]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
IB/mlx4: Support raw packet protocol
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
e2773c06 58
50174a7f 59#include <linux/if_link.h>
60063497 60#include <linux/atomic.h>
882214e2 61#include <linux/mmu_notifier.h>
7c0f6ba6 62#include <linux/uaccess.h>
1da177e4 63
f0626710 64extern struct workqueue_struct *ib_wq;
14d3a3b2 65extern struct workqueue_struct *ib_comp_wq;
f0626710 66
1da177e4
LT
67union ib_gid {
68 u8 raw[16];
69 struct {
97f52eb4
SH
70 __be64 subnet_prefix;
71 __be64 interface_id;
1da177e4
LT
72 } global;
73};
74
e26be1bf
MS
75extern union ib_gid zgid;
76
b39ffa1d
MB
77enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
7766a99f 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
82 IB_GID_TYPE_SIZE
83};
84
7ead4bcb 85#define ROCE_V2_UDP_DPORT 4791
03db3a2d 86struct ib_gid_attr {
b39ffa1d 87 enum ib_gid_type gid_type;
03db3a2d
MB
88 struct net_device *ndev;
89};
90
07ebafba
TT
91enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
180771a3
UM
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
5db5765e 98 RDMA_NODE_USNIC_UDP,
1da177e4
LT
99};
100
a0c1b2a3
EC
101enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104};
105
07ebafba
TT
106enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
180771a3 108 RDMA_TRANSPORT_IWARP,
248567f7
UM
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
111};
112
6b90a6d6
MW
113enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118};
119
8385fd84
RD
120__attribute_const__ enum rdma_transport_type
121rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 122
c865f246
SK
123enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128};
129
130static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131{
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138}
139
140static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142{
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150}
151
a3f5adaf
EC
152enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156};
157
1da177e4 158enum ib_device_cap_flags {
7ca0bc53
LR
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
7ca0bc53
LR
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
7ca0bc53
LR
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
7ca0bc53
LR
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 210 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 211 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
212 /*
213 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
214 * support execution of WQEs that involve synchronization
215 * of I/O operations with single completion queue managed
216 * by hardware.
217 */
218 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
219 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
220 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 221 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 222 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 223 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 224 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 225 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
1b01d335
SG
226};
227
228enum ib_signature_prot_cap {
229 IB_PROT_T10DIF_TYPE_1 = 1,
230 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
231 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
232};
233
234enum ib_signature_guard_cap {
235 IB_GUARD_T10DIF_CRC = 1,
236 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
237};
238
239enum ib_atomic_cap {
240 IB_ATOMIC_NONE,
241 IB_ATOMIC_HCA,
242 IB_ATOMIC_GLOB
243};
244
860f10a7 245enum ib_odp_general_cap_bits {
25bf14d6
AK
246 IB_ODP_SUPPORT = 1 << 0,
247 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
248};
249
250enum ib_odp_transport_cap_bits {
251 IB_ODP_SUPPORT_SEND = 1 << 0,
252 IB_ODP_SUPPORT_RECV = 1 << 1,
253 IB_ODP_SUPPORT_WRITE = 1 << 2,
254 IB_ODP_SUPPORT_READ = 1 << 3,
255 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
256};
257
258struct ib_odp_caps {
259 uint64_t general_caps;
260 struct {
261 uint32_t rc_odp_caps;
262 uint32_t uc_odp_caps;
263 uint32_t ud_odp_caps;
264 } per_transport_caps;
265};
266
ccf20562
YH
267struct ib_rss_caps {
268 /* Corresponding bit will be set if qp type from
269 * 'enum ib_qp_type' is supported, e.g.
270 * supported_qpts |= 1 << IB_QPT_UD
271 */
272 u32 supported_qpts;
273 u32 max_rwq_indirection_tables;
274 u32 max_rwq_indirection_table_size;
275};
276
b9926b92
MB
277enum ib_cq_creation_flags {
278 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
8a06ce59 279 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
b9926b92
MB
280};
281
bcf4c1ea
MB
282struct ib_cq_init_attr {
283 unsigned int cqe;
284 int comp_vector;
285 u32 flags;
286};
287
1da177e4
LT
288struct ib_device_attr {
289 u64 fw_ver;
97f52eb4 290 __be64 sys_image_guid;
1da177e4
LT
291 u64 max_mr_size;
292 u64 page_size_cap;
293 u32 vendor_id;
294 u32 vendor_part_id;
295 u32 hw_ver;
296 int max_qp;
297 int max_qp_wr;
fb532d6a 298 u64 device_cap_flags;
1da177e4
LT
299 int max_sge;
300 int max_sge_rd;
301 int max_cq;
302 int max_cqe;
303 int max_mr;
304 int max_pd;
305 int max_qp_rd_atom;
306 int max_ee_rd_atom;
307 int max_res_rd_atom;
308 int max_qp_init_rd_atom;
309 int max_ee_init_rd_atom;
310 enum ib_atomic_cap atomic_cap;
5e80ba8f 311 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
312 int max_ee;
313 int max_rdd;
314 int max_mw;
315 int max_raw_ipv6_qp;
316 int max_raw_ethy_qp;
317 int max_mcast_grp;
318 int max_mcast_qp_attach;
319 int max_total_mcast_qp_attach;
320 int max_ah;
321 int max_fmr;
322 int max_map_per_fmr;
323 int max_srq;
324 int max_srq_wr;
325 int max_srq_sge;
00f7ec36 326 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
327 u16 max_pkeys;
328 u8 local_ca_ack_delay;
1b01d335
SG
329 int sig_prot_cap;
330 int sig_guard_cap;
860f10a7 331 struct ib_odp_caps odp_caps;
24306dc6
MB
332 uint64_t timestamp_mask;
333 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
334 struct ib_rss_caps rss_caps;
335 u32 max_wq_type_rq;
ebaaee25 336 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
1da177e4
LT
337};
338
339enum ib_mtu {
340 IB_MTU_256 = 1,
341 IB_MTU_512 = 2,
342 IB_MTU_1024 = 3,
343 IB_MTU_2048 = 4,
344 IB_MTU_4096 = 5
345};
346
347static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
348{
349 switch (mtu) {
350 case IB_MTU_256: return 256;
351 case IB_MTU_512: return 512;
352 case IB_MTU_1024: return 1024;
353 case IB_MTU_2048: return 2048;
354 case IB_MTU_4096: return 4096;
355 default: return -1;
356 }
357}
358
359enum ib_port_state {
360 IB_PORT_NOP = 0,
361 IB_PORT_DOWN = 1,
362 IB_PORT_INIT = 2,
363 IB_PORT_ARMED = 3,
364 IB_PORT_ACTIVE = 4,
365 IB_PORT_ACTIVE_DEFER = 5
366};
367
368enum ib_port_cap_flags {
369 IB_PORT_SM = 1 << 1,
370 IB_PORT_NOTICE_SUP = 1 << 2,
371 IB_PORT_TRAP_SUP = 1 << 3,
372 IB_PORT_OPT_IPD_SUP = 1 << 4,
373 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
374 IB_PORT_SL_MAP_SUP = 1 << 6,
375 IB_PORT_MKEY_NVRAM = 1 << 7,
376 IB_PORT_PKEY_NVRAM = 1 << 8,
377 IB_PORT_LED_INFO_SUP = 1 << 9,
378 IB_PORT_SM_DISABLED = 1 << 10,
379 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
380 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 381 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
382 IB_PORT_CM_SUP = 1 << 16,
383 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
384 IB_PORT_REINIT_SUP = 1 << 18,
385 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
386 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
387 IB_PORT_DR_NOTICE_SUP = 1 << 21,
388 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
389 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
390 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 391 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 392 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
393};
394
395enum ib_port_width {
396 IB_WIDTH_1X = 1,
397 IB_WIDTH_4X = 2,
398 IB_WIDTH_8X = 4,
399 IB_WIDTH_12X = 8
400};
401
402static inline int ib_width_enum_to_int(enum ib_port_width width)
403{
404 switch (width) {
405 case IB_WIDTH_1X: return 1;
406 case IB_WIDTH_4X: return 4;
407 case IB_WIDTH_8X: return 8;
408 case IB_WIDTH_12X: return 12;
409 default: return -1;
410 }
411}
412
2e96691c
OG
413enum ib_port_speed {
414 IB_SPEED_SDR = 1,
415 IB_SPEED_DDR = 2,
416 IB_SPEED_QDR = 4,
417 IB_SPEED_FDR10 = 8,
418 IB_SPEED_FDR = 16,
419 IB_SPEED_EDR = 32
420};
421
b40f4757
CL
422/**
423 * struct rdma_hw_stats
424 * @timestamp - Used by the core code to track when the last update was
425 * @lifespan - Used by the core code to determine how old the counters
426 * should be before being updated again. Stored in jiffies, defaults
427 * to 10 milliseconds, drivers can override the default be specifying
428 * their own value during their allocation routine.
