]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/rdma/ib_verbs.h
OPP: Free OPP table properly on performance state irregularities
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
2fc77572 58#include <linux/netdevice.h>
e2773c06 59
50174a7f 60#include <linux/if_link.h>
60063497 61#include <linux/atomic.h>
882214e2 62#include <linux/mmu_notifier.h>
7c0f6ba6 63#include <linux/uaccess.h>
43579b5f 64#include <linux/cgroup_rdma.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
1da177e4 66
9abb0d1b
LR
67#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
f0626710 69extern struct workqueue_struct *ib_wq;
14d3a3b2 70extern struct workqueue_struct *ib_comp_wq;
f0626710 71
1da177e4
LT
72union ib_gid {
73 u8 raw[16];
74 struct {
97f52eb4
SH
75 __be64 subnet_prefix;
76 __be64 interface_id;
1da177e4
LT
77 } global;
78};
79
e26be1bf
MS
80extern union ib_gid zgid;
81
b39ffa1d
MB
82enum ib_gid_type {
83 /* If link layer is Ethernet, this is RoCE V1 */
84 IB_GID_TYPE_IB = 0,
85 IB_GID_TYPE_ROCE = 0,
7766a99f 86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
87 IB_GID_TYPE_SIZE
88};
89
7ead4bcb 90#define ROCE_V2_UDP_DPORT 4791
03db3a2d 91struct ib_gid_attr {
b39ffa1d 92 enum ib_gid_type gid_type;
03db3a2d
MB
93 struct net_device *ndev;
94};
95
07ebafba
TT
96enum rdma_node_type {
97 /* IB values map to NodeInfo:NodeType. */
98 RDMA_NODE_IB_CA = 1,
99 RDMA_NODE_IB_SWITCH,
100 RDMA_NODE_IB_ROUTER,
180771a3
UM
101 RDMA_NODE_RNIC,
102 RDMA_NODE_USNIC,
5db5765e 103 RDMA_NODE_USNIC_UDP,
1da177e4
LT
104};
105
a0c1b2a3
EC
106enum {
107 /* set the local administered indication */
108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
109};
110
07ebafba
TT
111enum rdma_transport_type {
112 RDMA_TRANSPORT_IB,
180771a3 113 RDMA_TRANSPORT_IWARP,
248567f7
UM
114 RDMA_TRANSPORT_USNIC,
115 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
116};
117
6b90a6d6
MW
118enum rdma_protocol_type {
119 RDMA_PROTOCOL_IB,
120 RDMA_PROTOCOL_IBOE,
121 RDMA_PROTOCOL_IWARP,
122 RDMA_PROTOCOL_USNIC_UDP
123};
124
8385fd84
RD
125__attribute_const__ enum rdma_transport_type
126rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 127
c865f246
SK
128enum rdma_network_type {
129 RDMA_NETWORK_IB,
130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131 RDMA_NETWORK_IPV4,
132 RDMA_NETWORK_IPV6
133};
134
135static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
136{
137 if (network_type == RDMA_NETWORK_IPV4 ||
138 network_type == RDMA_NETWORK_IPV6)
139 return IB_GID_TYPE_ROCE_UDP_ENCAP;
140
141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142 return IB_GID_TYPE_IB;
143}
144
145static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146 union ib_gid *gid)
147{
148 if (gid_type == IB_GID_TYPE_IB)
149 return RDMA_NETWORK_IB;
150
151 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152 return RDMA_NETWORK_IPV4;
153 else
154 return RDMA_NETWORK_IPV6;
155}
156
a3f5adaf
EC
157enum rdma_link_layer {
158 IB_LINK_LAYER_UNSPECIFIED,
159 IB_LINK_LAYER_INFINIBAND,
160 IB_LINK_LAYER_ETHERNET,
161};
162
1da177e4 163enum ib_device_cap_flags {
7ca0bc53
LR
164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
167 IB_DEVICE_RAW_MULTI = (1 << 3),
168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 173 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
177 IB_DEVICE_SRQ_RESIZE = (1 << 13),
178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
179
180 /*
181 * This device supports a per-device lkey or stag that can be
182 * used without performing a memory registration for the local
183 * memory. Note that ULPs should never check this flag, but
184 * instead of use the local_dma_lkey flag in the ib_pd structure,
185 * which will always contain a usable lkey.
186 */
7ca0bc53 187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 188 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 189 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
190 /*
191 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193 * messages and can verify the validity of checksum for
194 * incoming messages. Setting this flag implies that the
195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
196 */
7ca0bc53
LR
197 IB_DEVICE_UD_IP_CSUM = (1 << 18),
198 IB_DEVICE_UD_TSO = (1 << 19),
199 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
200
201 /*
202 * This device supports the IB "base memory management extension",
203 * which includes support for fast registrations (IB_WR_REG_MR,
204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
205 * also be set by any iWarp device which must support FRs to comply
206 * to the iWarp verbs spec. iWarp devices also support the
207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208 * stag.
209 */
7ca0bc53
LR
210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
214 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 216 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
217 /*
218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
219 * support execution of WQEs that involve synchronization
220 * of I/O operations with single completion queue managed
221 * by hardware.
222 */
78b57f95 223 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
232 /* The device supports padding incoming writes to cacheline. */
233 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
234};
235
236enum ib_signature_prot_cap {
237 IB_PROT_T10DIF_TYPE_1 = 1,
238 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
239 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
240};
241
242enum ib_signature_guard_cap {
243 IB_GUARD_T10DIF_CRC = 1,
244 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
245};
246
247enum ib_atomic_cap {
248 IB_ATOMIC_NONE,
249 IB_ATOMIC_HCA,
250 IB_ATOMIC_GLOB
251};
252
860f10a7 253enum ib_odp_general_cap_bits {
25bf14d6
AK
254 IB_ODP_SUPPORT = 1 << 0,
255 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
256};
257
258enum ib_odp_transport_cap_bits {
259 IB_ODP_SUPPORT_SEND = 1 << 0,
260 IB_ODP_SUPPORT_RECV = 1 << 1,
261 IB_ODP_SUPPORT_WRITE = 1 << 2,
262 IB_ODP_SUPPORT_READ = 1 << 3,
263 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
264};
265
266struct ib_odp_caps {
267 uint64_t general_caps;
268 struct {
269 uint32_t rc_odp_caps;
270 uint32_t uc_odp_caps;
271 uint32_t ud_odp_caps;
272 } per_transport_caps;
273};
274
ccf20562
YH
275struct ib_rss_caps {
276 /* Corresponding bit will be set if qp type from
277 * 'enum ib_qp_type' is supported, e.g.
278 * supported_qpts |= 1 << IB_QPT_UD
279 */
280 u32 supported_qpts;
281 u32 max_rwq_indirection_tables;
282 u32 max_rwq_indirection_table_size;
283};
284
6938fc1e
AK
285enum ib_tm_cap_flags {
286 /* Support tag matching on RC transport */
287 IB_TM_CAP_RC = 1 << 0,
288};
289
78b1beb0 290struct ib_tm_caps {
6938fc1e
AK
291 /* Max size of RNDV header */
292 u32 max_rndv_hdr_size;
293 /* Max number of entries in tag matching list */
294 u32 max_num_tags;
295 /* From enum ib_tm_cap_flags */
296 u32 flags;
297 /* Max number of outstanding list operations */
298 u32 max_ops;
299 /* Max number of SGE in tag matching entry */
300 u32 max_sge;
301};
302
b9926b92
MB
303enum ib_cq_creation_flags {
304 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
8a06ce59 305 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
b9926b92
MB
306};
307
bcf4c1ea
MB
308struct ib_cq_init_attr {
309 unsigned int cqe;
310 int comp_vector;
311 u32 flags;
312};
313
869ddcf8
YC
314enum ib_cq_attr_mask {
315 IB_CQ_MODERATE = 1 << 0,
316};
317
18bd9072
YC
318struct ib_cq_caps {
319 u16 max_cq_moderation_count;
320 u16 max_cq_moderation_period;
321};
322
1da177e4
LT
323struct ib_device_attr {
324 u64 fw_ver;
97f52eb4 325 __be64 sys_image_guid;
1da177e4
LT
326 u64 max_mr_size;
327 u64 page_size_cap;
328 u32 vendor_id;
329 u32 vendor_part_id;
330 u32 hw_ver;
331 int max_qp;
332 int max_qp_wr;
fb532d6a 333 u64 device_cap_flags;
1da177e4
LT
334 int max_sge;
335 int max_sge_rd;
336 int max_cq;
337 int max_cqe;
338 int max_mr;
339 int max_pd;
340 int max_qp_rd_atom;
341 int max_ee_rd_atom;
342 int max_res_rd_atom;
343 int max_qp_init_rd_atom;
344 int max_ee_init_rd_atom;
345 enum ib_atomic_cap atomic_cap;
5e80ba8f 346 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
347 int max_ee;
348 int max_rdd;
349 int max_mw;
350 int max_raw_ipv6_qp;
351 int max_raw_ethy_qp;
352 int max_mcast_grp;
353 int max_mcast_qp_attach;
354 int max_total_mcast_qp_attach;
355 int max_ah;
356 int max_fmr;
357 int max_map_per_fmr;
358 int max_srq;
359 int max_srq_wr;
360 int max_srq_sge;
00f7ec36 361 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
362 u16 max_pkeys;
363 u8 local_ca_ack_delay;
1b01d335
SG
364 int sig_prot_cap;
365 int sig_guard_cap;
860f10a7 366 struct ib_odp_caps odp_caps;
24306dc6
MB
367 uint64_t timestamp_mask;
368 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
369 struct ib_rss_caps rss_caps;
370 u32 max_wq_type_rq;
ebaaee25 371 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 372 struct ib_tm_caps tm_caps;
18bd9072 373 struct ib_cq_caps cq_caps;
1da177e4
LT
374};
375
376enum ib_mtu {
377 IB_MTU_256 = 1,
378 IB_MTU_512 = 2,
379 IB_MTU_1024 = 3,
380 IB_MTU_2048 = 4,
381 IB_MTU_4096 = 5
382};
383
384static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
385{
386 switch (mtu) {
387 case IB_MTU_256: return 256;
388 case IB_MTU_512: return 512;
389 case IB_MTU_1024: return 1024;
390 case IB_MTU_2048: return 2048;
391 case IB_MTU_4096: return 4096;
392 default: return -1;
393 }
394}
395
d3f4aadd
AR
396static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
397{
398 if (mtu >= 4096)
399 return IB_MTU_4096;
400 else if (mtu >= 2048)
401 return IB_MTU_2048;
402 else if (mtu >= 1024)
403 return IB_MTU_1024;
404 else if (mtu >= 512)
405 return IB_MTU_512;
406 else
407 return IB_MTU_256;
408}
409
1da177e4
LT
410enum ib_port_state {
411 IB_PORT_NOP = 0,
412 IB_PORT_DOWN = 1,
413 IB_PORT_INIT = 2,
414 IB_PORT_ARMED = 3,
415 IB_PORT_ACTIVE = 4,
416 IB_PORT_ACTIVE_DEFER = 5
417};
418
419enum ib_port_cap_flags {
420 IB_PORT_SM = 1 << 1,
421 IB_PORT_NOTICE_SUP = 1 << 2,
422 IB_PORT_TRAP_SUP = 1 << 3,
423 IB_PORT_OPT_IPD_SUP = 1 << 4,
424 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
425 IB_PORT_SL_MAP_SUP = 1 << 6,
426 IB_PORT_MKEY_NVRAM = 1 << 7,
427 IB_PORT_PKEY_NVRAM = 1 << 8,
428 IB_PORT_LED_INFO_SUP = 1 << 9,
429 IB_PORT_SM_DISABLED = 1 << 10,
430 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
431 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 432 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
433 IB_PORT_CM_SUP = 1 << 16,
434 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
435 IB_PORT_REINIT_SUP = 1 << 18,
436 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
437 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
438 IB_PORT_DR_NOTICE_SUP = 1 << 21,
439 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
440 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
441 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 442 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 443 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
444};
445
446enum ib_port_width {
447 IB_WIDTH_1X = 1,
448 IB_WIDTH_4X = 2,
449 IB_WIDTH_8X = 4,
450 IB_WIDTH_12X = 8
451};
452
453static inline int ib_width_enum_to_int(enum ib_port_width width)
454{
455 switch (width) {
456 case IB_WIDTH_1X: return 1;
457 case IB_WIDTH_4X: return 4;
458 case IB_WIDTH_8X: return 8;
459 case IB_WIDTH_12X: return 12;
460 default: return -1;
461 }
462}
463
2e96691c
OG
464enum ib_port_speed {
465 IB_SPEED_SDR = 1,
466 IB_SPEED_DDR = 2,
467 IB_SPEED_QDR = 4,
468 IB_SPEED_FDR10 = 8,
469 IB_SPEED_FDR = 16,
12113a35
NO
470 IB_SPEED_EDR = 32,
471 IB_SPEED_HDR = 64
2e96691c
OG
472};
473
b40f4757
CL
474/**
475 * struct rdma_hw_stats
476 * @timestamp - Used by the core code to track when the last update was
477 * @lifespan - Used by the core code to determine how old the counters
478 * should be before being updated again. Stored in jiffies, defaults
479 * to 10 milliseconds, drivers can override the default be specifying
480 * their own value during their allocation routine.
481 * @name - Array of pointers to static names used for the counters in
482 * directory.
483 * @num_counters - How many hardware counters there are. If name is
484 * shorter than this number, a kernel oops will result. Driver authors
485 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
486 * in their code to prevent this.
487 * @value - Array of u64 counters that are accessed by the sysfs code and
488 * filled in by the drivers get_stats routine
489 */
490struct rdma_hw_stats {
491 unsigned long timestamp;
492 unsigned long lifespan;
493 const char * const *names;
494 int num_counters;
495 u64 value[];
7f624d02
SW
496};
497
b40f4757
CL
498#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
499/**
500 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
501 * for drivers.
502 * @names - Array of static const char *
503 * @num_counters - How many elements in array
504 * @lifespan - How many milliseconds between updates
505 */
506static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
507 const char * const *names, int num_counters,
508 unsigned long lifespan)
509{
510 struct rdma_hw_stats *stats;
511
512 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
513 GFP_KERNEL);
514 if (!stats)
515 return NULL;
516 stats->names = names;
517 stats->num_counters = num_counters;
518 stats->lifespan = msecs_to_jiffies(lifespan);
519
520 return stats;
521}
522
523
f9b22e35
IW
524/* Define bits for the various functionality this port needs to be supported by
525 * the core.
