]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
RDMA: Add a dedicated CQ resource tracker function
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
f6316032
LR
62#include <linux/irqflags.h>
63#include <linux/preempt.h>
da662979 64#include <linux/dim.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
413d3347 66#include <rdma/rdma_counter.h>
02d8883f 67#include <rdma/restrack.h>
36b1e47f 68#include <rdma/signature.h>
0ede73bc 69#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 70#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 71
9abb0d1b
LR
72#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
73
b5231b01 74struct ib_umem_odp;
620d3f81 75struct ib_uqp_object;
9fbe334c 76struct ib_usrq_object;
e04dd131 77struct ib_uwq_object;
b5231b01 78
f0626710 79extern struct workqueue_struct *ib_wq;
14d3a3b2 80extern struct workqueue_struct *ib_comp_wq;
f794809a 81extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 82
5bd48c18
JG
83struct ib_ucq_object;
84
923abb9d
GP
85__printf(3, 4) __cold
86void ibdev_printk(const char *level, const struct ib_device *ibdev,
87 const char *format, ...);
88__printf(2, 3) __cold
89void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
90__printf(2, 3) __cold
91void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
92__printf(2, 3) __cold
93void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
94__printf(2, 3) __cold
95void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
96__printf(2, 3) __cold
97void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
98__printf(2, 3) __cold
99void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
100__printf(2, 3) __cold
101void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
102
ceabef7d
OZ
103#if defined(CONFIG_DYNAMIC_DEBUG) || \
104 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
923abb9d
GP
105#define ibdev_dbg(__dev, format, args...) \
106 dynamic_ibdev_dbg(__dev, format, ##args)
923abb9d
GP
107#else
108__printf(2, 3) __cold
109static inline
110void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
111#endif
112
05bb411a
GP
113#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
114do { \
115 static DEFINE_RATELIMIT_STATE(_rs, \
116 DEFAULT_RATELIMIT_INTERVAL, \
117 DEFAULT_RATELIMIT_BURST); \
118 if (__ratelimit(&_rs)) \
119 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
120} while (0)
121
122#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
123 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
124#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
125 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
126#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
127 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
128#define ibdev_err_ratelimited(ibdev, fmt, ...) \
129 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
130#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
131 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
132#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
133 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
134#define ibdev_info_ratelimited(ibdev, fmt, ...) \
135 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
136
ceabef7d
OZ
137#if defined(CONFIG_DYNAMIC_DEBUG) || \
138 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
05bb411a
GP
139/* descriptor check is first to prevent flooding with "callbacks suppressed" */
140#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
141do { \
142 static DEFINE_RATELIMIT_STATE(_rs, \
143 DEFAULT_RATELIMIT_INTERVAL, \
144 DEFAULT_RATELIMIT_BURST); \
145 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
146 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
147 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
148 ##__VA_ARGS__); \
149} while (0)
150#else
151__printf(2, 3) __cold
152static inline
153void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
154#endif
155
1da177e4
LT
156union ib_gid {
157 u8 raw[16];
158 struct {
97f52eb4
SH
159 __be64 subnet_prefix;
160 __be64 interface_id;
1da177e4
LT
161 } global;
162};
163
e26be1bf
MS
164extern union ib_gid zgid;
165
b39ffa1d
MB
166enum ib_gid_type {
167 /* If link layer is Ethernet, this is RoCE V1 */
168 IB_GID_TYPE_IB = 0,
169 IB_GID_TYPE_ROCE = 0,
7766a99f 170 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
171 IB_GID_TYPE_SIZE
172};
173
7ead4bcb 174#define ROCE_V2_UDP_DPORT 4791
03db3a2d 175struct ib_gid_attr {
943bd984 176 struct net_device __rcu *ndev;
598ff6ba 177 struct ib_device *device;
b150c386 178 union ib_gid gid;
598ff6ba
PP
179 enum ib_gid_type gid_type;
180 u16 index;
181 u8 port_num;
03db3a2d
MB
182};
183
a0c1b2a3
EC
184enum {
185 /* set the local administered indication */
186 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
187};
188
07ebafba
TT
189enum rdma_transport_type {
190 RDMA_TRANSPORT_IB,
180771a3 191 RDMA_TRANSPORT_IWARP,
248567f7 192 RDMA_TRANSPORT_USNIC,
f95be3d2
GP
193 RDMA_TRANSPORT_USNIC_UDP,
194 RDMA_TRANSPORT_UNSPECIFIED,
07ebafba
TT
195};
196
6b90a6d6
MW
197enum rdma_protocol_type {
198 RDMA_PROTOCOL_IB,
199 RDMA_PROTOCOL_IBOE,
200 RDMA_PROTOCOL_IWARP,
201 RDMA_PROTOCOL_USNIC_UDP
202};
203
8385fd84 204__attribute_const__ enum rdma_transport_type
5d60c111 205rdma_node_get_transport(unsigned int node_type);
07ebafba 206
c865f246
SK
207enum rdma_network_type {
208 RDMA_NETWORK_IB,
209 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
210 RDMA_NETWORK_IPV4,
211 RDMA_NETWORK_IPV6
212};
213
214static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
215{
216 if (network_type == RDMA_NETWORK_IPV4 ||
217 network_type == RDMA_NETWORK_IPV6)
218 return IB_GID_TYPE_ROCE_UDP_ENCAP;
219
220 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
221 return IB_GID_TYPE_IB;
222}
223
47ec3866
PP
224static inline enum rdma_network_type
225rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 226{
47ec3866 227 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
228 return RDMA_NETWORK_IB;
229
47ec3866 230 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
231 return RDMA_NETWORK_IPV4;
232 else
233 return RDMA_NETWORK_IPV6;
234}
235
a3f5adaf
EC
236enum rdma_link_layer {
237 IB_LINK_LAYER_UNSPECIFIED,
238 IB_LINK_LAYER_INFINIBAND,
239 IB_LINK_LAYER_ETHERNET,
240};
241
1da177e4 242enum ib_device_cap_flags {
7ca0bc53
LR
243 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
244 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
245 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
246 IB_DEVICE_RAW_MULTI = (1 << 3),
247 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
248 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
249 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
250 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
251 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 252 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
253 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
254 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
255 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
256 IB_DEVICE_SRQ_RESIZE = (1 << 13),
257 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
258
259 /*
260 * This device supports a per-device lkey or stag that can be
261 * used without performing a memory registration for the local
262 * memory. Note that ULPs should never check this flag, but
263 * instead of use the local_dma_lkey flag in the ib_pd structure,
264 * which will always contain a usable lkey.
265 */
7ca0bc53 266 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 267 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 268 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
269 /*
270 * Devices should set IB_DEVICE_UD_IP_SUM if they support
271 * insertion of UDP and TCP checksum on outgoing UD IPoIB
272 * messages and can verify the validity of checksum for
273 * incoming messages. Setting this flag implies that the
274 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
275 */
7ca0bc53
LR
276 IB_DEVICE_UD_IP_CSUM = (1 << 18),
277 IB_DEVICE_UD_TSO = (1 << 19),
278 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
279
280 /*
281 * This device supports the IB "base memory management extension",
282 * which includes support for fast registrations (IB_WR_REG_MR,
283 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
284 * also be set by any iWarp device which must support FRs to comply
285 * to the iWarp verbs spec. iWarp devices also support the
286 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
287 * stag.
288 */
7ca0bc53
LR
289 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
290 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
291 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
292 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
293 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 294 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 295 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
296 /*
297 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
298 * support execution of WQEs that involve synchronization
299 * of I/O operations with single completion queue managed
300 * by hardware.
301 */
78b57f95 302 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53 303 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
c0a6cbb9 304 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
47355b3c 305 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 306 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 307 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 308 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 309 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
7f90a5a0 310 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
e1d2e887
NO
311 /* The device supports padding incoming writes to cacheline. */
312 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 313 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
314};
315
1da177e4
LT
316enum ib_atomic_cap {
317 IB_ATOMIC_NONE,
318 IB_ATOMIC_HCA,
319 IB_ATOMIC_GLOB
320};
321
860f10a7 322enum ib_odp_general_cap_bits {
25bf14d6
AK
323 IB_ODP_SUPPORT = 1 << 0,
324 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
325};
326
327enum ib_odp_transport_cap_bits {
328 IB_ODP_SUPPORT_SEND = 1 << 0,
329 IB_ODP_SUPPORT_RECV = 1 << 1,
330 IB_ODP_SUPPORT_WRITE = 1 << 2,
331 IB_ODP_SUPPORT_READ = 1 << 3,
332 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 333 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
334};
335
336struct ib_odp_caps {
337 uint64_t general_caps;
338 struct {
339 uint32_t rc_odp_caps;
340 uint32_t uc_odp_caps;
341 uint32_t ud_odp_caps;
52a72e2a 342 uint32_t xrc_odp_caps;
860f10a7
SG
343 } per_transport_caps;
344};
345
ccf20562
YH
346struct ib_rss_caps {
347 /* Corresponding bit will be set if qp type from
348 * 'enum ib_qp_type' is supported, e.g.
349 * supported_qpts |= 1 << IB_QPT_UD
350 */
351 u32 supported_qpts;
352 u32 max_rwq_indirection_tables;
353 u32 max_rwq_indirection_table_size;
354};
355
6938fc1e 356enum ib_tm_cap_flags {
89705e92
DG
357 /* Support tag matching with rendezvous offload for RC transport */
358 IB_TM_CAP_RNDV_RC = 1 << 0,
6938fc1e
AK
359};
360
78b1beb0 361struct ib_tm_caps {
6938fc1e
AK
362 /* Max size of RNDV header */
363 u32 max_rndv_hdr_size;
364 /* Max number of entries in tag matching list */
365 u32 max_num_tags;
366 /* From enum ib_tm_cap_flags */
367 u32 flags;
368 /* Max number of outstanding list operations */
369 u32 max_ops;
370 /* Max number of SGE in tag matching entry */
371 u32 max_sge;
372};
373
bcf4c1ea
MB
374struct ib_cq_init_attr {
375 unsigned int cqe;
a9018adf 376 u32 comp_vector;
bcf4c1ea
MB
377 u32 flags;
378};
379
869ddcf8
YC
380enum ib_cq_attr_mask {
381 IB_CQ_MODERATE = 1 << 0,
382};
383
18bd9072
YC
384struct ib_cq_caps {
385 u16 max_cq_moderation_count;
386 u16 max_cq_moderation_period;
387};
388
be934cca
AL
389struct ib_dm_mr_attr {
390 u64 length;
391 u64 offset;
392 u32 access_flags;
393};
394
bee76d7a
AL
395struct ib_dm_alloc_attr {
396 u64 length;
397 u32 alignment;
398 u32 flags;
399};
400
1da177e4
LT
401struct ib_device_attr {
402 u64 fw_ver;
97f52eb4 403 __be64 sys_image_guid;
1da177e4
LT
404 u64 max_mr_size;
405 u64 page_size_cap;
406 u32 vendor_id;
407 u32 vendor_part_id;
408 u32 hw_ver;
409 int max_qp;
410 int max_qp_wr;
fb532d6a 411 u64 device_cap_flags;
33023fb8
SW
412 int max_send_sge;
413 int max_recv_sge;
1da177e4
LT
414 int max_sge_rd;
415 int max_cq;
416 int max_cqe;
417 int max_mr;
418 int max_pd;
419 int max_qp_rd_atom;
420 int max_ee_rd_atom;
421 int max_res_rd_atom;
422 int max_qp_init_rd_atom;
423 int max_ee_init_rd_atom;
424 enum ib_atomic_cap atomic_cap;
5e80ba8f 425 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
426 int max_ee;
427 int max_rdd;
428 int max_mw;
429 int max_raw_ipv6_qp;
430 int max_raw_ethy_qp;
431 int max_mcast_grp;
432 int max_mcast_qp_attach;
433 int max_total_mcast_qp_attach;
434 int max_ah;
1da177e4
LT
435 int max_srq;
436 int max_srq_wr;
437 int max_srq_sge;
00f7ec36 438 unsigned int max_fast_reg_page_list_len;
62e3c379 439 unsigned int max_pi_fast_reg_page_list_len;
1da177e4
LT
440 u16 max_pkeys;
441 u8 local_ca_ack_delay;
1b01d335
SG
442 int sig_prot_cap;
443 int sig_guard_cap;
860f10a7 444 struct ib_odp_caps odp_caps;
24306dc6
MB
445 uint64_t timestamp_mask;
446 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
447 struct ib_rss_caps rss_caps;
448 u32 max_wq_type_rq;
ebaaee25 449 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 450 struct ib_tm_caps tm_caps;
18bd9072 451 struct ib_cq_caps cq_caps;
1d8eeb9f 452 u64 max_dm_size;
00bd1439
YF
453 /* Max entries for sgl for optimized performance per READ */
454 u32 max_sgl_rd;
1da177e4
LT
455};
456
457enum ib_mtu {
458 IB_MTU_256 = 1,
459 IB_MTU_512 = 2,
460 IB_MTU_1024 = 3,
461 IB_MTU_2048 = 4,
462 IB_MTU_4096 = 5
463};
464
6d72344c
KW
465enum opa_mtu {
466 OPA_MTU_8192 = 6,
467 OPA_MTU_10240 = 7
468};
469
1da177e4
LT
470static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
471{
472 switch (mtu) {
473 case IB_MTU_256: return 256;
474 case IB_MTU_512: return 512;
475 case IB_MTU_1024: return 1024;
476 case IB_MTU_2048: return 2048;
477 case IB_MTU_4096: return 4096;
478 default: return -1;
479 }
480}
481
d3f4aadd
AR
482static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
483{
484 if (mtu >= 4096)
485 return IB_MTU_4096;
486 else if (mtu >= 2048)
487 return IB_MTU_2048;
488 else if (mtu >= 1024)
489 return IB_MTU_1024;
490 else if (mtu >= 512)
491 return IB_MTU_512;
492 else
493 return IB_MTU_256;
494}
495
6d72344c
KW
496static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
497{
498 switch (mtu) {
499 case OPA_MTU_8192:
500 return 8192;
501 case OPA_MTU_10240:
502 return 10240;
503 default:
504 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
505 }
506}
507
508static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
509{
510 if (mtu >= 10240)
511 return OPA_MTU_10240;
512 else if (mtu >= 8192)
513 return OPA_MTU_8192;
514 else
515 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
516}
517
1da177e4
LT
518enum ib_port_state {
519 IB_PORT_NOP = 0,
520 IB_PORT_DOWN = 1,
521 IB_PORT_INIT = 2,
522 IB_PORT_ARMED = 3,
523 IB_PORT_ACTIVE = 4,
524 IB_PORT_ACTIVE_DEFER = 5
525};
526
72a7720f
KH
527enum ib_port_phys_state {
528 IB_PORT_PHYS_STATE_SLEEP = 1,
529 IB_PORT_PHYS_STATE_POLLING = 2,
530 IB_PORT_PHYS_STATE_DISABLED = 3,
531 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
532 IB_PORT_PHYS_STATE_LINK_UP = 5,
533 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
534 IB_PORT_PHYS_STATE_PHY_TEST = 7,
535};
536
1da177e4
LT
537enum ib_port_width {
538 IB_WIDTH_1X = 1,
dbabf685 539 IB_WIDTH_2X = 16,
1da177e4
LT
540 IB_WIDTH_4X = 2,
541 IB_WIDTH_8X = 4,
542 IB_WIDTH_12X = 8
543};
544
545static inline int ib_width_enum_to_int(enum ib_port_width width)
546{
547 switch (width) {
548 case IB_WIDTH_1X: return 1;
dbabf685 549 case IB_WIDTH_2X: return 2;
1da177e4
LT
550 case IB_WIDTH_4X: return 4;
551 case IB_WIDTH_8X: return 8;
552 case IB_WIDTH_12X: return 12;
553 default: return -1;
554 }
555}
556
2e96691c
OG
557enum ib_port_speed {
558 IB_SPEED_SDR = 1,
559 IB_SPEED_DDR = 2,
560 IB_SPEED_QDR = 4,
561 IB_SPEED_FDR10 = 8,
562 IB_SPEED_FDR = 16,
12113a35
NO
563 IB_SPEED_EDR = 32,
564 IB_SPEED_HDR = 64
2e96691c
OG
565};
566
b40f4757
CL
567/**
568 * struct rdma_hw_stats
e945130b
MB
569 * @lock - Mutex to protect parallel write access to lifespan and values
570 * of counters, which are 64bits and not guaranteeed to be written
571 * atomicaly on 32bits systems.
b40f4757
CL
572 * @timestamp - Used by the core code to track when the last update was
573 * @lifespan - Used by the core code to determine how old the counters
574 * should be before being updated again. Stored in jiffies, defaults
575 * to 10 milliseconds, drivers can override the default be specifying
576 * their own value during their allocation routine.
577 * @name - Array of pointers to static names used for the counters in
578 * directory.
579 * @num_counters - How many hardware counters there are. If name is
580 * shorter than this number, a kernel oops will result. Driver authors
581 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
582 * in their code to prevent this.
583 * @value - Array of u64 counters that are accessed by the sysfs code and
584 * filled in by the drivers get_stats routine
585 */
586struct rdma_hw_stats {
e945130b 587 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
588 unsigned long timestamp;
589 unsigned long lifespan;
590 const char * const *names;
591 int num_counters;
592 u64 value[];
7f624d02
SW
593};
594
b40f4757
CL
595#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
596/**
597 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
598 * for drivers.
599 * @names - Array of static const char *
600 * @num_counters - How many elements in array
601 * @lifespan - How many milliseconds between updates
602 */
603static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
604 const char * const *names, int num_counters,
605 unsigned long lifespan)
606{
607 struct rdma_hw_stats *stats;
608
609 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
610 GFP_KERNEL);
611 if (!stats)
612 return NULL;
613 stats->names = names;
614 stats->num_counters = num_counters;
615 stats->lifespan = msecs_to_jiffies(lifespan);
616
617 return stats;
618}
619
620
f9b22e35
IW
621/* Define bits for the various functionality this port needs to be supported by
622 * the core.