429 * @name - Array of pointers to static names used for the counters in
430 * directory.
431 * @num_counters - How many hardware counters there are. If name is
432 * shorter than this number, a kernel oops will result. Driver authors
433 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
434 * in their code to prevent this.
435 * @value - Array of u64 counters that are accessed by the sysfs code and
436 * filled in by the drivers get_stats routine
437 */
438struct rdma_hw_stats {
439 unsigned long timestamp;
440 unsigned long lifespan;
441 const char * const *names;
442 int num_counters;
443 u64 value[];
7f624d02
SW
444};
445
b40f4757
CL
446#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
447/**
448 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
449 * for drivers.
450 * @names - Array of static const char *
451 * @num_counters - How many elements in array
452 * @lifespan - How many milliseconds between updates
453 */
454static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
455 const char * const *names, int num_counters,
456 unsigned long lifespan)
457{
458 struct rdma_hw_stats *stats;
459
460 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
461 GFP_KERNEL);
462 if (!stats)
463 return NULL;
464 stats->names = names;
465 stats->num_counters = num_counters;
466 stats->lifespan = msecs_to_jiffies(lifespan);
467
468 return stats;
469}
470
471
f9b22e35
IW
472/* Define bits for the various functionality this port needs to be supported by
473 * the core.
474 */
475/* Management 0x00000FFF */
476#define RDMA_CORE_CAP_IB_MAD 0x00000001
477#define RDMA_CORE_CAP_IB_SMI 0x00000002
478#define RDMA_CORE_CAP_IB_CM 0x00000004
479#define RDMA_CORE_CAP_IW_CM 0x00000008
480#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 481#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
482
483/* Address format 0x000FF000 */
484#define RDMA_CORE_CAP_AF_IB 0x00001000
485#define RDMA_CORE_CAP_ETH_AH 0x00002000
486
487/* Protocol 0xFFF00000 */
488#define RDMA_CORE_CAP_PROT_IB 0x00100000
489#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
490#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 491#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 492#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
f9b22e35
IW
493
494#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
495 | RDMA_CORE_CAP_IB_MAD \
496 | RDMA_CORE_CAP_IB_SMI \
497 | RDMA_CORE_CAP_IB_CM \
498 | RDMA_CORE_CAP_IB_SA \
499 | RDMA_CORE_CAP_AF_IB)
500#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
501 | RDMA_CORE_CAP_IB_MAD \
502 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
503 | RDMA_CORE_CAP_AF_IB \
504 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
505#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
506 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
507 | RDMA_CORE_CAP_IB_MAD \
508 | RDMA_CORE_CAP_IB_CM \
509 | RDMA_CORE_CAP_AF_IB \
510 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
511#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
512 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
513#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
514 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 515
aa773bd4
OG
516#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
517
1da177e4 518struct ib_port_attr {
fad61ad4 519 u64 subnet_prefix;
1da177e4
LT
520 enum ib_port_state state;
521 enum ib_mtu max_mtu;
522 enum ib_mtu active_mtu;
523 int gid_tbl_len;
524 u32 port_cap_flags;
525 u32 max_msg_sz;
526 u32 bad_pkey_cntr;
527 u32 qkey_viol_cntr;
528 u16 pkey_tbl_len;
529 u16 lid;
530 u16 sm_lid;
531 u8 lmc;
532 u8 max_vl_num;
533 u8 sm_sl;
534 u8 subnet_timeout;
535 u8 init_type_reply;
536 u8 active_width;
537 u8 active_speed;
538 u8 phys_state;
a0c1b2a3 539 bool grh_required;
1da177e4
LT
540};
541
542enum ib_device_modify_flags {
c5bcbbb9
RD
543 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
544 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
545};
546
bd99fdea
YS
547#define IB_DEVICE_NODE_DESC_MAX 64
548
1da177e4
LT
549struct ib_device_modify {
550 u64 sys_image_guid;
bd99fdea 551 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
552};
553
554enum ib_port_modify_flags {
555 IB_PORT_SHUTDOWN = 1,
556 IB_PORT_INIT_TYPE = (1<<2),
557 IB_PORT_RESET_QKEY_CNTR = (1<<3)
558};
559
560struct ib_port_modify {
561 u32 set_port_cap_mask;
562 u32 clr_port_cap_mask;
563 u8 init_type;
564};
565
566enum ib_event_type {
567 IB_EVENT_CQ_ERR,
568 IB_EVENT_QP_FATAL,
569 IB_EVENT_QP_REQ_ERR,
570 IB_EVENT_QP_ACCESS_ERR,
571 IB_EVENT_COMM_EST,
572 IB_EVENT_SQ_DRAINED,
573 IB_EVENT_PATH_MIG,
574 IB_EVENT_PATH_MIG_ERR,
575 IB_EVENT_DEVICE_FATAL,
576 IB_EVENT_PORT_ACTIVE,
577 IB_EVENT_PORT_ERR,
578 IB_EVENT_LID_CHANGE,
579 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
580 IB_EVENT_SM_CHANGE,
581 IB_EVENT_SRQ_ERR,
582 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 583 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
584 IB_EVENT_CLIENT_REREGISTER,
585 IB_EVENT_GID_CHANGE,
f213c052 586 IB_EVENT_WQ_FATAL,
1da177e4
LT
587};
588
db7489e0 589const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 590
1da177e4
LT
591struct ib_event {
592 struct ib_device *device;
593 union {
594 struct ib_cq *cq;
595 struct ib_qp *qp;
d41fcc67 596 struct ib_srq *srq;
f213c052 597 struct ib_wq *wq;
1da177e4
LT
598 u8 port_num;
599 } element;
600 enum ib_event_type event;
601};
602
603struct ib_event_handler {
604 struct ib_device *device;
605 void (*handler)(struct ib_event_handler *, struct ib_event *);
606 struct list_head list;
607};
608
609#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
610 do { \
611 (_ptr)->device = _device; \
612 (_ptr)->handler = _handler; \
613 INIT_LIST_HEAD(&(_ptr)->list); \
614 } while (0)
615
616struct ib_global_route {
617 union ib_gid dgid;
618 u32 flow_label;
619 u8 sgid_index;
620 u8 hop_limit;
621 u8 traffic_class;
622};
623
513789ed 624struct ib_grh {
97f52eb4
SH
625 __be32 version_tclass_flow;
626 __be16 paylen;
513789ed
HR
627 u8 next_hdr;
628 u8 hop_limit;
629 union ib_gid sgid;
630 union ib_gid dgid;
631};
632
c865f246
SK
633union rdma_network_hdr {
634 struct ib_grh ibgrh;
635 struct {
636 /* The IB spec states that if it's IPv4, the header
637 * is located in the last 20 bytes of the header.
638 */
639 u8 reserved[20];
640 struct iphdr roce4grh;
641 };
642};
643
1da177e4
LT
644enum {
645 IB_MULTICAST_QPN = 0xffffff
646};
647
f3a7c66b 648#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 649#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 650
1da177e4
LT
651enum ib_ah_flags {
652 IB_AH_GRH = 1
653};
654
bf6a9e31
JM
655enum ib_rate {
656 IB_RATE_PORT_CURRENT = 0,
657 IB_RATE_2_5_GBPS = 2,
658 IB_RATE_5_GBPS = 5,
659 IB_RATE_10_GBPS = 3,
660 IB_RATE_20_GBPS = 6,
661 IB_RATE_30_GBPS = 4,
662 IB_RATE_40_GBPS = 7,
663 IB_RATE_60_GBPS = 8,
664 IB_RATE_80_GBPS = 9,
71eeba16
MA
665 IB_RATE_120_GBPS = 10,
666 IB_RATE_14_GBPS = 11,
667 IB_RATE_56_GBPS = 12,
668 IB_RATE_112_GBPS = 13,
669 IB_RATE_168_GBPS = 14,
670 IB_RATE_25_GBPS = 15,
671 IB_RATE_100_GBPS = 16,
672 IB_RATE_200_GBPS = 17,
673 IB_RATE_300_GBPS = 18
bf6a9e31
JM
674};
675
676/**
677 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
678 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
679 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
680 * @rate: rate to convert.
681 */
8385fd84 682__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 683
71eeba16
MA
684/**
685 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
686 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
687 * @rate: rate to convert.