526 */
527/* Management 0x00000FFF */
528#define RDMA_CORE_CAP_IB_MAD 0x00000001
529#define RDMA_CORE_CAP_IB_SMI 0x00000002
530#define RDMA_CORE_CAP_IB_CM 0x00000004
531#define RDMA_CORE_CAP_IW_CM 0x00000008
532#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 533#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
534
535/* Address format 0x000FF000 */
536#define RDMA_CORE_CAP_AF_IB 0x00001000
537#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 538#define RDMA_CORE_CAP_OPA_AH 0x00004000
f9b22e35
IW
539
540/* Protocol 0xFFF00000 */
541#define RDMA_CORE_CAP_PROT_IB 0x00100000
542#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
543#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 544#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 545#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 546#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35
IW
547
548#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
549 | RDMA_CORE_CAP_IB_MAD \
550 | RDMA_CORE_CAP_IB_SMI \
551 | RDMA_CORE_CAP_IB_CM \
552 | RDMA_CORE_CAP_IB_SA \
553 | RDMA_CORE_CAP_AF_IB)
554#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
555 | RDMA_CORE_CAP_IB_MAD \
556 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
557 | RDMA_CORE_CAP_AF_IB \
558 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
559#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
560 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
561 | RDMA_CORE_CAP_IB_MAD \
562 | RDMA_CORE_CAP_IB_CM \
563 | RDMA_CORE_CAP_AF_IB \
564 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
565#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
566 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
567#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
568 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 569
aa773bd4
OG
570#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
571
ce1e055f
OG
572#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
573
1da177e4 574struct ib_port_attr {
fad61ad4 575 u64 subnet_prefix;
1da177e4
LT
576 enum ib_port_state state;
577 enum ib_mtu max_mtu;
578 enum ib_mtu active_mtu;
579 int gid_tbl_len;
580 u32 port_cap_flags;
581 u32 max_msg_sz;
582 u32 bad_pkey_cntr;
583 u32 qkey_viol_cntr;
584 u16 pkey_tbl_len;
db58540b 585 u32 sm_lid;
582faf31 586 u32 lid;
1da177e4
LT
587 u8 lmc;
588 u8 max_vl_num;
589 u8 sm_sl;
590 u8 subnet_timeout;
591 u8 init_type_reply;
592 u8 active_width;
593 u8 active_speed;
594 u8 phys_state;
a0c1b2a3 595 bool grh_required;
1da177e4
LT
596};
597
598enum ib_device_modify_flags {
c5bcbbb9
RD
599 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
600 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
601};
602
bd99fdea
YS
603#define IB_DEVICE_NODE_DESC_MAX 64
604
1da177e4
LT
605struct ib_device_modify {
606 u64 sys_image_guid;
bd99fdea 607 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
608};
609
610enum ib_port_modify_flags {
611 IB_PORT_SHUTDOWN = 1,
612 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
613 IB_PORT_RESET_QKEY_CNTR = (1<<3),
614 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
615};
616
617struct ib_port_modify {
618 u32 set_port_cap_mask;
619 u32 clr_port_cap_mask;
620 u8 init_type;
621};
622
623enum ib_event_type {
624 IB_EVENT_CQ_ERR,
625 IB_EVENT_QP_FATAL,
626 IB_EVENT_QP_REQ_ERR,
627 IB_EVENT_QP_ACCESS_ERR,
628 IB_EVENT_COMM_EST,
629 IB_EVENT_SQ_DRAINED,
630 IB_EVENT_PATH_MIG,
631 IB_EVENT_PATH_MIG_ERR,
632 IB_EVENT_DEVICE_FATAL,
633 IB_EVENT_PORT_ACTIVE,
634 IB_EVENT_PORT_ERR,
635 IB_EVENT_LID_CHANGE,
636 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
637 IB_EVENT_SM_CHANGE,
638 IB_EVENT_SRQ_ERR,
639 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 640 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
641 IB_EVENT_CLIENT_REREGISTER,
642 IB_EVENT_GID_CHANGE,
f213c052 643 IB_EVENT_WQ_FATAL,
1da177e4
LT
644};
645
db7489e0 646const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 647
1da177e4
LT
648struct ib_event {
649 struct ib_device *device;
650 union {
651 struct ib_cq *cq;
652 struct ib_qp *qp;
d41fcc67 653 struct ib_srq *srq;
f213c052 654 struct ib_wq *wq;
1da177e4
LT
655 u8 port_num;
656 } element;
657 enum ib_event_type event;
658};
659
660struct ib_event_handler {
661 struct ib_device *device;
662 void (*handler)(struct ib_event_handler *, struct ib_event *);
663 struct list_head list;
664};
665
666#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
667 do { \
668 (_ptr)->device = _device; \
669 (_ptr)->handler = _handler; \
670 INIT_LIST_HEAD(&(_ptr)->list); \
671 } while (0)
672
673struct ib_global_route {
674 union ib_gid dgid;
675 u32 flow_label;
676 u8 sgid_index;
677 u8 hop_limit;
678 u8 traffic_class;
679};
680
513789ed 681struct ib_grh {
97f52eb4
SH
682 __be32 version_tclass_flow;
683 __be16 paylen;
513789ed
HR
684 u8 next_hdr;
685 u8 hop_limit;
686 union ib_gid sgid;
687 union ib_gid dgid;
688};
689
c865f246
SK
690union rdma_network_hdr {
691 struct ib_grh ibgrh;
692 struct {
693 /* The IB spec states that if it's IPv4, the header
694 * is located in the last 20 bytes of the header.
695 */
696 u8 reserved[20];
697 struct iphdr roce4grh;
698 };
699};
700
7dafbab3
DH
701#define IB_QPN_MASK 0xFFFFFF
702
1da177e4
LT
703enum {
704 IB_MULTICAST_QPN = 0xffffff
705};
706
f3a7c66b 707#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 708#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 709
1da177e4
LT
710enum ib_ah_flags {
711 IB_AH_GRH = 1
712};
713
bf6a9e31
JM
714enum ib_rate {
715 IB_RATE_PORT_CURRENT = 0,
716 IB_RATE_2_5_GBPS = 2,
717 IB_RATE_5_GBPS = 5,
718 IB_RATE_10_GBPS = 3,
719 IB_RATE_20_GBPS = 6,
720 IB_RATE_30_GBPS = 4,
721 IB_RATE_40_GBPS = 7,
722 IB_RATE_60_GBPS = 8,
723 IB_RATE_80_GBPS = 9,
71eeba16
MA
724 IB_RATE_120_GBPS = 10,
725 IB_RATE_14_GBPS = 11,
726 IB_RATE_56_GBPS = 12,
727 IB_RATE_112_GBPS = 13,
728 IB_RATE_168_GBPS = 14,
729 IB_RATE_25_GBPS = 15,
730 IB_RATE_100_GBPS = 16,
731 IB_RATE_200_GBPS = 17,
732 IB_RATE_300_GBPS = 18
bf6a9e31
JM
733};
734
735/**
736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739 * @rate: rate to convert.
740 */
8385fd84 741__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 742
71eeba16
MA
743/**
744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746 * @rate: rate to convert.
747 */
8385fd84 748__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 749
17cd3a2d
SG
750
751/**
9bee178b
SG
752 * enum ib_mr_type - memory region type
753 * @IB_MR_TYPE_MEM_REG: memory region that is used for
754 * normal registration
755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
756 * signature operations (data-integrity
757 * capable regions)
f5aa9159
SG
758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
759 * register any arbitrary sg lists (without
760 * the normal mr constraints - see
761 * ib_map_mr_sg)
17cd3a2d 762 */
9bee178b
SG
763enum ib_mr_type {
764 IB_MR_TYPE_MEM_REG,
765 IB_MR_TYPE_SIGNATURE,
f5aa9159 766 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
767};
768
1b01d335 769/**
78eda2bb
SG
770 * Signature types
771 * IB_SIG_TYPE_NONE: Unprotected.
772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 773 */
78eda2bb
SG
774enum ib_signature_type {
775 IB_SIG_TYPE_NONE,
776 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
777};
778
779/**
780 * Signature T10-DIF block-guard types
781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783 */
784enum ib_t10_dif_bg_type {
785 IB_T10DIF_CRC,
786 IB_T10DIF_CSUM
787};
788
789/**
790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791 * domain.
1b01d335
SG
792 * @bg_type: T10-DIF block guard type (CRC|CSUM)
793 * @pi_interval: protection information interval.
794 * @bg: seed of guard computation.
795 * @app_tag: application tag of guard block
796 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
797 * @ref_remap: Indicate wethear the reftag increments each block
798 * @app_escape: Indicate to skip block check if apptag=0xffff
799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
801 */
802struct ib_t10_dif_domain {
1b01d335
SG
803 enum ib_t10_dif_bg_type bg_type;
804 u16 pi_interval;
805 u16 bg;
806 u16 app_tag;
807 u32 ref_tag;
78eda2bb
SG
808 bool ref_remap;
809 bool app_escape;
810 bool ref_escape;
811 u16 apptag_check_mask;
1b01d335
SG
812};
813
814/**
815 * struct ib_sig_domain - Parameters for signature domain
816 * @sig_type: specific signauture type
817 * @sig: union of all signature domain attributes that may
818 * be used to set domain layout.
819 */
820struct ib_sig_domain {
821 enum ib_signature_type sig_type;
822 union {
823 struct ib_t10_dif_domain dif;
824 } sig;
825};
826
827/**
828 * struct ib_sig_attrs - Parameters for signature handover operation
829 * @check_mask: bitmask for signature byte check (8 bytes)
830 * @mem: memory domain layout desciptor.
831 * @wire: wire domain layout desciptor.
832 */
833struct ib_sig_attrs {
834 u8 check_mask;
835 struct ib_sig_domain mem;
836 struct ib_sig_domain wire;
837};
838
839enum ib_sig_err_type {
840 IB_SIG_BAD_GUARD,
841 IB_SIG_BAD_REFTAG,
842 IB_SIG_BAD_APPTAG,
843};
844
845/**
846 * struct ib_sig_err - signature error descriptor
847 */
848struct ib_sig_err {
849 enum ib_sig_err_type err_type;
850 u32 expected;
851 u32 actual;
852 u64 sig_err_offset;
853 u32 key;
854};
855
856enum ib_mr_status_check {
857 IB_MR_CHECK_SIG_STATUS = 1,
858};
859
860/**
861 * struct ib_mr_status - Memory region status container
862 *
863 * @fail_status: Bitmask of MR checks status. For each
864 * failed check a corresponding status bit is set.
865 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
866 * failure.
867 */
868struct ib_mr_status {
869 u32 fail_status;
870 struct ib_sig_err sig_err;
871};
872
bf6a9e31
JM
873/**
874 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
875 * enum.
876 * @mult: multiple to convert.
877 */
8385fd84 878__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 879
44c58487 880enum rdma_ah_attr_type {
1163a8be 881 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
882 RDMA_AH_ATTR_TYPE_IB,
883 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 884 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
885};
886
887struct ib_ah_attr {
888 u16 dlid;
889 u8 src_path_bits;
890};
891
892struct roce_ah_attr {
893 u8 dmac[ETH_ALEN];
894};
895
64b4646e
DC
896struct opa_ah_attr {
897 u32 dlid;
898 u8 src_path_bits;
d98bb7f7 899 bool make_grd;
64b4646e
DC
900};
901
90898850 902struct rdma_ah_attr {
1da177e4 903 struct ib_global_route grh;
1da177e4 904 u8 sl;
1da177e4 905 u8 static_rate;
1da177e4 906 u8 port_num;
44c58487
DC
907 u8 ah_flags;
908 enum rdma_ah_attr_type type;
909 union {
910 struct ib_ah_attr ib;
911 struct roce_ah_attr roce;
64b4646e 912 struct opa_ah_attr opa;
44c58487 913 };
1da177e4
LT
914};
915
916enum ib_wc_status {
917 IB_WC_SUCCESS,
918 IB_WC_LOC_LEN_ERR,
919 IB_WC_LOC_QP_OP_ERR,
920 IB_WC_LOC_EEC_OP_ERR,
921 IB_WC_LOC_PROT_ERR,
922 IB_WC_WR_FLUSH_ERR,
923 IB_WC_MW_BIND_ERR,
924 IB_WC_BAD_RESP_ERR,
925 IB_WC_LOC_ACCESS_ERR,
926 IB_WC_REM_INV_REQ_ERR,
927 IB_WC_REM_ACCESS_ERR,
928 IB_WC_REM_OP_ERR,
929 IB_WC_RETRY_EXC_ERR,
930 IB_WC_RNR_RETRY_EXC_ERR,
931 IB_WC_LOC_RDD_VIOL_ERR,
932 IB_WC_REM_INV_RD_REQ_ERR,
933 IB_WC_REM_ABORT_ERR,
934 IB_WC_INV_EECN_ERR,
935 IB_WC_INV_EEC_STATE_ERR,
936 IB_WC_FATAL_ERR,
937 IB_WC_RESP_TIMEOUT_ERR,
938 IB_WC_GENERAL_ERR
939};
940
db7489e0 941const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 942
1da177e4
LT
943enum ib_wc_opcode {
944 IB_WC_SEND,
945 IB_WC_RDMA_WRITE,
946 IB_WC_RDMA_READ,
947 IB_WC_COMP_SWAP,
948 IB_WC_FETCH_ADD,
c93570f2 949 IB_WC_LSO,
00f7ec36 950 IB_WC_LOCAL_INV,
4c67e2bf 951 IB_WC_REG_MR,
5e80ba8f
VS
952 IB_WC_MASKED_COMP_SWAP,
953 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
954/*
955 * Set value of IB_WC_RECV so consumers can test if a completion is a
956 * receive by testing (opcode & IB_WC_RECV).
957 */
958 IB_WC_RECV = 1 << 7,
959 IB_WC_RECV_RDMA_WITH_IMM
960};
961
962enum ib_wc_flags {
963 IB_WC_GRH = 1,
00f7ec36
SW
964 IB_WC_WITH_IMM = (1<<1),
965 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 966 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
967 IB_WC_WITH_SMAC = (1<<4),
968 IB_WC_WITH_VLAN = (1<<5),
c865f246 969 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
970};
971
972struct ib_wc {
14d3a3b2
CH
973 union {
974 u64 wr_id;
975 struct ib_cqe *wr_cqe;
976 };
1da177e4
LT
977 enum ib_wc_status status;
978 enum ib_wc_opcode opcode;
979 u32 vendor_err;
980 u32 byte_len;
062dbb69 981 struct ib_qp *qp;
00f7ec36
SW
982 union {
983 __be32 imm_data;
984 u32 invalidate_rkey;
985 } ex;
1da177e4 986 u32 src_qp;
9233c6d8 987 u32 slid;
1da177e4
LT
988 int wc_flags;
989 u16 pkey_index;
1da177e4
LT
990 u8 sl;
991 u8 dlid_path_bits;
992 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
993 u8 smac[ETH_ALEN];
994 u16 vlan_id;
c865f246 995 u8 network_hdr_type;
1da177e4
LT
996};
997
ed23a727
RD
998enum ib_cq_notify_flags {
999 IB_CQ_SOLICITED = 1 << 0,
1000 IB_CQ_NEXT_COMP = 1 << 1,
1001 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1002 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1003};
1004
96104eda 1005enum ib_srq_type {
418d5130 1006 IB_SRQT_BASIC,
9c2c8496
AK
1007 IB_SRQT_XRC,
1008 IB_SRQT_TM,
96104eda
SH
1009};
1010
1a56ff6d
AK
1011static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1012{
9c2c8496
AK
1013 return srq_type == IB_SRQT_XRC ||
1014 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1015}
1016
d41fcc67
RD
1017enum ib_srq_attr_mask {
1018 IB_SRQ_MAX_WR = 1 << 0,
1019 IB_SRQ_LIMIT = 1 << 1,
1020};
1021
1022struct ib_srq_attr {
1023 u32 max_wr;
1024 u32 max_sge;
1025 u32 srq_limit;
1026};
1027
1028struct ib_srq_init_attr {
1029 void (*event_handler)(struct ib_event *, void *);
1030 void *srq_context;
1031 struct ib_srq_attr attr;
96104eda 1032 enum ib_srq_type srq_type;
418d5130 1033
1a56ff6d
AK
1034 struct {
1035 struct ib_cq *cq;
1036 union {
1037 struct {
1038 struct ib_xrcd *xrcd;
1039 } xrc;
9c2c8496
AK
1040
1041 struct {
1042 u32 max_num_tags;
1043 } tag_matching;
1a56ff6d 1044 };
418d5130 1045 } ext;
d41fcc67
RD
1046};
1047
1da177e4
LT
1048struct ib_qp_cap {
1049 u32 max_send_wr;
1050 u32 max_recv_wr;
1051 u32 max_send_sge;
1052 u32 max_recv_sge;
1053 u32 max_inline_data;
a060b562
CH
1054
1055 /*
1056 * Maximum number of rdma_rw_ctx structures in flight at a time.
1057 * ib_create_qp() will calculate the right amount of neededed WRs
1058 * and MRs based on this.