623 */
624/* Management 0x00000FFF */
625#define RDMA_CORE_CAP_IB_MAD 0x00000001
626#define RDMA_CORE_CAP_IB_SMI 0x00000002
627#define RDMA_CORE_CAP_IB_CM 0x00000004
628#define RDMA_CORE_CAP_IW_CM 0x00000008
629#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 630#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
631
632/* Address format 0x000FF000 */
633#define RDMA_CORE_CAP_AF_IB 0x00001000
634#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 635#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 636#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
637
638/* Protocol 0xFFF00000 */
639#define RDMA_CORE_CAP_PROT_IB 0x00100000
640#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
641#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 642#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 643#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 644#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 645
b02289b3
AK
646#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
647 | RDMA_CORE_CAP_PROT_ROCE \
648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
649
f9b22e35
IW
650#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
651 | RDMA_CORE_CAP_IB_MAD \
652 | RDMA_CORE_CAP_IB_SMI \
653 | RDMA_CORE_CAP_IB_CM \
654 | RDMA_CORE_CAP_IB_SA \
655 | RDMA_CORE_CAP_AF_IB)
656#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
657 | RDMA_CORE_CAP_IB_MAD \
658 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
659 | RDMA_CORE_CAP_AF_IB \
660 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
661#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
663 | RDMA_CORE_CAP_IB_MAD \
664 | RDMA_CORE_CAP_IB_CM \
665 | RDMA_CORE_CAP_AF_IB \
666 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
667#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
668 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
669#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
670 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 671
aa773bd4
OG
672#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
673
ce1e055f
OG
674#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
675
1da177e4 676struct ib_port_attr {
fad61ad4 677 u64 subnet_prefix;
1da177e4
LT
678 enum ib_port_state state;
679 enum ib_mtu max_mtu;
680 enum ib_mtu active_mtu;
6d72344c 681 u32 phys_mtu;
1da177e4 682 int gid_tbl_len;
2f944c0f
JG
683 unsigned int ip_gids:1;
684 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
685 u32 port_cap_flags;
686 u32 max_msg_sz;
687 u32 bad_pkey_cntr;
688 u32 qkey_viol_cntr;
689 u16 pkey_tbl_len;
db58540b 690 u32 sm_lid;
582faf31 691 u32 lid;
1da177e4
LT
692 u8 lmc;
693 u8 max_vl_num;
694 u8 sm_sl;
695 u8 subnet_timeout;
696 u8 init_type_reply;
697 u8 active_width;
698 u8 active_speed;
699 u8 phys_state;
1e8f43b7 700 u16 port_cap_flags2;
1da177e4
LT
701};
702
703enum ib_device_modify_flags {
c5bcbbb9
RD
704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
706};
707
bd99fdea
YS
708#define IB_DEVICE_NODE_DESC_MAX 64
709
1da177e4
LT
710struct ib_device_modify {
711 u64 sys_image_guid;
bd99fdea 712 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
713};
714
715enum ib_port_modify_flags {
716 IB_PORT_SHUTDOWN = 1,
717 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
718 IB_PORT_RESET_QKEY_CNTR = (1<<3),
719 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
720};
721
722struct ib_port_modify {
723 u32 set_port_cap_mask;
724 u32 clr_port_cap_mask;
725 u8 init_type;
726};
727
728enum ib_event_type {
729 IB_EVENT_CQ_ERR,
730 IB_EVENT_QP_FATAL,
731 IB_EVENT_QP_REQ_ERR,
732 IB_EVENT_QP_ACCESS_ERR,
733 IB_EVENT_COMM_EST,
734 IB_EVENT_SQ_DRAINED,
735 IB_EVENT_PATH_MIG,
736 IB_EVENT_PATH_MIG_ERR,
737 IB_EVENT_DEVICE_FATAL,
738 IB_EVENT_PORT_ACTIVE,
739 IB_EVENT_PORT_ERR,
740 IB_EVENT_LID_CHANGE,
741 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
742 IB_EVENT_SM_CHANGE,
743 IB_EVENT_SRQ_ERR,
744 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 745 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
746 IB_EVENT_CLIENT_REREGISTER,
747 IB_EVENT_GID_CHANGE,
f213c052 748 IB_EVENT_WQ_FATAL,
1da177e4
LT
749};
750
db7489e0 751const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 752
1da177e4
LT
753struct ib_event {
754 struct ib_device *device;
755 union {
756 struct ib_cq *cq;
757 struct ib_qp *qp;
d41fcc67 758 struct ib_srq *srq;
f213c052 759 struct ib_wq *wq;
1da177e4
LT
760 u8 port_num;
761 } element;
762 enum ib_event_type event;
763};
764
765struct ib_event_handler {
766 struct ib_device *device;
767 void (*handler)(struct ib_event_handler *, struct ib_event *);
768 struct list_head list;
769};
770
771#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
772 do { \
773 (_ptr)->device = _device; \
774 (_ptr)->handler = _handler; \
775 INIT_LIST_HEAD(&(_ptr)->list); \
776 } while (0)
777
778struct ib_global_route {
8d9ec9ad 779 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
780 union ib_gid dgid;
781 u32 flow_label;
782 u8 sgid_index;
783 u8 hop_limit;
784 u8 traffic_class;
785};
786
513789ed 787struct ib_grh {
97f52eb4
SH
788 __be32 version_tclass_flow;
789 __be16 paylen;
513789ed
HR
790 u8 next_hdr;
791 u8 hop_limit;
792 union ib_gid sgid;
793 union ib_gid dgid;
794};
795
c865f246
SK
796union rdma_network_hdr {
797 struct ib_grh ibgrh;
798 struct {
799 /* The IB spec states that if it's IPv4, the header
800 * is located in the last 20 bytes of the header.
801 */
802 u8 reserved[20];
803 struct iphdr roce4grh;
804 };
805};
806
7dafbab3
DH
807#define IB_QPN_MASK 0xFFFFFF
808
1da177e4
LT
809enum {
810 IB_MULTICAST_QPN = 0xffffff
811};
812
f3a7c66b 813#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 814#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 815
1da177e4
LT
816enum ib_ah_flags {
817 IB_AH_GRH = 1
818};
819
bf6a9e31
JM
820enum ib_rate {
821 IB_RATE_PORT_CURRENT = 0,
822 IB_RATE_2_5_GBPS = 2,
823 IB_RATE_5_GBPS = 5,
824 IB_RATE_10_GBPS = 3,
825 IB_RATE_20_GBPS = 6,
826 IB_RATE_30_GBPS = 4,
827 IB_RATE_40_GBPS = 7,
828 IB_RATE_60_GBPS = 8,
829 IB_RATE_80_GBPS = 9,
71eeba16
MA
830 IB_RATE_120_GBPS = 10,
831 IB_RATE_14_GBPS = 11,
832 IB_RATE_56_GBPS = 12,
833 IB_RATE_112_GBPS = 13,
834 IB_RATE_168_GBPS = 14,
835 IB_RATE_25_GBPS = 15,
836 IB_RATE_100_GBPS = 16,
837 IB_RATE_200_GBPS = 17,
a5a5d199
MG
838 IB_RATE_300_GBPS = 18,
839 IB_RATE_28_GBPS = 19,
840 IB_RATE_50_GBPS = 20,
841 IB_RATE_400_GBPS = 21,
842 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
843};
844
845/**
846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
849 * @rate: rate to convert.
850 */
8385fd84 851__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 852
71eeba16
MA
853/**
854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
855 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
856 * @rate: rate to convert.
857 */
8385fd84 858__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 859
17cd3a2d
SG
860
861/**
9bee178b
SG
862 * enum ib_mr_type - memory region type
863 * @IB_MR_TYPE_MEM_REG: memory region that is used for
864 * normal registration
f5aa9159
SG
865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
866 * register any arbitrary sg lists (without
867 * the normal mr constraints - see
868 * ib_map_mr_sg)
a0bc099a
MG
869 * @IB_MR_TYPE_DM: memory region that is used for device
870 * memory registration
871 * @IB_MR_TYPE_USER: memory region that is used for the user-space
872 * application
873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
874 * without address translations (VA=PA)
26bc7eae
IR
875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
876 * data integrity operations
17cd3a2d 877 */
9bee178b
SG
878enum ib_mr_type {
879 IB_MR_TYPE_MEM_REG,
f5aa9159 880 IB_MR_TYPE_SG_GAPS,
a0bc099a
MG
881 IB_MR_TYPE_DM,
882 IB_MR_TYPE_USER,
883 IB_MR_TYPE_DMA,
26bc7eae 884 IB_MR_TYPE_INTEGRITY,
17cd3a2d
SG
885};
886
1b01d335
SG
887enum ib_mr_status_check {
888 IB_MR_CHECK_SIG_STATUS = 1,
889};
890
891/**
892 * struct ib_mr_status - Memory region status container
893 *
894 * @fail_status: Bitmask of MR checks status. For each
895 * failed check a corresponding status bit is set.
896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
897 * failure.
898 */
899struct ib_mr_status {
900 u32 fail_status;
901 struct ib_sig_err sig_err;
902};
903
bf6a9e31
JM
904/**
905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
906 * enum.
907 * @mult: multiple to convert.
908 */
8385fd84 909__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 910
fa5d010c
MG
911struct rdma_ah_init_attr {
912 struct rdma_ah_attr *ah_attr;
913 u32 flags;
51aab126 914 struct net_device *xmit_slave;
fa5d010c
MG
915};
916
44c58487 917enum rdma_ah_attr_type {
87daac68 918 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
919 RDMA_AH_ATTR_TYPE_IB,
920 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 921 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
922};
923
924struct ib_ah_attr {
925 u16 dlid;
926 u8 src_path_bits;
927};
928
929struct roce_ah_attr {
930 u8 dmac[ETH_ALEN];
931};
932
64b4646e
DC
933struct opa_ah_attr {
934 u32 dlid;
935 u8 src_path_bits;
d98bb7f7 936 bool make_grd;
64b4646e
DC
937};
938
90898850 939struct rdma_ah_attr {
1da177e4 940 struct ib_global_route grh;
1da177e4 941 u8 sl;
1da177e4 942 u8 static_rate;
1da177e4 943 u8 port_num;
44c58487
DC
944 u8 ah_flags;
945 enum rdma_ah_attr_type type;
946 union {
947 struct ib_ah_attr ib;
948 struct roce_ah_attr roce;
64b4646e 949 struct opa_ah_attr opa;
44c58487 950 };
1da177e4
LT
951};
952
953enum ib_wc_status {
954 IB_WC_SUCCESS,
955 IB_WC_LOC_LEN_ERR,
956 IB_WC_LOC_QP_OP_ERR,
957 IB_WC_LOC_EEC_OP_ERR,
958 IB_WC_LOC_PROT_ERR,
959 IB_WC_WR_FLUSH_ERR,
960 IB_WC_MW_BIND_ERR,
961 IB_WC_BAD_RESP_ERR,
962 IB_WC_LOC_ACCESS_ERR,
963 IB_WC_REM_INV_REQ_ERR,
964 IB_WC_REM_ACCESS_ERR,
965 IB_WC_REM_OP_ERR,
966 IB_WC_RETRY_EXC_ERR,
967 IB_WC_RNR_RETRY_EXC_ERR,
968 IB_WC_LOC_RDD_VIOL_ERR,
969 IB_WC_REM_INV_RD_REQ_ERR,
970 IB_WC_REM_ABORT_ERR,
971 IB_WC_INV_EECN_ERR,
972 IB_WC_INV_EEC_STATE_ERR,
973 IB_WC_FATAL_ERR,
974 IB_WC_RESP_TIMEOUT_ERR,
975 IB_WC_GENERAL_ERR
976};
977
db7489e0 978const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 979
1da177e4
LT
980enum ib_wc_opcode {
981 IB_WC_SEND,
982 IB_WC_RDMA_WRITE,
983 IB_WC_RDMA_READ,
984 IB_WC_COMP_SWAP,
985 IB_WC_FETCH_ADD,
c93570f2 986 IB_WC_LSO,
00f7ec36 987 IB_WC_LOCAL_INV,
4c67e2bf 988 IB_WC_REG_MR,
5e80ba8f
VS
989 IB_WC_MASKED_COMP_SWAP,
990 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
991/*
992 * Set value of IB_WC_RECV so consumers can test if a completion is a
993 * receive by testing (opcode & IB_WC_RECV).
994 */
995 IB_WC_RECV = 1 << 7,
996 IB_WC_RECV_RDMA_WITH_IMM
997};
998
999enum ib_wc_flags {
1000 IB_WC_GRH = 1,
00f7ec36
SW
1001 IB_WC_WITH_IMM = (1<<1),
1002 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 1003 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
1004 IB_WC_WITH_SMAC = (1<<4),
1005 IB_WC_WITH_VLAN = (1<<5),
c865f246 1006 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
1007};
1008
1009struct ib_wc {
14d3a3b2
CH
1010 union {
1011 u64 wr_id;
1012 struct ib_cqe *wr_cqe;
1013 };
1da177e4
LT
1014 enum ib_wc_status status;
1015 enum ib_wc_opcode opcode;
1016 u32 vendor_err;
1017 u32 byte_len;
062dbb69 1018 struct ib_qp *qp;
00f7ec36
SW
1019 union {
1020 __be32 imm_data;
1021 u32 invalidate_rkey;
1022 } ex;
1da177e4 1023 u32 src_qp;
cd2a6e7d 1024 u32 slid;
1da177e4
LT
1025 int wc_flags;
1026 u16 pkey_index;
1da177e4
LT
1027 u8 sl;
1028 u8 dlid_path_bits;
1029 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1030 u8 smac[ETH_ALEN];
1031 u16 vlan_id;
c865f246 1032 u8 network_hdr_type;
1da177e4
LT
1033};
1034
ed23a727
RD
1035enum ib_cq_notify_flags {
1036 IB_CQ_SOLICITED = 1 << 0,
1037 IB_CQ_NEXT_COMP = 1 << 1,
1038 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1039 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1040};
1041
96104eda 1042enum ib_srq_type {
175ba58d
YH
1043 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1044 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1045 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
96104eda
SH
1046};
1047
1a56ff6d
AK
1048static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1049{
9c2c8496
AK
1050 return srq_type == IB_SRQT_XRC ||
1051 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1052}
1053
d41fcc67
RD
1054enum ib_srq_attr_mask {
1055 IB_SRQ_MAX_WR = 1 << 0,
1056 IB_SRQ_LIMIT = 1 << 1,
1057};
1058
1059struct ib_srq_attr {
1060 u32 max_wr;
1061 u32 max_sge;
1062 u32 srq_limit;
1063};
1064
1065struct ib_srq_init_attr {
1066 void (*event_handler)(struct ib_event *, void *);
1067 void *srq_context;
1068 struct ib_srq_attr attr;
96104eda 1069 enum ib_srq_type srq_type;
418d5130 1070
1a56ff6d
AK
1071 struct {
1072 struct ib_cq *cq;
1073 union {
1074 struct {
1075 struct ib_xrcd *xrcd;
1076 } xrc;
9c2c8496
AK
1077
1078 struct {
1079 u32 max_num_tags;
1080 } tag_matching;
1a56ff6d 1081 };
418d5130 1082 } ext;
d41fcc67
RD
1083};
1084
1da177e4
LT
1085struct ib_qp_cap {
1086 u32 max_send_wr;
1087 u32 max_recv_wr;
1088 u32 max_send_sge;
1089 u32 max_recv_sge;
1090 u32 max_inline_data;
a060b562
CH
1091
1092 /*
1093 * Maximum number of rdma_rw_ctx structures in flight at a time.
1094 * ib_create_qp() will calculate the right amount of neededed WRs
1095 * and MRs based on this.
1096 */
1097 u32 max_rdma_ctxs;
1da177e4
LT
1098};
1099
1100enum ib_sig_type {
1101 IB_SIGNAL_ALL_WR,
1102 IB_SIGNAL_REQ_WR
1103};
1104
1105enum ib_qp_type {
1106 /*
1107 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1108 * here (and in that order) since the MAD layer uses them as
1109 * indices into a 2-entry table.
1110 */
1111 IB_QPT_SMI,
1112 IB_QPT_GSI,
1113
175ba58d
YH
1114 IB_QPT_RC = IB_UVERBS_QPT_RC,
1115 IB_QPT_UC = IB_UVERBS_QPT_UC,
1116 IB_QPT_UD = IB_UVERBS_QPT_UD,
1da177e4 1117 IB_QPT_RAW_IPV6,
b42b63cf 1118 IB_QPT_RAW_ETHERTYPE,
175ba58d
YH
1119 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1120 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1121 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
0134f16b 1122 IB_QPT_MAX,
175ba58d 1123 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
0134f16b
JM
1124 /* Reserve a range for qp types internal to the low level driver.
1125 * These qp types will not be visible at the IB core layer, so the
1126 * IB_QPT_MAX usages should not be affected in the core layer
1127 */
1128 IB_QPT_RESERVED1 = 0x1000,
1129 IB_QPT_RESERVED2,
1130 IB_QPT_RESERVED3,
1131 IB_QPT_RESERVED4,
1132 IB_QPT_RESERVED5,
1133 IB_QPT_RESERVED6,
1134 IB_QPT_RESERVED7,
1135 IB_QPT_RESERVED8,
1136 IB_QPT_RESERVED9,
1137 IB_QPT_RESERVED10,
1da177e4
LT
1138};
1139
b846f25a 1140enum ib_qp_create_flags {
47ee1b9f 1141 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
175ba58d
YH
1142 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1143 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
8a06ce59
LR
1144 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1145 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1146 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1147 IB_QP_CREATE_NETIF_QP = 1 << 5,
c0a6cbb9 1148 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
7f90a5a0 1149 IB_QP_CREATE_NETDEV_USE = 1 << 7,
175ba58d
YH
1150 IB_QP_CREATE_SCATTER_FCS =
1151 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1152 IB_QP_CREATE_CVLAN_STRIPPING =
1153 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
02984cc7 1154 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
175ba58d
YH
1155 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1156 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
d2b57063
JM
1157 /* reserve bits 26-31 for low level drivers' internal use */
1158 IB_QP_CREATE_RESERVED_START = 1 << 26,
1159 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1160};
1161
73c40c61
YH
1162/*
1163 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1164 * callback to destroy the passed in QP.
1165 */
1166
1da177e4 1167struct ib_qp_init_attr {
eb93c82e 1168 /* Consumer's event_handler callback must not block */
1da177e4 1169 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1170
1da177e4
LT
1171 void *qp_context;
1172 struct ib_cq *send_cq;
1173 struct ib_cq *recv_cq;
1174 struct ib_srq *srq;
b42b63cf 1175 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1176 struct ib_qp_cap cap;
1177 enum ib_sig_type sq_sig_type;
1178 enum ib_qp_type qp_type;
b56511c1 1179 u32 create_flags;
a060b562
CH
1180
1181 /*
1182 * Only needed for special QP types, or when using the RW API.