688 */
8385fd84 689__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 690
17cd3a2d
SG
691
692/**
9bee178b
SG
693 * enum ib_mr_type - memory region type
694 * @IB_MR_TYPE_MEM_REG: memory region that is used for
695 * normal registration
696 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
697 * signature operations (data-integrity
698 * capable regions)
f5aa9159
SG
699 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
700 * register any arbitrary sg lists (without
701 * the normal mr constraints - see
702 * ib_map_mr_sg)
17cd3a2d 703 */
9bee178b
SG
704enum ib_mr_type {
705 IB_MR_TYPE_MEM_REG,
706 IB_MR_TYPE_SIGNATURE,
f5aa9159 707 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
708};
709
1b01d335 710/**
78eda2bb
SG
711 * Signature types
712 * IB_SIG_TYPE_NONE: Unprotected.
713 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 714 */
78eda2bb
SG
715enum ib_signature_type {
716 IB_SIG_TYPE_NONE,
717 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
718};
719
720/**
721 * Signature T10-DIF block-guard types
722 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
723 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
724 */
725enum ib_t10_dif_bg_type {
726 IB_T10DIF_CRC,
727 IB_T10DIF_CSUM
728};
729
730/**
731 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
732 * domain.
1b01d335
SG
733 * @bg_type: T10-DIF block guard type (CRC|CSUM)
734 * @pi_interval: protection information interval.
735 * @bg: seed of guard computation.
736 * @app_tag: application tag of guard block
737 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
738 * @ref_remap: Indicate wethear the reftag increments each block
739 * @app_escape: Indicate to skip block check if apptag=0xffff
740 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
741 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
742 */
743struct ib_t10_dif_domain {
1b01d335
SG
744 enum ib_t10_dif_bg_type bg_type;
745 u16 pi_interval;
746 u16 bg;
747 u16 app_tag;
748 u32 ref_tag;
78eda2bb
SG
749 bool ref_remap;
750 bool app_escape;
751 bool ref_escape;
752 u16 apptag_check_mask;
1b01d335
SG
753};
754
755/**
756 * struct ib_sig_domain - Parameters for signature domain
757 * @sig_type: specific signauture type
758 * @sig: union of all signature domain attributes that may
759 * be used to set domain layout.
760 */
761struct ib_sig_domain {
762 enum ib_signature_type sig_type;
763 union {
764 struct ib_t10_dif_domain dif;
765 } sig;
766};
767
768/**
769 * struct ib_sig_attrs - Parameters for signature handover operation
770 * @check_mask: bitmask for signature byte check (8 bytes)
771 * @mem: memory domain layout desciptor.
772 * @wire: wire domain layout desciptor.
773 */
774struct ib_sig_attrs {
775 u8 check_mask;
776 struct ib_sig_domain mem;
777 struct ib_sig_domain wire;
778};
779
780enum ib_sig_err_type {
781 IB_SIG_BAD_GUARD,
782 IB_SIG_BAD_REFTAG,
783 IB_SIG_BAD_APPTAG,
784};
785
786/**
787 * struct ib_sig_err - signature error descriptor
788 */
789struct ib_sig_err {
790 enum ib_sig_err_type err_type;
791 u32 expected;
792 u32 actual;
793 u64 sig_err_offset;
794 u32 key;
795};
796
797enum ib_mr_status_check {
798 IB_MR_CHECK_SIG_STATUS = 1,
799};
800
801/**
802 * struct ib_mr_status - Memory region status container
803 *
804 * @fail_status: Bitmask of MR checks status. For each
805 * failed check a corresponding status bit is set.
806 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
807 * failure.
808 */
809struct ib_mr_status {
810 u32 fail_status;
811 struct ib_sig_err sig_err;
812};
813
bf6a9e31
JM
814/**
815 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
816 * enum.
817 * @mult: multiple to convert.
818 */
8385fd84 819__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 820
1da177e4
LT
821struct ib_ah_attr {
822 struct ib_global_route grh;
823 u16 dlid;
824 u8 sl;
825 u8 src_path_bits;
826 u8 static_rate;
827 u8 ah_flags;
828 u8 port_num;
dd5f03be 829 u8 dmac[ETH_ALEN];
1da177e4
LT
830};
831
832enum ib_wc_status {
833 IB_WC_SUCCESS,
834 IB_WC_LOC_LEN_ERR,
835 IB_WC_LOC_QP_OP_ERR,
836 IB_WC_LOC_EEC_OP_ERR,
837 IB_WC_LOC_PROT_ERR,
838 IB_WC_WR_FLUSH_ERR,
839 IB_WC_MW_BIND_ERR,
840 IB_WC_BAD_RESP_ERR,
841 IB_WC_LOC_ACCESS_ERR,
842 IB_WC_REM_INV_REQ_ERR,
843 IB_WC_REM_ACCESS_ERR,
844 IB_WC_REM_OP_ERR,
845 IB_WC_RETRY_EXC_ERR,
846 IB_WC_RNR_RETRY_EXC_ERR,
847 IB_WC_LOC_RDD_VIOL_ERR,
848 IB_WC_REM_INV_RD_REQ_ERR,
849 IB_WC_REM_ABORT_ERR,
850 IB_WC_INV_EECN_ERR,
851 IB_WC_INV_EEC_STATE_ERR,
852 IB_WC_FATAL_ERR,
853 IB_WC_RESP_TIMEOUT_ERR,
854 IB_WC_GENERAL_ERR
855};
856
db7489e0 857const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 858
1da177e4
LT
859enum ib_wc_opcode {
860 IB_WC_SEND,
861 IB_WC_RDMA_WRITE,
862 IB_WC_RDMA_READ,
863 IB_WC_COMP_SWAP,
864 IB_WC_FETCH_ADD,
c93570f2 865 IB_WC_LSO,
00f7ec36 866 IB_WC_LOCAL_INV,
4c67e2bf 867 IB_WC_REG_MR,
5e80ba8f
VS
868 IB_WC_MASKED_COMP_SWAP,
869 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
870/*
871 * Set value of IB_WC_RECV so consumers can test if a completion is a
872 * receive by testing (opcode & IB_WC_RECV).
873 */
874 IB_WC_RECV = 1 << 7,
875 IB_WC_RECV_RDMA_WITH_IMM
876};
877
878enum ib_wc_flags {
879 IB_WC_GRH = 1,
00f7ec36
SW
880 IB_WC_WITH_IMM = (1<<1),
881 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 882 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
883 IB_WC_WITH_SMAC = (1<<4),
884 IB_WC_WITH_VLAN = (1<<5),
c865f246 885 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
886};
887
888struct ib_wc {
14d3a3b2
CH
889 union {
890 u64 wr_id;
891 struct ib_cqe *wr_cqe;
892 };
1da177e4
LT
893 enum ib_wc_status status;
894 enum ib_wc_opcode opcode;
895 u32 vendor_err;
896 u32 byte_len;
062dbb69 897 struct ib_qp *qp;
00f7ec36
SW
898 union {
899 __be32 imm_data;
900 u32 invalidate_rkey;
901 } ex;
1da177e4
LT
902 u32 src_qp;
903 int wc_flags;
904 u16 pkey_index;
905 u16 slid;
906 u8 sl;
907 u8 dlid_path_bits;
908 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
909 u8 smac[ETH_ALEN];
910 u16 vlan_id;
c865f246 911 u8 network_hdr_type;
1da177e4
LT
912};
913
ed23a727
RD
914enum ib_cq_notify_flags {
915 IB_CQ_SOLICITED = 1 << 0,
916 IB_CQ_NEXT_COMP = 1 << 1,
917 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
918 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
919};
920
96104eda 921enum ib_srq_type {
418d5130
SH
922 IB_SRQT_BASIC,
923 IB_SRQT_XRC
96104eda
SH
924};
925
d41fcc67
RD
926enum ib_srq_attr_mask {
927 IB_SRQ_MAX_WR = 1 << 0,
928 IB_SRQ_LIMIT = 1 << 1,
929};
930
931struct ib_srq_attr {
932 u32 max_wr;
933 u32 max_sge;
934 u32 srq_limit;
935};
936
937struct ib_srq_init_attr {
938 void (*event_handler)(struct ib_event *, void *);
939 void *srq_context;
940 struct ib_srq_attr attr;
96104eda 941 enum ib_srq_type srq_type;
418d5130
SH
942
943 union {
944 struct {
945 struct ib_xrcd *xrcd;
946 struct ib_cq *cq;
947 } xrc;
948 } ext;
d41fcc67
RD
949};
950
1da177e4
LT
951struct ib_qp_cap {
952 u32 max_send_wr;
953 u32 max_recv_wr;
954 u32 max_send_sge;
955 u32 max_recv_sge;
956 u32 max_inline_data;
a060b562
CH
957
958 /*
959 * Maximum number of rdma_rw_ctx structures in flight at a time.