1059 */
1060 u32 max_rdma_ctxs;
1da177e4
LT
1061};
1062
1063enum ib_sig_type {
1064 IB_SIGNAL_ALL_WR,
1065 IB_SIGNAL_REQ_WR
1066};
1067
1068enum ib_qp_type {
1069 /*
1070 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1071 * here (and in that order) since the MAD layer uses them as
1072 * indices into a 2-entry table.
1073 */
1074 IB_QPT_SMI,
1075 IB_QPT_GSI,
1076
1077 IB_QPT_RC,
1078 IB_QPT_UC,
1079 IB_QPT_UD,
1080 IB_QPT_RAW_IPV6,
b42b63cf 1081 IB_QPT_RAW_ETHERTYPE,
c938a616 1082 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1083 IB_QPT_XRC_INI = 9,
1084 IB_QPT_XRC_TGT,
0134f16b
JM
1085 IB_QPT_MAX,
1086 /* Reserve a range for qp types internal to the low level driver.
1087 * These qp types will not be visible at the IB core layer, so the
1088 * IB_QPT_MAX usages should not be affected in the core layer
1089 */
1090 IB_QPT_RESERVED1 = 0x1000,
1091 IB_QPT_RESERVED2,
1092 IB_QPT_RESERVED3,
1093 IB_QPT_RESERVED4,
1094 IB_QPT_RESERVED5,
1095 IB_QPT_RESERVED6,
1096 IB_QPT_RESERVED7,
1097 IB_QPT_RESERVED8,
1098 IB_QPT_RESERVED9,
1099 IB_QPT_RESERVED10,
1da177e4
LT
1100};
1101
b846f25a 1102enum ib_qp_create_flags {
47ee1b9f
RL
1103 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1104 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1105 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1106 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1107 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1108 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1109 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1110 /* FREE = 1 << 7, */
b531b909 1111 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1112 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1113 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1114 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1115 /* reserve bits 26-31 for low level drivers' internal use */
1116 IB_QP_CREATE_RESERVED_START = 1 << 26,
1117 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1118};
1119
73c40c61
YH
1120/*
1121 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1122 * callback to destroy the passed in QP.
1123 */
1124
1da177e4
LT
1125struct ib_qp_init_attr {
1126 void (*event_handler)(struct ib_event *, void *);
1127 void *qp_context;
1128 struct ib_cq *send_cq;
1129 struct ib_cq *recv_cq;
1130 struct ib_srq *srq;
b42b63cf 1131 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1132 struct ib_qp_cap cap;
1133 enum ib_sig_type sq_sig_type;
1134 enum ib_qp_type qp_type;
b846f25a 1135 enum ib_qp_create_flags create_flags;
a060b562
CH
1136
1137 /*
1138 * Only needed for special QP types, or when using the RW API.
1139 */
1140 u8 port_num;
a9017e23 1141 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1142 u32 source_qpn;
1da177e4
LT
1143};
1144
0e0ec7e0
SH
1145struct ib_qp_open_attr {
1146 void (*event_handler)(struct ib_event *, void *);
1147 void *qp_context;
1148 u32 qp_num;
1149 enum ib_qp_type qp_type;
1150};
1151
1da177e4
LT
1152enum ib_rnr_timeout {
1153 IB_RNR_TIMER_655_36 = 0,
1154 IB_RNR_TIMER_000_01 = 1,
1155 IB_RNR_TIMER_000_02 = 2,
1156 IB_RNR_TIMER_000_03 = 3,
1157 IB_RNR_TIMER_000_04 = 4,
1158 IB_RNR_TIMER_000_06 = 5,
1159 IB_RNR_TIMER_000_08 = 6,
1160 IB_RNR_TIMER_000_12 = 7,
1161 IB_RNR_TIMER_000_16 = 8,
1162 IB_RNR_TIMER_000_24 = 9,
1163 IB_RNR_TIMER_000_32 = 10,
1164 IB_RNR_TIMER_000_48 = 11,
1165 IB_RNR_TIMER_000_64 = 12,
1166 IB_RNR_TIMER_000_96 = 13,
1167 IB_RNR_TIMER_001_28 = 14,
1168 IB_RNR_TIMER_001_92 = 15,
1169 IB_RNR_TIMER_002_56 = 16,
1170 IB_RNR_TIMER_003_84 = 17,
1171 IB_RNR_TIMER_005_12 = 18,
1172 IB_RNR_TIMER_007_68 = 19,
1173 IB_RNR_TIMER_010_24 = 20,
1174 IB_RNR_TIMER_015_36 = 21,
1175 IB_RNR_TIMER_020_48 = 22,
1176 IB_RNR_TIMER_030_72 = 23,
1177 IB_RNR_TIMER_040_96 = 24,
1178 IB_RNR_TIMER_061_44 = 25,
1179 IB_RNR_TIMER_081_92 = 26,
1180 IB_RNR_TIMER_122_88 = 27,
1181 IB_RNR_TIMER_163_84 = 28,
1182 IB_RNR_TIMER_245_76 = 29,
1183 IB_RNR_TIMER_327_68 = 30,
1184 IB_RNR_TIMER_491_52 = 31
1185};
1186
1187enum ib_qp_attr_mask {
1188 IB_QP_STATE = 1,
1189 IB_QP_CUR_STATE = (1<<1),
1190 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1191 IB_QP_ACCESS_FLAGS = (1<<3),
1192 IB_QP_PKEY_INDEX = (1<<4),
1193 IB_QP_PORT = (1<<5),
1194 IB_QP_QKEY = (1<<6),
1195 IB_QP_AV = (1<<7),
1196 IB_QP_PATH_MTU = (1<<8),
1197 IB_QP_TIMEOUT = (1<<9),
1198 IB_QP_RETRY_CNT = (1<<10),
1199 IB_QP_RNR_RETRY = (1<<11),
1200 IB_QP_RQ_PSN = (1<<12),
1201 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1202 IB_QP_ALT_PATH = (1<<14),
1203 IB_QP_MIN_RNR_TIMER = (1<<15),
1204 IB_QP_SQ_PSN = (1<<16),
1205 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1206 IB_QP_PATH_MIG_STATE = (1<<18),
1207 IB_QP_CAP = (1<<19),
dd5f03be 1208 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1209 IB_QP_RESERVED1 = (1<<21),
1210 IB_QP_RESERVED2 = (1<<22),
1211 IB_QP_RESERVED3 = (1<<23),
1212 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1213 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1214};
1215
1216enum ib_qp_state {
1217 IB_QPS_RESET,
1218 IB_QPS_INIT,
1219 IB_QPS_RTR,
1220 IB_QPS_RTS,
1221 IB_QPS_SQD,
1222 IB_QPS_SQE,
1223 IB_QPS_ERR
1224};
1225
1226enum ib_mig_state {
1227 IB_MIG_MIGRATED,
1228 IB_MIG_REARM,
1229 IB_MIG_ARMED
1230};
1231
7083e42e
SM
1232enum ib_mw_type {
1233 IB_MW_TYPE_1 = 1,
1234 IB_MW_TYPE_2 = 2
1235};
1236
1da177e4
LT
1237struct ib_qp_attr {
1238 enum ib_qp_state qp_state;
1239 enum ib_qp_state cur_qp_state;
1240 enum ib_mtu path_mtu;
1241 enum ib_mig_state path_mig_state;
1242 u32 qkey;
1243 u32 rq_psn;
1244 u32 sq_psn;
1245 u32 dest_qp_num;
1246 int qp_access_flags;
1247 struct ib_qp_cap cap;
90898850
DC
1248 struct rdma_ah_attr ah_attr;
1249 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1250 u16 pkey_index;
1251 u16 alt_pkey_index;
1252 u8 en_sqd_async_notify;
1253 u8 sq_draining;
1254 u8 max_rd_atomic;
1255 u8 max_dest_rd_atomic;
1256 u8 min_rnr_timer;
1257 u8 port_num;
1258 u8 timeout;
1259 u8 retry_cnt;
1260 u8 rnr_retry;
1261 u8 alt_port_num;
1262 u8 alt_timeout;
528e5a1b 1263 u32 rate_limit;
1da177e4
LT
1264};
1265
1266enum ib_wr_opcode {
1267 IB_WR_RDMA_WRITE,
1268 IB_WR_RDMA_WRITE_WITH_IMM,
1269 IB_WR_SEND,
1270 IB_WR_SEND_WITH_IMM,
1271 IB_WR_RDMA_READ,
1272 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1273 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1274 IB_WR_LSO,
1275 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1276 IB_WR_RDMA_READ_WITH_INV,
1277 IB_WR_LOCAL_INV,
4c67e2bf 1278 IB_WR_REG_MR,
5e80ba8f
VS
1279 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1280 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1281 IB_WR_REG_SIG_MR,
0134f16b
JM
1282 /* reserve values for low level drivers' internal use.
1283 * These values will not be used at all in the ib core layer.
1284 */
1285 IB_WR_RESERVED1 = 0xf0,
1286 IB_WR_RESERVED2,
1287 IB_WR_RESERVED3,
1288 IB_WR_RESERVED4,
1289 IB_WR_RESERVED5,
1290 IB_WR_RESERVED6,
1291 IB_WR_RESERVED7,
1292 IB_WR_RESERVED8,
1293 IB_WR_RESERVED9,
1294 IB_WR_RESERVED10,
1da177e4
LT
1295};
1296
1297enum ib_send_flags {
1298 IB_SEND_FENCE = 1,
1299 IB_SEND_SIGNALED = (1<<1),
1300 IB_SEND_SOLICITED = (1<<2),
e0605d91 1301 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1302 IB_SEND_IP_CSUM = (1<<4),
1303
1304 /* reserve bits 26-31 for low level drivers' internal use */
1305 IB_SEND_RESERVED_START = (1 << 26),
1306 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1307};
1308
1309struct ib_sge {
1310 u64 addr;
1311 u32 length;
1312 u32 lkey;
1313};
1314
14d3a3b2
CH
1315struct ib_cqe {
1316 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1317};
1318
1da177e4
LT
1319struct ib_send_wr {
1320 struct ib_send_wr *next;
14d3a3b2
CH
1321 union {
1322 u64 wr_id;
1323 struct ib_cqe *wr_cqe;
1324 };
1da177e4
LT
1325 struct ib_sge *sg_list;
1326 int num_sge;
1327 enum ib_wr_opcode opcode;
1328 int send_flags;
0f39cf3d
RD
1329 union {
1330 __be32 imm_data;
1331 u32 invalidate_rkey;
1332 } ex;
1da177e4
LT
1333};
1334
e622f2f4
CH
1335struct ib_rdma_wr {
1336 struct ib_send_wr wr;
1337 u64 remote_addr;
1338 u32 rkey;
1339};
1340
1341static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1342{
1343 return container_of(wr, struct ib_rdma_wr, wr);
1344}
1345
1346struct ib_atomic_wr {
1347 struct ib_send_wr wr;
1348 u64 remote_addr;
1349 u64 compare_add;
1350 u64 swap;
1351 u64 compare_add_mask;
1352 u64 swap_mask;
1353 u32 rkey;
1354};
1355
1356static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1357{
1358 return container_of(wr, struct ib_atomic_wr, wr);
1359}
1360
1361struct ib_ud_wr {
1362 struct ib_send_wr wr;
1363 struct ib_ah *ah;
1364 void *header;
1365 int hlen;
1366 int mss;
1367 u32 remote_qpn;
1368 u32 remote_qkey;
1369 u16 pkey_index; /* valid for GSI only */
1370 u8 port_num; /* valid for DR SMPs on switch only */
1371};
1372
1373static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1374{
1375 return container_of(wr, struct ib_ud_wr, wr);
1376}
1377
4c67e2bf
SG
1378struct ib_reg_wr {
1379 struct ib_send_wr wr;
1380 struct ib_mr *mr;
1381 u32 key;
1382 int access;
1383};
1384
1385static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1386{
1387 return container_of(wr, struct ib_reg_wr, wr);
1388}
1389
e622f2f4
CH
1390struct ib_sig_handover_wr {
1391 struct ib_send_wr wr;
1392 struct ib_sig_attrs *sig_attrs;
1393 struct ib_mr *sig_mr;
1394 int access_flags;
1395 struct ib_sge *prot;
1396};
1397
1398static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1399{
1400 return container_of(wr, struct ib_sig_handover_wr, wr);
1401}
1402
1da177e4
LT
1403struct ib_recv_wr {
1404 struct ib_recv_wr *next;
14d3a3b2
CH
1405 union {
1406 u64 wr_id;
1407 struct ib_cqe *wr_cqe;
1408 };
1da177e4
LT
1409 struct ib_sge *sg_list;
1410 int num_sge;
1411};
1412
1413enum ib_access_flags {
1414 IB_ACCESS_LOCAL_WRITE = 1,
1415 IB_ACCESS_REMOTE_WRITE = (1<<1),
1416 IB_ACCESS_REMOTE_READ = (1<<2),
1417 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1418 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1419 IB_ZERO_BASED = (1<<5),
1420 IB_ACCESS_ON_DEMAND = (1<<6),
0008b84e 1421 IB_ACCESS_HUGETLB = (1<<7),
1da177e4
LT
1422};
1423
b7d3e0a9
CH
1424/*
1425 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1426 * are hidden here instead of a uapi header!
1427 */
1da177e4
LT
1428enum ib_mr_rereg_flags {
1429 IB_MR_REREG_TRANS = 1,
1430 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1431 IB_MR_REREG_ACCESS = (1<<2),
1432 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1433};
1434
1da177e4
LT
1435struct ib_fmr_attr {
1436 int max_pages;
1437 int max_maps;
d36f34aa 1438 u8 page_shift;
1da177e4
LT
1439};
1440
882214e2
HE
1441struct ib_umem;
1442
38321256
MB
1443enum rdma_remove_reason {
1444 /* Userspace requested uobject deletion. Call could fail */
1445 RDMA_REMOVE_DESTROY,
1446 /* Context deletion. This call should delete the actual object itself */
1447 RDMA_REMOVE_CLOSE,
1448 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1449 RDMA_REMOVE_DRIVER_REMOVE,
1450 /* Context is being cleaned-up, but commit was just completed */
1451 RDMA_REMOVE_DURING_CLEANUP,
1452};
1453
43579b5f
PP
1454struct ib_rdmacg_object {
1455#ifdef CONFIG_CGROUP_RDMA
1456 struct rdma_cgroup *cg; /* owner rdma cgroup */
1457#endif
1458};
1459
e2773c06
RD
1460struct ib_ucontext {
1461 struct ib_device *device;
771addf6 1462 struct ib_uverbs_file *ufile;
f7c6a7b5 1463 int closing;
8ada2c1c 1464
38321256
MB
1465 /* locking the uobjects_list */
1466 struct mutex uobjects_lock;
1467 struct list_head uobjects;
1468 /* protects cleanup process from other actions */
1469 struct rw_semaphore cleanup_rwsem;
1470 enum rdma_remove_reason cleanup_reason;
1471
8ada2c1c 1472 struct pid *tgid;
882214e2 1473#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
f808c13f 1474 struct rb_root_cached umem_tree;
882214e2
HE
1475 /*
1476 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1477 * mmu notifiers registration.