1183 */
1184 u8 port_num;
a9017e23 1185 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1186 u32 source_qpn;
1da177e4
LT
1187};
1188
0e0ec7e0
SH
1189struct ib_qp_open_attr {
1190 void (*event_handler)(struct ib_event *, void *);
1191 void *qp_context;
1192 u32 qp_num;
1193 enum ib_qp_type qp_type;
1194};
1195
1da177e4
LT
1196enum ib_rnr_timeout {
1197 IB_RNR_TIMER_655_36 = 0,
1198 IB_RNR_TIMER_000_01 = 1,
1199 IB_RNR_TIMER_000_02 = 2,
1200 IB_RNR_TIMER_000_03 = 3,
1201 IB_RNR_TIMER_000_04 = 4,
1202 IB_RNR_TIMER_000_06 = 5,
1203 IB_RNR_TIMER_000_08 = 6,
1204 IB_RNR_TIMER_000_12 = 7,
1205 IB_RNR_TIMER_000_16 = 8,
1206 IB_RNR_TIMER_000_24 = 9,
1207 IB_RNR_TIMER_000_32 = 10,
1208 IB_RNR_TIMER_000_48 = 11,
1209 IB_RNR_TIMER_000_64 = 12,
1210 IB_RNR_TIMER_000_96 = 13,
1211 IB_RNR_TIMER_001_28 = 14,
1212 IB_RNR_TIMER_001_92 = 15,
1213 IB_RNR_TIMER_002_56 = 16,
1214 IB_RNR_TIMER_003_84 = 17,
1215 IB_RNR_TIMER_005_12 = 18,
1216 IB_RNR_TIMER_007_68 = 19,
1217 IB_RNR_TIMER_010_24 = 20,
1218 IB_RNR_TIMER_015_36 = 21,
1219 IB_RNR_TIMER_020_48 = 22,
1220 IB_RNR_TIMER_030_72 = 23,
1221 IB_RNR_TIMER_040_96 = 24,
1222 IB_RNR_TIMER_061_44 = 25,
1223 IB_RNR_TIMER_081_92 = 26,
1224 IB_RNR_TIMER_122_88 = 27,
1225 IB_RNR_TIMER_163_84 = 28,
1226 IB_RNR_TIMER_245_76 = 29,
1227 IB_RNR_TIMER_327_68 = 30,
1228 IB_RNR_TIMER_491_52 = 31
1229};
1230
1231enum ib_qp_attr_mask {
1232 IB_QP_STATE = 1,
1233 IB_QP_CUR_STATE = (1<<1),
1234 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1235 IB_QP_ACCESS_FLAGS = (1<<3),
1236 IB_QP_PKEY_INDEX = (1<<4),
1237 IB_QP_PORT = (1<<5),
1238 IB_QP_QKEY = (1<<6),
1239 IB_QP_AV = (1<<7),
1240 IB_QP_PATH_MTU = (1<<8),
1241 IB_QP_TIMEOUT = (1<<9),
1242 IB_QP_RETRY_CNT = (1<<10),
1243 IB_QP_RNR_RETRY = (1<<11),
1244 IB_QP_RQ_PSN = (1<<12),
1245 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1246 IB_QP_ALT_PATH = (1<<14),
1247 IB_QP_MIN_RNR_TIMER = (1<<15),
1248 IB_QP_SQ_PSN = (1<<16),
1249 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1250 IB_QP_PATH_MIG_STATE = (1<<18),
1251 IB_QP_CAP = (1<<19),
dd5f03be 1252 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1253 IB_QP_RESERVED1 = (1<<21),
1254 IB_QP_RESERVED2 = (1<<22),
1255 IB_QP_RESERVED3 = (1<<23),
1256 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1257 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1258};
1259
1260enum ib_qp_state {
1261 IB_QPS_RESET,
1262 IB_QPS_INIT,
1263 IB_QPS_RTR,
1264 IB_QPS_RTS,
1265 IB_QPS_SQD,
1266 IB_QPS_SQE,
1267 IB_QPS_ERR
1268};
1269
1270enum ib_mig_state {
1271 IB_MIG_MIGRATED,
1272 IB_MIG_REARM,
1273 IB_MIG_ARMED
1274};
1275
7083e42e
SM
1276enum ib_mw_type {
1277 IB_MW_TYPE_1 = 1,
1278 IB_MW_TYPE_2 = 2
1279};
1280
1da177e4
LT
1281struct ib_qp_attr {
1282 enum ib_qp_state qp_state;
1283 enum ib_qp_state cur_qp_state;
1284 enum ib_mtu path_mtu;
1285 enum ib_mig_state path_mig_state;
1286 u32 qkey;
1287 u32 rq_psn;
1288 u32 sq_psn;
1289 u32 dest_qp_num;
1290 int qp_access_flags;
1291 struct ib_qp_cap cap;
90898850
DC
1292 struct rdma_ah_attr ah_attr;
1293 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1294 u16 pkey_index;
1295 u16 alt_pkey_index;
1296 u8 en_sqd_async_notify;
1297 u8 sq_draining;
1298 u8 max_rd_atomic;
1299 u8 max_dest_rd_atomic;
1300 u8 min_rnr_timer;
1301 u8 port_num;
1302 u8 timeout;
1303 u8 retry_cnt;
1304 u8 rnr_retry;
1305 u8 alt_port_num;
1306 u8 alt_timeout;
528e5a1b 1307 u32 rate_limit;
51aab126 1308 struct net_device *xmit_slave;
1da177e4
LT
1309};
1310
1311enum ib_wr_opcode {
9a59739b
JG
1312 /* These are shared with userspace */
1313 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1314 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1315 IB_WR_SEND = IB_UVERBS_WR_SEND,
1316 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1317 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1318 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1319 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1320 IB_WR_LSO = IB_UVERBS_WR_TSO,
1321 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1322 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1323 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1324 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1325 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1326 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1327 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1328
1329 /* These are kernel only and can not be issued by userspace */
1330 IB_WR_REG_MR = 0x20,
38ca87c6 1331 IB_WR_REG_MR_INTEGRITY,
9a59739b 1332
0134f16b
JM
1333 /* reserve values for low level drivers' internal use.
1334 * These values will not be used at all in the ib core layer.
1335 */
1336 IB_WR_RESERVED1 = 0xf0,
1337 IB_WR_RESERVED2,
1338 IB_WR_RESERVED3,
1339 IB_WR_RESERVED4,
1340 IB_WR_RESERVED5,
1341 IB_WR_RESERVED6,
1342 IB_WR_RESERVED7,
1343 IB_WR_RESERVED8,
1344 IB_WR_RESERVED9,
1345 IB_WR_RESERVED10,
1da177e4
LT
1346};
1347
1348enum ib_send_flags {
1349 IB_SEND_FENCE = 1,
1350 IB_SEND_SIGNALED = (1<<1),
1351 IB_SEND_SOLICITED = (1<<2),
e0605d91 1352 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1353 IB_SEND_IP_CSUM = (1<<4),
1354
1355 /* reserve bits 26-31 for low level drivers' internal use */
1356 IB_SEND_RESERVED_START = (1 << 26),
1357 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1358};
1359
1360struct ib_sge {
1361 u64 addr;
1362 u32 length;
1363 u32 lkey;
1364};
1365
14d3a3b2
CH
1366struct ib_cqe {
1367 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1368};
1369
1da177e4
LT
1370struct ib_send_wr {
1371 struct ib_send_wr *next;
14d3a3b2
CH
1372 union {
1373 u64 wr_id;
1374 struct ib_cqe *wr_cqe;
1375 };
1da177e4
LT
1376 struct ib_sge *sg_list;
1377 int num_sge;
1378 enum ib_wr_opcode opcode;
1379 int send_flags;
0f39cf3d
RD
1380 union {
1381 __be32 imm_data;
1382 u32 invalidate_rkey;
1383 } ex;
1da177e4
LT
1384};
1385
e622f2f4
CH
1386struct ib_rdma_wr {
1387 struct ib_send_wr wr;
1388 u64 remote_addr;
1389 u32 rkey;
1390};
1391
f696bf6d 1392static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1393{
1394 return container_of(wr, struct ib_rdma_wr, wr);
1395}
1396
1397struct ib_atomic_wr {
1398 struct ib_send_wr wr;
1399 u64 remote_addr;
1400 u64 compare_add;
1401 u64 swap;
1402 u64 compare_add_mask;
1403 u64 swap_mask;
1404 u32 rkey;
1405};
1406
f696bf6d 1407static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1408{
1409 return container_of(wr, struct ib_atomic_wr, wr);
1410}
1411
1412struct ib_ud_wr {
1413 struct ib_send_wr wr;
1414 struct ib_ah *ah;
1415 void *header;
1416 int hlen;
1417 int mss;
1418 u32 remote_qpn;
1419 u32 remote_qkey;
1420 u16 pkey_index; /* valid for GSI only */
1421 u8 port_num; /* valid for DR SMPs on switch only */
1422};
1423
f696bf6d 1424static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1425{
1426 return container_of(wr, struct ib_ud_wr, wr);
1427}
1428
4c67e2bf
SG
1429struct ib_reg_wr {
1430 struct ib_send_wr wr;
1431 struct ib_mr *mr;
1432 u32 key;
1433 int access;
1434};
1435
f696bf6d 1436static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1437{
1438 return container_of(wr, struct ib_reg_wr, wr);
1439}
1440
1da177e4
LT
1441struct ib_recv_wr {
1442 struct ib_recv_wr *next;
14d3a3b2
CH
1443 union {
1444 u64 wr_id;
1445 struct ib_cqe *wr_cqe;
1446 };
1da177e4
LT
1447 struct ib_sge *sg_list;
1448 int num_sge;
1449};
1450
1451enum ib_access_flags {
4fca0377
JG
1452 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1453 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1454 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1455 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1456 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1457 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1458 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1459 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
2233c660 1460 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
4fca0377 1461
68d384b9
MG
1462 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1463 IB_ACCESS_SUPPORTED =
1464 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1da177e4
LT
1465};
1466
b7d3e0a9
CH
1467/*
1468 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1469 * are hidden here instead of a uapi header!
1470 */
1da177e4
LT
1471enum ib_mr_rereg_flags {
1472 IB_MR_REREG_TRANS = 1,
1473 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1474 IB_MR_REREG_ACCESS = (1<<2),
1475 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1476};
1477
882214e2
HE
1478struct ib_umem;
1479
38321256 1480enum rdma_remove_reason {
1c77483e
YH
1481 /*
1482 * Userspace requested uobject deletion or initial try
1483 * to remove uobject via cleanup. Call could fail
1484 */
38321256
MB
1485 RDMA_REMOVE_DESTROY,
1486 /* Context deletion. This call should delete the actual object itself */
1487 RDMA_REMOVE_CLOSE,
1488 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1489 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1490 /* uobj is being cleaned-up before being committed */
1491 RDMA_REMOVE_ABORT,
0ac8903c
JG
1492 /*
1493 * uobj has been fully created, with the uobj->object set, but is being
1494 * cleaned up before being comitted
1495 */
1496 RDMA_REMOVE_ABORT_HWOBJ,
38321256
MB
1497};
1498
43579b5f
PP
1499struct ib_rdmacg_object {
1500#ifdef CONFIG_CGROUP_RDMA
1501 struct rdma_cgroup *cg; /* owner rdma cgroup */
1502#endif
1503};
1504
e2773c06
RD
1505struct ib_ucontext {
1506 struct ib_device *device;
771addf6 1507 struct ib_uverbs_file *ufile;
e951747a
JG
1508 /*
1509 * 'closing' can be read by the driver only during a destroy callback,
1510 * it is set when we are closing the file descriptor and indicates
1511 * that mm_sem may be locked.
1512 */
6ceb6331 1513 bool closing;
8ada2c1c 1514
1c77483e 1515 bool cleanup_retryable;
38321256 1516
43579b5f 1517 struct ib_rdmacg_object cg_obj;
60615210
LR
1518 /*
1519 * Implementation details of the RDMA core, don't use in drivers:
1520 */
1521 struct rdma_restrack_entry res;
3411f9f0 1522 struct xarray mmap_xa;
e2773c06
RD
1523};
1524
1525struct ib_uobject {
1526 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1527 /* ufile & ucontext owning this object */
1528 struct ib_uverbs_file *ufile;
1529 /* FIXME, save memory: ufile->context == context */
e2773c06 1530 struct ib_ucontext *context; /* associated user context */
9ead190b 1531 void *object; /* containing object */
e2773c06 1532 struct list_head list; /* link to context's list */
43579b5f 1533 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1534 int id; /* index into kernel idr */
9ead190b 1535 struct kref ref;
38321256 1536 atomic_t usecnt; /* protects exclusive access */
d144da8c 1537 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1538
6b0d08f4 1539 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1540};
1541
e2773c06 1542struct ib_udata {
309243ec 1543 const void __user *inbuf;
e2773c06
RD
1544 void __user *outbuf;
1545 size_t inlen;
1546 size_t outlen;
1547};
1548
1da177e4 1549struct ib_pd {
96249d70 1550 u32 local_dma_lkey;
ed082d36 1551 u32 flags;
e2773c06
RD
1552 struct ib_device *device;
1553 struct ib_uobject *uobject;
1554 atomic_t usecnt; /* count all resources */
50d46335 1555
ed082d36
CH
1556 u32 unsafe_global_rkey;
1557
50d46335
CH
1558 /*
1559 * Implementation details of the RDMA core, don't use in drivers:
1560 */
1561 struct ib_mr *__internal_mr;
02d8883f 1562 struct rdma_restrack_entry res;
1da177e4
LT
1563};
1564
59991f94
SH
1565struct ib_xrcd {
1566 struct ib_device *device;
d3d72d90 1567 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1568 struct inode *inode;
d3d72d90
SH
1569
1570 struct mutex tgt_qp_mutex;
1571 struct list_head tgt_qp_list;
59991f94
SH
1572};
1573
1da177e4
LT
1574struct ib_ah {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
e2773c06 1577 struct ib_uobject *uobject;
1a1f460f 1578 const struct ib_gid_attr *sgid_attr;
44c58487 1579 enum rdma_ah_attr_type type;
1da177e4
LT
1580};
1581
1582typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
14d3a3b2 1584enum ib_poll_context {
f794809a
JM
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
c7ff819a
YF
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
14d3a3b2
CH
1591};
1592
1da177e4 1593struct ib_cq {
e2773c06 1594 struct ib_device *device;
5bd48c18 1595 struct ib_ucq_object *uobject;
e2773c06
RD
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1598 void *cq_context;
e2773c06 1599 int cqe;
c7ff819a 1600 unsigned int cqe_used;
e2773c06 1601 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1602 enum ib_poll_context poll_ctx;
1603 struct ib_wc *wc;
c7ff819a 1604 struct list_head pool_entry;
14d3a3b2
CH
1605 union {
1606 struct irq_poll iop;
1607 struct work_struct work;
1608 };
f794809a 1609 struct workqueue_struct *comp_wq;
da662979 1610 struct dim *dim;
3e5901cb
CL
1611
1612 /* updated only by trace points */
1613 ktime_t timestamp;
3446cbd2
YF
1614 u8 interrupt:1;
1615 u8 shared:1;
c7ff819a 1616 unsigned int comp_vector;
3e5901cb 1617
02d8883f
LR
1618 /*
1619 * Implementation details of the RDMA core, don't use in drivers:
1620 */
1621 struct rdma_restrack_entry res;
1da177e4
LT
1622};
1623
1624struct ib_srq {
d41fcc67
RD
1625 struct ib_device *device;
1626 struct ib_pd *pd;
9fbe334c 1627 struct ib_usrq_object *uobject;
d41fcc67
RD
1628 void (*event_handler)(struct ib_event *, void *);
1629 void *srq_context;
96104eda 1630 enum ib_srq_type srq_type;
1da177e4 1631 atomic_t usecnt;
418d5130 1632
1a56ff6d
AK
1633 struct {
1634 struct ib_cq *cq;
1635 union {
1636 struct {
1637 struct ib_xrcd *xrcd;
1638 u32 srq_num;
1639 } xrc;
1640 };
418d5130 1641 } ext;
1da177e4
LT
1642};
1643
ebaaee25
NO
1644enum ib_raw_packet_caps {
1645 /* Strip cvlan from incoming packet and report it in the matching work
1646 * completion is supported.
1647 */
1648 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1649 /* Scatter FCS field of an incoming packet to host memory is supported.
1650 */
1651 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1652 /* Checksum offloads are supported (for both send and receive). */
1653 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1654 /* When a packet is received for an RQ with no receive WQEs, the
1655 * packet processing is delayed.
1656 */
1657 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1658};
1659
5fd251c8 1660enum ib_wq_type {
175ba58d 1661 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
5fd251c8
YH
1662};
1663
1664enum ib_wq_state {
1665 IB_WQS_RESET,
1666 IB_WQS_RDY,
1667 IB_WQS_ERR
1668};
1669
1670struct ib_wq {
1671 struct ib_device *device;
e04dd131 1672 struct ib_uwq_object *uobject;
5fd251c8
YH
1673 void *wq_context;
1674 void (*event_handler)(struct ib_event *, void *);
1675 struct ib_pd *pd;
1676 struct ib_cq *cq;
1677 u32 wq_num;
1678 enum ib_wq_state state;
1679 enum ib_wq_type wq_type;
1680 atomic_t usecnt;
1681};
1682
10bac72b 1683enum ib_wq_flags {
175ba58d
YH
1684 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1685 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1686 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1687 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1688 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
10bac72b
NO
1689};
1690
5fd251c8
YH
1691struct ib_wq_init_attr {
1692 void *wq_context;
1693 enum ib_wq_type wq_type;
1694 u32 max_wr;
1695 u32 max_sge;
1696 struct ib_cq *cq;
1697 void (*event_handler)(struct ib_event *, void *);
10bac72b 1698 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1699};
1700
1701enum ib_wq_attr_mask {
10bac72b
NO
1702 IB_WQ_STATE = 1 << 0,
1703 IB_WQ_CUR_STATE = 1 << 1,
1704 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1705};
1706
1707struct ib_wq_attr {
1708 enum ib_wq_state wq_state;
1709 enum ib_wq_state curr_wq_state;
10bac72b
NO
1710 u32 flags; /* Use enum ib_wq_flags */
1711 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1712};
1713
6d39786b
YH
1714struct ib_rwq_ind_table {
1715 struct ib_device *device;
1716 struct ib_uobject *uobject;
1717 atomic_t usecnt;
1718 u32 ind_tbl_num;
1719 u32 log_ind_tbl_size;
1720 struct ib_wq **ind_tbl;
1721};
1722
1723struct ib_rwq_ind_table_init_attr {
1724 u32 log_ind_tbl_size;
1725 /* Each entry is a pointer to Receive Work Queue */
1726 struct ib_wq **ind_tbl;
1727};
1728
d291f1a6
DJ
1729enum port_pkey_state {
1730 IB_PORT_PKEY_NOT_VALID = 0,
1731 IB_PORT_PKEY_VALID = 1,
1732 IB_PORT_PKEY_LISTED = 2,
1733};
1734
1735struct ib_qp_security;
1736
1737struct ib_port_pkey {
1738 enum port_pkey_state state;
1739 u16 pkey_index;
1740 u8 port_num;
1741 struct list_head qp_list;
1742 struct list_head to_error_list;
1743 struct ib_qp_security *sec;
1744};
1745
1746struct ib_ports_pkeys {
1747 struct ib_port_pkey main;
1748 struct ib_port_pkey alt;
1749};
1750
1751struct ib_qp_security {
1752 struct ib_qp *qp;
1753 struct ib_device *dev;
1754 /* Hold this mutex when changing port and pkey settings. */
1755 struct mutex mutex;
1756 struct ib_ports_pkeys *ports_pkeys;
1757 /* A list of all open shared QP handles. Required to enforce security
1758 * properly for all users of a shared QP.