960 * ib_create_qp() will calculate the right amount of neededed WRs
961 * and MRs based on this.
962 */
963 u32 max_rdma_ctxs;
1da177e4
LT
964};
965
966enum ib_sig_type {
967 IB_SIGNAL_ALL_WR,
968 IB_SIGNAL_REQ_WR
969};
970
971enum ib_qp_type {
972 /*
973 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
974 * here (and in that order) since the MAD layer uses them as
975 * indices into a 2-entry table.
976 */
977 IB_QPT_SMI,
978 IB_QPT_GSI,
979
980 IB_QPT_RC,
981 IB_QPT_UC,
982 IB_QPT_UD,
983 IB_QPT_RAW_IPV6,
b42b63cf 984 IB_QPT_RAW_ETHERTYPE,
c938a616 985 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
986 IB_QPT_XRC_INI = 9,
987 IB_QPT_XRC_TGT,
0134f16b
JM
988 IB_QPT_MAX,
989 /* Reserve a range for qp types internal to the low level driver.
990 * These qp types will not be visible at the IB core layer, so the
991 * IB_QPT_MAX usages should not be affected in the core layer
992 */
993 IB_QPT_RESERVED1 = 0x1000,
994 IB_QPT_RESERVED2,
995 IB_QPT_RESERVED3,
996 IB_QPT_RESERVED4,
997 IB_QPT_RESERVED5,
998 IB_QPT_RESERVED6,
999 IB_QPT_RESERVED7,
1000 IB_QPT_RESERVED8,
1001 IB_QPT_RESERVED9,
1002 IB_QPT_RESERVED10,
1da177e4
LT
1003};
1004
b846f25a 1005enum ib_qp_create_flags {
47ee1b9f
RL
1006 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1007 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1008 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1009 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1010 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1011 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1012 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 1013 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
b531b909 1014 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1015 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
d2b57063
JM
1016 /* reserve bits 26-31 for low level drivers' internal use */
1017 IB_QP_CREATE_RESERVED_START = 1 << 26,
1018 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1019};
1020
73c40c61
YH
1021/*
1022 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1023 * callback to destroy the passed in QP.
1024 */
1025
1da177e4
LT
1026struct ib_qp_init_attr {
1027 void (*event_handler)(struct ib_event *, void *);
1028 void *qp_context;
1029 struct ib_cq *send_cq;
1030 struct ib_cq *recv_cq;
1031 struct ib_srq *srq;
b42b63cf 1032 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1033 struct ib_qp_cap cap;
1034 enum ib_sig_type sq_sig_type;
1035 enum ib_qp_type qp_type;
b846f25a 1036 enum ib_qp_create_flags create_flags;
a060b562
CH
1037
1038 /*
1039 * Only needed for special QP types, or when using the RW API.
1040 */
1041 u8 port_num;
a9017e23 1042 struct ib_rwq_ind_table *rwq_ind_tbl;
1da177e4
LT
1043};
1044
0e0ec7e0
SH
1045struct ib_qp_open_attr {
1046 void (*event_handler)(struct ib_event *, void *);
1047 void *qp_context;
1048 u32 qp_num;
1049 enum ib_qp_type qp_type;
1050};
1051
1da177e4
LT
1052enum ib_rnr_timeout {
1053 IB_RNR_TIMER_655_36 = 0,
1054 IB_RNR_TIMER_000_01 = 1,
1055 IB_RNR_TIMER_000_02 = 2,
1056 IB_RNR_TIMER_000_03 = 3,
1057 IB_RNR_TIMER_000_04 = 4,
1058 IB_RNR_TIMER_000_06 = 5,
1059 IB_RNR_TIMER_000_08 = 6,
1060 IB_RNR_TIMER_000_12 = 7,
1061 IB_RNR_TIMER_000_16 = 8,
1062 IB_RNR_TIMER_000_24 = 9,
1063 IB_RNR_TIMER_000_32 = 10,
1064 IB_RNR_TIMER_000_48 = 11,
1065 IB_RNR_TIMER_000_64 = 12,
1066 IB_RNR_TIMER_000_96 = 13,
1067 IB_RNR_TIMER_001_28 = 14,
1068 IB_RNR_TIMER_001_92 = 15,
1069 IB_RNR_TIMER_002_56 = 16,
1070 IB_RNR_TIMER_003_84 = 17,
1071 IB_RNR_TIMER_005_12 = 18,
1072 IB_RNR_TIMER_007_68 = 19,
1073 IB_RNR_TIMER_010_24 = 20,
1074 IB_RNR_TIMER_015_36 = 21,
1075 IB_RNR_TIMER_020_48 = 22,
1076 IB_RNR_TIMER_030_72 = 23,
1077 IB_RNR_TIMER_040_96 = 24,
1078 IB_RNR_TIMER_061_44 = 25,
1079 IB_RNR_TIMER_081_92 = 26,
1080 IB_RNR_TIMER_122_88 = 27,
1081 IB_RNR_TIMER_163_84 = 28,
1082 IB_RNR_TIMER_245_76 = 29,
1083 IB_RNR_TIMER_327_68 = 30,
1084 IB_RNR_TIMER_491_52 = 31
1085};
1086
1087enum ib_qp_attr_mask {
1088 IB_QP_STATE = 1,
1089 IB_QP_CUR_STATE = (1<<1),
1090 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1091 IB_QP_ACCESS_FLAGS = (1<<3),
1092 IB_QP_PKEY_INDEX = (1<<4),
1093 IB_QP_PORT = (1<<5),
1094 IB_QP_QKEY = (1<<6),
1095 IB_QP_AV = (1<<7),
1096 IB_QP_PATH_MTU = (1<<8),
1097 IB_QP_TIMEOUT = (1<<9),
1098 IB_QP_RETRY_CNT = (1<<10),
1099 IB_QP_RNR_RETRY = (1<<11),
1100 IB_QP_RQ_PSN = (1<<12),
1101 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1102 IB_QP_ALT_PATH = (1<<14),
1103 IB_QP_MIN_RNR_TIMER = (1<<15),
1104 IB_QP_SQ_PSN = (1<<16),
1105 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1106 IB_QP_PATH_MIG_STATE = (1<<18),
1107 IB_QP_CAP = (1<<19),
dd5f03be 1108 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1109 IB_QP_RESERVED1 = (1<<21),
1110 IB_QP_RESERVED2 = (1<<22),
1111 IB_QP_RESERVED3 = (1<<23),
1112 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1113 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1114};
1115
1116enum ib_qp_state {
1117 IB_QPS_RESET,
1118 IB_QPS_INIT,
1119 IB_QPS_RTR,
1120 IB_QPS_RTS,
1121 IB_QPS_SQD,
1122 IB_QPS_SQE,
1123 IB_QPS_ERR
1124};
1125
1126enum ib_mig_state {
1127 IB_MIG_MIGRATED,
1128 IB_MIG_REARM,
1129 IB_MIG_ARMED
1130};
1131
7083e42e
SM
1132enum ib_mw_type {
1133 IB_MW_TYPE_1 = 1,
1134 IB_MW_TYPE_2 = 2
1135};
1136
1da177e4
LT
1137struct ib_qp_attr {
1138 enum ib_qp_state qp_state;
1139 enum ib_qp_state cur_qp_state;
1140 enum ib_mtu path_mtu;
1141 enum ib_mig_state path_mig_state;
1142 u32 qkey;
1143 u32 rq_psn;
1144 u32 sq_psn;
1145 u32 dest_qp_num;
1146 int qp_access_flags;
1147 struct ib_qp_cap cap;
1148 struct ib_ah_attr ah_attr;
1149 struct ib_ah_attr alt_ah_attr;
1150 u16 pkey_index;
1151 u16 alt_pkey_index;
1152 u8 en_sqd_async_notify;
1153 u8 sq_draining;
1154 u8 max_rd_atomic;
1155 u8 max_dest_rd_atomic;
1156 u8 min_rnr_timer;
1157 u8 port_num;
1158 u8 timeout;
1159 u8 retry_cnt;
1160 u8 rnr_retry;
1161 u8 alt_port_num;
1162 u8 alt_timeout;
528e5a1b 1163 u32 rate_limit;
1da177e4
LT
1164};
1165
1166enum ib_wr_opcode {
1167 IB_WR_RDMA_WRITE,
1168 IB_WR_RDMA_WRITE_WITH_IMM,
1169 IB_WR_SEND,
1170 IB_WR_SEND_WITH_IMM,
1171 IB_WR_RDMA_READ,
1172 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1173 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1174 IB_WR_LSO,
1175 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1176 IB_WR_RDMA_READ_WITH_INV,
1177 IB_WR_LOCAL_INV,
4c67e2bf 1178 IB_WR_REG_MR,
5e80ba8f
VS
1179 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1180 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1181 IB_WR_REG_SIG_MR,
0134f16b
JM
1182 /* reserve values for low level drivers' internal use.