1478 */
1479 struct rw_semaphore umem_rwsem;
1480 void (*invalidate_range)(struct ib_umem *umem,
1481 unsigned long start, unsigned long end);
1482
1483 struct mmu_notifier mn;
1484 atomic_t notifier_count;
1485 /* A list of umems that don't have private mmu notifier counters yet. */
1486 struct list_head no_private_counters;
1487 int odp_mrs_count;
1488#endif
43579b5f
PP
1489
1490 struct ib_rdmacg_object cg_obj;
e2773c06
RD
1491};
1492
1493struct ib_uobject {
1494 u64 user_handle; /* handle given to us by userspace */
1495 struct ib_ucontext *context; /* associated user context */
9ead190b 1496 void *object; /* containing object */
e2773c06 1497 struct list_head list; /* link to context's list */
43579b5f 1498 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1499 int id; /* index into kernel idr */
9ead190b 1500 struct kref ref;
38321256 1501 atomic_t usecnt; /* protects exclusive access */
d144da8c 1502 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256
MB
1503
1504 const struct uverbs_obj_type *type;
e2773c06
RD
1505};
1506
cf8966b3
MB
1507struct ib_uobject_file {
1508 struct ib_uobject uobj;
1509 /* ufile contains the lock between context release and file close */
1510 struct ib_uverbs_file *ufile;
e2773c06
RD
1511};
1512
e2773c06 1513struct ib_udata {
309243ec 1514 const void __user *inbuf;
e2773c06
RD
1515 void __user *outbuf;
1516 size_t inlen;
1517 size_t outlen;
1518};
1519
1da177e4 1520struct ib_pd {
96249d70 1521 u32 local_dma_lkey;
ed082d36 1522 u32 flags;
e2773c06
RD
1523 struct ib_device *device;
1524 struct ib_uobject *uobject;
1525 atomic_t usecnt; /* count all resources */
50d46335 1526
ed082d36
CH
1527 u32 unsafe_global_rkey;
1528
50d46335
CH
1529 /*
1530 * Implementation details of the RDMA core, don't use in drivers:
1531 */
1532 struct ib_mr *__internal_mr;
1da177e4
LT
1533};
1534
59991f94
SH
1535struct ib_xrcd {
1536 struct ib_device *device;
d3d72d90 1537 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1538 struct inode *inode;
d3d72d90
SH
1539
1540 struct mutex tgt_qp_mutex;
1541 struct list_head tgt_qp_list;
59991f94
SH
1542};
1543
1da177e4
LT
1544struct ib_ah {
1545 struct ib_device *device;
1546 struct ib_pd *pd;
e2773c06 1547 struct ib_uobject *uobject;
44c58487 1548 enum rdma_ah_attr_type type;
1da177e4
LT
1549};
1550
1551typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1552
14d3a3b2
CH
1553enum ib_poll_context {
1554 IB_POLL_DIRECT, /* caller context, no hw completions */
1555 IB_POLL_SOFTIRQ, /* poll from softirq context */
1556 IB_POLL_WORKQUEUE, /* poll from workqueue */
1557};
1558
1da177e4 1559struct ib_cq {
e2773c06
RD
1560 struct ib_device *device;
1561 struct ib_uobject *uobject;
1562 ib_comp_handler comp_handler;
1563 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1564 void *cq_context;
e2773c06
RD
1565 int cqe;
1566 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1567 enum ib_poll_context poll_ctx;
1568 struct ib_wc *wc;
1569 union {
1570 struct irq_poll iop;
1571 struct work_struct work;
1572 };
1da177e4
LT
1573};
1574
1575struct ib_srq {
d41fcc67
RD
1576 struct ib_device *device;
1577 struct ib_pd *pd;
1578 struct ib_uobject *uobject;
1579 void (*event_handler)(struct ib_event *, void *);
1580 void *srq_context;
96104eda 1581 enum ib_srq_type srq_type;
1da177e4 1582 atomic_t usecnt;
418d5130 1583
1a56ff6d
AK
1584 struct {
1585 struct ib_cq *cq;
1586 union {
1587 struct {
1588 struct ib_xrcd *xrcd;
1589 u32 srq_num;
1590 } xrc;
1591 };
418d5130 1592 } ext;
1da177e4
LT
1593};
1594
ebaaee25
NO
1595enum ib_raw_packet_caps {
1596 /* Strip cvlan from incoming packet and report it in the matching work
1597 * completion is supported.
1598 */
1599 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1600 /* Scatter FCS field of an incoming packet to host memory is supported.
1601 */
1602 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1603 /* Checksum offloads are supported (for both send and receive). */
1604 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1605 /* When a packet is received for an RQ with no receive WQEs, the
1606 * packet processing is delayed.
1607 */
1608 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1609};
1610
5fd251c8
YH
1611enum ib_wq_type {
1612 IB_WQT_RQ
1613};
1614
1615enum ib_wq_state {
1616 IB_WQS_RESET,
1617 IB_WQS_RDY,
1618 IB_WQS_ERR
1619};
1620
1621struct ib_wq {
1622 struct ib_device *device;
1623 struct ib_uobject *uobject;
1624 void *wq_context;
1625 void (*event_handler)(struct ib_event *, void *);
1626 struct ib_pd *pd;
1627 struct ib_cq *cq;
1628 u32 wq_num;
1629 enum ib_wq_state state;
1630 enum ib_wq_type wq_type;
1631 atomic_t usecnt;
1632};
1633
10bac72b
NO
1634enum ib_wq_flags {
1635 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1636 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1637 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1638 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1639};
1640
5fd251c8
YH
1641struct ib_wq_init_attr {
1642 void *wq_context;
1643 enum ib_wq_type wq_type;
1644 u32 max_wr;
1645 u32 max_sge;
1646 struct ib_cq *cq;
1647 void (*event_handler)(struct ib_event *, void *);
10bac72b 1648 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1649};
1650
1651enum ib_wq_attr_mask {
10bac72b
NO
1652 IB_WQ_STATE = 1 << 0,
1653 IB_WQ_CUR_STATE = 1 << 1,
1654 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1655};
1656
1657struct ib_wq_attr {
1658 enum ib_wq_state wq_state;
1659 enum ib_wq_state curr_wq_state;
10bac72b
NO
1660 u32 flags; /* Use enum ib_wq_flags */
1661 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1662};
1663
6d39786b
YH
1664struct ib_rwq_ind_table {
1665 struct ib_device *device;
1666 struct ib_uobject *uobject;
1667 atomic_t usecnt;
1668 u32 ind_tbl_num;
1669 u32 log_ind_tbl_size;
1670 struct ib_wq **ind_tbl;
1671};
1672
1673struct ib_rwq_ind_table_init_attr {
1674 u32 log_ind_tbl_size;
1675 /* Each entry is a pointer to Receive Work Queue */
1676 struct ib_wq **ind_tbl;
1677};
1678
d291f1a6
DJ
1679enum port_pkey_state {
1680 IB_PORT_PKEY_NOT_VALID = 0,
1681 IB_PORT_PKEY_VALID = 1,
1682 IB_PORT_PKEY_LISTED = 2,
1683};
1684
1685struct ib_qp_security;
1686
1687struct ib_port_pkey {
1688 enum port_pkey_state state;
1689 u16 pkey_index;
1690 u8 port_num;
1691 struct list_head qp_list;
1692 struct list_head to_error_list;
1693 struct ib_qp_security *sec;
1694};
1695
1696struct ib_ports_pkeys {
1697 struct ib_port_pkey main;
1698 struct ib_port_pkey alt;
1699};
1700
1701struct ib_qp_security {
1702 struct ib_qp *qp;
1703 struct ib_device *dev;
1704 /* Hold this mutex when changing port and pkey settings. */
1705 struct mutex mutex;
1706 struct ib_ports_pkeys *ports_pkeys;
1707 /* A list of all open shared QP handles. Required to enforce security
1708 * properly for all users of a shared QP.
1709 */
1710 struct list_head shared_qp_list;
1711 void *security;
1712 bool destroying;
1713 atomic_t error_list_count;
1714 struct completion error_complete;
1715 int error_comps_pending;
1716};
1717
632bc3f6
BVA
1718/*
1719 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1720 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1721 */
1da177e4
LT
1722struct ib_qp {
1723 struct ib_device *device;
1724 struct ib_pd *pd;
1725 struct ib_cq *send_cq;
1726 struct ib_cq *recv_cq;
fffb0383
CH
1727 spinlock_t mr_lock;
1728 int mrs_used;
a060b562 1729 struct list_head rdma_mrs;
0e353e34 1730 struct list_head sig_mrs;
1da177e4 1731 struct ib_srq *srq;
b42b63cf 1732 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1733 struct list_head xrcd_list;
fffb0383 1734
319a441d
HHZ
1735 /* count times opened, mcast attaches, flow attaches */
1736 atomic_t usecnt;
0e0ec7e0
SH
1737 struct list_head open_list;
1738 struct ib_qp *real_qp;
e2773c06 1739 struct ib_uobject *uobject;
1da177e4
LT
1740 void (*event_handler)(struct ib_event *, void *);
1741 void *qp_context;
1742 u32 qp_num;
632bc3f6
BVA
1743 u32 max_write_sge;
1744 u32 max_read_sge;
1da177e4 1745 enum ib_qp_type qp_type;
a9017e23 1746 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1747 struct ib_qp_security *qp_sec;
498ca3c8 1748 u8 port;
1da177e4
LT
1749};
1750
1751struct ib_mr {
e2773c06
RD
1752 struct ib_device *device;
1753 struct ib_pd *pd;
e2773c06
RD
1754 u32 lkey;
1755 u32 rkey;
4c67e2bf 1756 u64 iova;
edd31551 1757 u64 length;
4c67e2bf 1758 unsigned int page_size;
d4a85c30 1759 bool need_inval;
fffb0383
CH
1760 union {
1761 struct ib_uobject *uobject; /* user */
1762 struct list_head qp_entry; /* FR */
1763 };
1da177e4
LT
1764};
1765
1766struct ib_mw {
1767 struct ib_device *device;
1768 struct ib_pd *pd;
e2773c06 1769 struct ib_uobject *uobject;
1da177e4 1770 u32 rkey;
7083e42e 1771 enum ib_mw_type type;
1da177e4
LT
1772};
1773
1774struct ib_fmr {
1775 struct ib_device *device;
1776 struct ib_pd *pd;
1777 struct list_head list;
1778 u32 lkey;
1779 u32 rkey;
1780};
1781
319a441d
HHZ
1782/* Supported steering options */
1783enum ib_flow_attr_type {
1784 /* steering according to rule specifications */
1785 IB_FLOW_ATTR_NORMAL = 0x0,
1786 /* default unicast and multicast rule -
1787 * receive all Eth traffic which isn't steered to any QP
1788 */
1789 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1790 /* default multicast rule -
1791 * receive all Eth multicast traffic which isn't steered to any QP
1792 */
1793 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1794 /* sniffer rule - receive all port traffic */
1795 IB_FLOW_ATTR_SNIFFER = 0x3
1796};
1797
1798/* Supported steering header types */
1799enum ib_flow_spec_type {
1800 /* L2 headers*/
76bd23b3
MR
1801 IB_FLOW_SPEC_ETH = 0x20,
1802 IB_FLOW_SPEC_IB = 0x22,
319a441d 1803 /* L3 header*/
76bd23b3
MR
1804 IB_FLOW_SPEC_IPV4 = 0x30,
1805 IB_FLOW_SPEC_IPV6 = 0x31,
319a441d 1806 /* L4 headers*/
76bd23b3
MR
1807 IB_FLOW_SPEC_TCP = 0x40,
1808 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1809 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
fbf46860 1810 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1811 /* Actions */
1812 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1813 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
319a441d 1814};
240ae00e 1815#define IB_FLOW_SPEC_LAYER_MASK 0xF0
fbf46860 1816#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
22878dbc 1817
319a441d
HHZ
1818/* Flow steering rule priority is set according to it's domain.
1819 * Lower domain value means higher priority.
1820 */
1821enum ib_flow_domain {
1822 IB_FLOW_DOMAIN_USER,
1823 IB_FLOW_DOMAIN_ETHTOOL,
1824 IB_FLOW_DOMAIN_RFS,
1825 IB_FLOW_DOMAIN_NIC,
1826 IB_FLOW_DOMAIN_NUM /* Must be last */
1827};
1828
a3100a78
MV
1829enum ib_flow_flags {
1830 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1831 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1832};
1833
319a441d
HHZ
1834struct ib_flow_eth_filter {
1835 u8 dst_mac[6];
1836 u8 src_mac[6];
1837 __be16 ether_type;
1838 __be16 vlan_tag;
15dfbd6b
MG
1839 /* Must be last */
1840 u8 real_sz[0];
319a441d
HHZ
1841};
1842
1843struct ib_flow_spec_eth {
fbf46860 1844 u32 type;
319a441d
HHZ
1845 u16 size;
1846 struct ib_flow_eth_filter val;
1847 struct ib_flow_eth_filter mask;
1848};
1849
240ae00e
MB
1850struct ib_flow_ib_filter {
1851 __be16 dlid;
1852 __u8 sl;
15dfbd6b
MG
1853 /* Must be last */
1854 u8 real_sz[0];
240ae00e
MB
1855};
1856
1857struct ib_flow_spec_ib {
fbf46860 1858 u32 type;
240ae00e
MB
1859 u16 size;
1860 struct ib_flow_ib_filter val;
1861 struct ib_flow_ib_filter mask;
1862};
1863
989a3a8f
MG
1864/* IPv4 header flags */
1865enum ib_ipv4_flags {
1866 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1867 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1868 last have this flag set */
1869};
1870
319a441d
HHZ
1871struct ib_flow_ipv4_filter {
1872 __be32 src_ip;
1873 __be32 dst_ip;
989a3a8f
MG
1874 u8 proto;
1875 u8 tos;
1876 u8 ttl;
1877 u8 flags;
15dfbd6b
MG
1878 /* Must be last */
1879 u8 real_sz[0];
319a441d
HHZ
1880};
1881
1882struct ib_flow_spec_ipv4 {
fbf46860 1883 u32 type;
319a441d
HHZ
1884 u16 size;
1885 struct ib_flow_ipv4_filter val;
1886 struct ib_flow_ipv4_filter mask;
1887};
1888
4c2aae71
MG
1889struct ib_flow_ipv6_filter {
1890 u8 src_ip[16];
1891 u8 dst_ip[16];
a72c6a2b
MG
1892 __be32 flow_label;
1893 u8 next_hdr;
1894 u8 traffic_class;
1895 u8 hop_limit;
15dfbd6b
MG
1896 /* Must be last */
1897 u8 real_sz[0];
4c2aae71
MG
1898};
1899
1900struct ib_flow_spec_ipv6 {
fbf46860 1901 u32 type;
4c2aae71
MG
1902 u16 size;
1903 struct ib_flow_ipv6_filter val;
1904 struct ib_flow_ipv6_filter mask;
1905};
1906
319a441d
HHZ
1907struct ib_flow_tcp_udp_filter {
1908 __be16 dst_port;
1909 __be16 src_port;
15dfbd6b
MG
1910 /* Must be last */
1911 u8 real_sz[0];
319a441d
HHZ
1912};
1913
1914struct ib_flow_spec_tcp_udp {
fbf46860 1915 u32 type;
319a441d
HHZ
1916 u16 size;
1917 struct ib_flow_tcp_udp_filter val;
1918 struct ib_flow_tcp_udp_filter mask;
1919};
1920
0dbf3332
MR
1921struct ib_flow_tunnel_filter {
1922 __be32 tunnel_id;
1923 u8 real_sz[0];
1924};
1925
1926/* ib_flow_spec_tunnel describes the Vxlan tunnel
1927 * the tunnel_id from val has the vni value
1928 */
1929struct ib_flow_spec_tunnel {
fbf46860 1930 u32 type;
0dbf3332
MR
1931 u16 size;
1932 struct ib_flow_tunnel_filter val;
1933 struct ib_flow_tunnel_filter mask;
1934};
1935
460d0198
MR
1936struct ib_flow_spec_action_tag {
1937 enum ib_flow_spec_type type;
1938 u16 size;
1939 u32 tag_id;
1940};
1941
483a3966
SS
1942struct ib_flow_spec_action_drop {
1943 enum ib_flow_spec_type type;
1944 u16 size;
1945};
1946
319a441d
HHZ
1947union ib_flow_spec {
1948 struct {
fbf46860 1949 u32 type;
319a441d
HHZ
1950 u16 size;
1951 };
1952 struct ib_flow_spec_eth eth;
240ae00e 1953 struct ib_flow_spec_ib ib;
319a441d
HHZ
1954 struct ib_flow_spec_ipv4 ipv4;
1955 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 1956 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 1957 struct ib_flow_spec_tunnel tunnel;
460d0198 1958 struct ib_flow_spec_action_tag flow_tag;
483a3966 1959 struct ib_flow_spec_action_drop drop;
319a441d
HHZ
1960};
1961
1962struct ib_flow_attr {
1963 enum ib_flow_attr_type type;
1964 u16 size;
1965 u16 priority;
1966 u32 flags;
1967 u8 num_of_specs;
1968 u8 port;
1969 /* Following are the optional layers according to user request
1970 * struct ib_flow_spec_xxx
1971 * struct ib_flow_spec_yyy
1972 */
1973};
1974
1975struct ib_flow {
1976 struct ib_qp *qp;
1977 struct ib_uobject *uobject;
1978};
1979
4cd7c947 1980struct ib_mad_hdr;
1da177e4
LT
1981struct ib_grh;
1982
1983enum ib_process_mad_flags {
1984 IB_MAD_IGNORE_MKEY = 1,
1985 IB_MAD_IGNORE_BKEY = 2,
1986 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1987};
1988
1989enum ib_mad_result {
1990 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1991 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1992 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1993 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1994};
1995
21d6454a 1996struct ib_port_cache {
883c71fe 1997 u64 subnet_prefix;
21d6454a
JW
1998 struct ib_pkey_cache *pkey;
1999 struct ib_gid_table *gid;
2000 u8 lmc;
2001 enum ib_port_state port_state;
2002};
2003
1da177e4
LT
2004struct ib_cache {
2005 rwlock_t lock;
2006 struct ib_event_handler event_handler;
21d6454a 2007 struct ib_port_cache *ports;
1da177e4
LT
2008};
2009
07ebafba
TT
2010struct iw_cm_verbs;
2011
7738613e
IW
2012struct ib_port_immutable {
2013 int pkey_tbl_len;
2014 int gid_tbl_len;
f9b22e35 2015 u32 core_cap_flags;
337877a4 2016 u32 max_mad_size;
7738613e
IW
2017};
2018
2fc77572
VN
2019/* rdma netdev type - specifies protocol type */
2020enum rdma_netdev_t {
f0ad83ac
NV
2021 RDMA_NETDEV_OPA_VNIC,
2022 RDMA_NETDEV_IPOIB,
2fc77572
VN
2023};
2024
2025/**
2026 * struct rdma_netdev - rdma netdev
2027 * For cases where netstack interfacing is required.
