 return qp->device->post_send(qp, send_wr, bad_send_wr);
3154}
3155
3156/**
3157 * ib_post_recv - Posts a list of work requests to the receive queue of
3158 * the specified QP.
3159 * @qp: The QP to post the work request on.
3160 * @recv_wr: A list of work requests to post on the receive queue.
3161 * @bad_recv_wr: On an immediate failure, this parameter will reference
3162 * the work request that failed to be posted on the QP.
3163 */
3164static inline int ib_post_recv(struct ib_qp *qp,
3165 struct ib_recv_wr *recv_wr,
3166 struct ib_recv_wr **bad_recv_wr)
3167{
3168 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3169}
3170
f66c8ba4
LR
3171struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3172 int nr_cqe, int comp_vector,
3173 enum ib_poll_context poll_ctx, const char *caller);
3174#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3175 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3176
14d3a3b2
CH
3177void ib_free_cq(struct ib_cq *cq);
3178int ib_process_cq_direct(struct ib_cq *cq, int budget);
3179
1da177e4
LT
3180/**
3181 * ib_create_cq - Creates a CQ on the specified device.
3182 * @device: The device on which to create the CQ.
3183 * @comp_handler: A user-specified callback that is invoked when a
3184 * completion event occurs on the CQ.
3185 * @event_handler: A user-specified callback that is invoked when an
3186 * asynchronous event not associated with a completion occurs on the CQ.
3187 * @cq_context: Context associated with the CQ returned to the user via
3188 * the associated completion and event handlers.
8e37210b 3189 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3190 *
3191 * Users can examine the cq structure to determine the actual CQ size.
3192 */
3193struct ib_cq *ib_create_cq(struct ib_device *device,
3194 ib_comp_handler comp_handler,
3195 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
3196 void *cq_context,
3197 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
3198
3199/**
3200 * ib_resize_cq - Modifies the capacity of the CQ.
3201 * @cq: The CQ to resize.
3202 * @cqe: The minimum size of the CQ.
3203 *
3204 * Users can examine the cq structure to determine the actual CQ size.
3205 */
3206int ib_resize_cq(struct ib_cq *cq, int cqe);
3207
2dd57162 3208/**
4190b4e9 3209 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3210 * @cq: The CQ to modify.
3211 * @cq_count: number of CQEs that will trigger an event
3212 * @cq_period: max period of time in usec before triggering an event
3213 *
3214 */
4190b4e9 3215int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3216
1da177e4
LT
3217/**
3218 * ib_destroy_cq - Destroys the specified CQ.
3219 * @cq: The CQ to destroy.
3220 */
3221int ib_destroy_cq(struct ib_cq *cq);
3222
3223/**
3224 * ib_poll_cq - poll a CQ for completion(s)
3225 * @cq:the CQ being polled
3226 * @num_entries:maximum number of completions to return
3227 * @wc:array of at least @num_entries &struct ib_wc where completions
3228 * will be returned
3229 *
3230 * Poll a CQ for (possibly multiple) completions. If the return value
3231 * is < 0, an error occurred. If the return value is >= 0, it is the
3232 * number of completions returned. If the return value is
3233 * non-negative and < num_entries, then the CQ was emptied.
3234 */
3235static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3236 struct ib_wc *wc)
3237{
3238 return cq->device->poll_cq(cq, num_entries, wc);
3239}
3240
1da177e4
LT
3241/**
3242 * ib_req_notify_cq - Request completion notification on a CQ.
3243 * @cq: The CQ to generate an event for.
ed23a727
RD
3244 * @flags:
3245 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3246 * to request an event on the next solicited event or next work
3247 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3248 * may also be |ed in to request a hint about missed events, as
3249 * described below.
3250 *
3251 * Return Value:
3252 * < 0 means an error occurred while requesting notification
3253 * == 0 means notification was requested successfully, and if
3254 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3255 * were missed and it is safe to wait for another event. In
3256 * this case is it guaranteed that any work completions added
3257 * to the CQ since the last CQ poll will trigger a completion
3258 * notification event.
3259 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3260 * in. It means that the consumer must poll the CQ again to
3261 * make sure it is empty to avoid missing an event because of a
3262 * race between requesting notification and an entry being
3263 * added to the CQ. This return value means it is possible
3264 * (but not guaranteed) that a work completion has been added
3265 * to the CQ since the last poll without triggering a
3266 * completion notification event.