1759 */
1760 struct list_head shared_qp_list;
1761 void *security;
1762 bool destroying;
1763 atomic_t error_list_count;
1764 struct completion error_complete;
1765 int error_comps_pending;
1766};
1767
632bc3f6
BVA
1768/*
1769 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1770 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1771 */
1da177e4
LT
1772struct ib_qp {
1773 struct ib_device *device;
1774 struct ib_pd *pd;
1775 struct ib_cq *send_cq;
1776 struct ib_cq *recv_cq;
fffb0383
CH
1777 spinlock_t mr_lock;
1778 int mrs_used;
a060b562 1779 struct list_head rdma_mrs;
0e353e34 1780 struct list_head sig_mrs;
1da177e4 1781 struct ib_srq *srq;
b42b63cf 1782 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1783 struct list_head xrcd_list;
fffb0383 1784
319a441d
HHZ
1785 /* count times opened, mcast attaches, flow attaches */
1786 atomic_t usecnt;
0e0ec7e0
SH
1787 struct list_head open_list;
1788 struct ib_qp *real_qp;
620d3f81 1789 struct ib_uqp_object *uobject;
1da177e4
LT
1790 void (*event_handler)(struct ib_event *, void *);
1791 void *qp_context;
1a1f460f
JG
1792 /* sgid_attrs associated with the AV's */
1793 const struct ib_gid_attr *av_sgid_attr;
1794 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1795 u32 qp_num;
632bc3f6
BVA
1796 u32 max_write_sge;
1797 u32 max_read_sge;
1da177e4 1798 enum ib_qp_type qp_type;
a9017e23 1799 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1800 struct ib_qp_security *qp_sec;
498ca3c8 1801 u8 port;
02d8883f 1802
185eddc4 1803 bool integrity_en;
02d8883f
LR
1804 /*
1805 * Implementation details of the RDMA core, don't use in drivers:
1806 */
1807 struct rdma_restrack_entry res;
99fa331d
MZ
1808
1809 /* The counter the qp is bind to */
1810 struct rdma_counter *counter;
1da177e4
LT
1811};
1812
bee76d7a
AL
1813struct ib_dm {
1814 struct ib_device *device;
1815 u32 length;
1816 u32 flags;
1817 struct ib_uobject *uobject;
1818 atomic_t usecnt;
1819};
1820
1da177e4 1821struct ib_mr {
e2773c06
RD
1822 struct ib_device *device;
1823 struct ib_pd *pd;
e2773c06
RD
1824 u32 lkey;
1825 u32 rkey;
4c67e2bf 1826 u64 iova;
edd31551 1827 u64 length;
4c67e2bf 1828 unsigned int page_size;
a0bc099a 1829 enum ib_mr_type type;
d4a85c30 1830 bool need_inval;
fffb0383
CH
1831 union {
1832 struct ib_uobject *uobject; /* user */
1833 struct list_head qp_entry; /* FR */
1834 };
fccec5b8 1835
be934cca 1836 struct ib_dm *dm;
7c717d3a 1837 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
fccec5b8
SW
1838 /*
1839 * Implementation details of the RDMA core, don't use in drivers:
1840 */
1841 struct rdma_restrack_entry res;
1da177e4
LT
1842};
1843
1844struct ib_mw {
1845 struct ib_device *device;
1846 struct ib_pd *pd;
e2773c06 1847 struct ib_uobject *uobject;
1da177e4 1848 u32 rkey;
7083e42e 1849 enum ib_mw_type type;
1da177e4
LT
1850};
1851
319a441d
HHZ
1852/* Supported steering options */
1853enum ib_flow_attr_type {
1854 /* steering according to rule specifications */
1855 IB_FLOW_ATTR_NORMAL = 0x0,
1856 /* default unicast and multicast rule -
1857 * receive all Eth traffic which isn't steered to any QP
1858 */
1859 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1860 /* default multicast rule -
1861 * receive all Eth multicast traffic which isn't steered to any QP
1862 */
1863 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1864 /* sniffer rule - receive all port traffic */
1865 IB_FLOW_ATTR_SNIFFER = 0x3
1866};
1867
1868/* Supported steering header types */
1869enum ib_flow_spec_type {
1870 /* L2 headers*/
76bd23b3
MR
1871 IB_FLOW_SPEC_ETH = 0x20,
1872 IB_FLOW_SPEC_IB = 0x22,
319a441d 1873 /* L3 header*/
76bd23b3
MR
1874 IB_FLOW_SPEC_IPV4 = 0x30,
1875 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1876 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1877 /* L4 headers*/
76bd23b3
MR
1878 IB_FLOW_SPEC_TCP = 0x40,
1879 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1880 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1881 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1882 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1883 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1884 /* Actions */
1885 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1886 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1887 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1888 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1889};
240ae00e 1890#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1891#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1892
319a441d
HHZ
1893/* Flow steering rule priority is set according to it's domain.
1894 * Lower domain value means higher priority.
1895 */
1896enum ib_flow_domain {
1897 IB_FLOW_DOMAIN_USER,
1898 IB_FLOW_DOMAIN_ETHTOOL,
1899 IB_FLOW_DOMAIN_RFS,
1900 IB_FLOW_DOMAIN_NIC,
1901 IB_FLOW_DOMAIN_NUM /* Must be last */
1902};
1903
a3100a78
MV
1904enum ib_flow_flags {
1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1908};
1909
319a441d
HHZ
1910struct ib_flow_eth_filter {
1911 u8 dst_mac[6];
1912 u8 src_mac[6];
1913 __be16 ether_type;
1914 __be16 vlan_tag;
15dfbd6b 1915 /* Must be last */
5b361328 1916 u8 real_sz[];
319a441d
HHZ
1917};
1918
1919struct ib_flow_spec_eth {
fbf46860 1920 u32 type;
319a441d
HHZ
1921 u16 size;
1922 struct ib_flow_eth_filter val;
1923 struct ib_flow_eth_filter mask;
1924};
1925
240ae00e
MB
1926struct ib_flow_ib_filter {
1927 __be16 dlid;
1928 __u8 sl;
15dfbd6b 1929 /* Must be last */
5b361328 1930 u8 real_sz[];
240ae00e
MB
1931};
1932
1933struct ib_flow_spec_ib {
fbf46860 1934 u32 type;
240ae00e
MB
1935 u16 size;
1936 struct ib_flow_ib_filter val;
1937 struct ib_flow_ib_filter mask;
1938};
1939
989a3a8f
MG
1940/* IPv4 header flags */
1941enum ib_ipv4_flags {
1942 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1943 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1944 last have this flag set */
1945};
1946
319a441d
HHZ
1947struct ib_flow_ipv4_filter {
1948 __be32 src_ip;
1949 __be32 dst_ip;
989a3a8f
MG
1950 u8 proto;
1951 u8 tos;
1952 u8 ttl;
1953 u8 flags;
15dfbd6b 1954 /* Must be last */
5b361328 1955 u8 real_sz[];
319a441d
HHZ
1956};
1957
1958struct ib_flow_spec_ipv4 {
fbf46860 1959 u32 type;
319a441d
HHZ
1960 u16 size;
1961 struct ib_flow_ipv4_filter val;
1962 struct ib_flow_ipv4_filter mask;
1963};
1964
4c2aae71
MG
1965struct ib_flow_ipv6_filter {
1966 u8 src_ip[16];
1967 u8 dst_ip[16];
a72c6a2b
MG
1968 __be32 flow_label;
1969 u8 next_hdr;
1970 u8 traffic_class;
1971 u8 hop_limit;
15dfbd6b 1972 /* Must be last */
5b361328 1973 u8 real_sz[];
4c2aae71
MG
1974};
1975
1976struct ib_flow_spec_ipv6 {
fbf46860 1977 u32 type;
4c2aae71
MG
1978 u16 size;
1979 struct ib_flow_ipv6_filter val;
1980 struct ib_flow_ipv6_filter mask;
1981};
1982
319a441d
HHZ
1983struct ib_flow_tcp_udp_filter {
1984 __be16 dst_port;
1985 __be16 src_port;
15dfbd6b 1986 /* Must be last */
5b361328 1987 u8 real_sz[];
319a441d
HHZ
1988};
1989
1990struct ib_flow_spec_tcp_udp {
fbf46860 1991 u32 type;
319a441d
HHZ
1992 u16 size;
1993 struct ib_flow_tcp_udp_filter val;
1994 struct ib_flow_tcp_udp_filter mask;
1995};
1996
0dbf3332
MR
1997struct ib_flow_tunnel_filter {
1998 __be32 tunnel_id;
5b361328 1999 u8 real_sz[];
0dbf3332
MR
2000};
2001
2002/* ib_flow_spec_tunnel describes the Vxlan tunnel
2003 * the tunnel_id from val has the vni value
2004 */
2005struct ib_flow_spec_tunnel {
fbf46860 2006 u32 type;
0dbf3332
MR
2007 u16 size;
2008 struct ib_flow_tunnel_filter val;
2009 struct ib_flow_tunnel_filter mask;
2010};
2011
56ab0b38
MB
2012struct ib_flow_esp_filter {
2013 __be32 spi;
2014 __be32 seq;
2015 /* Must be last */
5b361328 2016 u8 real_sz[];
56ab0b38
MB
2017};
2018
2019struct ib_flow_spec_esp {
2020 u32 type;
2021 u16 size;
2022 struct ib_flow_esp_filter val;
2023 struct ib_flow_esp_filter mask;
2024};
2025
d90e5e50
AL
2026struct ib_flow_gre_filter {
2027 __be16 c_ks_res0_ver;
2028 __be16 protocol;
2029 __be32 key;
2030 /* Must be last */
5b361328 2031 u8 real_sz[];
d90e5e50
AL
2032};
2033
2034struct ib_flow_spec_gre {
2035 u32 type;
2036 u16 size;
2037 struct ib_flow_gre_filter val;
2038 struct ib_flow_gre_filter mask;
2039};
2040
b04f0f03
AL
2041struct ib_flow_mpls_filter {
2042 __be32 tag;
2043 /* Must be last */
5b361328 2044 u8 real_sz[];
b04f0f03
AL
2045};
2046
2047struct ib_flow_spec_mpls {
2048 u32 type;
2049 u16 size;
2050 struct ib_flow_mpls_filter val;
2051 struct ib_flow_mpls_filter mask;
2052};
2053
460d0198
MR
2054struct ib_flow_spec_action_tag {
2055 enum ib_flow_spec_type type;
2056 u16 size;
2057 u32 tag_id;
2058};
2059
483a3966
SS
2060struct ib_flow_spec_action_drop {
2061 enum ib_flow_spec_type type;
2062 u16 size;
2063};
2064
9b828441
MB
2065struct ib_flow_spec_action_handle {
2066 enum ib_flow_spec_type type;
2067 u16 size;
2068 struct ib_flow_action *act;
2069};
2070
7eea23a5
RS
2071enum ib_counters_description {
2072 IB_COUNTER_PACKETS,
2073 IB_COUNTER_BYTES,
2074};
2075
2076struct ib_flow_spec_action_count {
2077 enum ib_flow_spec_type type;
2078 u16 size;
2079 struct ib_counters *counters;
2080};
2081
319a441d
HHZ
2082union ib_flow_spec {
2083 struct {
fbf46860 2084 u32 type;
319a441d
HHZ
2085 u16 size;
2086 };
2087 struct ib_flow_spec_eth eth;
240ae00e 2088 struct ib_flow_spec_ib ib;
319a441d
HHZ
2089 struct ib_flow_spec_ipv4 ipv4;
2090 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2091 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2092 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2093 struct ib_flow_spec_esp esp;
d90e5e50 2094 struct ib_flow_spec_gre gre;
b04f0f03 2095 struct ib_flow_spec_mpls mpls;
460d0198 2096 struct ib_flow_spec_action_tag flow_tag;
483a3966 2097 struct ib_flow_spec_action_drop drop;
9b828441 2098 struct ib_flow_spec_action_handle action;
7eea23a5 2099 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2100};
2101
2102struct ib_flow_attr {
2103 enum ib_flow_attr_type type;
2104 u16 size;
2105 u16 priority;
2106 u32 flags;
2107 u8 num_of_specs;
2108 u8 port;
7654cb1b 2109 union ib_flow_spec flows[];
319a441d
HHZ
2110};
2111
2112struct ib_flow {
2113 struct ib_qp *qp;
6cd080a6 2114 struct ib_device *device;
319a441d
HHZ
2115 struct ib_uobject *uobject;
2116};
2117
2eb9beae
MB
2118enum ib_flow_action_type {
2119 IB_FLOW_ACTION_UNSPECIFIED,
2120 IB_FLOW_ACTION_ESP = 1,
2121};
2122
2123struct ib_flow_action_attrs_esp_keymats {
2124 enum ib_uverbs_flow_action_esp_keymat protocol;
2125 union {
2126 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2127 } keymat;
2128};
2129
2130struct ib_flow_action_attrs_esp_replays {
2131 enum ib_uverbs_flow_action_esp_replay protocol;
2132 union {
2133 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2134 } replay;
2135};
2136
2137enum ib_flow_action_attrs_esp_flags {
2138 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2139 * This is done in order to share the same flags between user-space and
2140 * kernel and spare an unnecessary translation.
2141 */
2142
2143 /* Kernel flags */
2144 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2145 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2146};
2147
2148struct ib_flow_spec_list {
2149 struct ib_flow_spec_list *next;
2150 union ib_flow_spec spec;
2151};
2152
2153struct ib_flow_action_attrs_esp {
2154 struct ib_flow_action_attrs_esp_keymats *keymat;
2155 struct ib_flow_action_attrs_esp_replays *replay;
2156 struct ib_flow_spec_list *encap;
2157 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2158 * Value of 0 is a valid value.
2159 */
2160 u32 esn;
2161 u32 spi;
2162 u32 seq;
2163 u32 tfc_pad;
2164 /* Use enum ib_flow_action_attrs_esp_flags */
2165 u64 flags;
2166 u64 hard_limit_pkts;
2167};
2168
2169struct ib_flow_action {
2170 struct ib_device *device;
2171 struct ib_uobject *uobject;
2172 enum ib_flow_action_type type;
2173 atomic_t usecnt;
2174};
2175
e26e7b88 2176struct ib_mad;
1da177e4
LT
2177struct ib_grh;
2178
2179enum ib_process_mad_flags {
2180 IB_MAD_IGNORE_MKEY = 1,
2181 IB_MAD_IGNORE_BKEY = 2,
2182 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2183};
2184
2185enum ib_mad_result {
2186 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2187 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2188 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2189 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2190};
2191
21d6454a 2192struct ib_port_cache {
883c71fe 2193 u64 subnet_prefix;
21d6454a
JW
2194 struct ib_pkey_cache *pkey;
2195 struct ib_gid_table *gid;
2196 u8 lmc;
2197 enum ib_port_state port_state;
2198};
2199
7738613e
IW
2200struct ib_port_immutable {
2201 int pkey_tbl_len;
2202 int gid_tbl_len;
f9b22e35 2203 u32 core_cap_flags;
337877a4 2204 u32 max_mad_size;
7738613e
IW
2205};
2206
8ceb1357 2207struct ib_port_data {
324e227e
JG
2208 struct ib_device *ib_dev;
2209
8ceb1357
JG
2210 struct ib_port_immutable immutable;
2211
2212 spinlock_t pkey_list_lock;
2213 struct list_head pkey_list;
8faea9fd
JG
2214
2215 struct ib_port_cache cache;
c2261dd7
JG
2216
2217 spinlock_t netdev_lock;
324e227e
JG
2218 struct net_device __rcu *netdev;
2219 struct hlist_node ndev_hash_link;
413d3347 2220 struct rdma_port_counter port_counter;
6e7be47a 2221 struct rdma_hw_stats *hw_stats;
8ceb1357
JG
2222};
2223
2fc77572
VN
2224/* rdma netdev type - specifies protocol type */
2225enum rdma_netdev_t {
f0ad83ac
NV
2226 RDMA_NETDEV_OPA_VNIC,
2227 RDMA_NETDEV_IPOIB,
2fc77572
VN
2228};
2229
2230/**
2231 * struct rdma_netdev - rdma netdev
2232 * For cases where netstack interfacing is required.
2233 */
2234struct rdma_netdev {
2235 void *clnt_priv;
2236 struct ib_device *hca;
2237 u8 port_num;
d99dc602 2238 int mtu;
2fc77572 2239
9f49a5b5
JG
2240 /*
2241 * cleanup function must be specified.
2242 * FIXME: This is only used for OPA_VNIC and that usage should be
2243 * removed too.
2244 */
8e959601
NV
2245 void (*free_rdma_netdev)(struct net_device *netdev);
2246
2fc77572
VN
2247 /* control functions */
2248 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2249 /* send packet */
2250 int (*send)(struct net_device *dev, struct sk_buff *skb,
2251 struct ib_ah *address, u32 dqpn);
2252 /* multicast */
2253 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2254 union ib_gid *gid, u16 mlid,
2255 int set_qkey, u32 qkey);
2256 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2257 union ib_gid *gid, u16 mlid);
2fc77572
VN
2258};
2259
f6a8a19b
DD
2260struct rdma_netdev_alloc_params {
2261 size_t sizeof_priv;
2262 unsigned int txqs;
2263 unsigned int rxqs;
2264 void *param;
2265
2266 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2267 struct net_device *netdev, void *param);
2268};
2269
a3de94e3
EA
2270struct ib_odp_counters {
2271 atomic64_t faults;
2272 atomic64_t invalidations;
2273};
2274
fa9b1802
RS
2275struct ib_counters {
2276 struct ib_device *device;
2277 struct ib_uobject *uobject;
2278 /* num of objects attached */
2279 atomic_t usecnt;
2280};
2281
51d7a538
RS
2282struct ib_counters_read_attr {
2283 u64 *counters_buff;
2284 u32 ncounters;
2285 u32 flags; /* use enum ib_read_counters_flags */
2286};
2287
2eb9beae 2288struct uverbs_attr_bundle;
dd05cb82
KH
2289struct iw_cm_id;
2290struct iw_cm_conn_param;
2eb9beae 2291
30471d4b
LR
2292#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2293 .size_##ib_struct = \
2294 (sizeof(struct drv_struct) + \
2295 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2296 BUILD_BUG_ON_ZERO( \
2297 !__same_type(((struct drv_struct *)NULL)->member, \
2298 struct ib_struct)))
2299
f6316032
LR
2300#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2301 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2302
30471d4b 2303#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2304 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2305
2306#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2307
3411f9f0
MK
2308struct rdma_user_mmap_entry {
2309 struct kref ref;
2310 struct ib_ucontext *ucontext;
2311 unsigned long start_pgoff;
2312 size_t npages;
2313 bool driver_removed;
2314};
2315
2316/* Return the offset (in bytes) the user should pass to libc's mmap() */
2317static inline u64
2318rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2319{
2320 return (u64)entry->start_pgoff << PAGE_SHIFT;
2321}
2322
521ed0d9
KH
2323/**
2324 * struct ib_device_ops - InfiniBand device operations
2325 * This structure defines all the InfiniBand device operations, providers will
2326 * need to define the supported operations, otherwise they will be set to null.
2327 */
2328struct ib_device_ops {
7a154142 2329 struct module *owner;
b9560a41 2330 enum rdma_driver_id driver_id;
72c6ec18 2331 u32 uverbs_abi_ver;
8f71bb00 2332 unsigned int uverbs_no_driver_id_binding:1;
b9560a41 2333
521ed0d9
KH
2334 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2335 const struct ib_send_wr **bad_send_wr);
2336 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2337 const struct ib_recv_wr **bad_recv_wr);
2338 void (*drain_rq)(struct ib_qp *qp);
2339 void (*drain_sq)(struct ib_qp *qp);
2340 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2341 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2342 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2343 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2344 int (*post_srq_recv)(struct ib_srq *srq,
2345 const struct ib_recv_wr *recv_wr,
2346 const struct ib_recv_wr **bad_recv_wr);
2347 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 u8 port_num, const struct ib_wc *in_wc,
2349 const struct ib_grh *in_grh,
e26e7b88
LR
2350 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 size_t *out_mad_size, u16 *out_mad_pkey_index);
521ed0d9
KH
2352 int (*query_device)(struct ib_device *device,
2353 struct ib_device_attr *device_attr,
2354 struct ib_udata *udata);
2355 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 struct ib_device_modify *device_modify);
2357 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359 int comp_vector);
2360 int (*query_port)(struct ib_device *device, u8 port_num,
2361 struct ib_port_attr *port_attr);
2362 int (*modify_port)(struct ib_device *device, u8 port_num,
2363 int port_modify_mask,
2364 struct ib_port_modify *port_modify);
2365 /**
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2369 * in fast paths.
2370 */
2371 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2372 struct ib_port_immutable *immutable);
2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374 u8 port_num);
2375 /**
2376 * When calling get_netdev, the HW vendor's driver should return the
2377 * net device of device @device at port @port_num or NULL if such
2378 * a net device doesn't exist. The vendor driver should call dev_hold
2379 * on this net device. The HW vendor's device driver must guarantee
2380 * that this function returns NULL before the net device has finished
2381 * NETDEV_UNREGISTER state.
2382 */
2383 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2384 /**
2385 * rdma netdev operation
2386 *
2387 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2388 * must return -EOPNOTSUPP if it doesn't support the specified type.