1183 * These values will not be used at all in the ib core layer.
1184 */
1185 IB_WR_RESERVED1 = 0xf0,
1186 IB_WR_RESERVED2,
1187 IB_WR_RESERVED3,
1188 IB_WR_RESERVED4,
1189 IB_WR_RESERVED5,
1190 IB_WR_RESERVED6,
1191 IB_WR_RESERVED7,
1192 IB_WR_RESERVED8,
1193 IB_WR_RESERVED9,
1194 IB_WR_RESERVED10,
1da177e4
LT
1195};
1196
1197enum ib_send_flags {
1198 IB_SEND_FENCE = 1,
1199 IB_SEND_SIGNALED = (1<<1),
1200 IB_SEND_SOLICITED = (1<<2),
e0605d91 1201 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1202 IB_SEND_IP_CSUM = (1<<4),
1203
1204 /* reserve bits 26-31 for low level drivers' internal use */
1205 IB_SEND_RESERVED_START = (1 << 26),
1206 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1207};
1208
1209struct ib_sge {
1210 u64 addr;
1211 u32 length;
1212 u32 lkey;
1213};
1214
14d3a3b2
CH
1215struct ib_cqe {
1216 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1217};
1218
1da177e4
LT
1219struct ib_send_wr {
1220 struct ib_send_wr *next;
14d3a3b2
CH
1221 union {
1222 u64 wr_id;
1223 struct ib_cqe *wr_cqe;
1224 };
1da177e4
LT
1225 struct ib_sge *sg_list;
1226 int num_sge;
1227 enum ib_wr_opcode opcode;
1228 int send_flags;
0f39cf3d
RD
1229 union {
1230 __be32 imm_data;
1231 u32 invalidate_rkey;
1232 } ex;
1da177e4
LT
1233};
1234
e622f2f4
CH
1235struct ib_rdma_wr {
1236 struct ib_send_wr wr;
1237 u64 remote_addr;
1238 u32 rkey;
1239};
1240
1241static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1242{
1243 return container_of(wr, struct ib_rdma_wr, wr);
1244}
1245
1246struct ib_atomic_wr {
1247 struct ib_send_wr wr;
1248 u64 remote_addr;
1249 u64 compare_add;
1250 u64 swap;
1251 u64 compare_add_mask;
1252 u64 swap_mask;
1253 u32 rkey;
1254};
1255
1256static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1257{
1258 return container_of(wr, struct ib_atomic_wr, wr);
1259}
1260
1261struct ib_ud_wr {
1262 struct ib_send_wr wr;
1263 struct ib_ah *ah;
1264 void *header;
1265 int hlen;
1266 int mss;
1267 u32 remote_qpn;
1268 u32 remote_qkey;
1269 u16 pkey_index; /* valid for GSI only */
1270 u8 port_num; /* valid for DR SMPs on switch only */
1271};
1272
1273static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1274{
1275 return container_of(wr, struct ib_ud_wr, wr);
1276}
1277
4c67e2bf
SG
1278struct ib_reg_wr {
1279 struct ib_send_wr wr;
1280 struct ib_mr *mr;
1281 u32 key;
1282 int access;
1283};
1284
1285static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1286{
1287 return container_of(wr, struct ib_reg_wr, wr);
1288}
1289
e622f2f4
CH
1290struct ib_sig_handover_wr {
1291 struct ib_send_wr wr;
1292 struct ib_sig_attrs *sig_attrs;
1293 struct ib_mr *sig_mr;
1294 int access_flags;
1295 struct ib_sge *prot;
1296};
1297
1298static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1299{
1300 return container_of(wr, struct ib_sig_handover_wr, wr);
1301}
1302
1da177e4
LT
1303struct ib_recv_wr {
1304 struct ib_recv_wr *next;
14d3a3b2
CH
1305 union {
1306 u64 wr_id;
1307 struct ib_cqe *wr_cqe;
1308 };
1da177e4
LT
1309 struct ib_sge *sg_list;
1310 int num_sge;
1311};
1312
1313enum ib_access_flags {
1314 IB_ACCESS_LOCAL_WRITE = 1,
1315 IB_ACCESS_REMOTE_WRITE = (1<<1),
1316 IB_ACCESS_REMOTE_READ = (1<<2),
1317 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1318 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1319 IB_ZERO_BASED = (1<<5),
1320 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1321};
1322
b7d3e0a9
CH
1323/*
1324 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1325 * are hidden here instead of a uapi header!
1326 */
1da177e4
LT
1327enum ib_mr_rereg_flags {
1328 IB_MR_REREG_TRANS = 1,
1329 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1330 IB_MR_REREG_ACCESS = (1<<2),
1331 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1332};
1333
1da177e4
LT
1334struct ib_fmr_attr {
1335 int max_pages;
1336 int max_maps;
d36f34aa 1337 u8 page_shift;
1da177e4
LT
1338};
1339
882214e2
HE
1340struct ib_umem;
1341
e2773c06
RD
1342struct ib_ucontext {
1343 struct ib_device *device;
1344 struct list_head pd_list;
1345 struct list_head mr_list;
1346 struct list_head mw_list;
1347 struct list_head cq_list;
1348 struct list_head qp_list;
1349 struct list_head srq_list;
1350 struct list_head ah_list;
53d0bd1e 1351 struct list_head xrcd_list;
436f2ad0 1352 struct list_head rule_list;
f213c052 1353 struct list_head wq_list;
de019a94 1354 struct list_head rwq_ind_tbl_list;
f7c6a7b5 1355 int closing;
8ada2c1c
SR
1356
1357 struct pid *tgid;
882214e2
HE
1358#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1359 struct rb_root umem_tree;
1360 /*
1361 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1362 * mmu notifiers registration.
1363 */
1364 struct rw_semaphore umem_rwsem;
1365 void (*invalidate_range)(struct ib_umem *umem,
1366 unsigned long start, unsigned long end);
1367
1368 struct mmu_notifier mn;
1369 atomic_t notifier_count;
1370 /* A list of umems that don't have private mmu notifier counters yet. */
1371 struct list_head no_private_counters;
1372 int odp_mrs_count;
1373#endif
e2773c06
RD
1374};
1375
1376struct ib_uobject {
1377 u64 user_handle; /* handle given to us by userspace */
1378 struct ib_ucontext *context; /* associated user context */
9ead190b 1379 void *object; /* containing object */
e2773c06 1380 struct list_head list; /* link to context's list */
b3d636b0 1381 int id; /* index into kernel idr */
9ead190b
RD
1382 struct kref ref;
1383 struct rw_semaphore mutex; /* protects .live */
d144da8c 1384 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1385 int live;
e2773c06
RD
1386};
1387
e2773c06 1388struct ib_udata {
309243ec 1389 const void __user *inbuf;
e2773c06
RD
1390 void __user *outbuf;
1391 size_t inlen;
1392 size_t outlen;
1393};
1394
1da177e4 1395struct ib_pd {
96249d70 1396 u32 local_dma_lkey;
ed082d36 1397 u32 flags;
e2773c06
RD
1398 struct ib_device *device;
1399 struct ib_uobject *uobject;
1400 atomic_t usecnt; /* count all resources */
50d46335 1401
ed082d36
CH
1402 u32 unsafe_global_rkey;
1403
50d46335
CH
1404 /*
1405 * Implementation details of the RDMA core, don't use in drivers:
1406 */
1407 struct ib_mr *__internal_mr;
1da177e4
LT
1408};
1409
59991f94
SH
1410struct ib_xrcd {
1411 struct ib_device *device;
d3d72d90 1412 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1413 struct inode *inode;
d3d72d90
SH
1414
1415 struct mutex tgt_qp_mutex;
1416 struct list_head tgt_qp_list;
59991f94
SH
1417};
1418
1da177e4
LT
1419struct ib_ah {
1420 struct ib_device *device;
1421 struct ib_pd *pd;
e2773c06 1422 struct ib_uobject *uobject;
1da177e4
LT
1423};
1424
1425typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1426
14d3a3b2
CH
1427enum ib_poll_context {
1428 IB_POLL_DIRECT, /* caller context, no hw completions */
1429 IB_POLL_SOFTIRQ, /* poll from softirq context */
1430 IB_POLL_WORKQUEUE, /* poll from workqueue */
1431};
1432
1da177e4 1433struct ib_cq {
e2773c06
RD
1434 struct ib_device *device;
1435 struct ib_uobject *uobject;
1436 ib_comp_handler comp_handler;
1437 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1438 void *cq_context;
e2773c06
RD
1439 int cqe;
1440 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1441 enum ib_poll_context poll_ctx;
1442 struct ib_wc *wc;
1443 union {
1444 struct irq_poll iop;
1445 struct work_struct work;
1446 };
1da177e4
LT
1447};
1448
1449struct ib_srq {
d41fcc67
RD
1450 struct ib_device *device;
1451 struct ib_pd *pd;
1452 struct ib_uobject *uobject;
1453 void (*event_handler)(struct ib_event *, void *);
1454 void *srq_context;
96104eda 1455 enum ib_srq_type srq_type;
1da177e4 1456 atomic_t usecnt;
418d5130
SH
1457
1458 union {
1459 struct {
1460 struct ib_xrcd *xrcd;
1461 struct ib_cq *cq;
1462 u32 srq_num;
1463 } xrc;
1464 } ext;
1da177e4
LT
1465};
1466
ebaaee25
NO
1467enum ib_raw_packet_caps {
1468 /* Strip cvlan from incoming packet and report it in the matching work
1469 * completion is supported.