2028 */
2029struct rdma_netdev {
2030 void *clnt_priv;
2031 struct ib_device *hca;
2032 u8 port_num;
2033
8e959601
NV
2034 /* cleanup function must be specified */
2035 void (*free_rdma_netdev)(struct net_device *netdev);
2036
2fc77572
VN
2037 /* control functions */
2038 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2039 /* send packet */
2040 int (*send)(struct net_device *dev, struct sk_buff *skb,
2041 struct ib_ah *address, u32 dqpn);
2042 /* multicast */
2043 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2044 union ib_gid *gid, u16 mlid,
2045 int set_qkey, u32 qkey);
2046 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2047 union ib_gid *gid, u16 mlid);
2fc77572
VN
2048};
2049
d291f1a6
DJ
2050struct ib_port_pkey_list {
2051 /* Lock to hold while modifying the list. */
2052 spinlock_t list_lock;
2053 struct list_head pkey_list;
2054};
2055
1da177e4 2056struct ib_device {
0957c29f
BVA
2057 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2058 struct device *dma_device;
2059
1da177e4
LT
2060 char name[IB_DEVICE_NAME_MAX];
2061
2062 struct list_head event_handler_list;
2063 spinlock_t event_handler_lock;
2064
17a55f79 2065 spinlock_t client_data_lock;
1da177e4 2066 struct list_head core_list;
7c1eb45a
HE
2067 /* Access to the client_data_list is protected by the client_data_lock
2068 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 2069 struct list_head client_data_list;
1da177e4
LT
2070
2071 struct ib_cache cache;
7738613e
IW
2072 /**
2073 * port_immutable is indexed by port number
2074 */
2075 struct ib_port_immutable *port_immutable;
1da177e4 2076
f4fd0b22
MT
2077 int num_comp_vectors;
2078
d291f1a6
DJ
2079 struct ib_port_pkey_list *port_pkey_list;
2080
07ebafba
TT
2081 struct iw_cm_verbs *iwcm;
2082
b40f4757
CL
2083 /**
2084 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2085 * driver initialized data. The struct is kfree()'ed by the sysfs
2086 * core when the device is removed. A lifespan of -1 in the return
2087 * struct tells the core to set a default lifespan.
2088 */
2089 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2090 u8 port_num);
2091 /**
2092 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2093 * @index - The index in the value array we wish to have updated, or
2094 * num_counters if we want all stats updated
2095 * Return codes -
2096 * < 0 - Error, no counters updated
2097 * index - Updated the single counter pointed to by index
2098 * num_counters - Updated all counters (will reset the timestamp
2099 * and prevent further calls for lifespan milliseconds)
2100 * Drivers are allowed to update all counters in leiu of just the
2101 * one given in index at their option
2102 */
2103 int (*get_hw_stats)(struct ib_device *device,
2104 struct rdma_hw_stats *stats,
2105 u8 port, int index);
1da177e4 2106 int (*query_device)(struct ib_device *device,
2528e33e
MB
2107 struct ib_device_attr *device_attr,
2108 struct ib_udata *udata);
1da177e4
LT
2109 int (*query_port)(struct ib_device *device,
2110 u8 port_num,
2111 struct ib_port_attr *port_attr);
a3f5adaf
EC
2112 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2113 u8 port_num);
03db3a2d
MB
2114 /* When calling get_netdev, the HW vendor's driver should return the
2115 * net device of device @device at port @port_num or NULL if such
2116 * a net device doesn't exist. The vendor driver should call dev_hold
2117 * on this net device. The HW vendor's device driver must guarantee
2118 * that this function returns NULL before the net device reaches
2119 * NETDEV_UNREGISTER_FINAL state.
2120 */
2121 struct net_device *(*get_netdev)(struct ib_device *device,
2122 u8 port_num);
1da177e4
LT
2123 int (*query_gid)(struct ib_device *device,
2124 u8 port_num, int index,
2125 union ib_gid *gid);
03db3a2d
MB
2126 /* When calling add_gid, the HW vendor's driver should
2127 * add the gid of device @device at gid index @index of
2128 * port @port_num to be @gid. Meta-info of that gid (for example,
2129 * the network device related to this gid is available
2130 * at @attr. @context allows the HW vendor driver to store extra
2131 * information together with a GID entry. The HW vendor may allocate
2132 * memory to contain this information and store it in @context when a
2133 * new GID entry is written to. Params are consistent until the next
2134 * call of add_gid or delete_gid. The function should return 0 on
2135 * success or error otherwise. The function could be called
2136 * concurrently for different ports. This function is only called
2137 * when roce_gid_table is used.
2138 */
2139 int (*add_gid)(struct ib_device *device,
2140 u8 port_num,
2141 unsigned int index,
2142 const union ib_gid *gid,
2143 const struct ib_gid_attr *attr,
2144 void **context);
2145 /* When calling del_gid, the HW vendor's driver should delete the
2146 * gid of device @device at gid index @index of port @port_num.
2147 * Upon the deletion of a GID entry, the HW vendor must free any
2148 * allocated memory. The caller will clear @context afterwards.
2149 * This function is only called when roce_gid_table is used.
2150 */
2151 int (*del_gid)(struct ib_device *device,
2152 u8 port_num,
2153 unsigned int index,
2154 void **context);
1da177e4
LT
2155 int (*query_pkey)(struct ib_device *device,
2156 u8 port_num, u16 index, u16 *pkey);
2157 int (*modify_device)(struct ib_device *device,
2158 int device_modify_mask,
2159 struct ib_device_modify *device_modify);
2160 int (*modify_port)(struct ib_device *device,
2161 u8 port_num, int port_modify_mask,
2162 struct ib_port_modify *port_modify);
e2773c06
RD
2163 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2164 struct ib_udata *udata);
2165 int (*dealloc_ucontext)(struct ib_ucontext *context);
2166 int (*mmap)(struct ib_ucontext *context,
2167 struct vm_area_struct *vma);
2168 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2169 struct ib_ucontext *context,
2170 struct ib_udata *udata);
1da177e4
LT
2171 int (*dealloc_pd)(struct ib_pd *pd);
2172 struct ib_ah * (*create_ah)(struct ib_pd *pd,
90898850 2173 struct rdma_ah_attr *ah_attr,
477864c8 2174 struct ib_udata *udata);
1da177e4 2175 int (*modify_ah)(struct ib_ah *ah,
90898850 2176 struct rdma_ah_attr *ah_attr);
1da177e4 2177 int (*query_ah)(struct ib_ah *ah,
90898850 2178 struct rdma_ah_attr *ah_attr);
1da177e4 2179 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2180 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2181 struct ib_srq_init_attr *srq_init_attr,
2182 struct ib_udata *udata);
2183 int (*modify_srq)(struct ib_srq *srq,
2184 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2185 enum ib_srq_attr_mask srq_attr_mask,
2186 struct ib_udata *udata);
d41fcc67
RD
2187 int (*query_srq)(struct ib_srq *srq,
2188 struct ib_srq_attr *srq_attr);
2189 int (*destroy_srq)(struct ib_srq *srq);
2190 int (*post_srq_recv)(struct ib_srq *srq,
2191 struct ib_recv_wr *recv_wr,
2192 struct ib_recv_wr **bad_recv_wr);
1da177e4 2193 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2194 struct ib_qp_init_attr *qp_init_attr,
2195 struct ib_udata *udata);
1da177e4
LT
2196 int (*modify_qp)(struct ib_qp *qp,
2197 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2198 int qp_attr_mask,
2199 struct ib_udata *udata);
1da177e4
LT
2200 int (*query_qp)(struct ib_qp *qp,
2201 struct ib_qp_attr *qp_attr,
2202 int qp_attr_mask,
2203 struct ib_qp_init_attr *qp_init_attr);
2204 int (*destroy_qp)(struct ib_qp *qp);
2205 int (*post_send)(struct ib_qp *qp,
2206 struct ib_send_wr *send_wr,
2207 struct ib_send_wr **bad_send_wr);
2208 int (*post_recv)(struct ib_qp *qp,
2209 struct ib_recv_wr *recv_wr,
2210 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2211 struct ib_cq * (*create_cq)(struct ib_device *device,
2212 const struct ib_cq_init_attr *attr,
e2773c06
RD
2213 struct ib_ucontext *context,
2214 struct ib_udata *udata);
2dd57162
EC
2215 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2216 u16 cq_period);
1da177e4 2217 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2218 int (*resize_cq)(struct ib_cq *cq, int cqe,
2219 struct ib_udata *udata);
1da177e4
LT
2220 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2221 struct ib_wc *wc);
2222 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2223 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2224 enum ib_cq_notify_flags flags);
1da177e4
LT
2225 int (*req_ncomp_notif)(struct ib_cq *cq,
2226 int wc_cnt);
2227 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2228 int mr_access_flags);
e2773c06 2229 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2230 u64 start, u64 length,
2231 u64 virt_addr,
e2773c06
RD
2232 int mr_access_flags,
2233 struct ib_udata *udata);
7e6edb9b
MB
2234 int (*rereg_user_mr)(struct ib_mr *mr,
2235 int flags,
2236 u64 start, u64 length,
2237 u64 virt_addr,
2238 int mr_access_flags,
2239 struct ib_pd *pd,
2240 struct ib_udata *udata);
1da177e4 2241 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2242 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2243 enum ib_mr_type mr_type,
2244 u32 max_num_sg);
4c67e2bf
SG
2245 int (*map_mr_sg)(struct ib_mr *mr,
2246 struct scatterlist *sg,
ff2ba993 2247 int sg_nents,
9aa8b321 2248 unsigned int *sg_offset);
7083e42e 2249 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2250 enum ib_mw_type type,
2251 struct ib_udata *udata);
1da177e4
LT
2252 int (*dealloc_mw)(struct ib_mw *mw);
2253 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2254 int mr_access_flags,
2255 struct ib_fmr_attr *fmr_attr);
2256 int (*map_phys_fmr)(struct ib_fmr *fmr,
2257 u64 *page_list, int list_len,
2258 u64 iova);
2259 int (*unmap_fmr)(struct list_head *fmr_list);
2260 int (*dealloc_fmr)(struct ib_fmr *fmr);
2261 int (*attach_mcast)(struct ib_qp *qp,
2262 union ib_gid *gid,
2263 u16 lid);
2264 int (*detach_mcast)(struct ib_qp *qp,
2265 union ib_gid *gid,
2266 u16 lid);
2267 int (*process_mad)(struct ib_device *device,
2268 int process_mad_flags,
2269 u8 port_num,
a97e2d86
IW
2270 const struct ib_wc *in_wc,
2271 const struct ib_grh *in_grh,
4cd7c947
IW
2272 const struct ib_mad_hdr *in_mad,
2273 size_t in_mad_size,
2274 struct ib_mad_hdr *out_mad,
2275 size_t *out_mad_size,
2276 u16 *out_mad_pkey_index);
59991f94
SH
2277 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2278 struct ib_ucontext *ucontext,
2279 struct ib_udata *udata);
2280 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2281 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2282 struct ib_flow_attr
2283 *flow_attr,
2284 int domain);
2285 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2286 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2287 struct ib_mr_status *mr_status);
036b1063 2288 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2289 void (*drain_rq)(struct ib_qp *qp);
2290 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2291 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2292 int state);
2293 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2294 struct ifla_vf_info *ivf);
2295 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2296 struct ifla_vf_stats *stats);
2297 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2298 int type);
5fd251c8
YH
2299 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2300 struct ib_wq_init_attr *init_attr,
2301 struct ib_udata *udata);
2302 int (*destroy_wq)(struct ib_wq *wq);
2303 int (*modify_wq)(struct ib_wq *wq,
2304 struct ib_wq_attr *attr,
2305 u32 wq_attr_mask,
2306 struct ib_udata *udata);
6d39786b
YH
2307 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2308 struct ib_rwq_ind_table_init_attr *init_attr,
2309 struct ib_udata *udata);
2310 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2fc77572 2311 /**
8e959601 2312 * rdma netdev operation
2fc77572
VN
2313 *
2314 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2315 * doesn't support the specified rdma netdev type.
2316 */
2317 struct net_device *(*alloc_rdma_netdev)(
2318 struct ib_device *device,
2319 u8 port_num,
2320 enum rdma_netdev_t type,
2321 const char *name,
2322 unsigned char name_assign_type,
2323 void (*setup)(struct net_device *));
9b513090 2324
e2773c06 2325 struct module *owner;
f4e91eb4 2326 struct device dev;
35be0681 2327 struct kobject *ports_parent;
1da177e4
LT
2328 struct list_head port_list;
2329
2330 enum {
2331 IB_DEV_UNINITIALIZED,
2332 IB_DEV_REGISTERED,
2333 IB_DEV_UNREGISTERED
2334 } reg_state;
2335
274c0891 2336 int uverbs_abi_ver;
17a55f79 2337 u64 uverbs_cmd_mask;
f21519b2 2338 u64 uverbs_ex_cmd_mask;
274c0891 2339
bd99fdea 2340 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2341 __be64 node_guid;
96f15c03 2342 u32 local_dma_lkey;
4139032b 2343 u16 is_switch:1;
1da177e4
LT
2344 u8 node_type;
2345 u8 phys_port_cnt;
3e153a93 2346 struct ib_device_attr attrs;
b40f4757
CL
2347 struct attribute_group *hw_stats_ag;
2348 struct rdma_hw_stats *hw_stats;
7738613e 2349
43579b5f
PP
2350#ifdef CONFIG_CGROUP_RDMA
2351 struct rdmacg_device cg_device;
2352#endif
2353
ecc82c53
LR
2354 u32 index;
2355
7738613e
IW
2356 /**
2357 * The following mandatory functions are used only at device
2358 * registration. Keep functions such as these at the end of this
2359 * structure to avoid cache line misses when accessing struct ib_device
2360 * in fast paths.