2389 */
2390 struct net_device *(*alloc_rdma_netdev)(
2391 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2392 const char *name, unsigned char name_assign_type,
2393 void (*setup)(struct net_device *));
2394
2395 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2396 enum rdma_netdev_t type,
2397 struct rdma_netdev_alloc_params *params);
2398 /**
2399 * query_gid should be return GID value for @device, when @port_num
2400 * link layer is either IB or iWarp. It is no-op if @port_num port
2401 * is RoCE link layer.
2402 */
2403 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2404 union ib_gid *gid);
2405 /**
2406 * When calling add_gid, the HW vendor's driver should add the gid
2407 * of device of port at gid index available at @attr. Meta-info of
2408 * that gid (for example, the network device related to this gid) is
2409 * available at @attr. @context allows the HW vendor driver to store
2410 * extra information together with a GID entry. The HW vendor driver may
2411 * allocate memory to contain this information and store it in @context
2412 * when a new GID entry is written to. Params are consistent until the
2413 * next call of add_gid or delete_gid. The function should return 0 on
2414 * success or error otherwise. The function could be called
2415 * concurrently for different ports. This function is only called when
2416 * roce_gid_table is used.
2417 */
2418 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2419 /**
2420 * When calling del_gid, the HW vendor's driver should delete the
2421 * gid of device @device at gid index gid_index of port port_num
2422 * available in @attr.
2423 * Upon the deletion of a GID entry, the HW vendor must free any
2424 * allocated memory. The caller will clear @context afterwards.
2425 * This function is only called when roce_gid_table is used.
2426 */
2427 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2428 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2429 u16 *pkey);
a2a074ef
LR
2430 int (*alloc_ucontext)(struct ib_ucontext *context,
2431 struct ib_udata *udata);
2432 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9 2433 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
3411f9f0
MK
2434 /**
2435 * This will be called once refcount of an entry in mmap_xa reaches
2436 * zero. The type of the memory that was mapped may differ between
2437 * entries and is opaque to the rdma_user_mmap interface.
2438 * Therefore needs to be implemented by the driver in mmap_free.
2439 */
2440 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
521ed0d9 2441 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2442 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2443 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
fa5d010c
MG
2444 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2445 struct ib_udata *udata);
521ed0d9
KH
2446 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2447 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
d3456914 2448 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2449 int (*create_srq)(struct ib_srq *srq,
2450 struct ib_srq_init_attr *srq_init_attr,
2451 struct ib_udata *udata);
521ed0d9
KH
2452 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2453 enum ib_srq_attr_mask srq_attr_mask,
2454 struct ib_udata *udata);
2455 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
68e326de 2456 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
521ed0d9
KH
2457 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2458 struct ib_qp_init_attr *qp_init_attr,
2459 struct ib_udata *udata);
2460 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2461 int qp_attr_mask, struct ib_udata *udata);
2462 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2464 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
e39afe3d
LR
2465 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2466 struct ib_udata *udata);
521ed0d9 2467 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
a52c8e24 2468 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2469 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2470 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2471 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2472 u64 virt_addr, int mr_access_flags,
2473 struct ib_udata *udata);
2474 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2475 u64 virt_addr, int mr_access_flags,
2476 struct ib_pd *pd, struct ib_udata *udata);
c4367a26 2477 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2478 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
c4367a26 2479 u32 max_num_sg, struct ib_udata *udata);
26bc7eae
IR
2480 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2481 u32 max_num_data_sg,
2482 u32 max_num_meta_sg);
ad8a4496
MS
2483 int (*advise_mr)(struct ib_pd *pd,
2484 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2485 struct ib_sge *sg_list, u32 num_sge,
2486 struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2487 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2488 unsigned int *sg_offset);
2489 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2490 struct ib_mr_status *mr_status);
2491 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2492 struct ib_udata *udata);
2493 int (*dealloc_mw)(struct ib_mw *mw);
521ed0d9
KH
2494 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2495 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2496 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
521ed0d9 2497 struct ib_udata *udata);
c4367a26 2498 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2499 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2500 struct ib_flow_attr *flow_attr,
2501 int domain, struct ib_udata *udata);
2502 int (*destroy_flow)(struct ib_flow *flow_id);
2503 struct ib_flow_action *(*create_flow_action_esp)(
2504 struct ib_device *device,
2505 const struct ib_flow_action_attrs_esp *attr,
2506 struct uverbs_attr_bundle *attrs);
2507 int (*destroy_flow_action)(struct ib_flow_action *action);
2508 int (*modify_flow_action_esp)(
2509 struct ib_flow_action *action,
2510 const struct ib_flow_action_attrs_esp *attr,
2511 struct uverbs_attr_bundle *attrs);
2512 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2513 int state);
2514 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2515 struct ifla_vf_info *ivf);
2516 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2517 struct ifla_vf_stats *stats);
bfcb3c5d
DG
2518 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2519 struct ifla_vf_guid *node_guid,
2520 struct ifla_vf_guid *port_guid);
521ed0d9
KH
2521 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2522 int type);
2523 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2524 struct ib_wq_init_attr *init_attr,
2525 struct ib_udata *udata);
a49b1dc7 2526 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2527 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2528 u32 wq_attr_mask, struct ib_udata *udata);
2529 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2530 struct ib_device *device,
2531 struct ib_rwq_ind_table_init_attr *init_attr,
2532 struct ib_udata *udata);
2533 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2534 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2535 struct ib_ucontext *context,
2536 struct ib_dm_alloc_attr *attr,
2537 struct uverbs_attr_bundle *attrs);
c4367a26 2538 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2539 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2540 struct ib_dm_mr_attr *attr,
2541 struct uverbs_attr_bundle *attrs);
2542 struct ib_counters *(*create_counters)(
2543 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2544 int (*destroy_counters)(struct ib_counters *counters);
2545 int (*read_counters)(struct ib_counters *counters,
2546 struct ib_counters_read_attr *counters_read_attr,
2547 struct uverbs_attr_bundle *attrs);
2cdfcdd8
MG
2548 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2549 int data_sg_nents, unsigned int *data_sg_offset,
2550 struct scatterlist *meta_sg, int meta_sg_nents,
2551 unsigned int *meta_sg_offset);
2552
521ed0d9
KH
2553 /**
2554 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2555 * driver initialized data. The struct is kfree()'ed by the sysfs
2556 * core when the device is removed. A lifespan of -1 in the return
2557 * struct tells the core to set a default lifespan.
2558 */
2559 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2560 u8 port_num);
2561 /**
2562 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2563 * @index - The index in the value array we wish to have updated, or
2564 * num_counters if we want all stats updated
2565 * Return codes -
2566 * < 0 - Error, no counters updated
2567 * index - Updated the single counter pointed to by index
2568 * num_counters - Updated all counters (will reset the timestamp
2569 * and prevent further calls for lifespan milliseconds)
2570 * Drivers are allowed to update all counters in leiu of just the
2571 * one given in index at their option
2572 */
2573 int (*get_hw_stats)(struct ib_device *device,
2574 struct rdma_hw_stats *stats, u8 port, int index);
ea4baf7f
PP
2575 /*
2576 * This function is called once for each port when a ib device is
2577 * registered.
2578 */
2579 int (*init_port)(struct ib_device *device, u8 port_num,
2580 struct kobject *port_sysfs);
02da3750
LR
2581 /**
2582 * Allows rdma drivers to add their own restrack attributes.
2583 */
2584 int (*fill_res_entry)(struct sk_buff *msg,
2585 struct rdma_restrack_entry *entry);
f4434529 2586 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
9e2a187a 2587 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
21a428a0 2588
d0899892 2589 /* Device lifecycle callbacks */
ca22354b
JG
2590 /*
2591 * Called after the device becomes registered, before clients are
2592 * attached
2593 */
2594 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2595 /*
2596 * This is called as part of ib_dealloc_device().
2597 */
2598 void (*dealloc_driver)(struct ib_device *dev);
2599
dd05cb82
KH
2600 /* iWarp CM callbacks */
2601 void (*iw_add_ref)(struct ib_qp *qp);
2602 void (*iw_rem_ref)(struct ib_qp *qp);
2603 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2604 int (*iw_connect)(struct iw_cm_id *cm_id,
2605 struct iw_cm_conn_param *conn_param);
2606 int (*iw_accept)(struct iw_cm_id *cm_id,
2607 struct iw_cm_conn_param *conn_param);
2608 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2609 u8 pdata_len);
2610 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2611 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
99fa331d
MZ
2612 /**
2613 * counter_bind_qp - Bind a QP to a counter.
2614 * @counter - The counter to be bound. If counter->id is zero then
2615 * the driver needs to allocate a new counter and set counter->id
2616 */
2617 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2618 /**
2619 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2620 * counter and bind it onto the default one
2621 */
2622 int (*counter_unbind_qp)(struct ib_qp *qp);
2623 /**
2624 * counter_dealloc -De-allocate the hw counter
2625 */
2626 int (*counter_dealloc)(struct rdma_counter *counter);
c4ffee7c
MZ
2627 /**
2628 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2629 * the driver initialized data.
2630 */
2631 struct rdma_hw_stats *(*counter_alloc_stats)(
2632 struct rdma_counter *counter);
2633 /**
2634 * counter_update_stats - Query the stats value of this counter
2635 */
2636 int (*counter_update_stats)(struct rdma_counter *counter);
dd05cb82 2637
4061ff7a
EA
2638 /**
2639 * Allows rdma drivers to add their own restrack attributes
2640 * dumped via 'rdma stat' iproute2 command.
2641 */
f4434529 2642 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
4061ff7a 2643
d3456914 2644 DECLARE_RDMA_OBJ_SIZE(ib_ah);
e39afe3d 2645 DECLARE_RDMA_OBJ_SIZE(ib_cq);
21a428a0 2646 DECLARE_RDMA_OBJ_SIZE(ib_pd);
68e326de 2647 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2648 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
521ed0d9
KH
2649};
2650
cebe556b
PP
2651struct ib_core_device {
2652 /* device must be the first element in structure until,
2653 * union of ib_core_device and device exists in ib_device.
2654 */
2655 struct device dev;
4e0f7b90 2656 possible_net_t rdma_net;
cebe556b
PP
2657 struct kobject *ports_kobj;
2658 struct list_head port_list;
2659 struct ib_device *owner; /* reach back to owner ib_device */
2660};
41eda65c 2661
cebe556b 2662struct rdma_restrack_root;
1da177e4 2663struct ib_device {
0957c29f
BVA
2664 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2665 struct device *dma_device;
3023a1e9 2666 struct ib_device_ops ops;
1da177e4 2667 char name[IB_DEVICE_NAME_MAX];
324e227e 2668 struct rcu_head rcu_head;
1da177e4
LT
2669
2670 struct list_head event_handler_list;
6b57cea9
PP
2671 /* Protects event_handler_list */
2672 struct rw_semaphore event_handler_rwsem;
2673
2674 /* Protects QP's event_handler calls and open_qp list */
40adf686 2675 spinlock_t qp_open_list_lock;
1da177e4 2676
921eab11 2677 struct rw_semaphore client_data_rwsem;
0df91bb6 2678 struct xarray client_data;
d0899892 2679 struct mutex unregistration_lock;
1da177e4 2680
17e10646
PP
2681 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2682 rwlock_t cache_lock;
7738613e 2683 /**
8ceb1357 2684 * port_data is indexed by port number
7738613e 2685 */
8ceb1357 2686 struct ib_port_data *port_data;
1da177e4 2687
f4fd0b22
MT
2688 int num_comp_vectors;
2689
cebe556b
PP
2690 union {
2691 struct device dev;
2692 struct ib_core_device coredev;
2693 };
2694
d4122f5a
PP
2695 /* First group for device attributes,
2696 * Second group for driver provided attributes (optional).
2697 * It is NULL terminated array.
2698 */
2699 const struct attribute_group *groups[3];
adee9f3f 2700
17a55f79 2701 u64 uverbs_cmd_mask;
f21519b2 2702 u64 uverbs_ex_cmd_mask;
274c0891 2703
bd99fdea 2704 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2705 __be64 node_guid;
96f15c03 2706 u32 local_dma_lkey;
4139032b 2707 u16 is_switch:1;
6780c4fa
GP
2708 /* Indicates kernel verbs support, should not be used in drivers */
2709 u16 kverbs_provider:1;
da662979
YF
2710 /* CQ adaptive moderation (RDMA DIM) */
2711 u16 use_cq_dim:1;
1da177e4
LT
2712 u8 node_type;
2713 u8 phys_port_cnt;
3e153a93 2714 struct ib_device_attr attrs;
b40f4757
CL
2715 struct attribute_group *hw_stats_ag;
2716 struct rdma_hw_stats *hw_stats;
7738613e 2717
43579b5f
PP
2718#ifdef CONFIG_CGROUP_RDMA
2719 struct rdmacg_device cg_device;
2720#endif
2721
ecc82c53 2722 u32 index;
c7ff819a
YF
2723
2724 spinlock_t cq_pools_lock;
2725 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2726
41eda65c 2727 struct rdma_restrack_root *res;
ecc82c53 2728
0cbf432d 2729 const struct uapi_definition *driver_def;
d79af724 2730
01b67117 2731 /*
d79af724
JG
2732 * Positive refcount indicates that the device is currently
2733 * registered and cannot be unregistered.
01b67117
PP
2734 */
2735 refcount_t refcount;
2736 struct completion unreg_completion;
d0899892 2737 struct work_struct unregistration_work;
3856ec4b
SW
2738
2739 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2740
2741 /* Protects compat_devs xarray modifications */
2742 struct mutex compat_devs_mutex;
2743 /* Maintains compat devices for each net namespace */
2744 struct xarray compat_devs;
dd05cb82
KH
2745
2746 /* Used by iWarp CM */
2747 char iw_ifname[IFNAMSIZ];
2748 u32 iw_driver_flags;
bd3920ea 2749 u32 lag_flags;
1da177e4
LT
2750};
2751
0e2d00eb 2752struct ib_client_nl_info;
1da177e4 2753struct ib_client {
e59178d8 2754 const char *name;
11a0ae4c 2755 int (*add)(struct ib_device *ibdev);
7c1eb45a 2756 void (*remove)(struct ib_device *, void *client_data);
dc1435c0 2757 void (*rename)(struct ib_device *dev, void *client_data);
0e2d00eb
JG
2758 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2759 struct ib_client_nl_info *res);
2760 int (*get_global_nl_info)(struct ib_client_nl_info *res);
1da177e4 2761
9268f72d
YK
2762 /* Returns the net_dev belonging to this ib_client and matching the
2763 * given parameters.
2764 * @dev: An RDMA device that the net_dev use for communication.
2765 * @port: A physical port number on the RDMA device.
2766 * @pkey: P_Key that the net_dev uses if applicable.
2767 * @gid: A GID that the net_dev uses to communicate.
2768 * @addr: An IP address the net_dev is configured with.
2769 * @client_data: The device's client data set by ib_set_client_data().
2770 *
2771 * An ib_client that implements a net_dev on top of RDMA devices
2772 * (such as IP over IB) should implement this callback, allowing the
2773 * rdma_cm module to find the right net_dev for a given request.
2774 *
2775 * The caller is responsible for calling dev_put on the returned
2776 * netdev. */
2777 struct net_device *(*get_net_dev_by_params)(
2778 struct ib_device *dev,
2779 u8 port,
2780 u16 pkey,
2781 const union ib_gid *gid,
2782 const struct sockaddr *addr,
2783 void *client_data);
621e55ff
JG
2784
2785 refcount_t uses;
2786 struct completion uses_zero;
e59178d8 2787 u32 client_id;
6780c4fa
GP
2788
2789 /* kverbs are not required by the client */
2790 u8 no_kverbs_req:1;
1da177e4
LT
2791};
2792
a808273a
SS
2793/*
2794 * IB block DMA iterator
2795 *
2796 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2797 * to a HW supported page size.
2798 */
2799struct ib_block_iter {
2800 /* internal states */
2801 struct scatterlist *__sg; /* sg holding the current aligned block */
2802 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2803 unsigned int __sg_nents; /* number of SG entries */
2804 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2805 unsigned int __pg_bit; /* alignment of current block */
2806};
2807
459cc69f
LR
2808struct ib_device *_ib_alloc_device(size_t size);
2809#define ib_alloc_device(drv_struct, member) \
2810 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2811 BUILD_BUG_ON_ZERO(offsetof( \
2812 struct drv_struct, member))), \
2813 struct drv_struct, member)
2814
1da177e4
LT
2815void ib_dealloc_device(struct ib_device *device);
2816
9abb0d1b 2817void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2818
ea4baf7f 2819int ib_register_device(struct ib_device *device, const char *name);
1da177e4 2820void ib_unregister_device(struct ib_device *device);
d0899892
JG
2821void ib_unregister_driver(enum rdma_driver_id driver_id);
2822void ib_unregister_device_and_put(struct ib_device *device);
2823void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2824
2825int ib_register_client (struct ib_client *client);
2826void ib_unregister_client(struct ib_client *client);
2827
a808273a
SS
2828void __rdma_block_iter_start(struct ib_block_iter *biter,
2829 struct scatterlist *sglist,
2830 unsigned int nents,
2831 unsigned long pgsz);
2832bool __rdma_block_iter_next(struct ib_block_iter *biter);
2833
2834/**
2835 * rdma_block_iter_dma_address - get the aligned dma address of the current
2836 * block held by the block iterator.
2837 * @biter: block iterator holding the memory block
2838 */
2839static inline dma_addr_t
2840rdma_block_iter_dma_address(struct ib_block_iter *biter)
2841{
2842 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2843}
2844
2845/**
2846 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2847 * @sglist: sglist to iterate over
2848 * @biter: block iterator holding the memory block
2849 * @nents: maximum number of sg entries to iterate over
2850 * @pgsz: best HW supported page size to use
2851 *
2852 * Callers may use rdma_block_iter_dma_address() to get each
2853 * blocks aligned DMA address.
2854 */
2855#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2856 for (__rdma_block_iter_start(biter, sglist, nents, \
2857 pgsz); \
2858 __rdma_block_iter_next(biter);)
2859
0df91bb6
JG
2860/**
2861 * ib_get_client_data - Get IB client context
2862 * @device:Device to get context for
2863 * @client:Client to get context for
2864 *
2865 * ib_get_client_data() returns the client context data set with
2866 * ib_set_client_data(). This can only be called while the client is
2867 * registered to the device, once the ib_client remove() callback returns this
2868 * cannot be called.
2869 */
2870static inline void *ib_get_client_data(struct ib_device *device,
2871 struct ib_client *client)
2872{
2873 return xa_load(&device->client_data, client->client_id);
2874}
1da177e4
LT
2875void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2876 void *data);
521ed0d9
KH
2877void ib_set_device_ops(struct ib_device *device,
2878 const struct ib_device_ops *ops);
1da177e4 2879
5f9794dc 2880int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
c043ff2c
MK
2881 unsigned long pfn, unsigned long size, pgprot_t prot,
2882 struct rdma_user_mmap_entry *entry);
3411f9f0
MK
2883int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2884 struct rdma_user_mmap_entry *entry,
2885 size_t length);
7a763d18
YH
2886int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2887 struct rdma_user_mmap_entry *entry,
2888 size_t length, u32 min_pgoff,
2889 u32 max_pgoff);
2890
3411f9f0
MK
2891struct rdma_user_mmap_entry *
2892rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2893 unsigned long pgoff);
2894struct rdma_user_mmap_entry *
2895rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2896 struct vm_area_struct *vma);
2897void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2898
2899void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
5f9794dc 2900
e2773c06
RD
2901static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2902{
2903 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2904}
2905
2906static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2907{
43c61165 2908 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2909}
2910
c66db311
MB
2911static inline bool ib_is_buffer_cleared(const void __user *p,
2912 size_t len)
301a721e 2913{
92d27ae6 2914 bool ret;
301a721e
MB
2915 u8 *buf;
2916
2917 if (len > USHRT_MAX)
2918 return false;
2919
92d27ae6
ME
2920 buf = memdup_user(p, len);
2921 if (IS_ERR(buf))
301a721e
MB
2922 return false;
2923
301a721e 2924 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2925 kfree(buf);
2926 return ret;
2927}
2928
c66db311
MB
2929static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2930 size_t offset,
2931 size_t len)
2932{
2933 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2934}
2935
1c77483e
YH
2936/**
2937 * ib_is_destroy_retryable - Check whether the uobject destruction
2938 * is retryable.