1da177e4
LT
3267 */
3268static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3269 enum ib_cq_notify_flags flags)
1da177e4 3270{
ed23a727 3271 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3272}
3273
3274/**
3275 * ib_req_ncomp_notif - Request completion notification when there are
3276 * at least the specified number of unreaped completions on the CQ.
3277 * @cq: The CQ to generate an event for.
3278 * @wc_cnt: The number of unreaped completions that should be on the
3279 * CQ before an event is generated.
3280 */
3281static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3282{
3283 return cq->device->req_ncomp_notif ?
3284 cq->device->req_ncomp_notif(cq, wc_cnt) :
3285 -ENOSYS;
3286}
3287
9b513090
RC
3288/**
3289 * ib_dma_mapping_error - check a DMA addr for error
3290 * @dev: The device for which the dma_addr was created
3291 * @dma_addr: The DMA address to check
3292 */
3293static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3294{
0957c29f 3295 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3296}
3297
3298/**
3299 * ib_dma_map_single - Map a kernel virtual address to DMA address
3300 * @dev: The device for which the dma_addr is to be created
3301 * @cpu_addr: The kernel virtual address
3302 * @size: The size of the region in bytes
3303 * @direction: The direction of the DMA
3304 */
3305static inline u64 ib_dma_map_single(struct ib_device *dev,
3306 void *cpu_addr, size_t size,
3307 enum dma_data_direction direction)
3308{
0957c29f 3309 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3310}
3311
3312/**
3313 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3314 * @dev: The device for which the DMA address was created
3315 * @addr: The DMA address
3316 * @size: The size of the region in bytes
3317 * @direction: The direction of the DMA
3318 */
3319static inline void ib_dma_unmap_single(struct ib_device *dev,
3320 u64 addr, size_t size,
3321 enum dma_data_direction direction)
3322{
0957c29f 3323 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3324}
3325
9b513090
RC
3326/**
3327 * ib_dma_map_page - Map a physical page to DMA address
3328 * @dev: The device for which the dma_addr is to be created
3329 * @page: The page to be mapped
3330 * @offset: The offset within the page
3331 * @size: The size of the region in bytes
3332 * @direction: The direction of the DMA
3333 */
3334static inline u64 ib_dma_map_page(struct ib_device *dev,
3335 struct page *page,
3336 unsigned long offset,
3337 size_t size,
3338 enum dma_data_direction direction)
3339{
0957c29f 3340 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3341}
3342
3343/**
3344 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3345 * @dev: The device for which the DMA address was created
3346 * @addr: The DMA address
3347 * @size: The size of the region in bytes
3348 * @direction: The direction of the DMA
3349 */
3350static inline void ib_dma_unmap_page(struct ib_device *dev,
3351 u64 addr, size_t size,
3352 enum dma_data_direction direction)
3353{
0957c29f 3354 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3355}
3356
3357/**
3358 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3359 * @dev: The device for which the DMA addresses are to be created
3360 * @sg: The array of scatter/gather entries
3361 * @nents: The number of scatter/gather entries
3362 * @direction: The direction of the DMA
3363 */
3364static inline int ib_dma_map_sg(struct ib_device *dev,
3365 struct scatterlist *sg, int nents,
3366 enum dma_data_direction direction)
3367{
0957c29f 3368 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3369}
3370
3371/**
3372 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3373 * @dev: The device for which the DMA addresses were created
3374 * @sg: The array of scatter/gather entries
3375 * @nents: The number of scatter/gather entries
3376 * @direction: The direction of the DMA
3377 */
3378static inline void ib_dma_unmap_sg(struct ib_device *dev,
3379 struct scatterlist *sg, int nents,
3380 enum dma_data_direction direction)
3381{
0957c29f 3382 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3383}
3384
cb9fbc5c
AK
3385static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3386 struct scatterlist *sg, int nents,
3387 enum dma_data_direction direction,
00085f1e 3388 unsigned long dma_attrs)
cb9fbc5c 3389{
0957c29f
BVA
3390 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3391 dma_attrs);
cb9fbc5c
AK
3392}
3393
3394static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3395 struct scatterlist *sg, int nents,
3396 enum dma_data_direction direction,
00085f1e 3397 unsigned long dma_attrs)
cb9fbc5c 3398{
0957c29f 3399 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3400}
9b513090
RC
3401/**
3402 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3403 * @dev: The device for which the DMA addresses were created
3404 * @sg: The scatter/gather entry
ea58a595
MM
3405 *
3406 * Note: this function is obsolete. To do: change all occurrences of
3407 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3408 */
3409static inline u64 ib_sg_dma_address(struct ib_device *dev,