1470 */
1471 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1472 /* Scatter FCS field of an incoming packet to host memory is supported.
1473 */
1474 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1475 /* Checksum offloads are supported (for both send and receive). */
1476 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1477};
1478
5fd251c8
YH
1479enum ib_wq_type {
1480 IB_WQT_RQ
1481};
1482
1483enum ib_wq_state {
1484 IB_WQS_RESET,
1485 IB_WQS_RDY,
1486 IB_WQS_ERR
1487};
1488
1489struct ib_wq {
1490 struct ib_device *device;
1491 struct ib_uobject *uobject;
1492 void *wq_context;
1493 void (*event_handler)(struct ib_event *, void *);
1494 struct ib_pd *pd;
1495 struct ib_cq *cq;
1496 u32 wq_num;
1497 enum ib_wq_state state;
1498 enum ib_wq_type wq_type;
1499 atomic_t usecnt;
1500};
1501
10bac72b
NO
1502enum ib_wq_flags {
1503 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1504 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
10bac72b
NO
1505};
1506
5fd251c8
YH
1507struct ib_wq_init_attr {
1508 void *wq_context;
1509 enum ib_wq_type wq_type;
1510 u32 max_wr;
1511 u32 max_sge;
1512 struct ib_cq *cq;
1513 void (*event_handler)(struct ib_event *, void *);
10bac72b 1514 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1515};
1516
1517enum ib_wq_attr_mask {
10bac72b
NO
1518 IB_WQ_STATE = 1 << 0,
1519 IB_WQ_CUR_STATE = 1 << 1,
1520 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1521};
1522
1523struct ib_wq_attr {
1524 enum ib_wq_state wq_state;
1525 enum ib_wq_state curr_wq_state;
10bac72b
NO
1526 u32 flags; /* Use enum ib_wq_flags */
1527 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1528};
1529
6d39786b
YH
1530struct ib_rwq_ind_table {
1531 struct ib_device *device;
1532 struct ib_uobject *uobject;
1533 atomic_t usecnt;
1534 u32 ind_tbl_num;
1535 u32 log_ind_tbl_size;
1536 struct ib_wq **ind_tbl;
1537};
1538
1539struct ib_rwq_ind_table_init_attr {
1540 u32 log_ind_tbl_size;
1541 /* Each entry is a pointer to Receive Work Queue */
1542 struct ib_wq **ind_tbl;
1543};
1544
632bc3f6
BVA
1545/*
1546 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1547 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1548 */
1da177e4
LT
1549struct ib_qp {
1550 struct ib_device *device;
1551 struct ib_pd *pd;
1552 struct ib_cq *send_cq;
1553 struct ib_cq *recv_cq;
fffb0383
CH
1554 spinlock_t mr_lock;
1555 int mrs_used;
a060b562 1556 struct list_head rdma_mrs;
0e353e34 1557 struct list_head sig_mrs;
1da177e4 1558 struct ib_srq *srq;
b42b63cf 1559 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1560 struct list_head xrcd_list;
fffb0383 1561
319a441d
HHZ
1562 /* count times opened, mcast attaches, flow attaches */
1563 atomic_t usecnt;
0e0ec7e0
SH
1564 struct list_head open_list;
1565 struct ib_qp *real_qp;
e2773c06 1566 struct ib_uobject *uobject;
1da177e4
LT
1567 void (*event_handler)(struct ib_event *, void *);
1568 void *qp_context;
1569 u32 qp_num;
632bc3f6
BVA
1570 u32 max_write_sge;
1571 u32 max_read_sge;
1da177e4 1572 enum ib_qp_type qp_type;
a9017e23 1573 struct ib_rwq_ind_table *rwq_ind_tbl;
1da177e4
LT
1574};
1575
1576struct ib_mr {
e2773c06
RD
1577 struct ib_device *device;
1578 struct ib_pd *pd;
e2773c06
RD
1579 u32 lkey;
1580 u32 rkey;
4c67e2bf
SG
1581 u64 iova;
1582 u32 length;
1583 unsigned int page_size;
d4a85c30 1584 bool need_inval;
fffb0383
CH
1585 union {
1586 struct ib_uobject *uobject; /* user */
1587 struct list_head qp_entry; /* FR */
1588 };
1da177e4
LT
1589};
1590
1591struct ib_mw {
1592 struct ib_device *device;
1593 struct ib_pd *pd;
e2773c06 1594 struct ib_uobject *uobject;
1da177e4 1595 u32 rkey;
7083e42e 1596 enum ib_mw_type type;
1da177e4
LT
1597};
1598
1599struct ib_fmr {
1600 struct ib_device *device;
1601 struct ib_pd *pd;
1602 struct list_head list;
1603 u32 lkey;
1604 u32 rkey;
1605};
1606
319a441d
HHZ
1607/* Supported steering options */
1608enum ib_flow_attr_type {
1609 /* steering according to rule specifications */
1610 IB_FLOW_ATTR_NORMAL = 0x0,
1611 /* default unicast and multicast rule -
1612 * receive all Eth traffic which isn't steered to any QP
1613 */
1614 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1615 /* default multicast rule -
1616 * receive all Eth multicast traffic which isn't steered to any QP
1617 */
1618 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1619 /* sniffer rule - receive all port traffic */
1620 IB_FLOW_ATTR_SNIFFER = 0x3
1621};
1622
1623/* Supported steering header types */
1624enum ib_flow_spec_type {
1625 /* L2 headers*/
76bd23b3
MR
1626 IB_FLOW_SPEC_ETH = 0x20,
1627 IB_FLOW_SPEC_IB = 0x22,
319a441d 1628 /* L3 header*/
76bd23b3
MR
1629 IB_FLOW_SPEC_IPV4 = 0x30,
1630 IB_FLOW_SPEC_IPV6 = 0x31,
319a441d 1631 /* L4 headers*/
76bd23b3
MR
1632 IB_FLOW_SPEC_TCP = 0x40,
1633 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1634 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
fbf46860 1635 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1636 /* Actions */
1637 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
319a441d 1638};
240ae00e 1639#define IB_FLOW_SPEC_LAYER_MASK 0xF0
fbf46860 1640#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
22878dbc 1641
319a441d
HHZ
1642/* Flow steering rule priority is set according to it's domain.
1643 * Lower domain value means higher priority.