2939 * @ret: The initial destruction return code
2940 * @why: remove reason
2941 * @uobj: The uobject that is destroyed
2942 *
2943 * This function is a helper function that IB layer and low-level drivers
2944 * can use to consider whether the destruction of the given uobject is
2945 * retry-able.
2946 * It checks the original return code, if it wasn't success the destruction
2947 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2948 * the remove reason. (i.e. why).
2949 * Must be called with the object locked for destroy.
2950 */
2951static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2952 struct ib_uobject *uobj)
2953{
2954 return ret && (why == RDMA_REMOVE_DESTROY ||
2955 uobj->context->cleanup_retryable);
2956}
2957
2958/**
2959 * ib_destroy_usecnt - Called during destruction to check the usecnt
2960 * @usecnt: The usecnt atomic
2961 * @why: remove reason
2962 * @uobj: The uobject that is destroyed
2963 *
2964 * Non-zero usecnts will block destruction unless destruction was triggered by
2965 * a ucontext cleanup.
2966 */
2967static inline int ib_destroy_usecnt(atomic_t *usecnt,
2968 enum rdma_remove_reason why,
2969 struct ib_uobject *uobj)
2970{
2971 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2972 return -EBUSY;
2973 return 0;
2974}
2975
8a51866f
RD
2976/**
2977 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2978 * contains all required attributes and no attributes not allowed for
2979 * the given QP state transition.
2980 * @cur_state: Current QP state
2981 * @next_state: Next QP state
2982 * @type: QP type
2983 * @mask: Mask of supplied QP attributes
2984 *
2985 * This function is a helper function that a low-level driver's
2986 * modify_qp method can use to validate the consumer's input. It
2987 * checks that cur_state and next_state are valid QP states, that a
2988 * transition from cur_state to next_state is allowed by the IB spec,
2989 * and that the attribute mask supplied is allowed for the transition.
2990 */
19b1f540 2991bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2992 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2993
dcc9881e
LR
2994void ib_register_event_handler(struct ib_event_handler *event_handler);
2995void ib_unregister_event_handler(struct ib_event_handler *event_handler);
6b57cea9 2996void ib_dispatch_event(const struct ib_event *event);
1da177e4 2997
1da177e4
LT
2998int ib_query_port(struct ib_device *device,
2999 u8 port_num, struct ib_port_attr *port_attr);
3000
a3f5adaf
EC
3001enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3002 u8 port_num);
3003
4139032b
HR
3004/**
3005 * rdma_cap_ib_switch - Check if the device is IB switch
3006 * @device: Device to check
3007 *
3008 * Device driver is responsible for setting is_switch bit on
3009 * in ib_device structure at init time.
3010 *
3011 * Return: true if the device is IB switch.
3012 */
3013static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3014{
3015 return device->is_switch;
3016}
3017
0cf18d77
IW
3018/**
3019 * rdma_start_port - Return the first valid port number for the device
3020 * specified
3021 *
3022 * @device: Device to be checked
3023 *
3024 * Return start port number
3025 */
3026static inline u8 rdma_start_port(const struct ib_device *device)
3027{
4139032b 3028 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
3029}
3030
ea1075ed
JG
3031/**
3032 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3033 * @device - The struct ib_device * to iterate over
3034 * @iter - The unsigned int to store the port number
3035 */
3036#define rdma_for_each_port(device, iter) \
3037 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
3038 unsigned int, iter))); \
3039 iter <= rdma_end_port(device); (iter)++)
3040
0cf18d77
IW
3041/**
3042 * rdma_end_port - Return the last valid port number for the device
3043 * specified
3044 *
3045 * @device: Device to be checked
3046 *
3047 * Return last port number
3048 */
3049static inline u8 rdma_end_port(const struct ib_device *device)
3050{
4139032b 3051 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
3052}
3053
24dc831b
YS
3054static inline int rdma_is_port_valid(const struct ib_device *device,
3055 unsigned int port)
3056{
3057 return (port >= rdma_start_port(device) &&
3058 port <= rdma_end_port(device));
3059}
3060
b02289b3
AK
3061static inline bool rdma_is_grh_required(const struct ib_device *device,
3062 u8 port_num)
3063{
8ceb1357
JG
3064 return device->port_data[port_num].immutable.core_cap_flags &
3065 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
3066}
3067
5ede9289 3068static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 3069{
8ceb1357
JG
3070 return device->port_data[port_num].immutable.core_cap_flags &
3071 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
3072}
3073
5ede9289 3074static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f 3075{
8ceb1357
JG
3076 return device->port_data[port_num].immutable.core_cap_flags &
3077 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
3078}
3079
3080static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3081{
8ceb1357
JG
3082 return device->port_data[port_num].immutable.core_cap_flags &
3083 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
3084}
3085
3086static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 3087{
8ceb1357
JG
3088 return device->port_data[port_num].immutable.core_cap_flags &
3089 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
3090}
3091
5ede9289 3092static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 3093{
8ceb1357
JG
3094 return device->port_data[port_num].immutable.core_cap_flags &
3095 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
3096}
3097
5ede9289 3098static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 3099{
7766a99f
MB
3100 return rdma_protocol_ib(device, port_num) ||
3101 rdma_protocol_roce(device, port_num);
de66be94
MW
3102}
3103
aa773bd4
OG
3104static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3105{
8ceb1357
JG
3106 return device->port_data[port_num].immutable.core_cap_flags &
3107 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
3108}
3109
ce1e055f
OG
3110static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3111{
8ceb1357
JG
3112 return device->port_data[port_num].immutable.core_cap_flags &
3113 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
3114}
3115
c757dea8 3116/**
296ec009 3117 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 3118 * Management Datagrams.
296ec009
MW
3119 * @device: Device to check
3120 * @port_num: Port number to check
c757dea8 3121 *
296ec009
MW
3122 * Management Datagrams (MAD) are a required part of the InfiniBand
3123 * specification and are supported on all InfiniBand devices. A slightly
3124 * extended version are also supported on OPA interfaces.
c757dea8 3125 *
296ec009 3126 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3127 */
5ede9289 3128static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 3129{
8ceb1357
JG
3130 return device->port_data[port_num].immutable.core_cap_flags &
3131 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3132}
3133
65995fee
IW
3134/**
3135 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3136 * Management Datagrams.
3137 * @device: Device to check
3138 * @port_num: Port number to check
3139 *
3140 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3141 * datagrams with their own versions. These OPA MADs share many but not all of
3142 * the characteristics of InfiniBand MADs.
3143 *
3144 * OPA MADs differ in the following ways:
3145 *
3146 * 1) MADs are variable size up to 2K
3147 * IBTA defined MADs remain fixed at 256 bytes
3148 * 2) OPA SMPs must carry valid PKeys
3149 * 3) OPA SMP packets are a different format
3150 *
3151 * Return: true if the port supports OPA MAD packet formats.
3152 */
3153static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3154{
d3243da8
LR
3155 return device->port_data[port_num].immutable.core_cap_flags &
3156 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3157}
3158
29541e3a 3159/**
296ec009
MW
3160 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3161 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3162 * @device: Device to check
3163 * @port_num: Port number to check
29541e3a 3164 *
296ec009
MW
3165 * Each InfiniBand node is required to provide a Subnet Management Agent
3166 * that the subnet manager can access. Prior to the fabric being fully
3167 * configured by the subnet manager, the SMA is accessed via a well known
3168 * interface called the Subnet Management Interface (SMI). This interface
3169 * uses directed route packets to communicate with the SM to get around the
3170 * chicken and egg problem of the SM needing to know what's on the fabric
3171 * in order to configure the fabric, and needing to configure the fabric in
3172 * order to send packets to the devices on the fabric. These directed
3173 * route packets do not need the fabric fully configured in order to reach
3174 * their destination. The SMI is the only method allowed to send
3175 * directed route packets on an InfiniBand fabric.
29541e3a 3176 *
296ec009 3177 * Return: true if the port provides an SMI.
29541e3a 3178 */
5ede9289 3179static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 3180{
8ceb1357
JG
3181 return device->port_data[port_num].immutable.core_cap_flags &
3182 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3183}
3184
72219cea
MW
3185/**
3186 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3187 * Communication Manager.
296ec009
MW
3188 * @device: Device to check
3189 * @port_num: Port number to check
72219cea 3190 *
296ec009
MW
3191 * The InfiniBand Communication Manager is one of many pre-defined General
3192 * Service Agents (GSA) that are accessed via the General Service
3193 * Interface (GSI). It's role is to facilitate establishment of connections
3194 * between nodes as well as other management related tasks for established
3195 * connections.
72219cea 3196 *
296ec009
MW
3197 * Return: true if the port supports an IB CM (this does not guarantee that
3198 * a CM is actually running however).
72219cea 3199 */
5ede9289 3200static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 3201{
8ceb1357
JG
3202 return device->port_data[port_num].immutable.core_cap_flags &
3203 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3204}
3205
04215330
MW
3206/**
3207 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3208 * Communication Manager.
296ec009
MW
3209 * @device: Device to check
3210 * @port_num: Port number to check
04215330 3211 *
296ec009
MW
3212 * Similar to above, but specific to iWARP connections which have a different
3213 * managment protocol than InfiniBand.
04215330 3214 *
296ec009
MW
3215 * Return: true if the port supports an iWARP CM (this does not guarantee that
3216 * a CM is actually running however).
04215330 3217 */
5ede9289 3218static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 3219{
8ceb1357
JG
3220 return device->port_data[port_num].immutable.core_cap_flags &
3221 RDMA_CORE_CAP_IW_CM;
04215330
MW
3222}
3223
fe53ba2f
MW
3224/**
3225 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3226 * Subnet Administration.
296ec009
MW
3227 * @device: Device to check
3228 * @port_num: Port number to check
fe53ba2f 3229 *
296ec009
MW
3230 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3231 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3232 * fabrics, devices should resolve routes to other hosts by contacting the
3233 * SA to query the proper route.
fe53ba2f 3234 *
296ec009
MW
3235 * Return: true if the port should act as a client to the fabric Subnet
3236 * Administration interface. This does not imply that the SA service is
3237 * running locally.
fe53ba2f 3238 */
5ede9289 3239static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 3240{
8ceb1357
JG
3241 return device->port_data[port_num].immutable.core_cap_flags &
3242 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3243}
3244
a31ad3b0
MW
3245/**
3246 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3247 * Multicast.
296ec009
MW
3248 * @device: Device to check
3249 * @port_num: Port number to check
a31ad3b0 3250 *
296ec009
MW
3251 * InfiniBand multicast registration is more complex than normal IPv4 or
3252 * IPv6 multicast registration. Each Host Channel Adapter must register
3253 * with the Subnet Manager when it wishes to join a multicast group. It
3254 * should do so only once regardless of how many queue pairs it subscribes
3255 * to this group. And it should leave the group only after all queue pairs
3256 * attached to the group have been detached.
a31ad3b0 3257 *
296ec009
MW
3258 * Return: true if the port must undertake the additional adminstrative
3259 * overhead of registering/unregistering with the SM and tracking of the
3260 * total number of queue pairs attached to the multicast group.
a31ad3b0 3261 */
5ede9289 3262static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
3263{
3264 return rdma_cap_ib_sa(device, port_num);
3265}
3266
30a74ef4
MW
3267/**
3268 * rdma_cap_af_ib - Check if the port of device has the capability
3269 * Native Infiniband Address.
296ec009
MW
3270 * @device: Device to check
3271 * @port_num: Port number to check
30a74ef4 3272 *
296ec009
MW
3273 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3274 * GID. RoCE uses a different mechanism, but still generates a GID via
3275 * a prescribed mechanism and port specific data.
30a74ef4 3276 *
296ec009
MW
3277 * Return: true if the port uses a GID address to identify devices on the
3278 * network.
30a74ef4 3279 */
5ede9289 3280static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3281{
8ceb1357
JG
3282 return device->port_data[port_num].immutable.core_cap_flags &
3283 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3284}
3285
227128fc
MW
3286/**
3287 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3288 * Ethernet Address Handle.
3289 * @device: Device to check
3290 * @port_num: Port number to check
227128fc 3291 *
296ec009
MW
3292 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3293 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3294 * port. Normally, packet headers are generated by the sending host
3295 * adapter, but when sending connectionless datagrams, we must manually
3296 * inject the proper headers for the fabric we are communicating over.
227128fc 3297 *
296ec009
MW
3298 * Return: true if we are running as a RoCE port and must force the
3299 * addition of a Global Route Header built from our Ethernet Address
3300 * Handle into our header list for connectionless packets.
227128fc 3301 */
5ede9289 3302static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3303{
8ceb1357
JG
3304 return device->port_data[port_num].immutable.core_cap_flags &
3305 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3306}
3307
94d595c5
DC
3308/**
3309 * rdma_cap_opa_ah - Check if the port of device supports
3310 * OPA Address handles
3311 * @device: Device to check
3312 * @port_num: Port number to check
3313 *
3314 * Return: true if we are running on an OPA device which supports
3315 * the extended OPA addressing.
3316 */
3317static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3318{
8ceb1357 3319 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3320 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3321}
3322
337877a4
IW
3323/**
3324 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3325 *
3326 * @device: Device
3327 * @port_num: Port number
3328 *
3329 * This MAD size includes the MAD headers and MAD payload. No other headers
3330 * are included.
3331 *
3332 * Return the max MAD size required by the Port. Will return 0 if the port
3333 * does not support MADs
3334 */
3335static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3336{
8ceb1357 3337 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3338}
3339
03db3a2d
MB
3340/**
3341 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3342 * @device: Device to check
3343 * @port_num: Port number to check
3344 *
3345 * RoCE GID table mechanism manages the various GIDs for a device.
3346 *
3347 * NOTE: if allocating the port's GID table has failed, this call will still
3348 * return true, but any RoCE GID table API will fail.
3349 *
3350 * Return: true if the port uses RoCE GID table mechanism in order to manage
3351 * its GIDs.
3352 */
3353static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3354 u8 port_num)
3355{
3356 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3357 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3358}
3359
002516ed
CH
3360/*
3361 * Check if the device supports READ W/ INVALIDATE.
3362 */
3363static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3364{
3365 /*
3366 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3367 * has support for it yet.
3368 */
3369 return rdma_protocol_iwarp(dev, port_num);
3370}
3371
4a353399
SS
3372/**
3373 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3374 *
3375 * @addr: address
3376 * @pgsz_bitmap: bitmap of HW supported page sizes
3377 */
3378static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3379 unsigned long pgsz_bitmap)
3380{
3381 unsigned long align;
3382 unsigned long pgsz;
3383
3384 align = addr & -addr;
3385
3386 /* Find page bit such that addr is aligned to the highest supported
3387 * HW page size
3388 */
3389 pgsz = pgsz_bitmap & ~(-align << 1);
3390 if (!pgsz)
3391 return __ffs(pgsz_bitmap);
3392
3393 return __fls(pgsz);
3394}
3395
6d72344c
KW
3396/**
3397 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3398 * @device: Device
3399 * @port_num: 1 based Port number
3400 *
3401 * Return true if port is an Intel OPA port , false if not
3402 */
3403static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3404 u32 port_num)
3405{
3406 return (device->port_data[port_num].immutable.core_cap_flags &
3407 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3408}
3409
3410/**
3411 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3412 * @device: Device
3413 * @port_num: Port number
3414 * @mtu: enum value of MTU
3415 *
3416 * Return the MTU size supported by the port as an integer value. Will return
3417 * -1 if enum value of mtu is not supported.
3418 */
3419static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3420 int mtu)
3421{
3422 if (rdma_core_cap_opa_port(device, port))
3423 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3424 else
3425 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3426}
3427
3428/**
3429 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3430 * @device: Device
3431 * @port_num: Port number
3432 * @attr: port attribute
3433 *
3434 * Return the MTU size supported by the port as an integer value.
3435 */
3436static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3437 struct ib_port_attr *attr)
3438{
3439 if (rdma_core_cap_opa_port(device, port))
3440 return attr->phys_mtu;
3441 else
3442 return ib_mtu_enum_to_int(attr->max_mtu);
3443}
3444
50174a7f
EC
3445int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3446 int state);
3447int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3448 struct ifla_vf_info *info);
3449int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3450 struct ifla_vf_stats *stats);
bfcb3c5d
DG
3451int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3452 struct ifla_vf_guid *node_guid,
3453 struct ifla_vf_guid *port_guid);
50174a7f
EC
3454int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3455 int type);
3456
1da177e4
LT
3457int ib_query_pkey(struct ib_device *device,
3458 u8 port_num, u16 index, u16 *pkey);
3459
3460int ib_modify_device(struct ib_device *device,
3461 int device_modify_mask,
3462 struct ib_device_modify *device_modify);
3463
3464int ib_modify_port(struct ib_device *device,
3465 u8 port_num, int port_modify_mask,
3466 struct ib_port_modify *port_modify);
3467
5eb620c8 3468int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3469 u8 *port_num, u16 *index);
5eb620c8
YE
3470
3471int ib_find_pkey(struct ib_device *device,
3472 u8 port_num, u16 pkey, u16 *index);
3473
ed082d36
CH
3474enum ib_pd_flags {
3475 /*
3476 * Create a memory registration for all memory in the system and place
3477 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3478 * ULPs to avoid the overhead of dynamic MRs.
3479 *
3480 * This flag is generally considered unsafe and must only be used in
3481 * extremly trusted environments. Every use of it will log a warning
3482 * in the kernel log.
3483 */
3484 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3485};
1da177e4 3486
ed082d36
CH
3487struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3488 const char *caller);
c4367a26 3489
ed082d36 3490#define ib_alloc_pd(device, flags) \
e4496447 3491 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26
SR
3492
3493/**
3494 * ib_dealloc_pd_user - Deallocate kernel/user PD
3495 * @pd: The protection domain
3496 * @udata: Valid user data or NULL for kernel objects
3497 */
3498void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3499
3500/**
3501 * ib_dealloc_pd - Deallocate kernel PD
3502 * @pd: The protection domain
3503 *
3504 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3505 */
3506static inline void ib_dealloc_pd(struct ib_pd *pd)
3507{
3508 ib_dealloc_pd_user(pd, NULL);
3509}
1da177e4 3510
b090c4e3
GP
3511enum rdma_create_ah_flags {
3512 /* In a sleepable context */
3513 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3514};
3515
1da177e4 3516/**
0a18cfe4 3517 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3518 * @pd: The protection domain associated with the address handle.
3519 * @ah_attr: The attributes of the address vector.
b090c4e3 3520 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3521 *
3522 * The address handle is used to reference a local or global destination
3523 * in all UD QP post sends.
3524 */
b090c4e3
GP
3525struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3526 u32 flags);
1da177e4 3527
5cda6587
PP
3528/**
3529 * rdma_create_user_ah - Creates an address handle for the given address vector.
3530 * It resolves destination mac address for ah attribute of RoCE type.