3410 struct scatterlist *sg)
3411{
d1998ef3 3412 return sg_dma_address(sg);
9b513090
RC
3413}
3414
3415/**
3416 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3417 * @dev: The device for which the DMA addresses were created
3418 * @sg: The scatter/gather entry
ea58a595
MM
3419 *
3420 * Note: this function is obsolete. To do: change all occurrences of
3421 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3422 */
3423static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3424 struct scatterlist *sg)
3425{
d1998ef3 3426 return sg_dma_len(sg);
9b513090
RC
3427}
3428
3429/**
3430 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3431 * @dev: The device for which the DMA address was created
3432 * @addr: The DMA address
3433 * @size: The size of the region in bytes
3434 * @dir: The direction of the DMA
3435 */
3436static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3437 u64 addr,
3438 size_t size,
3439 enum dma_data_direction dir)
3440{
0957c29f 3441 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3442}
3443
3444/**
3445 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3446 * @dev: The device for which the DMA address was created
3447 * @addr: The DMA address
3448 * @size: The size of the region in bytes
3449 * @dir: The direction of the DMA
3450 */
3451static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3452 u64 addr,
3453 size_t size,
3454 enum dma_data_direction dir)
3455{
0957c29f 3456 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3457}
3458
3459/**
3460 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3461 * @dev: The device for which the DMA address is requested
3462 * @size: The size of the region to allocate in bytes
3463 * @dma_handle: A pointer for returning the DMA address of the region
3464 * @flag: memory allocator flags
3465 */
3466static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3467 size_t size,
d43dbacf 3468 dma_addr_t *dma_handle,
9b513090
RC
3469 gfp_t flag)
3470{
0957c29f 3471 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3472}
3473
3474/**
3475 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3476 * @dev: The device for which the DMA addresses were allocated
3477 * @size: The size of the region
3478 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3479 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3480 */
3481static inline void ib_dma_free_coherent(struct ib_device *dev,
3482 size_t size, void *cpu_addr,
d43dbacf 3483 dma_addr_t dma_handle)
9b513090 3484{
0957c29f 3485 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3486}
3487
1da177e4
LT
3488/**
3489 * ib_dereg_mr - Deregisters a memory region and removes it from the
3490 * HCA translation table.
3491 * @mr: The memory region to deregister.
7083e42e
SM
3492 *
3493 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3494 */
3495int ib_dereg_mr(struct ib_mr *mr);
3496
9bee178b
SG
3497struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3498 enum ib_mr_type mr_type,
3499 u32 max_num_sg);
00f7ec36 3500
00f7ec36
SW
3501/**
3502 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3503 * R_Key and L_Key.
3504 * @mr - struct ib_mr pointer to be updated.
3505 * @newkey - new key to be used.
3506 */
3507static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3508{
3509 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3510 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3511}
3512
7083e42e
SM
3513/**
3514 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3515 * for calculating a new rkey for type 2 memory windows.
3516 * @rkey - the rkey to increment.
3517 */
3518static inline u32 ib_inc_rkey(u32 rkey)
3519{
3520 const u32 mask = 0x000000ff;
3521 return ((rkey + 1) & mask) | (rkey & ~mask);
3522}
3523
1da177e4
LT
3524/**
3525 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3526 * @pd: The protection domain associated with the unmapped region.
3527 * @mr_access_flags: Specifies the memory access rights.
3528 * @fmr_attr: Attributes of the unmapped region.
3529 *
3530 * A fast memory region must be mapped before it can be used as part of
3531 * a work request.
3532 */
3533struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3534 int mr_access_flags,
3535 struct ib_fmr_attr *fmr_attr);
3536
3537/**
3538 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3539 * @fmr: The fast memory region to associate with the pages.
3540 * @page_list: An array of physical pages to map to the fast memory region.
3541 * @list_len: The number of pages in page_list.
3542 * @iova: The I/O virtual address to use with the mapped region.
3543 */
3544static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3545 u64 *page_list, int list_len,
3546 u64 iova)
3547{
3548 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3549}
3550
3551/**
3552 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3553 * @fmr_list: A linked list of fast memory regions to unmap.
3554 */
3555int ib_unmap_fmr(struct list_head *fmr_list);
3556
3557/**
3558 * ib_dealloc_fmr - Deallocates a fast memory region.
3559 * @fmr: The fast memory region to deallocate.