2361 */
2362 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
9abb0d1b 2363 void (*get_dev_fw_str)(struct ib_device *, char *str);
c66cd353
SG
2364 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2365 int comp_vector);
fac9658c
MB
2366
2367 struct uverbs_root_spec *specs_root;
1da177e4
LT
2368};
2369
2370struct ib_client {
2371 char *name;
2372 void (*add) (struct ib_device *);
7c1eb45a 2373 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2374
9268f72d
YK
2375 /* Returns the net_dev belonging to this ib_client and matching the
2376 * given parameters.
2377 * @dev: An RDMA device that the net_dev use for communication.
2378 * @port: A physical port number on the RDMA device.
2379 * @pkey: P_Key that the net_dev uses if applicable.
2380 * @gid: A GID that the net_dev uses to communicate.
2381 * @addr: An IP address the net_dev is configured with.
2382 * @client_data: The device's client data set by ib_set_client_data().
2383 *
2384 * An ib_client that implements a net_dev on top of RDMA devices
2385 * (such as IP over IB) should implement this callback, allowing the
2386 * rdma_cm module to find the right net_dev for a given request.
2387 *
2388 * The caller is responsible for calling dev_put on the returned
2389 * netdev. */
2390 struct net_device *(*get_net_dev_by_params)(
2391 struct ib_device *dev,
2392 u8 port,
2393 u16 pkey,
2394 const union ib_gid *gid,
2395 const struct sockaddr *addr,
2396 void *client_data);
1da177e4
LT
2397 struct list_head list;
2398};
2399
2400struct ib_device *ib_alloc_device(size_t size);
2401void ib_dealloc_device(struct ib_device *device);
2402
9abb0d1b 2403void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2404
9a6edb60
RC
2405int ib_register_device(struct ib_device *device,
2406 int (*port_callback)(struct ib_device *,
2407 u8, struct kobject *));
1da177e4
LT
2408void ib_unregister_device(struct ib_device *device);
2409
2410int ib_register_client (struct ib_client *client);
2411void ib_unregister_client(struct ib_client *client);
2412
2413void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2414void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2415 void *data);
2416
e2773c06
RD
2417static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2418{
2419 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2420}
2421
2422static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2423{
43c61165 2424 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2425}
2426
301a721e
MB
2427static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2428 size_t offset,
2429 size_t len)
2430{
2431 const void __user *p = udata->inbuf + offset;
92d27ae6 2432 bool ret;
301a721e
MB
2433 u8 *buf;
2434
2435 if (len > USHRT_MAX)
2436 return false;
2437
92d27ae6
ME
2438 buf = memdup_user(p, len);
2439 if (IS_ERR(buf))
301a721e
MB
2440 return false;
2441
301a721e 2442 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2443 kfree(buf);
2444 return ret;
2445}
2446
8a51866f
RD
2447/**
2448 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2449 * contains all required attributes and no attributes not allowed for
2450 * the given QP state transition.
2451 * @cur_state: Current QP state
2452 * @next_state: Next QP state
2453 * @type: QP type
2454 * @mask: Mask of supplied QP attributes
dd5f03be 2455 * @ll : link layer of port
8a51866f
RD
2456 *
2457 * This function is a helper function that a low-level driver's
2458 * modify_qp method can use to validate the consumer's input. It
2459 * checks that cur_state and next_state are valid QP states, that a
2460 * transition from cur_state to next_state is allowed by the IB spec,
2461 * and that the attribute mask supplied is allowed for the transition.
2462 */
2463int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2464 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2465 enum rdma_link_layer ll);
8a51866f 2466
dcc9881e
LR
2467void ib_register_event_handler(struct ib_event_handler *event_handler);
2468void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2469void ib_dispatch_event(struct ib_event *event);
2470
1da177e4
LT
2471int ib_query_port(struct ib_device *device,
2472 u8 port_num, struct ib_port_attr *port_attr);
2473
a3f5adaf
EC
2474enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2475 u8 port_num);
2476
4139032b
HR
2477/**
2478 * rdma_cap_ib_switch - Check if the device is IB switch
2479 * @device: Device to check
2480 *
2481 * Device driver is responsible for setting is_switch bit on
2482 * in ib_device structure at init time.
2483 *
2484 * Return: true if the device is IB switch.
2485 */
2486static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2487{
2488 return device->is_switch;
2489}
2490
0cf18d77
IW
2491/**
2492 * rdma_start_port - Return the first valid port number for the device
2493 * specified
2494 *
2495 * @device: Device to be checked
2496 *
2497 * Return start port number
2498 */
2499static inline u8 rdma_start_port(const struct ib_device *device)
2500{
4139032b 2501 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2502}
2503
2504/**
2505 * rdma_end_port - Return the last valid port number for the device
2506 * specified
2507 *
2508 * @device: Device to be checked
2509 *
2510 * Return last port number
2511 */
2512static inline u8 rdma_end_port(const struct ib_device *device)
2513{
4139032b 2514 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2515}
2516
24dc831b
YS
2517static inline int rdma_is_port_valid(const struct ib_device *device,
2518 unsigned int port)
2519{
2520 return (port >= rdma_start_port(device) &&
2521 port <= rdma_end_port(device));
2522}
2523
5ede9289 2524static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2525{
f9b22e35 2526 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2527}
2528
5ede9289 2529static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2530{
2531 return device->port_immutable[port_num].core_cap_flags &
2532 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2533}
2534
2535static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2536{
2537 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2538}
2539
2540static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2541{
f9b22e35 2542 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2543}
2544
5ede9289 2545static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2546{
f9b22e35 2547 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2548}
2549
5ede9289 2550static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2551{
7766a99f
MB
2552 return rdma_protocol_ib(device, port_num) ||
2553 rdma_protocol_roce(device, port_num);
de66be94
MW
2554}
2555
aa773bd4
OG
2556static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2557{
2558 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2559}
2560
ce1e055f
OG
2561static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2562{
2563 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2564}
2565
c757dea8 2566/**
296ec009 2567 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2568 * Management Datagrams.
296ec009
MW
2569 * @device: Device to check
2570 * @port_num: Port number to check
c757dea8 2571 *
296ec009
MW
2572 * Management Datagrams (MAD) are a required part of the InfiniBand
2573 * specification and are supported on all InfiniBand devices. A slightly
2574 * extended version are also supported on OPA interfaces.
c757dea8 2575 *
296ec009 2576 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2577 */
5ede9289 2578static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2579{
f9b22e35 2580 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2581}
2582
65995fee
IW
2583/**
2584 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2585 * Management Datagrams.
2586 * @device: Device to check
2587 * @port_num: Port number to check
2588 *
2589 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2590 * datagrams with their own versions. These OPA MADs share many but not all of
2591 * the characteristics of InfiniBand MADs.
2592 *
2593 * OPA MADs differ in the following ways:
2594 *
2595 * 1) MADs are variable size up to 2K
2596 * IBTA defined MADs remain fixed at 256 bytes
2597 * 2) OPA SMPs must carry valid PKeys
2598 * 3) OPA SMP packets are a different format
2599 *
2600 * Return: true if the port supports OPA MAD packet formats.
2601 */
2602static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2603{
2604 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2605 == RDMA_CORE_CAP_OPA_MAD;
2606}
2607
29541e3a 2608/**
296ec009
MW
2609 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2610 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2611 * @device: Device to check
2612 * @port_num: Port number to check
29541e3a 2613 *
296ec009
MW
2614 * Each InfiniBand node is required to provide a Subnet Management Agent
2615 * that the subnet manager can access. Prior to the fabric being fully
2616 * configured by the subnet manager, the SMA is accessed via a well known
2617 * interface called the Subnet Management Interface (SMI). This interface
2618 * uses directed route packets to communicate with the SM to get around the
2619 * chicken and egg problem of the SM needing to know what's on the fabric
2620 * in order to configure the fabric, and needing to configure the fabric in
2621 * order to send packets to the devices on the fabric. These directed
2622 * route packets do not need the fabric fully configured in order to reach
2623 * their destination. The SMI is the only method allowed to send
2624 * directed route packets on an InfiniBand fabric.
29541e3a 2625 *
296ec009 2626 * Return: true if the port provides an SMI.
29541e3a 2627 */
5ede9289 2628static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2629{
f9b22e35 2630 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2631}
2632
72219cea
MW
2633/**
2634 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2635 * Communication Manager.
296ec009
MW
2636 * @device: Device to check
2637 * @port_num: Port number to check
72219cea 2638 *
296ec009
MW
2639 * The InfiniBand Communication Manager is one of many pre-defined General
2640 * Service Agents (GSA) that are accessed via the General Service
2641 * Interface (GSI). It's role is to facilitate establishment of connections
2642 * between nodes as well as other management related tasks for established
2643 * connections.
72219cea 2644 *
296ec009
MW
2645 * Return: true if the port supports an IB CM (this does not guarantee that
2646 * a CM is actually running however).
72219cea 2647 */
5ede9289 2648static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2649{
f9b22e35 2650 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2651}
2652
04215330
MW
2653/**
2654 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2655 * Communication Manager.
296ec009
MW
2656 * @device: Device to check
2657 * @port_num: Port number to check
04215330 2658 *
296ec009
MW
2659 * Similar to above, but specific to iWARP connections which have a different
2660 * managment protocol than InfiniBand.
04215330 2661 *
296ec009
MW
2662 * Return: true if the port supports an iWARP CM (this does not guarantee that
2663 * a CM is actually running however).
04215330 2664 */
5ede9289 2665static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2666{
f9b22e35 2667 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2668}
2669
fe53ba2f
MW
2670/**
2671 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2672 * Subnet Administration.
296ec009
MW
2673 * @device: Device to check
2674 * @port_num: Port number to check
fe53ba2f 2675 *
296ec009
MW
2676 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2677 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2678 * fabrics, devices should resolve routes to other hosts by contacting the
2679 * SA to query the proper route.
fe53ba2f 2680 *
296ec009
MW
2681 * Return: true if the port should act as a client to the fabric Subnet
2682 * Administration interface. This does not imply that the SA service is
2683 * running locally.
fe53ba2f 2684 */
5ede9289 2685static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2686{
f9b22e35 2687 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2688}
2689
a31ad3b0
MW
2690/**
2691 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2692 * Multicast.
296ec009
MW
2693 * @device: Device to check
2694 * @port_num: Port number to check
a31ad3b0 2695 *
296ec009
MW
2696 * InfiniBand multicast registration is more complex than normal IPv4 or
2697 * IPv6 multicast registration. Each Host Channel Adapter must register
2698 * with the Subnet Manager when it wishes to join a multicast group. It
2699 * should do so only once regardless of how many queue pairs it subscribes
2700 * to this group. And it should leave the group only after all queue pairs
2701 * attached to the group have been detached.
a31ad3b0 2702 *
296ec009
MW
2703 * Return: true if the port must undertake the additional adminstrative
2704 * overhead of registering/unregistering with the SM and tracking of the
2705 * total number of queue pairs attached to the multicast group.
a31ad3b0 2706 */
5ede9289 2707static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2708{
2709 return rdma_cap_ib_sa(device, port_num);
2710}
2711
30a74ef4
MW
2712/**
2713 * rdma_cap_af_ib - Check if the port of device has the capability
2714 * Native Infiniband Address.
296ec009
MW
2715 * @device: Device to check
2716 * @port_num: Port number to check
30a74ef4 2717 *
296ec009
MW
2718 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2719 * GID. RoCE uses a different mechanism, but still generates a GID via
2720 * a prescribed mechanism and port specific data.
30a74ef4 2721 *
296ec009
MW
2722 * Return: true if the port uses a GID address to identify devices on the
2723 * network.
30a74ef4 2724 */
5ede9289 2725static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2726{
f9b22e35 2727 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2728}
2729
227128fc
MW
2730/**
2731 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2732 * Ethernet Address Handle.
2733 * @device: Device to check
2734 * @port_num: Port number to check
227128fc 2735 *
296ec009
MW
2736 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2737 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2738 * port. Normally, packet headers are generated by the sending host
2739 * adapter, but when sending connectionless datagrams, we must manually
2740 * inject the proper headers for the fabric we are communicating over.
227128fc 2741 *
296ec009
MW
2742 * Return: true if we are running as a RoCE port and must force the
2743 * addition of a Global Route Header built from our Ethernet Address
2744 * Handle into our header list for connectionless packets.
227128fc 2745 */
5ede9289 2746static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2747{
f9b22e35 2748 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2749}
2750
94d595c5
DC
2751/**
2752 * rdma_cap_opa_ah - Check if the port of device supports
2753 * OPA Address handles
2754 * @device: Device to check
2755 * @port_num: Port number to check
2756 *
2757 * Return: true if we are running on an OPA device which supports
2758 * the extended OPA addressing.
2759 */
2760static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2761{
2762 return (device->port_immutable[port_num].core_cap_flags &
2763 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2764}
2765
337877a4
IW
2766/**
2767 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2768 *
2769 * @device: Device
2770 * @port_num: Port number
2771 *
2772 * This MAD size includes the MAD headers and MAD payload. No other headers
2773 * are included.
2774 *
2775 * Return the max MAD size required by the Port. Will return 0 if the port
2776 * does not support MADs
2777 */
2778static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2779{
2780 return device->port_immutable[port_num].max_mad_size;
2781}
2782
03db3a2d
MB
2783/**
2784 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2785 * @device: Device to check
2786 * @port_num: Port number to check
2787 *
2788 * RoCE GID table mechanism manages the various GIDs for a device.
2789 *
2790 * NOTE: if allocating the port's GID table has failed, this call will still
2791 * return true, but any RoCE GID table API will fail.
2792 *
2793 * Return: true if the port uses RoCE GID table mechanism in order to manage
2794 * its GIDs.
2795 */
2796static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2797 u8 port_num)
2798{
2799 return rdma_protocol_roce(device, port_num) &&
2800 device->add_gid && device->del_gid;
2801}
2802
002516ed
CH
2803/*
2804 * Check if the device supports READ W/ INVALIDATE.
2805 */
2806static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2807{
2808 /*
2809 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2810 * has support for it yet.
2811 */
2812 return rdma_protocol_iwarp(dev, port_num);
2813}
2814
1da177e4 2815int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2816 u8 port_num, int index, union ib_gid *gid,
2817 struct ib_gid_attr *attr);
1da177e4 2818
50174a7f
EC
2819int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2820 int state);
2821int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2822 struct ifla_vf_info *info);
2823int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2824 struct ifla_vf_stats *stats);
2825int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2826 int type);
2827
1da177e4
LT
2828int ib_query_pkey(struct ib_device *device,
2829 u8 port_num, u16 index, u16 *pkey);
2830
2831int ib_modify_device(struct ib_device *device,
2832 int device_modify_mask,
2833 struct ib_device_modify *device_modify);
2834
2835int ib_modify_port(struct ib_device *device,
2836 u8 port_num, int port_modify_mask,
2837 struct ib_port_modify *port_modify);
2838
5eb620c8 2839int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2840 enum ib_gid_type gid_type, struct net_device *ndev,
2841 u8 *port_num, u16 *index);
5eb620c8
YE
2842
2843int ib_find_pkey(struct ib_device *device,
2844 u8 port_num, u16 pkey, u16 *index);
2845
ed082d36
CH
2846enum ib_pd_flags {
2847 /*
2848 * Create a memory registration for all memory in the system and place
2849 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2850 * ULPs to avoid the overhead of dynamic MRs.
2851 *
2852 * This flag is generally considered unsafe and must only be used in
2853 * extremly trusted environments. Every use of it will log a warning
2854 * in the kernel log.