3531 * @pd: The protection domain associated with the address handle.
3532 * @ah_attr: The attributes of the address vector.
3533 * @udata: pointer to user's input output buffer information need by
3534 * provider driver.
3535 *
3536 * It returns 0 on success and returns appropriate error code on error.
3537 * The address handle is used to reference a local or global destination
3538 * in all UD QP post sends.
3539 */
3540struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3541 struct rdma_ah_attr *ah_attr,
3542 struct ib_udata *udata);
850d8fd7
MS
3543/**
3544 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3545 * work completion.
3546 * @hdr: the L3 header to parse
3547 * @net_type: type of header to parse
3548 * @sgid: place to store source gid
3549 * @dgid: place to store destination gid
3550 */
3551int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3552 enum rdma_network_type net_type,
3553 union ib_gid *sgid, union ib_gid *dgid);
3554
3555/**
3556 * ib_get_rdma_header_version - Get the header version
3557 * @hdr: the L3 header to parse
3558 */
3559int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3560
4e00d694 3561/**
f6bdb142 3562 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3563 * work completion.
3564 * @device: Device on which the received message arrived.
3565 * @port_num: Port on which the received message arrived.
3566 * @wc: Work completion associated with the received message.
3567 * @grh: References the received global route header. This parameter is
3568 * ignored unless the work completion indicates that the GRH is valid.
3569 * @ah_attr: Returned attributes that can be used when creating an address
3570 * handle for replying to the message.
b7403217
PP
3571 * When ib_init_ah_attr_from_wc() returns success,
3572 * (a) for IB link layer it optionally contains a reference to SGID attribute
3573 * when GRH is present for IB link layer.
3574 * (b) for RoCE link layer it contains a reference to SGID attribute.
3575 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3576 * attributes which are initialized using ib_init_ah_attr_from_wc().
3577 *
4e00d694 3578 */
f6bdb142
PP
3579int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3580 const struct ib_wc *wc, const struct ib_grh *grh,
3581 struct rdma_ah_attr *ah_attr);
4e00d694 3582
513789ed
HR
3583/**
3584 * ib_create_ah_from_wc - Creates an address handle associated with the
3585 * sender of the specified work completion.
3586 * @pd: The protection domain associated with the address handle.
3587 * @wc: Work completion information associated with a received message.
3588 * @grh: References the received global route header. This parameter is
3589 * ignored unless the work completion indicates that the GRH is valid.
3590 * @port_num: The outbound port number to associate with the address.
3591 *
3592 * The address handle is used to reference a local or global destination
3593 * in all UD QP post sends.
3594 */
73cdaaee
IW
3595struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3596 const struct ib_grh *grh, u8 port_num);
513789ed 3597
1da177e4 3598/**
67b985b6 3599 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3600 * handle.
3601 * @ah: The address handle to modify.
3602 * @ah_attr: The new address vector attributes to associate with the
3603 * address handle.
3604 */
67b985b6 3605int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3606
3607/**
bfbfd661 3608 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3609 * handle.
3610 * @ah: The address handle to query.
3611 * @ah_attr: The address vector attributes associated with the address
3612 * handle.
3613 */
bfbfd661 3614int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3615
2553ba21
GP
3616enum rdma_destroy_ah_flags {
3617 /* In a sleepable context */
3618 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3619};
3620
1da177e4 3621/**
c4367a26 3622 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3623 * @ah: The address handle to destroy.
2553ba21 3624 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3625 * @udata: Valid user data or NULL for kernel objects
1da177e4 3626 */
c4367a26
SR
3627int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3628
3629/**
3630 * rdma_destroy_ah - Destroys an kernel address handle.
3631 * @ah: The address handle to destroy.
3632 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3633 *
3634 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3635 */
3636static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3637{
3638 return rdma_destroy_ah_user(ah, flags, NULL);
3639}
1da177e4 3640
b0810b03
JG
3641struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3642 struct ib_srq_init_attr *srq_init_attr,
3643 struct ib_usrq_object *uobject,
3644 struct ib_udata *udata);
3645static inline struct ib_srq *
3646ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3647{
3648 if (!pd->device->ops.create_srq)
3649 return ERR_PTR(-EOPNOTSUPP);
3650
3651 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3652}
d41fcc67
RD
3653
3654/**
3655 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3656 * @srq: The SRQ to modify.
3657 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3658 * the current values of selected SRQ attributes are returned.
3659 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3660 * are being modified.
3661 *
3662 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3663 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3664 * the number of receives queued drops below the limit.
3665 */
3666int ib_modify_srq(struct ib_srq *srq,
3667 struct ib_srq_attr *srq_attr,
3668 enum ib_srq_attr_mask srq_attr_mask);
3669
3670/**
3671 * ib_query_srq - Returns the attribute list and current values for the
3672 * specified SRQ.
3673 * @srq: The SRQ to query.
3674 * @srq_attr: The attributes of the specified SRQ.
3675 */
3676int ib_query_srq(struct ib_srq *srq,
3677 struct ib_srq_attr *srq_attr);
3678
3679/**
c4367a26
SR
3680 * ib_destroy_srq_user - Destroys the specified SRQ.
3681 * @srq: The SRQ to destroy.
3682 * @udata: Valid user data or NULL for kernel objects
3683 */
3684int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3685
3686/**
3687 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3688 * @srq: The SRQ to destroy.
c4367a26
SR
3689 *
3690 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3691 */
c4367a26
SR
3692static inline int ib_destroy_srq(struct ib_srq *srq)
3693{
3694 return ib_destroy_srq_user(srq, NULL);
3695}
d41fcc67
RD
3696
3697/**
3698 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3699 * @srq: The SRQ to post the work request on.
3700 * @recv_wr: A list of work requests to post on the receive queue.
3701 * @bad_recv_wr: On an immediate failure, this parameter will reference
3702 * the work request that failed to be posted on the QP.
3703 */
3704static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3705 const struct ib_recv_wr *recv_wr,
3706 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3707{
d34ac5cd 3708 const struct ib_recv_wr *dummy;
bb039a87 3709
3023a1e9
KH
3710 return srq->device->ops.post_srq_recv(srq, recv_wr,
3711 bad_recv_wr ? : &dummy);
d41fcc67
RD
3712}
3713
b72bfc96
JG
3714struct ib_qp *ib_create_qp(struct ib_pd *pd,
3715 struct ib_qp_init_attr *qp_init_attr);
1da177e4 3716
a512c2fb
PP
3717/**
3718 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3719 * @qp: The QP to modify.
3720 * @attr: On input, specifies the QP attributes to modify. On output,
3721 * the current values of selected QP attributes are returned.
3722 * @attr_mask: A bit-mask used to specify which attributes of the QP
3723 * are being modified.
3724 * @udata: pointer to user's input output buffer information
3725 * are being modified.
3726 * It returns 0 on success and returns appropriate error code on error.
3727 */
3728int ib_modify_qp_with_udata(struct ib_qp *qp,
3729 struct ib_qp_attr *attr,
3730 int attr_mask,
3731 struct ib_udata *udata);
3732
1da177e4
LT
3733/**
3734 * ib_modify_qp - Modifies the attributes for the specified QP and then
3735 * transitions the QP to the given state.
3736 * @qp: The QP to modify.
3737 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3738 * the current values of selected QP attributes are returned.
3739 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3740 * are being modified.
3741 */
3742int ib_modify_qp(struct ib_qp *qp,
3743 struct ib_qp_attr *qp_attr,
3744 int qp_attr_mask);
3745
3746/**
3747 * ib_query_qp - Returns the attribute list and current values for the
3748 * specified QP.
3749 * @qp: The QP to query.
3750 * @qp_attr: The attributes of the specified QP.
3751 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3752 * @qp_init_attr: Additional attributes of the selected QP.
3753 *
3754 * The qp_attr_mask may be used to limit the query to gathering only the
3755 * selected attributes.
3756 */
3757int ib_query_qp(struct ib_qp *qp,
3758 struct ib_qp_attr *qp_attr,
3759 int qp_attr_mask,
3760 struct ib_qp_init_attr *qp_init_attr);
3761
3762/**
3763 * ib_destroy_qp - Destroys the specified QP.
3764 * @qp: The QP to destroy.
c4367a26 3765 * @udata: Valid udata or NULL for kernel objects
1da177e4 3766 */
c4367a26
SR
3767int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3768
3769/**
3770 * ib_destroy_qp - Destroys the specified kernel QP.
3771 * @qp: The QP to destroy.
3772 *
3773 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3774 */
3775static inline int ib_destroy_qp(struct ib_qp *qp)
3776{
3777 return ib_destroy_qp_user(qp, NULL);
3778}
1da177e4 3779
d3d72d90 3780/**
0e0ec7e0
SH
3781 * ib_open_qp - Obtain a reference to an existing sharable QP.
3782 * @xrcd - XRC domain
3783 * @qp_open_attr: Attributes identifying the QP to open.
3784 *
3785 * Returns a reference to a sharable QP.
3786 */
3787struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3788 struct ib_qp_open_attr *qp_open_attr);
3789
3790/**
3791 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3792 * @qp: The QP handle to release
3793 *
0e0ec7e0
SH
3794 * The opened QP handle is released by the caller. The underlying
3795 * shared QP is not destroyed until all internal references are released.
d3d72d90 3796 */
0e0ec7e0 3797int ib_close_qp(struct ib_qp *qp);
d3d72d90 3798
1da177e4
LT
3799/**
3800 * ib_post_send - Posts a list of work requests to the send queue of
3801 * the specified QP.
3802 * @qp: The QP to post the work request on.
3803 * @send_wr: A list of work requests to post on the send queue.
3804 * @bad_send_wr: On an immediate failure, this parameter will reference
3805 * the work request that failed to be posted on the QP.
55464d46
BVA
3806 *
3807 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3808 * error is returned, the QP state shall not be affected,
3809 * ib_post_send() will return an immediate error after queueing any
3810 * earlier work requests in the list.
1da177e4
LT
3811 */
3812static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3813 const struct ib_send_wr *send_wr,
3814 const struct ib_send_wr **bad_send_wr)
1da177e4 3815{
d34ac5cd 3816 const struct ib_send_wr *dummy;
bb039a87 3817
3023a1e9 3818 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3819}
3820
3821/**
3822 * ib_post_recv - Posts a list of work requests to the receive queue of
3823 * the specified QP.
3824 * @qp: The QP to post the work request on.
3825 * @recv_wr: A list of work requests to post on the receive queue.
3826 * @bad_recv_wr: On an immediate failure, this parameter will reference
3827 * the work request that failed to be posted on the QP.
3828 */
3829static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3830 const struct ib_recv_wr *recv_wr,
3831 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3832{
d34ac5cd 3833 const struct ib_recv_wr *dummy;
bb039a87 3834
3023a1e9 3835 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3836}
3837
c4367a26
SR
3838struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3839 int nr_cqe, int comp_vector,
3840 enum ib_poll_context poll_ctx,
3841 const char *caller, struct ib_udata *udata);
3842
3843/**
3844 * ib_alloc_cq_user: Allocate kernel/user CQ
3845 * @dev: The IB device
3846 * @private: Private data attached to the CQE
3847 * @nr_cqe: Number of CQEs in the CQ
3848 * @comp_vector: Completion vector used for the IRQs
3849 * @poll_ctx: Context used for polling the CQ
3850 * @udata: Valid user data or NULL for kernel objects
3851 */
3852static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3853 void *private, int nr_cqe,
3854 int comp_vector,
3855 enum ib_poll_context poll_ctx,
3856 struct ib_udata *udata)
3857{
3858 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3859 KBUILD_MODNAME, udata);
3860}
3861
3862/**
3863 * ib_alloc_cq: Allocate kernel CQ
3864 * @dev: The IB device
3865 * @private: Private data attached to the CQE
3866 * @nr_cqe: Number of CQEs in the CQ
3867 * @comp_vector: Completion vector used for the IRQs
3868 * @poll_ctx: Context used for polling the CQ
3869 *
3870 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3871 */
3872static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3873 int nr_cqe, int comp_vector,
3874 enum ib_poll_context poll_ctx)
3875{
3876 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3877 NULL);
3878}
3879
20cf4e02
CL
3880struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3881 int nr_cqe, enum ib_poll_context poll_ctx,
3882 const char *caller);
3883
3884/**
3885 * ib_alloc_cq_any: Allocate kernel CQ
3886 * @dev: The IB device
3887 * @private: Private data attached to the CQE
3888 * @nr_cqe: Number of CQEs in the CQ
3889 * @poll_ctx: Context used for polling the CQ
3890 */
3891static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3892 void *private, int nr_cqe,
3893 enum ib_poll_context poll_ctx)
3894{
3895 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3896 KBUILD_MODNAME);
3897}
3898
c4367a26
SR
3899/**
3900 * ib_free_cq_user - Free kernel/user CQ
3901 * @cq: The CQ to free
3902 * @udata: Valid user data or NULL for kernel objects
3446cbd2
YF
3903 *
3904 * NOTE: This function shouldn't be called on shared CQs.
c4367a26
SR
3905 */
3906void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3907
3908/**
3909 * ib_free_cq - Free kernel CQ
3910 * @cq: The CQ to free
3911 *
3912 * NOTE: for user cq use ib_free_cq_user with valid udata!
3913 */
3914static inline void ib_free_cq(struct ib_cq *cq)
3915{
3916 ib_free_cq_user(cq, NULL);
3917}
f66c8ba4 3918
14d3a3b2
CH
3919int ib_process_cq_direct(struct ib_cq *cq, int budget);
3920
1da177e4
LT
3921/**
3922 * ib_create_cq - Creates a CQ on the specified device.
3923 * @device: The device on which to create the CQ.
3924 * @comp_handler: A user-specified callback that is invoked when a
3925 * completion event occurs on the CQ.
3926 * @event_handler: A user-specified callback that is invoked when an
3927 * asynchronous event not associated with a completion occurs on the CQ.
3928 * @cq_context: Context associated with the CQ returned to the user via
3929 * the associated completion and event handlers.
8e37210b 3930 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3931 *
3932 * Users can examine the cq structure to determine the actual CQ size.
3933 */
7350cdd0
BP
3934struct ib_cq *__ib_create_cq(struct ib_device *device,
3935 ib_comp_handler comp_handler,
3936 void (*event_handler)(struct ib_event *, void *),
3937 void *cq_context,
3938 const struct ib_cq_init_attr *cq_attr,
3939 const char *caller);
3940#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3941 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3942
3943/**
3944 * ib_resize_cq - Modifies the capacity of the CQ.
3945 * @cq: The CQ to resize.
3946 * @cqe: The minimum size of the CQ.
3947 *
3948 * Users can examine the cq structure to determine the actual CQ size.
3949 */
3950int ib_resize_cq(struct ib_cq *cq, int cqe);
3951
2dd57162 3952/**
4190b4e9 3953 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3954 * @cq: The CQ to modify.
3955 * @cq_count: number of CQEs that will trigger an event
3956 * @cq_period: max period of time in usec before triggering an event
3957 *
3958 */
4190b4e9 3959int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3960
1da177e4 3961/**
c4367a26 3962 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3963 * @cq: The CQ to destroy.
c4367a26 3964 * @udata: Valid user data or NULL for kernel objects
1da177e4 3965 */
c4367a26
SR
3966int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3967
3968/**
3969 * ib_destroy_cq - Destroys the specified kernel CQ.
3970 * @cq: The CQ to destroy.
3971 *
3972 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3973 */
890ac8d9 3974static inline void ib_destroy_cq(struct ib_cq *cq)
c4367a26 3975{
890ac8d9 3976 ib_destroy_cq_user(cq, NULL);
c4367a26 3977}
1da177e4
LT
3978
3979/**
3980 * ib_poll_cq - poll a CQ for completion(s)
3981 * @cq:the CQ being polled
3982 * @num_entries:maximum number of completions to return
3983 * @wc:array of at least @num_entries &struct ib_wc where completions
3984 * will be returned
3985 *
3986 * Poll a CQ for (possibly multiple) completions. If the return value
3987 * is < 0, an error occurred. If the return value is >= 0, it is the
3988 * number of completions returned. If the return value is
3989 * non-negative and < num_entries, then the CQ was emptied.
3990 */
3991static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3992 struct ib_wc *wc)
3993{
3023a1e9 3994 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3995}
3996
1da177e4
LT
3997/**
3998 * ib_req_notify_cq - Request completion notification on a CQ.
3999 * @cq: The CQ to generate an event for.
ed23a727
RD
4000 * @flags:
4001 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4002 * to request an event on the next solicited event or next work
4003 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4004 * may also be |ed in to request a hint about missed events, as
4005 * described below.
4006 *
4007 * Return Value:
4008 * < 0 means an error occurred while requesting notification
4009 * == 0 means notification was requested successfully, and if
4010 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4011 * were missed and it is safe to wait for another event. In
4012 * this case is it guaranteed that any work completions added
4013 * to the CQ since the last CQ poll will trigger a completion
4014 * notification event.
4015 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4016 * in. It means that the consumer must poll the CQ again to
4017 * make sure it is empty to avoid missing an event because of a
4018 * race between requesting notification and an entry being
4019 * added to the CQ. This return value means it is possible
4020 * (but not guaranteed) that a work completion has been added
4021 * to the CQ since the last poll without triggering a
4022 * completion notification event.
1da177e4
LT
4023 */
4024static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 4025 enum ib_cq_notify_flags flags)
1da177e4 4026{
3023a1e9 4027 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
4028}
4029
c7ff819a
YF
4030struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4031 int comp_vector_hint,
4032 enum ib_poll_context poll_ctx);
4033
4034void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4035
1da177e4
LT
4036/**
4037 * ib_req_ncomp_notif - Request completion notification when there are
4038 * at least the specified number of unreaped completions on the CQ.
4039 * @cq: The CQ to generate an event for.
4040 * @wc_cnt: The number of unreaped completions that should be on the
4041 * CQ before an event is generated.
4042 */
4043static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
4044{
3023a1e9
KH
4045 return cq->device->ops.req_ncomp_notif ?