1644 */
1645enum ib_flow_domain {
1646 IB_FLOW_DOMAIN_USER,
1647 IB_FLOW_DOMAIN_ETHTOOL,
1648 IB_FLOW_DOMAIN_RFS,
1649 IB_FLOW_DOMAIN_NIC,
1650 IB_FLOW_DOMAIN_NUM /* Must be last */
1651};
1652
a3100a78
MV
1653enum ib_flow_flags {
1654 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1655 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1656};
1657
319a441d
HHZ
1658struct ib_flow_eth_filter {
1659 u8 dst_mac[6];
1660 u8 src_mac[6];
1661 __be16 ether_type;
1662 __be16 vlan_tag;
15dfbd6b
MG
1663 /* Must be last */
1664 u8 real_sz[0];
319a441d
HHZ
1665};
1666
1667struct ib_flow_spec_eth {
fbf46860 1668 u32 type;
319a441d
HHZ
1669 u16 size;
1670 struct ib_flow_eth_filter val;
1671 struct ib_flow_eth_filter mask;
1672};
1673
240ae00e
MB
1674struct ib_flow_ib_filter {
1675 __be16 dlid;
1676 __u8 sl;
15dfbd6b
MG
1677 /* Must be last */
1678 u8 real_sz[0];
240ae00e
MB
1679};
1680
1681struct ib_flow_spec_ib {
fbf46860 1682 u32 type;
240ae00e
MB
1683 u16 size;
1684 struct ib_flow_ib_filter val;
1685 struct ib_flow_ib_filter mask;
1686};
1687
989a3a8f
MG
1688/* IPv4 header flags */
1689enum ib_ipv4_flags {
1690 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1691 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1692 last have this flag set */
1693};
1694
319a441d
HHZ
1695struct ib_flow_ipv4_filter {
1696 __be32 src_ip;
1697 __be32 dst_ip;
989a3a8f
MG
1698 u8 proto;
1699 u8 tos;
1700 u8 ttl;
1701 u8 flags;
15dfbd6b
MG
1702 /* Must be last */
1703 u8 real_sz[0];
319a441d
HHZ
1704};
1705
1706struct ib_flow_spec_ipv4 {
fbf46860 1707 u32 type;
319a441d
HHZ
1708 u16 size;
1709 struct ib_flow_ipv4_filter val;
1710 struct ib_flow_ipv4_filter mask;
1711};
1712
4c2aae71
MG
1713struct ib_flow_ipv6_filter {
1714 u8 src_ip[16];
1715 u8 dst_ip[16];
a72c6a2b
MG
1716 __be32 flow_label;
1717 u8 next_hdr;
1718 u8 traffic_class;
1719 u8 hop_limit;
15dfbd6b
MG
1720 /* Must be last */
1721 u8 real_sz[0];
4c2aae71
MG
1722};
1723
1724struct ib_flow_spec_ipv6 {
fbf46860 1725 u32 type;
4c2aae71
MG
1726 u16 size;
1727 struct ib_flow_ipv6_filter val;
1728 struct ib_flow_ipv6_filter mask;
1729};
1730
319a441d
HHZ
1731struct ib_flow_tcp_udp_filter {
1732 __be16 dst_port;
1733 __be16 src_port;
15dfbd6b
MG
1734 /* Must be last */
1735 u8 real_sz[0];
319a441d
HHZ
1736};
1737
1738struct ib_flow_spec_tcp_udp {
fbf46860 1739 u32 type;
319a441d
HHZ
1740 u16 size;
1741 struct ib_flow_tcp_udp_filter val;
1742 struct ib_flow_tcp_udp_filter mask;
1743};
1744
0dbf3332
MR
1745struct ib_flow_tunnel_filter {
1746 __be32 tunnel_id;
1747 u8 real_sz[0];
1748};
1749
1750/* ib_flow_spec_tunnel describes the Vxlan tunnel
1751 * the tunnel_id from val has the vni value
1752 */
1753struct ib_flow_spec_tunnel {
fbf46860 1754 u32 type;
0dbf3332
MR
1755 u16 size;
1756 struct ib_flow_tunnel_filter val;
1757 struct ib_flow_tunnel_filter mask;
1758};
1759
460d0198
MR
1760struct ib_flow_spec_action_tag {
1761 enum ib_flow_spec_type type;
1762 u16 size;
1763 u32 tag_id;
1764};
1765
319a441d
HHZ
1766union ib_flow_spec {
1767 struct {
fbf46860 1768 u32 type;
319a441d
HHZ
1769 u16 size;
1770 };
1771 struct ib_flow_spec_eth eth;
240ae00e 1772 struct ib_flow_spec_ib ib;
319a441d
HHZ
1773 struct ib_flow_spec_ipv4 ipv4;
1774 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 1775 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 1776 struct ib_flow_spec_tunnel tunnel;
460d0198 1777 struct ib_flow_spec_action_tag flow_tag;
319a441d
HHZ
1778};
1779
1780struct ib_flow_attr {
1781 enum ib_flow_attr_type type;
1782 u16 size;
1783 u16 priority;
1784 u32 flags;
1785 u8 num_of_specs;
1786 u8 port;
1787 /* Following are the optional layers according to user request
1788 * struct ib_flow_spec_xxx
1789 * struct ib_flow_spec_yyy
1790 */
1791};
1792
1793struct ib_flow {
1794 struct ib_qp *qp;
1795 struct ib_uobject *uobject;
1796};
1797
4cd7c947 1798struct ib_mad_hdr;
1da177e4
LT
1799struct ib_grh;
1800
1801enum ib_process_mad_flags {
1802 IB_MAD_IGNORE_MKEY = 1,
1803 IB_MAD_IGNORE_BKEY = 2,
1804 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1805};
1806
1807enum ib_mad_result {
1808 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1809 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1810 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1811 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1812};
1813
1814#define IB_DEVICE_NAME_MAX 64
1815
1816struct ib_cache {
1817 rwlock_t lock;
1818 struct ib_event_handler event_handler;
1819 struct ib_pkey_cache **pkey_cache;
03db3a2d 1820 struct ib_gid_table **gid_cache;
6fb9cdbf 1821 u8 *lmc_cache;
1da177e4
LT
1822};
1823
9b513090
RC
1824struct ib_dma_mapping_ops {
1825 int (*mapping_error)(struct ib_device *dev,
1826 u64 dma_addr);
1827 u64 (*map_single)(struct ib_device *dev,
1828 void *ptr, size_t size,
1829 enum dma_data_direction direction);
1830 void (*unmap_single)(struct ib_device *dev,
1831 u64 addr, size_t size,
1832 enum dma_data_direction direction);
1833 u64 (*map_page)(struct ib_device *dev,
1834 struct page *page, unsigned long offset,
1835 size_t size,
1836 enum dma_data_direction direction);
1837 void (*unmap_page)(struct ib_device *dev,
1838 u64 addr, size_t size,
1839 enum dma_data_direction direction);
1840 int (*map_sg)(struct ib_device *dev,
1841 struct scatterlist *sg, int nents,
1842 enum dma_data_direction direction);
1843 void (*unmap_sg)(struct ib_device *dev,
1844 struct scatterlist *sg, int nents,
1845 enum dma_data_direction direction);
d9703650
PP
1846 int (*map_sg_attrs)(struct ib_device *dev,
1847 struct scatterlist *sg, int nents,
1848 enum dma_data_direction direction,
1849 unsigned long attrs);
1850 void (*unmap_sg_attrs)(struct ib_device *dev,
1851 struct scatterlist *sg, int nents,
1852 enum dma_data_direction direction,
1853 unsigned long attrs);
9b513090
RC
1854 void (*sync_single_for_cpu)(struct ib_device *dev,
1855 u64 dma_handle,
1856 size_t size,
4deccd6d 1857 enum dma_data_direction dir);
9b513090
RC
1858 void (*sync_single_for_device)(struct ib_device *dev,
1859 u64 dma_handle,
1860 size_t size,
1861 enum dma_data_direction dir);
1862 void *(*alloc_coherent)(struct ib_device *dev,
1863 size_t size,
1864 u64 *dma_handle,
1865 gfp_t flag);
1866 void (*free_coherent)(struct ib_device *dev,
1867 size_t size, void *cpu_addr,
1868 u64 dma_handle);
1869};
1870
07ebafba
TT
1871struct iw_cm_verbs;
1872
7738613e
IW
1873struct ib_port_immutable {
1874 int pkey_tbl_len;
1875 int gid_tbl_len;
f9b22e35 1876 u32 core_cap_flags;
337877a4 1877 u32 max_mad_size;
7738613e
IW
1878};
1879
1da177e4
LT
1880struct ib_device {
1881 struct device *dma_device;
1882
1883 char name[IB_DEVICE_NAME_MAX];
1884
1885 struct list_head event_handler_list;
1886 spinlock_t event_handler_lock;
1887
17a55f79 1888 spinlock_t client_data_lock;
1da177e4 1889 struct list_head core_list;
7c1eb45a
HE
1890 /* Access to the client_data_list is protected by the client_data_lock
1891 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1892 struct list_head client_data_list;
1da177e4
LT
1893
1894 struct ib_cache cache;
7738613e
IW
1895 /**
1896 * port_immutable is indexed by port number
1897 */
1898 struct ib_port_immutable *port_immutable;
1da177e4 1899
f4fd0b22
MT
1900 int num_comp_vectors;
1901
07ebafba
TT
1902 struct iw_cm_verbs *iwcm;
1903
b40f4757
CL
1904 /**
1905 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1906 * driver initialized data. The struct is kfree()'ed by the sysfs
1907 * core when the device is removed. A lifespan of -1 in the return
1908 * struct tells the core to set a default lifespan.