2855 */
2856 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2857};
1da177e4 2858
ed082d36
CH
2859struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2860 const char *caller);
2861#define ib_alloc_pd(device, flags) \
2862 __ib_alloc_pd((device), (flags), __func__)
7dd78647 2863void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2864
2865/**
0a18cfe4 2866 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
2867 * @pd: The protection domain associated with the address handle.
2868 * @ah_attr: The attributes of the address vector.
2869 *
2870 * The address handle is used to reference a local or global destination
2871 * in all UD QP post sends.
2872 */
0a18cfe4 2873struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 2874
5cda6587
PP
2875/**
2876 * rdma_create_user_ah - Creates an address handle for the given address vector.
2877 * It resolves destination mac address for ah attribute of RoCE type.
2878 * @pd: The protection domain associated with the address handle.
2879 * @ah_attr: The attributes of the address vector.
2880 * @udata: pointer to user's input output buffer information need by
2881 * provider driver.
2882 *
2883 * It returns 0 on success and returns appropriate error code on error.
2884 * The address handle is used to reference a local or global destination
2885 * in all UD QP post sends.
2886 */
2887struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2888 struct rdma_ah_attr *ah_attr,
2889 struct ib_udata *udata);
850d8fd7
MS
2890/**
2891 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2892 * work completion.
2893 * @hdr: the L3 header to parse
2894 * @net_type: type of header to parse
2895 * @sgid: place to store source gid
2896 * @dgid: place to store destination gid
2897 */
2898int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2899 enum rdma_network_type net_type,
2900 union ib_gid *sgid, union ib_gid *dgid);
2901
2902/**
2903 * ib_get_rdma_header_version - Get the header version
2904 * @hdr: the L3 header to parse
2905 */
2906int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2907
4e00d694
SH
2908/**
2909 * ib_init_ah_from_wc - Initializes address handle attributes from a
2910 * work completion.
2911 * @device: Device on which the received message arrived.
2912 * @port_num: Port on which the received message arrived.
2913 * @wc: Work completion associated with the received message.
2914 * @grh: References the received global route header. This parameter is
2915 * ignored unless the work completion indicates that the GRH is valid.
2916 * @ah_attr: Returned attributes that can be used when creating an address
2917 * handle for replying to the message.
2918 */
73cdaaee
IW
2919int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2920 const struct ib_wc *wc, const struct ib_grh *grh,
90898850 2921 struct rdma_ah_attr *ah_attr);
4e00d694 2922
513789ed
HR
2923/**
2924 * ib_create_ah_from_wc - Creates an address handle associated with the
2925 * sender of the specified work completion.
2926 * @pd: The protection domain associated with the address handle.
2927 * @wc: Work completion information associated with a received message.
2928 * @grh: References the received global route header. This parameter is
2929 * ignored unless the work completion indicates that the GRH is valid.
2930 * @port_num: The outbound port number to associate with the address.
2931 *
2932 * The address handle is used to reference a local or global destination
2933 * in all UD QP post sends.
2934 */
73cdaaee
IW
2935struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2936 const struct ib_grh *grh, u8 port_num);
513789ed 2937
1da177e4 2938/**
67b985b6 2939 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
2940 * handle.
2941 * @ah: The address handle to modify.
2942 * @ah_attr: The new address vector attributes to associate with the
2943 * address handle.
2944 */
67b985b6 2945int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
2946
2947/**
bfbfd661 2948 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
2949 * handle.
2950 * @ah: The address handle to query.
2951 * @ah_attr: The address vector attributes associated with the address
2952 * handle.
2953 */
bfbfd661 2954int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
2955
2956/**
36523159 2957 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
2958 * @ah: The address handle to destroy.
2959 */
36523159 2960int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 2961
d41fcc67
RD
2962/**
2963 * ib_create_srq - Creates a SRQ associated with the specified protection
2964 * domain.
2965 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2966 * @srq_init_attr: A list of initial attributes required to create the
2967 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2968 * the actual capabilities of the created SRQ.
d41fcc67
RD
2969 *
2970 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2971 * requested size of the SRQ, and set to the actual values allocated
2972 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2973 * will always be at least as large as the requested values.
2974 */
2975struct ib_srq *ib_create_srq(struct ib_pd *pd,
2976 struct ib_srq_init_attr *srq_init_attr);
2977
2978/**
2979 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2980 * @srq: The SRQ to modify.
2981 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2982 * the current values of selected SRQ attributes are returned.
2983 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2984 * are being modified.
2985 *
2986 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2987 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2988 * the number of receives queued drops below the limit.
2989 */
2990int ib_modify_srq(struct ib_srq *srq,
2991 struct ib_srq_attr *srq_attr,
2992 enum ib_srq_attr_mask srq_attr_mask);
2993
2994/**
2995 * ib_query_srq - Returns the attribute list and current values for the
2996 * specified SRQ.
2997 * @srq: The SRQ to query.
2998 * @srq_attr: The attributes of the specified SRQ.
2999 */
3000int ib_query_srq(struct ib_srq *srq,
3001 struct ib_srq_attr *srq_attr);
3002
3003/**
3004 * ib_destroy_srq - Destroys the specified SRQ.
3005 * @srq: The SRQ to destroy.
3006 */
3007int ib_destroy_srq(struct ib_srq *srq);
3008
3009/**
3010 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3011 * @srq: The SRQ to post the work request on.
3012 * @recv_wr: A list of work requests to post on the receive queue.
3013 * @bad_recv_wr: On an immediate failure, this parameter will reference
3014 * the work request that failed to be posted on the QP.
3015 */
3016static inline int ib_post_srq_recv(struct ib_srq *srq,
3017 struct ib_recv_wr *recv_wr,
3018 struct ib_recv_wr **bad_recv_wr)
3019{
3020 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3021}
3022
1da177e4
LT
3023/**
3024 * ib_create_qp - Creates a QP associated with the specified protection
3025 * domain.
3026 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3027 * @qp_init_attr: A list of initial attributes required to create the
3028 * QP. If QP creation succeeds, then the attributes are updated to
3029 * the actual capabilities of the created QP.
1da177e4
LT
3030 */
3031struct ib_qp *ib_create_qp(struct ib_pd *pd,
3032 struct ib_qp_init_attr *qp_init_attr);
3033
a512c2fb
PP
3034/**
3035 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3036 * @qp: The QP to modify.
3037 * @attr: On input, specifies the QP attributes to modify. On output,
3038 * the current values of selected QP attributes are returned.
3039 * @attr_mask: A bit-mask used to specify which attributes of the QP
3040 * are being modified.
3041 * @udata: pointer to user's input output buffer information
3042 * are being modified.
3043 * It returns 0 on success and returns appropriate error code on error.
3044 */
3045int ib_modify_qp_with_udata(struct ib_qp *qp,
3046 struct ib_qp_attr *attr,
3047 int attr_mask,
3048 struct ib_udata *udata);
3049
1da177e4
LT
3050/**
3051 * ib_modify_qp - Modifies the attributes for the specified QP and then
3052 * transitions the QP to the given state.
3053 * @qp: The QP to modify.
3054 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3055 * the current values of selected QP attributes are returned.
3056 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3057 * are being modified.
3058 */
3059int ib_modify_qp(struct ib_qp *qp,
3060 struct ib_qp_attr *qp_attr,
3061 int qp_attr_mask);
3062
3063/**
3064 * ib_query_qp - Returns the attribute list and current values for the
3065 * specified QP.
3066 * @qp: The QP to query.
3067 * @qp_attr: The attributes of the specified QP.
3068 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3069 * @qp_init_attr: Additional attributes of the selected QP.
3070 *
3071 * The qp_attr_mask may be used to limit the query to gathering only the
3072 * selected attributes.
3073 */
3074int ib_query_qp(struct ib_qp *qp,
3075 struct ib_qp_attr *qp_attr,
3076 int qp_attr_mask,
3077 struct ib_qp_init_attr *qp_init_attr);
3078
3079/**
3080 * ib_destroy_qp - Destroys the specified QP.
3081 * @qp: The QP to destroy.
3082 */
3083int ib_destroy_qp(struct ib_qp *qp);
3084
d3d72d90 3085/**
0e0ec7e0
SH
3086 * ib_open_qp - Obtain a reference to an existing sharable QP.
3087 * @xrcd - XRC domain
3088 * @qp_open_attr: Attributes identifying the QP to open.
3089 *
3090 * Returns a reference to a sharable QP.
3091 */
3092struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3093 struct ib_qp_open_attr *qp_open_attr);
3094
3095/**
3096 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3097 * @qp: The QP handle to release
3098 *
0e0ec7e0
SH
3099 * The opened QP handle is released by the caller. The underlying
3100 * shared QP is not destroyed until all internal references are released.
d3d72d90 3101 */
0e0ec7e0 3102int ib_close_qp(struct ib_qp *qp);
d3d72d90 3103
1da177e4
LT
3104/**
3105 * ib_post_send - Posts a list of work requests to the send queue of
3106 * the specified QP.
3107 * @qp: The QP to post the work request on.
3108 * @send_wr: A list of work requests to post on the send queue.
3109 * @bad_send_wr: On an immediate failure, this parameter will reference
3110 * the work request that failed to be posted on the QP.
55464d46
BVA
3111 *
3112 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3113 * error is returned, the QP state shall not be affected,
3114 * ib_post_send() will return an immediate error after queueing any
3115 * earlier work requests in the list.
1da177e4
LT
3116 */
3117static inline int ib_post_send(struct ib_qp *qp,
3118 struct ib_send_wr *send_wr,
3119 struct ib_send_wr **bad_send_wr)
3120{
3121 return qp->device->post_send(qp, send_wr, bad_send_wr);
3122}
3123
3124/**
3125 * ib_post_recv - Posts a list of work requests to the receive queue of
3126 * the specified QP.
3127 * @qp: The QP to post the work request on.
3128 * @recv_wr: A list of work requests to post on the receive queue.
3129 * @bad_recv_wr: On an immediate failure, this parameter will reference
3130 * the work request that failed to be posted on the QP.
3131 */
3132static inline int ib_post_recv(struct ib_qp *qp,
3133 struct ib_recv_wr *recv_wr,
3134 struct ib_recv_wr **bad_recv_wr)
3135{
3136 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3137}
3138
14d3a3b2
CH
3139struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3140 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3141void ib_free_cq(struct ib_cq *cq);
3142int ib_process_cq_direct(struct ib_cq *cq, int budget);
3143
1da177e4
LT
3144/**
3145 * ib_create_cq - Creates a CQ on the specified device.
3146 * @device: The device on which to create the CQ.
3147 * @comp_handler: A user-specified callback that is invoked when a
3148 * completion event occurs on the CQ.
3149 * @event_handler: A user-specified callback that is invoked when an
3150 * asynchronous event not associated with a completion occurs on the CQ.
3151 * @cq_context: Context associated with the CQ returned to the user via
3152 * the associated completion and event handlers.
8e37210b 3153 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3154 *
3155 * Users can examine the cq structure to determine the actual CQ size.
3156 */
3157struct ib_cq *ib_create_cq(struct ib_device *device,
3158 ib_comp_handler comp_handler,
3159 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
3160 void *cq_context,
3161 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
3162
3163/**
3164 * ib_resize_cq - Modifies the capacity of the CQ.
3165 * @cq: The CQ to resize.
3166 * @cqe: The minimum size of the CQ.
3167 *
3168 * Users can examine the cq structure to determine the actual CQ size.
3169 */
3170int ib_resize_cq(struct ib_cq *cq, int cqe);
3171
2dd57162 3172/**
4190b4e9 3173 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3174 * @cq: The CQ to modify.
3175 * @cq_count: number of CQEs that will trigger an event
3176 * @cq_period: max period of time in usec before triggering an event
3177 *
3178 */
4190b4e9 3179int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3180
1da177e4
LT
3181/**
3182 * ib_destroy_cq - Destroys the specified CQ.
3183 * @cq: The CQ to destroy.
3184 */
3185int ib_destroy_cq(struct ib_cq *cq);
3186
3187/**
3188 * ib_poll_cq - poll a CQ for completion(s)
3189 * @cq:the CQ being polled
3190 * @num_entries:maximum number of completions to return
3191 * @wc:array of at least @num_entries &struct ib_wc where completions
3192 * will be returned
3193 *
3194 * Poll a CQ for (possibly multiple) completions. If the return value
3195 * is < 0, an error occurred. If the return value is >= 0, it is the
3196 * number of completions returned. If the return value is
3197 * non-negative and < num_entries, then the CQ was emptied.
3198 */
3199static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3200 struct ib_wc *wc)
3201{
3202 return cq->device->poll_cq(cq, num_entries, wc);
3203}
3204
3205/**
3206 * ib_peek_cq - Returns the number of unreaped completions currently
3207 * on the specified CQ.
3208 * @cq: The CQ to peek.
3209 * @wc_cnt: A minimum number of unreaped completions to check for.
3210 *
3211 * If the number of unreaped completions is greater than or equal to wc_cnt,
3212 * this function returns wc_cnt, otherwise, it returns the actual number of
3213 * unreaped completions.
3214 */
3215int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3216
3217/**
3218 * ib_req_notify_cq - Request completion notification on a CQ.
3219 * @cq: The CQ to generate an event for.
ed23a727
RD
3220 * @flags:
3221 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3222 * to request an event on the next solicited event or next work
3223 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3224 * may also be |ed in to request a hint about missed events, as
3225 * described below.
3226 *
3227 * Return Value:
3228 * < 0 means an error occurred while requesting notification
3229 * == 0 means notification was requested successfully, and if
3230 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3231 * were missed and it is safe to wait for another event. In
3232 * this case is it guaranteed that any work completions added
3233 * to the CQ since the last CQ poll will trigger a completion
3234 * notification event.
3235 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3236 * in. It means that the consumer must poll the CQ again to
3237 * make sure it is empty to avoid missing an event because of a
3238 * race between requesting notification and an entry being
3239 * added to the CQ. This return value means it is possible
3240 * (but not guaranteed) that a work completion has been added
3241 * to the CQ since the last poll without triggering a
3242 * completion notification event.
1da177e4
LT
3243 */
3244static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3245 enum ib_cq_notify_flags flags)
1da177e4 3246{
ed23a727 3247 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3248}
3249
3250/**
3251 * ib_req_ncomp_notif - Request completion notification when there are
3252 * at least the specified number of unreaped completions on the CQ.
3253 * @cq: The CQ to generate an event for.
3254 * @wc_cnt: The number of unreaped completions that should be on the
3255 * CQ before an event is generated.
3256 */
3257static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3258{
3259 return cq->device->req_ncomp_notif ?