3560 */
3561int ib_dealloc_fmr(struct ib_fmr *fmr);
3562
3563/**
3564 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3565 * @qp: QP to attach to the multicast group. The QP must be type
3566 * IB_QPT_UD.
3567 * @gid: Multicast group GID.
3568 * @lid: Multicast group LID in host byte order.
3569 *
3570 * In order to send and receive multicast packets, subnet
3571 * administration must have created the multicast group and configured
3572 * the fabric appropriately. The port associated with the specified
3573 * QP must also be a member of the multicast group.
3574 */
3575int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3576
3577/**
3578 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3579 * @qp: QP to detach from the multicast group.
3580 * @gid: Multicast group GID.
3581 * @lid: Multicast group LID in host byte order.
3582 */
3583int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3584
59991f94
SH
3585/**
3586 * ib_alloc_xrcd - Allocates an XRC domain.
3587 * @device: The device on which to allocate the XRC domain.
f66c8ba4 3588 * @caller: Module name for kernel consumers
59991f94 3589 */
f66c8ba4
LR
3590struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3591#define ib_alloc_xrcd(device) \
3592 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
3593
3594/**
3595 * ib_dealloc_xrcd - Deallocates an XRC domain.
3596 * @xrcd: The XRC domain to deallocate.
3597 */
3598int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3599
319a441d
HHZ
3600struct ib_flow *ib_create_flow(struct ib_qp *qp,
3601 struct ib_flow_attr *flow_attr, int domain);
3602int ib_destroy_flow(struct ib_flow *flow_id);
3603
1c636f80
EC
3604static inline int ib_check_mr_access(int flags)
3605{
3606 /*
3607 * Local write permission is required if remote write or
3608 * remote atomic permission is also requested.
3609 */
3610 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3611 !(flags & IB_ACCESS_LOCAL_WRITE))
3612 return -EINVAL;
3613
3614 return 0;
3615}
3616
1b01d335
SG
3617/**
3618 * ib_check_mr_status: lightweight check of MR status.
3619 * This routine may provide status checks on a selected
3620 * ib_mr. first use is for signature status check.
3621 *
3622 * @mr: A memory region.
3623 * @check_mask: Bitmask of which checks to perform from
3624 * ib_mr_status_check enumeration.
3625 * @mr_status: The container of relevant status checks.
3626 * failed checks will be indicated in the status bitmask
3627 * and the relevant info shall be in the error item.
3628 */
3629int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3630 struct ib_mr_status *mr_status);
3631
9268f72d
YK
3632struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3633 u16 pkey, const union ib_gid *gid,
3634 const struct sockaddr *addr);
5fd251c8
YH
3635struct ib_wq *ib_create_wq(struct ib_pd *pd,
3636 struct ib_wq_init_attr *init_attr);
3637int ib_destroy_wq(struct ib_wq *wq);
3638int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3639 u32 wq_attr_mask);
6d39786b
YH
3640struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3641 struct ib_rwq_ind_table_init_attr*
3642 wq_ind_table_init_attr);
3643int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3644
ff2ba993 3645int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3646 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3647
3648static inline int
ff2ba993 3649ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3650 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3651{
3652 int n;
3653
ff2ba993 3654 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3655 mr->iova = 0;
3656
3657 return n;
3658}
3659
ff2ba993 3660int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3661 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3662
765d6774
SW
3663void ib_drain_rq(struct ib_qp *qp);
3664void ib_drain_sq(struct ib_qp *qp);
3665void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3666
d4186194 3667int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3668
3669static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3670{
44c58487
DC
3671 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3672 return attr->roce.dmac;
3673 return NULL;
2224c47a
DC
3674}
3675
64b4646e 3676static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3677{
44c58487 3678 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3679 attr->ib.dlid = (u16)dlid;
3680 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3681 attr->opa.dlid = dlid;
2224c47a
DC
3682}
3683
64b4646e 3684static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3685{
44c58487
DC
3686 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3687 return attr->ib.dlid;
64b4646e
DC
3688 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3689 return attr->opa.dlid;
44c58487 3690 return 0;
2224c47a
DC
3691}
3692
3693static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3694{
3695 attr->sl = sl;
3696}
3697
3698static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3699{
3700 return attr->sl;
3701}
3702
3703static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3704 u8 src_path_bits)
3705{
44c58487
DC
3706 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3707 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
3708 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3709 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