4046 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
4047 -ENOSYS;
4048}
4049
9b513090
RC
4050/**
4051 * ib_dma_mapping_error - check a DMA addr for error
4052 * @dev: The device for which the dma_addr was created
4053 * @dma_addr: The DMA address to check
4054 */
4055static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4056{
0957c29f 4057 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
4058}
4059
4060/**
4061 * ib_dma_map_single - Map a kernel virtual address to DMA address
4062 * @dev: The device for which the dma_addr is to be created
4063 * @cpu_addr: The kernel virtual address
4064 * @size: The size of the region in bytes
4065 * @direction: The direction of the DMA
4066 */
4067static inline u64 ib_dma_map_single(struct ib_device *dev,
4068 void *cpu_addr, size_t size,
4069 enum dma_data_direction direction)
4070{
0957c29f 4071 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
4072}
4073
4074/**
4075 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4076 * @dev: The device for which the DMA address was created
4077 * @addr: The DMA address
4078 * @size: The size of the region in bytes
4079 * @direction: The direction of the DMA
4080 */
4081static inline void ib_dma_unmap_single(struct ib_device *dev,
4082 u64 addr, size_t size,
4083 enum dma_data_direction direction)
4084{
0957c29f 4085 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
4086}
4087
9b513090
RC
4088/**
4089 * ib_dma_map_page - Map a physical page to DMA address
4090 * @dev: The device for which the dma_addr is to be created
4091 * @page: The page to be mapped
4092 * @offset: The offset within the page
4093 * @size: The size of the region in bytes
4094 * @direction: The direction of the DMA
4095 */
4096static inline u64 ib_dma_map_page(struct ib_device *dev,
4097 struct page *page,
4098 unsigned long offset,
4099 size_t size,
4100 enum dma_data_direction direction)
4101{
0957c29f 4102 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
4103}
4104
4105/**
4106 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4107 * @dev: The device for which the DMA address was created
4108 * @addr: The DMA address
4109 * @size: The size of the region in bytes
4110 * @direction: The direction of the DMA
4111 */
4112static inline void ib_dma_unmap_page(struct ib_device *dev,
4113 u64 addr, size_t size,
4114 enum dma_data_direction direction)
4115{
0957c29f 4116 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
4117}
4118
4119/**
4120 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4121 * @dev: The device for which the DMA addresses are to be created
4122 * @sg: The array of scatter/gather entries
4123 * @nents: The number of scatter/gather entries
4124 * @direction: The direction of the DMA
4125 */
4126static inline int ib_dma_map_sg(struct ib_device *dev,
4127 struct scatterlist *sg, int nents,
4128 enum dma_data_direction direction)
4129{
0957c29f 4130 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4131}
4132
4133/**
4134 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4135 * @dev: The device for which the DMA addresses were created
4136 * @sg: The array of scatter/gather entries
4137 * @nents: The number of scatter/gather entries
4138 * @direction: The direction of the DMA
4139 */
4140static inline void ib_dma_unmap_sg(struct ib_device *dev,
4141 struct scatterlist *sg, int nents,
4142 enum dma_data_direction direction)
4143{
0957c29f 4144 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
4145}
4146
cb9fbc5c
AK
4147static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4148 struct scatterlist *sg, int nents,
4149 enum dma_data_direction direction,
00085f1e 4150 unsigned long dma_attrs)
cb9fbc5c 4151{
0957c29f
BVA
4152 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4153 dma_attrs);
cb9fbc5c
AK
4154}
4155
4156static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4157 struct scatterlist *sg, int nents,
4158 enum dma_data_direction direction,
00085f1e 4159 unsigned long dma_attrs)
cb9fbc5c 4160{
0957c29f 4161 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 4162}
9b513090 4163
0b5cb330
BVA
4164/**
4165 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4166 * @dev: The device to query
4167 *
4168 * The returned value represents a size in bytes.
4169 */
4170static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4171{
ecdfdfdb 4172 return dma_get_max_seg_size(dev->dma_device);
0b5cb330
BVA
4173}
4174
9b513090
RC
4175/**
4176 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4177 * @dev: The device for which the DMA address was created
4178 * @addr: The DMA address
4179 * @size: The size of the region in bytes
4180 * @dir: The direction of the DMA
4181 */
4182static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4183 u64 addr,
4184 size_t size,
4185 enum dma_data_direction dir)
4186{
0957c29f 4187 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
4188}
4189
4190/**
4191 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4192 * @dev: The device for which the DMA address was created
4193 * @addr: The DMA address
4194 * @size: The size of the region in bytes
4195 * @dir: The direction of the DMA
4196 */
4197static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4198 u64 addr,
4199 size_t size,
4200 enum dma_data_direction dir)
4201{
0957c29f 4202 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4203}
4204
4205/**
4206 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4207 * @dev: The device for which the DMA address is requested
4208 * @size: The size of the region to allocate in bytes
4209 * @dma_handle: A pointer for returning the DMA address of the region
4210 * @flag: memory allocator flags
4211 */
4212static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4213 size_t size,
d43dbacf 4214 dma_addr_t *dma_handle,
9b513090
RC
4215 gfp_t flag)
4216{
0957c29f 4217 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
4218}
4219
4220/**
4221 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4222 * @dev: The device for which the DMA addresses were allocated
4223 * @size: The size of the region
4224 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4225 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4226 */
4227static inline void ib_dma_free_coherent(struct ib_device *dev,
4228 size_t size, void *cpu_addr,
d43dbacf 4229 dma_addr_t dma_handle)
9b513090 4230{
0957c29f 4231 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
4232}
4233
33006bd4
MS
4234/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4235 * space. This function should be called when 'current' is the owning MM.
4236 */
4237struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4238 u64 virt_addr, int mr_access_flags);
4239
87d8069f
MS
4240/* ib_advise_mr - give an advice about an address range in a memory region */
4241int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4242 u32 flags, struct ib_sge *sg_list, u32 num_sge);
1da177e4 4243/**
c4367a26
SR
4244 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4245 * HCA translation table.
4246 * @mr: The memory region to deregister.
4247 * @udata: Valid user data or NULL for kernel object
4248 *
4249 * This function can fail, if the memory region has memory windows bound to it.
4250 */
4251int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4252
4253/**
4254 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4255 * HCA translation table.
4256 * @mr: The memory region to deregister.
7083e42e
SM
4257 *
4258 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4259 *
4260 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4261 */
c4367a26
SR
4262static inline int ib_dereg_mr(struct ib_mr *mr)
4263{
4264 return ib_dereg_mr_user(mr, NULL);
4265}
4266
4267struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4268 u32 max_num_sg, struct ib_udata *udata);
1da177e4 4269
c4367a26
SR
4270static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4271 enum ib_mr_type mr_type, u32 max_num_sg)
4272{
4273 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4274}
00f7ec36 4275
26bc7eae
IR
4276struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4277 u32 max_num_data_sg,
4278 u32 max_num_meta_sg);
4279
00f7ec36
SW
4280/**
4281 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4282 * R_Key and L_Key.
4283 * @mr - struct ib_mr pointer to be updated.
4284 * @newkey - new key to be used.
4285 */
4286static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4287{
4288 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4289 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4290}
4291
7083e42e
SM
4292/**
4293 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4294 * for calculating a new rkey for type 2 memory windows.
4295 * @rkey - the rkey to increment.
4296 */
4297static inline u32 ib_inc_rkey(u32 rkey)
4298{
4299 const u32 mask = 0x000000ff;
4300 return ((rkey + 1) & mask) | (rkey & ~mask);
4301}
4302
1da177e4
LT
4303/**
4304 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4305 * @qp: QP to attach to the multicast group. The QP must be type
4306 * IB_QPT_UD.
4307 * @gid: Multicast group GID.
4308 * @lid: Multicast group LID in host byte order.
4309 *
4310 * In order to send and receive multicast packets, subnet
4311 * administration must have created the multicast group and configured
4312 * the fabric appropriately. The port associated with the specified
4313 * QP must also be a member of the multicast group.
4314 */
4315int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4316
4317/**
4318 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4319 * @qp: QP to detach from the multicast group.
4320 * @gid: Multicast group GID.
4321 * @lid: Multicast group LID in host byte order.
4322 */
4323int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4324
59991f94
SH
4325/**
4326 * ib_alloc_xrcd - Allocates an XRC domain.
4327 * @device: The device on which to allocate the XRC domain.
f66c8ba4 4328 * @caller: Module name for kernel consumers
59991f94 4329 */
f66c8ba4
LR
4330struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4331#define ib_alloc_xrcd(device) \
4332 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
4333
4334/**
4335 * ib_dealloc_xrcd - Deallocates an XRC domain.
4336 * @xrcd: The XRC domain to deallocate.
c4367a26 4337 * @udata: Valid user data or NULL for kernel object
59991f94 4338 */
c4367a26 4339int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4340
1c636f80
EC
4341static inline int ib_check_mr_access(int flags)
4342{
4343 /*
4344 * Local write permission is required if remote write or
4345 * remote atomic permission is also requested.
4346 */
4347 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4348 !(flags & IB_ACCESS_LOCAL_WRITE))
4349 return -EINVAL;
4350
ca95c141
MG
4351 if (flags & ~IB_ACCESS_SUPPORTED)
4352 return -EINVAL;
4353
1c636f80
EC
4354 return 0;
4355}
4356
08bb558a
JM
4357static inline bool ib_access_writable(int access_flags)
4358{
4359 /*
4360 * We have writable memory backing the MR if any of the following
4361 * access flags are set. "Local write" and "remote write" obviously
4362 * require write access. "Remote atomic" can do things like fetch and
4363 * add, which will modify memory, and "MW bind" can change permissions
4364 * by binding a window.
4365 */
4366 return access_flags &
4367 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4368 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4369}
4370
1b01d335
SG
4371/**
4372 * ib_check_mr_status: lightweight check of MR status.
4373 * This routine may provide status checks on a selected
4374 * ib_mr. first use is for signature status check.
4375 *
4376 * @mr: A memory region.
4377 * @check_mask: Bitmask of which checks to perform from
4378 * ib_mr_status_check enumeration.
4379 * @mr_status: The container of relevant status checks.
4380 * failed checks will be indicated in the status bitmask
4381 * and the relevant info shall be in the error item.
4382 */
4383int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4384 struct ib_mr_status *mr_status);
4385
d79af724
JG
4386/**
4387 * ib_device_try_get: Hold a registration lock
4388 * device: The device to lock
4389 *
4390 * A device under an active registration lock cannot become unregistered. It
4391 * is only possible to obtain a registration lock on a device that is fully
4392 * registered, otherwise this function returns false.
4393 *
4394 * The registration lock is only necessary for actions which require the
4395 * device to still be registered. Uses that only require the device pointer to
4396 * be valid should use get_device(&ibdev->dev) to hold the memory.
4397 *
4398 */
4399static inline bool ib_device_try_get(struct ib_device *dev)
4400{
4401 return refcount_inc_not_zero(&dev->refcount);
4402}
4403
4404void ib_device_put(struct ib_device *device);
324e227e
JG
4405struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4406 enum rdma_driver_id driver_id);
4407struct ib_device *ib_device_get_by_name(const char *name,
4408 enum rdma_driver_id driver_id);
9268f72d
YK
4409struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4410 u16 pkey, const union ib_gid *gid,
4411 const struct sockaddr *addr);
c2261dd7
JG
4412int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4413 unsigned int port);
4414struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4415
5fd251c8
YH
4416struct ib_wq *ib_create_wq(struct ib_pd *pd,
4417 struct ib_wq_init_attr *init_attr);
c4367a26 4418int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
5fd251c8
YH
4419int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4420 u32 wq_attr_mask);
6d39786b
YH
4421struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4422 struct ib_rwq_ind_table_init_attr*
4423 wq_ind_table_init_attr);
4424int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 4425
ff2ba993 4426int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4427 unsigned int *sg_offset, unsigned int page_size);
2cdfcdd8
MG
4428int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4429 int data_sg_nents, unsigned int *data_sg_offset,
4430 struct scatterlist *meta_sg, int meta_sg_nents,
4431 unsigned int *meta_sg_offset, unsigned int page_size);
4c67e2bf
SG
4432
4433static inline int
ff2ba993 4434ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4435 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4436{
4437 int n;
4438
ff2ba993 4439 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4440 mr->iova = 0;
4441
4442 return n;
4443}
4444
ff2ba993 4445int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4446 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4447
765d6774
SW
4448void ib_drain_rq(struct ib_qp *qp);
4449void ib_drain_sq(struct ib_qp *qp);
4450void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4451
d4186194 4452int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
4453
4454static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4455{
44c58487
DC
4456 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4457 return attr->roce.dmac;
4458 return NULL;
2224c47a
DC
4459}
4460
64b4646e 4461static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4462{
44c58487 4463 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4464 attr->ib.dlid = (u16)dlid;
4465 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4466 attr->opa.dlid = dlid;
2224c47a
DC
4467}
4468
64b4646e 4469static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4470{
44c58487
DC
4471 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4472 return attr->ib.dlid;
64b4646e
DC
4473 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4474 return attr->opa.dlid;
44c58487 4475 return 0;
2224c47a
DC
4476}
4477
4478static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4479{
4480 attr->sl = sl;
4481}
4482
4483static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4484{
4485 return attr->sl;
4486}
4487
4488static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4489 u8 src_path_bits)
4490{
44c58487
DC
4491 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4492 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4493 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4494 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4495}
4496
4497static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4498{
44c58487
DC
4499 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4500 return attr->ib.src_path_bits;
64b4646e
DC
4501 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4502 return attr->opa.src_path_bits;
44c58487 4503 return 0;
2224c47a
DC
4504}
4505
d98bb7f7
DH
4506static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4507 bool make_grd)
4508{
4509 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4510 attr->opa.make_grd = make_grd;
4511}
4512
4513static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4514{
4515 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4516 return attr->opa.make_grd;
4517 return false;
4518}
4519
2224c47a
DC
4520static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4521{
4522 attr->port_num = port_num;
4523}
4524
4525static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4526{
4527 return attr->port_num;
4528}
4529
4530static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4531 u8 static_rate)
4532{
4533 attr->static_rate = static_rate;
4534}
4535
4536static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4537{
4538 return attr->static_rate;
4539}
4540
4541static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4542 enum ib_ah_flags flag)
4543{
4544 attr->ah_flags = flag;
4545}
4546
4547static inline enum ib_ah_flags
4548 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4549{
4550 return attr->ah_flags;
4551}
4552
4553static inline const struct ib_global_route
4554 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4555{
4556 return &attr->grh;
4557}
4558
4559/*To retrieve and modify the grh */
4560static inline struct ib_global_route
4561 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4562{
4563 return &attr->grh;
4564}
4565
4566static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4567{
4568 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4569
4570 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4571}
4572
4573static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4574 __be64 prefix)
4575{
4576 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4577
4578 grh->dgid.global.subnet_prefix = prefix;
4579}
4580
4581static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4582 __be64 if_id)
4583{
4584 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4585
4586 grh->dgid.global.interface_id = if_id;
4587}
4588
4589static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4590 union ib_gid *dgid, u32 flow_label,
4591 u8 sgid_index, u8 hop_limit,
4592 u8 traffic_class)
4593{
4594 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4595
4596 attr->ah_flags = IB_AH_GRH;
4597 if (dgid)
4598 grh->dgid = *dgid;
4599 grh->flow_label = flow_label;
4600 grh->sgid_index = sgid_index;
4601 grh->hop_limit = hop_limit;
4602 grh->traffic_class = traffic_class;
8d9ec9ad 4603 grh->sgid_attr = NULL;
2224c47a 4604}
44c58487 4605
8d9ec9ad
JG
4606void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4607void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4608 u32 flow_label, u8 hop_limit, u8 traffic_class,
4609 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4610void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4611 const struct rdma_ah_attr *src);
4612void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4613 const struct rdma_ah_attr *new);
4614void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4615
87daac68
DH
4616/**
4617 * rdma_ah_find_type - Return address handle type.
4618 *
4619 * @dev: Device to be checked
4620 * @port_num: Port number
4621 */
44c58487 4622static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4623 u8 port_num)
44c58487 4624{
a6532e71 4625 if (rdma_protocol_roce(dev, port_num))
44c58487 4626 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4627 if (rdma_protocol_ib(dev, port_num)) {
4628 if (rdma_cap_opa_ah(dev, port_num))
4629 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4630 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4631 }
4632
4633 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4634}
7db20ecd 4635
62ede777
HD
4636/**
4637 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4638 * In the current implementation the only way to get
4639 * get the 32bit lid is from other sources for OPA.
4640 * For IB, lids will always be 16bits so cast the
4641 * value accordingly.
4642 *
4643 * @lid: A 32bit LID
4644 */
4645static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4646{
62ede777
HD
4647 WARN_ON_ONCE(lid & 0xFFFF0000);
4648 return (u16)lid;
7db20ecd
HD
4649}
4650
62ede777
HD
4651/**
4652 * ib_lid_be16 - Return lid in 16bit BE encoding.
4653 *
4654 * @lid: A 32bit LID
4655 */
4656static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4657{
62ede777
HD
4658 WARN_ON_ONCE(lid & 0xFFFF0000);
4659 return cpu_to_be16((u16)lid);
7db20ecd 4660}
32043830 4661
c66cd353
SG
4662/**
4663 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4664 * vector
4665 * @device: the rdma device
4666 * @comp_vector: index of completion vector
4667 *
4668 * Returns NULL on failure, otherwise a corresponding cpu map of the
4669 * completion vector (returns all-cpus map if the device driver doesn't
4670 * implement get_vector_affinity).
4671 */
4672static inline const struct cpumask *
4673ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4674{
4675 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4676 !device->ops.get_vector_affinity)
c66cd353
SG
4677 return NULL;
4678
3023a1e9 4679 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4680
4681}
4682
32f69e4b
DJ
4683/**
4684 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4685 * and add their gids, as needed, to the relevant RoCE devices.
4686 *
4687 * @device: the rdma device
4688 */
4689void rdma_roce_rescan_device(struct ib_device *ibdev);
4690
8313c10f 4691struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4692
15a1b4be 4693int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4694
4695struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4696 enum rdma_netdev_t type, const char *name,
4697 unsigned char name_assign_type,
4698 void (*setup)(struct net_device *));
5d6b0cb3
DD
4699
4700int rdma_init_netdev(struct ib_device *device, u8 port_num,
4701 enum rdma_netdev_t type, const char *name,
4702 unsigned char name_assign_type,
4703 void (*setup)(struct net_device *),
4704 struct net_device *netdev);
4705
d4122f5a
PP
4706/**
4707 * rdma_set_device_sysfs_group - Set device attributes group to have
4708 * driver specific sysfs entries at
4709 * for infiniband class.
4710 *
4711 * @device: device pointer for which attributes to be created
4712 * @group: Pointer to group which should be added when device
4713 * is registered with sysfs.
4714 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4715 * group per device to have sysfs attributes.
4716 *
4717 * NOTE: New drivers should not make use of this API; instead new device
4718 * parameter should be exposed via netlink command. This API and mechanism
4719 * exist only for existing drivers.
4720 */
4721static inline void
4722rdma_set_device_sysfs_group(struct ib_device *dev,
4723 const struct attribute_group *group)
4724{
4725 dev->groups[1] = group;
4726}
4727
54747231
PP
4728/**
4729 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4730 *
4731 * @device: device pointer for which ib_device pointer to retrieve
4732 *
4733 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4734 *
4735 */
4736static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4737{
cebe556b
PP
4738 struct ib_core_device *coredev =
4739 container_of(device, struct ib_core_device, dev);
4740
4741 return coredev->owner;
54747231
PP
4742}
4743
4744/**
4745 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4746 * ib_device holder structure from device pointer.
4747 *
4748 * NOTE: New drivers should not make use of this API; This API is only for
4749 * existing drivers who have exposed sysfs entries using
4750 * rdma_set_device_sysfs_group().
4751 */
4752#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4753 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4754
4755bool rdma_dev_access_netns(const struct ib_device *device,
4756 const struct net *net);
d5665a21
MZ
4757
4758#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4759#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4760
4761/**
4762 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4763 * on the flow_label
4764 *
4765 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4766 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4767 * convention.
4768 */
4769static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4770{
4771 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4772
4773 fl_low ^= fl_high >> 14;
4774 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4775}
4776
4777/**
4778 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4779 * local and remote qpn values
4780 *
4781 * This function folded the multiplication results of two qpns, 24 bit each,
4782 * fields, and converts it to a 20 bit results.
4783 *
4784 * This function will create symmetric flow_label value based on the local
4785 * and remote qpn values. this will allow both the requester and responder
4786 * to calculate the same flow_label for a given connection.
4787 *
4788 * This helper function should be used by driver in case the upper layer
4789 * provide a zero flow_label value. This is to improve entropy of RDMA
4790 * traffic in the network.
4791 */
4792static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4793{
4794 u64 v = (u64)lqpn * rqpn;
4795
4796 v ^= v >> 20;
4797 v ^= v >> 40;
4798
4799 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4800}
1da177e4 4801#endif /* IB_VERBS_H */