3260 cq->device->req_ncomp_notif(cq, wc_cnt) :
3261 -ENOSYS;
3262}
3263
9b513090
RC
3264/**
3265 * ib_dma_mapping_error - check a DMA addr for error
3266 * @dev: The device for which the dma_addr was created
3267 * @dma_addr: The DMA address to check
3268 */
3269static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3270{
0957c29f 3271 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3272}
3273
3274/**
3275 * ib_dma_map_single - Map a kernel virtual address to DMA address
3276 * @dev: The device for which the dma_addr is to be created
3277 * @cpu_addr: The kernel virtual address
3278 * @size: The size of the region in bytes
3279 * @direction: The direction of the DMA
3280 */
3281static inline u64 ib_dma_map_single(struct ib_device *dev,
3282 void *cpu_addr, size_t size,
3283 enum dma_data_direction direction)
3284{
0957c29f 3285 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3286}
3287
3288/**
3289 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3290 * @dev: The device for which the DMA address was created
3291 * @addr: The DMA address
3292 * @size: The size of the region in bytes
3293 * @direction: The direction of the DMA
3294 */
3295static inline void ib_dma_unmap_single(struct ib_device *dev,
3296 u64 addr, size_t size,
3297 enum dma_data_direction direction)
3298{
0957c29f 3299 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3300}
3301
9b513090
RC
3302/**
3303 * ib_dma_map_page - Map a physical page to DMA address
3304 * @dev: The device for which the dma_addr is to be created
3305 * @page: The page to be mapped
3306 * @offset: The offset within the page
3307 * @size: The size of the region in bytes
3308 * @direction: The direction of the DMA
3309 */
3310static inline u64 ib_dma_map_page(struct ib_device *dev,
3311 struct page *page,
3312 unsigned long offset,
3313 size_t size,
3314 enum dma_data_direction direction)
3315{
0957c29f 3316 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3317}
3318
3319/**
3320 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3321 * @dev: The device for which the DMA address was created
3322 * @addr: The DMA address
3323 * @size: The size of the region in bytes
3324 * @direction: The direction of the DMA
3325 */
3326static inline void ib_dma_unmap_page(struct ib_device *dev,
3327 u64 addr, size_t size,
3328 enum dma_data_direction direction)
3329{
0957c29f 3330 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3331}
3332
3333/**
3334 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3335 * @dev: The device for which the DMA addresses are to be created
3336 * @sg: The array of scatter/gather entries
3337 * @nents: The number of scatter/gather entries
3338 * @direction: The direction of the DMA
3339 */
3340static inline int ib_dma_map_sg(struct ib_device *dev,
3341 struct scatterlist *sg, int nents,
3342 enum dma_data_direction direction)
3343{
0957c29f 3344 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3345}
3346
3347/**
3348 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3349 * @dev: The device for which the DMA addresses were created
3350 * @sg: The array of scatter/gather entries
3351 * @nents: The number of scatter/gather entries
3352 * @direction: The direction of the DMA
3353 */
3354static inline void ib_dma_unmap_sg(struct ib_device *dev,
3355 struct scatterlist *sg, int nents,
3356 enum dma_data_direction direction)
3357{
0957c29f 3358 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3359}
3360
cb9fbc5c
AK
3361static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3362 struct scatterlist *sg, int nents,
3363 enum dma_data_direction direction,
00085f1e 3364 unsigned long dma_attrs)
cb9fbc5c 3365{
0957c29f
BVA
3366 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3367 dma_attrs);
cb9fbc5c
AK
3368}
3369
3370static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3371 struct scatterlist *sg, int nents,
3372 enum dma_data_direction direction,
00085f1e 3373 unsigned long dma_attrs)
cb9fbc5c 3374{
0957c29f 3375 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3376}
9b513090
RC
3377/**
3378 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3379 * @dev: The device for which the DMA addresses were created
3380 * @sg: The scatter/gather entry
ea58a595
MM
3381 *
3382 * Note: this function is obsolete. To do: change all occurrences of
3383 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3384 */
3385static inline u64 ib_sg_dma_address(struct ib_device *dev,
3386 struct scatterlist *sg)
3387{
d1998ef3 3388 return sg_dma_address(sg);
9b513090
RC
3389}
3390
3391/**
3392 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3393 * @dev: The device for which the DMA addresses were created
3394 * @sg: The scatter/gather entry
ea58a595
MM
3395 *
3396 * Note: this function is obsolete. To do: change all occurrences of
3397 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3398 */
3399static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3400 struct scatterlist *sg)
3401{
d1998ef3 3402 return sg_dma_len(sg);
9b513090
RC
3403}
3404
3405/**
3406 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3407 * @dev: The device for which the DMA address was created
3408 * @addr: The DMA address
3409 * @size: The size of the region in bytes
3410 * @dir: The direction of the DMA
3411 */
3412static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3413 u64 addr,
3414 size_t size,
3415 enum dma_data_direction dir)
3416{
0957c29f 3417 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3418}
3419
3420/**
3421 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3422 * @dev: The device for which the DMA address was created
3423 * @addr: The DMA address
3424 * @size: The size of the region in bytes
3425 * @dir: The direction of the DMA
3426 */
3427static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3428 u64 addr,
3429 size_t size,
3430 enum dma_data_direction dir)
3431{
0957c29f 3432 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3433}
3434
3435/**
3436 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3437 * @dev: The device for which the DMA address is requested
3438 * @size: The size of the region to allocate in bytes
3439 * @dma_handle: A pointer for returning the DMA address of the region
3440 * @flag: memory allocator flags
3441 */
3442static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3443 size_t size,
d43dbacf 3444 dma_addr_t *dma_handle,
9b513090
RC
3445 gfp_t flag)
3446{
0957c29f 3447 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3448}
3449
3450/**
3451 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3452 * @dev: The device for which the DMA addresses were allocated
3453 * @size: The size of the region
3454 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3455 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3456 */
3457static inline void ib_dma_free_coherent(struct ib_device *dev,
3458 size_t size, void *cpu_addr,
d43dbacf 3459 dma_addr_t dma_handle)
9b513090 3460{
0957c29f 3461 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3462}
3463
1da177e4
LT
3464/**
3465 * ib_dereg_mr - Deregisters a memory region and removes it from the
3466 * HCA translation table.
3467 * @mr: The memory region to deregister.
7083e42e
SM
3468 *
3469 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3470 */
3471int ib_dereg_mr(struct ib_mr *mr);
3472
9bee178b
SG
3473struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3474 enum ib_mr_type mr_type,
3475 u32 max_num_sg);
00f7ec36 3476
00f7ec36
SW
3477/**
3478 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3479 * R_Key and L_Key.
3480 * @mr - struct ib_mr pointer to be updated.
3481 * @newkey - new key to be used.
3482 */
3483static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3484{
3485 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3486 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3487}
3488
7083e42e
SM
3489/**
3490 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3491 * for calculating a new rkey for type 2 memory windows.
3492 * @rkey - the rkey to increment.
3493 */
3494static inline u32 ib_inc_rkey(u32 rkey)
3495{
3496 const u32 mask = 0x000000ff;
3497 return ((rkey + 1) & mask) | (rkey & ~mask);
3498}
3499
1da177e4
LT
3500/**
3501 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3502 * @pd: The protection domain associated with the unmapped region.
3503 * @mr_access_flags: Specifies the memory access rights.
3504 * @fmr_attr: Attributes of the unmapped region.
3505 *
3506 * A fast memory region must be mapped before it can be used as part of
3507 * a work request.
3508 */
3509struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3510 int mr_access_flags,
3511 struct ib_fmr_attr *fmr_attr);
3512
3513/**
3514 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3515 * @fmr: The fast memory region to associate with the pages.
3516 * @page_list: An array of physical pages to map to the fast memory region.
3517 * @list_len: The number of pages in page_list.
3518 * @iova: The I/O virtual address to use with the mapped region.
3519 */
3520static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3521 u64 *page_list, int list_len,
3522 u64 iova)
3523{
3524 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3525}
3526
3527/**
3528 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3529 * @fmr_list: A linked list of fast memory regions to unmap.
3530 */
3531int ib_unmap_fmr(struct list_head *fmr_list);
3532
3533/**
3534 * ib_dealloc_fmr - Deallocates a fast memory region.
3535 * @fmr: The fast memory region to deallocate.
3536 */
3537int ib_dealloc_fmr(struct ib_fmr *fmr);
3538
3539/**
3540 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3541 * @qp: QP to attach to the multicast group. The QP must be type
3542 * IB_QPT_UD.
3543 * @gid: Multicast group GID.
3544 * @lid: Multicast group LID in host byte order.
3545 *
3546 * In order to send and receive multicast packets, subnet
3547 * administration must have created the multicast group and configured
3548 * the fabric appropriately. The port associated with the specified
3549 * QP must also be a member of the multicast group.
3550 */
3551int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3552
3553/**
3554 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3555 * @qp: QP to detach from the multicast group.
3556 * @gid: Multicast group GID.
3557 * @lid: Multicast group LID in host byte order.
3558 */
3559int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3560
59991f94
SH
3561/**
3562 * ib_alloc_xrcd - Allocates an XRC domain.
3563 * @device: The device on which to allocate the XRC domain.
3564 */
3565struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3566
3567/**
3568 * ib_dealloc_xrcd - Deallocates an XRC domain.
3569 * @xrcd: The XRC domain to deallocate.
3570 */
3571int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3572
319a441d
HHZ
3573struct ib_flow *ib_create_flow(struct ib_qp *qp,
3574 struct ib_flow_attr *flow_attr, int domain);
3575int ib_destroy_flow(struct ib_flow *flow_id);
3576
1c636f80
EC
3577static inline int ib_check_mr_access(int flags)
3578{
3579 /*
3580 * Local write permission is required if remote write or
3581 * remote atomic permission is also requested.
3582 */
3583 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3584 !(flags & IB_ACCESS_LOCAL_WRITE))
3585 return -EINVAL;
3586
3587 return 0;
3588}
3589
449634fc
JM
3590static inline bool ib_access_writable(int access_flags)
3591{
3592 /*
3593 * We have writable memory backing the MR if any of the following
3594 * access flags are set. "Local write" and "remote write" obviously
3595 * require write access. "Remote atomic" can do things like fetch and
3596 * add, which will modify memory, and "MW bind" can change permissions
3597 * by binding a window.
3598 */
3599 return access_flags &
3600 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3601 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3602}
3603
1b01d335
SG
3604/**
3605 * ib_check_mr_status: lightweight check of MR status.
3606 * This routine may provide status checks on a selected
3607 * ib_mr. first use is for signature status check.
3608 *
3609 * @mr: A memory region.
3610 * @check_mask: Bitmask of which checks to perform from
3611 * ib_mr_status_check enumeration.
3612 * @mr_status: The container of relevant status checks.
3613 * failed checks will be indicated in the status bitmask
3614 * and the relevant info shall be in the error item.
3615 */
3616int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3617 struct ib_mr_status *mr_status);
3618
9268f72d
YK
3619struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3620 u16 pkey, const union ib_gid *gid,
3621 const struct sockaddr *addr);
5fd251c8
YH
3622struct ib_wq *ib_create_wq(struct ib_pd *pd,
3623 struct ib_wq_init_attr *init_attr);
3624int ib_destroy_wq(struct ib_wq *wq);
3625int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3626 u32 wq_attr_mask);
6d39786b
YH
3627struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3628 struct ib_rwq_ind_table_init_attr*
3629 wq_ind_table_init_attr);
3630int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3631
ff2ba993 3632int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3633 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3634
3635static inline int
ff2ba993 3636ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3637 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3638{
3639 int n;
3640
ff2ba993 3641 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3642 mr->iova = 0;
3643
3644 return n;
3645}
3646
ff2ba993 3647int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3648 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3649
765d6774
SW
3650void ib_drain_rq(struct ib_qp *qp);
3651void ib_drain_sq(struct ib_qp *qp);
3652void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3653
d4186194 3654int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3655
3656static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3657{
44c58487
DC
3658 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3659 return attr->roce.dmac;
3660 return NULL;
2224c47a
DC
3661}
3662
64b4646e 3663static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3664{
44c58487 3665 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3666 attr->ib.dlid = (u16)dlid;
3667 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3668 attr->opa.dlid = dlid;
2224c47a
DC
3669}
3670
64b4646e 3671static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3672{
44c58487
DC
3673 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3674 return attr->ib.dlid;
64b4646e
DC
3675 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3676 return attr->opa.dlid;
44c58487 3677 return 0;
2224c47a
DC
3678}
3679
3680static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3681{
3682 attr->sl = sl;
3683}
3684
3685static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3686{
3687 return attr->sl;
3688}
3689
3690static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3691 u8 src_path_bits)
3692{
44c58487
DC
3693 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3694 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
3695 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3696 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
3697}
3698
3699static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3700{
44c58487
DC
3701 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3702 return attr->ib.src_path_bits;
64b4646e
DC
3703 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3704 return attr->opa.src_path_bits;
44c58487 3705 return 0;
2224c47a
DC
3706}
3707
d98bb7f7
DH
3708static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3709 bool make_grd)
3710{
3711 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3712 attr->opa.make_grd = make_grd;
3713}
3714
3715static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3716{
3717 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3718 return attr->opa.make_grd;
3719 return false;
3720}
3721
2224c47a
DC
3722static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3723{
3724 attr->port_num = port_num;
3725}
3726
3727static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3728{
3729 return attr->port_num;
3730}
3731
3732static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3733 u8 static_rate)
3734{
3735 attr->static_rate = static_rate;
3736}
3737
3738static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3739{
3740 return attr->static_rate;
3741}
3742
3743static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3744 enum ib_ah_flags flag)
3745{
3746 attr->ah_flags = flag;
3747}
3748
3749static inline enum ib_ah_flags
3750 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3751{
3752 return attr->ah_flags;
3753}
3754
3755static inline const struct ib_global_route
3756 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3757{
3758 return &attr->grh;
3759}
3760
3761/*To retrieve and modify the grh */
3762static inline struct ib_global_route
3763 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3764{
3765 return &attr->grh;
3766}
3767
3768static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3769{
3770 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3771
3772 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3773}
3774
3775static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3776 __be64 prefix)
3777{
3778 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3779
3780 grh->dgid.global.subnet_prefix = prefix;
3781}
3782
3783static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3784 __be64 if_id)
3785{
3786 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3787
3788 grh->dgid.global.interface_id = if_id;
3789}
3790
3791static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3792 union ib_gid *dgid, u32 flow_label,
3793 u8 sgid_index, u8 hop_limit,
3794 u8 traffic_class)
3795{
3796 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3797
3798 attr->ah_flags = IB_AH_GRH;
3799 if (dgid)
3800 grh->dgid = *dgid;
3801 grh->flow_label = flow_label;
3802 grh->sgid_index = sgid_index;
3803 grh->hop_limit = hop_limit;
3804 grh->traffic_class = traffic_class;
3805}
44c58487 3806
1163a8be
DH
3807/**
3808 * rdma_ah_find_type - Return address handle type.
3809 *
3810 * @dev: Device to be checked
3811 * @port_num: Port number
3812 */
44c58487 3813static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
1163a8be 3814 u8 port_num)
44c58487 3815{
5f557c01 3816 if (rdma_protocol_roce(dev, port_num))
44c58487 3817 return RDMA_AH_ATTR_TYPE_ROCE;
1163a8be
DH
3818 if (rdma_protocol_ib(dev, port_num)) {
3819 if (rdma_cap_opa_ah(dev, port_num))
3820 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 3821 return RDMA_AH_ATTR_TYPE_IB;
1163a8be
DH
3822 }
3823
3824 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 3825}
7db20ecd 3826
62ede777
HD
3827/**
3828 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3829 * In the current implementation the only way to get
3830 * get the 32bit lid is from other sources for OPA.
3831 * For IB, lids will always be 16bits so cast the
3832 * value accordingly.
3833 *
3834 * @lid: A 32bit LID
3835 */
3836static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 3837{
62ede777
HD
3838 WARN_ON_ONCE(lid & 0xFFFF0000);
3839 return (u16)lid;
7db20ecd
HD
3840}
3841
62ede777
HD
3842/**
3843 * ib_lid_be16 - Return lid in 16bit BE encoding.
3844 *
3845 * @lid: A 32bit LID
3846 */
3847static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 3848{
62ede777
HD
3849 WARN_ON_ONCE(lid & 0xFFFF0000);
3850 return cpu_to_be16((u16)lid);
7db20ecd 3851}
32043830 3852
c66cd353
SG
3853/**
3854 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3855 * vector
3856 * @device: the rdma device
3857 * @comp_vector: index of completion vector
3858 *
3859 * Returns NULL on failure, otherwise a corresponding cpu map of the
3860 * completion vector (returns all-cpus map if the device driver doesn't
3861 * implement get_vector_affinity).
3862 */
3863static inline const struct cpumask *
3864ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3865{
3866 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3867 !device->get_vector_affinity)
3868 return NULL;
3869
3870 return device->get_vector_affinity(device, comp_vector);
3871
3872}
3873
1da177e4 3874#endif /* IB_VERBS_H */