3710}
3711
3712static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3713{
44c58487
DC
3714 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3715 return attr->ib.src_path_bits;
64b4646e
DC
3716 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3717 return attr->opa.src_path_bits;
44c58487 3718 return 0;
2224c47a
DC
3719}
3720
d98bb7f7
DH
3721static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3722 bool make_grd)
3723{
3724 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3725 attr->opa.make_grd = make_grd;
3726}
3727
3728static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3729{
3730 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3731 return attr->opa.make_grd;
3732 return false;
3733}
3734
2224c47a
DC
3735static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3736{
3737 attr->port_num = port_num;
3738}
3739
3740static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3741{
3742 return attr->port_num;
3743}
3744
3745static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3746 u8 static_rate)
3747{
3748 attr->static_rate = static_rate;
3749}
3750
3751static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3752{
3753 return attr->static_rate;
3754}
3755
3756static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3757 enum ib_ah_flags flag)
3758{
3759 attr->ah_flags = flag;
3760}
3761
3762static inline enum ib_ah_flags
3763 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3764{
3765 return attr->ah_flags;
3766}
3767
3768static inline const struct ib_global_route
3769 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3770{
3771 return &attr->grh;
3772}
3773
3774/*To retrieve and modify the grh */
3775static inline struct ib_global_route
3776 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3777{
3778 return &attr->grh;
3779}
3780
3781static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3782{
3783 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3784
3785 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3786}
3787
3788static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3789 __be64 prefix)
3790{
3791 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3792
3793 grh->dgid.global.subnet_prefix = prefix;
3794}
3795
3796static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3797 __be64 if_id)
3798{
3799 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3800
3801 grh->dgid.global.interface_id = if_id;
3802}
3803
3804static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3805 union ib_gid *dgid, u32 flow_label,
3806 u8 sgid_index, u8 hop_limit,
3807 u8 traffic_class)
3808{
3809 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3810
3811 attr->ah_flags = IB_AH_GRH;
3812 if (dgid)
3813 grh->dgid = *dgid;
3814 grh->flow_label = flow_label;
3815 grh->sgid_index = sgid_index;
3816 grh->hop_limit = hop_limit;
3817 grh->traffic_class = traffic_class;
3818}
44c58487 3819
87daac68
DH
3820/**
3821 * rdma_ah_find_type - Return address handle type.
3822 *
3823 * @dev: Device to be checked
3824 * @port_num: Port number
3825 */
44c58487 3826static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 3827 u8 port_num)
44c58487 3828{
a6532e71 3829 if (rdma_protocol_roce(dev, port_num))
44c58487 3830 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
3831 if (rdma_protocol_ib(dev, port_num)) {
3832 if (rdma_cap_opa_ah(dev, port_num))
3833 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 3834 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
3835 }
3836
3837 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 3838}
7db20ecd 3839
62ede777
HD
3840/**
3841 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3842 * In the current implementation the only way to get
3843 * get the 32bit lid is from other sources for OPA.
3844 * For IB, lids will always be 16bits so cast the
3845 * value accordingly.
3846 *
3847 * @lid: A 32bit LID
3848 */
3849static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 3850{
62ede777
HD
3851 WARN_ON_ONCE(lid & 0xFFFF0000);
3852 return (u16)lid;
7db20ecd
HD
3853}
3854
62ede777
HD
3855/**
3856 * ib_lid_be16 - Return lid in 16bit BE encoding.
3857 *
3858 * @lid: A 32bit LID
3859 */
3860static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 3861{
62ede777
HD
3862 WARN_ON_ONCE(lid & 0xFFFF0000);
3863 return cpu_to_be16((u16)lid);
7db20ecd 3864}
32043830 3865
c66cd353
SG
3866/**
3867 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3868 * vector
3869 * @device: the rdma device
3870 * @comp_vector: index of completion vector
3871 *
3872 * Returns NULL on failure, otherwise a corresponding cpu map of the
3873 * completion vector (returns all-cpus map if the device driver doesn't
3874 * implement get_vector_affinity).
3875 */
3876static inline const struct cpumask *
3877ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3878{
3879 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3880 !device->get_vector_affinity)
3881 return NULL;
3882
3883 return device->get_vector_affinity(device, comp_vector);
3884
3885}
3886
32f69e4b
DJ
3887/**
3888 * rdma_roce_rescan_device - Rescan all of the network devices in the system
3889 * and add their gids, as needed, to the relevant RoCE devices.
3890 *
3891 * @device: the rdma device
3892 */
3893void rdma_roce_rescan_device(struct ib_device *ibdev);
3894
1da177e4 3895#endif /* IB_VERBS_H */