1909 */
1910 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1911 u8 port_num);
1912 /**
1913 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1914 * @index - The index in the value array we wish to have updated, or
1915 * num_counters if we want all stats updated
1916 * Return codes -
1917 * < 0 - Error, no counters updated
1918 * index - Updated the single counter pointed to by index
1919 * num_counters - Updated all counters (will reset the timestamp
1920 * and prevent further calls for lifespan milliseconds)
1921 * Drivers are allowed to update all counters in leiu of just the
1922 * one given in index at their option
1923 */
1924 int (*get_hw_stats)(struct ib_device *device,
1925 struct rdma_hw_stats *stats,
1926 u8 port, int index);
1da177e4 1927 int (*query_device)(struct ib_device *device,
2528e33e
MB
1928 struct ib_device_attr *device_attr,
1929 struct ib_udata *udata);
1da177e4
LT
1930 int (*query_port)(struct ib_device *device,
1931 u8 port_num,
1932 struct ib_port_attr *port_attr);
a3f5adaf
EC
1933 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1934 u8 port_num);
03db3a2d
MB
1935 /* When calling get_netdev, the HW vendor's driver should return the
1936 * net device of device @device at port @port_num or NULL if such
1937 * a net device doesn't exist. The vendor driver should call dev_hold
1938 * on this net device. The HW vendor's device driver must guarantee
1939 * that this function returns NULL before the net device reaches
1940 * NETDEV_UNREGISTER_FINAL state.
1941 */
1942 struct net_device *(*get_netdev)(struct ib_device *device,
1943 u8 port_num);
1da177e4
LT
1944 int (*query_gid)(struct ib_device *device,
1945 u8 port_num, int index,
1946 union ib_gid *gid);
03db3a2d
MB
1947 /* When calling add_gid, the HW vendor's driver should
1948 * add the gid of device @device at gid index @index of
1949 * port @port_num to be @gid. Meta-info of that gid (for example,
1950 * the network device related to this gid is available
1951 * at @attr. @context allows the HW vendor driver to store extra
1952 * information together with a GID entry. The HW vendor may allocate
1953 * memory to contain this information and store it in @context when a
1954 * new GID entry is written to. Params are consistent until the next
1955 * call of add_gid or delete_gid. The function should return 0 on
1956 * success or error otherwise. The function could be called
1957 * concurrently for different ports. This function is only called
1958 * when roce_gid_table is used.
1959 */
1960 int (*add_gid)(struct ib_device *device,
1961 u8 port_num,
1962 unsigned int index,
1963 const union ib_gid *gid,
1964 const struct ib_gid_attr *attr,
1965 void **context);
1966 /* When calling del_gid, the HW vendor's driver should delete the
1967 * gid of device @device at gid index @index of port @port_num.
1968 * Upon the deletion of a GID entry, the HW vendor must free any
1969 * allocated memory. The caller will clear @context afterwards.
1970 * This function is only called when roce_gid_table is used.
1971 */
1972 int (*del_gid)(struct ib_device *device,
1973 u8 port_num,
1974 unsigned int index,
1975 void **context);
1da177e4
LT
1976 int (*query_pkey)(struct ib_device *device,
1977 u8 port_num, u16 index, u16 *pkey);
1978 int (*modify_device)(struct ib_device *device,
1979 int device_modify_mask,
1980 struct ib_device_modify *device_modify);
1981 int (*modify_port)(struct ib_device *device,
1982 u8 port_num, int port_modify_mask,
1983 struct ib_port_modify *port_modify);
e2773c06
RD
1984 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1985 struct ib_udata *udata);
1986 int (*dealloc_ucontext)(struct ib_ucontext *context);
1987 int (*mmap)(struct ib_ucontext *context,
1988 struct vm_area_struct *vma);
1989 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1990 struct ib_ucontext *context,
1991 struct ib_udata *udata);
1da177e4
LT
1992 int (*dealloc_pd)(struct ib_pd *pd);
1993 struct ib_ah * (*create_ah)(struct ib_pd *pd,
477864c8
MS
1994 struct ib_ah_attr *ah_attr,
1995 struct ib_udata *udata);
1da177e4
LT
1996 int (*modify_ah)(struct ib_ah *ah,
1997 struct ib_ah_attr *ah_attr);
1998 int (*query_ah)(struct ib_ah *ah,
1999 struct ib_ah_attr *ah_attr);
2000 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2001 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2002 struct ib_srq_init_attr *srq_init_attr,
2003 struct ib_udata *udata);
2004 int (*modify_srq)(struct ib_srq *srq,
2005 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2006 enum ib_srq_attr_mask srq_attr_mask,
2007 struct ib_udata *udata);
d41fcc67
RD
2008 int (*query_srq)(struct ib_srq *srq,
2009 struct ib_srq_attr *srq_attr);
2010 int (*destroy_srq)(struct ib_srq *srq);
2011 int (*post_srq_recv)(struct ib_srq *srq,
2012 struct ib_recv_wr *recv_wr,
2013 struct ib_recv_wr **bad_recv_wr);
1da177e4 2014 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2015 struct ib_qp_init_attr *qp_init_attr,
2016 struct ib_udata *udata);
1da177e4
LT
2017 int (*modify_qp)(struct ib_qp *qp,
2018 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2019 int qp_attr_mask,
2020 struct ib_udata *udata);
1da177e4
LT
2021 int (*query_qp)(struct ib_qp *qp,
2022 struct ib_qp_attr *qp_attr,
2023 int qp_attr_mask,
2024 struct ib_qp_init_attr *qp_init_attr);
2025 int (*destroy_qp)(struct ib_qp *qp);
2026 int (*post_send)(struct ib_qp *qp,
2027 struct ib_send_wr *send_wr,
2028 struct ib_send_wr **bad_send_wr);
2029 int (*post_recv)(struct ib_qp *qp,
2030 struct ib_recv_wr *recv_wr,
2031 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2032 struct ib_cq * (*create_cq)(struct ib_device *device,
2033 const struct ib_cq_init_attr *attr,
e2773c06
RD
2034 struct ib_ucontext *context,
2035 struct ib_udata *udata);
2dd57162
EC
2036 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2037 u16 cq_period);
1da177e4 2038 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2039 int (*resize_cq)(struct ib_cq *cq, int cqe,
2040 struct ib_udata *udata);
1da177e4
LT
2041 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2042 struct ib_wc *wc);
2043 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2044 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2045 enum ib_cq_notify_flags flags);
1da177e4
LT
2046 int (*req_ncomp_notif)(struct ib_cq *cq,
2047 int wc_cnt);
2048 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2049 int mr_access_flags);
e2773c06 2050 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2051 u64 start, u64 length,
2052 u64 virt_addr,
e2773c06
RD
2053 int mr_access_flags,
2054 struct ib_udata *udata);
7e6edb9b
MB
2055 int (*rereg_user_mr)(struct ib_mr *mr,
2056 int flags,
2057 u64 start, u64 length,
2058 u64 virt_addr,
2059 int mr_access_flags,
2060 struct ib_pd *pd,
2061 struct ib_udata *udata);
1da177e4 2062 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2063 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2064 enum ib_mr_type mr_type,
2065 u32 max_num_sg);
4c67e2bf
SG
2066 int (*map_mr_sg)(struct ib_mr *mr,
2067 struct scatterlist *sg,
ff2ba993 2068 int sg_nents,
9aa8b321 2069 unsigned int *sg_offset);
7083e42e 2070 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2071 enum ib_mw_type type,
2072 struct ib_udata *udata);
1da177e4
LT
2073 int (*dealloc_mw)(struct ib_mw *mw);
2074 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2075 int mr_access_flags,
2076 struct ib_fmr_attr *fmr_attr);
2077 int (*map_phys_fmr)(struct ib_fmr *fmr,
2078 u64 *page_list, int list_len,
2079 u64 iova);
2080 int (*unmap_fmr)(struct list_head *fmr_list);
2081 int (*dealloc_fmr)(struct ib_fmr *fmr);
2082 int (*attach_mcast)(struct ib_qp *qp,
2083 union ib_gid *gid,
2084 u16 lid);
2085 int (*detach_mcast)(struct ib_qp *qp,
2086 union ib_gid *gid,
2087 u16 lid);
2088 int (*process_mad)(struct ib_device *device,
2089 int process_mad_flags,
2090 u8 port_num,
a97e2d86
IW
2091 const struct ib_wc *in_wc,
2092 const struct ib_grh *in_grh,
4cd7c947
IW
2093 const struct ib_mad_hdr *in_mad,
2094 size_t in_mad_size,
2095 struct ib_mad_hdr *out_mad,
2096 size_t *out_mad_size,
2097 u16 *out_mad_pkey_index);
59991f94
SH
2098 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2099 struct ib_ucontext *ucontext,
2100 struct ib_udata *udata);
2101 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2102 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2103 struct ib_flow_attr
2104 *flow_attr,
2105 int domain);
2106 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2107 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2108 struct ib_mr_status *mr_status);
036b1063 2109 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2110 void (*drain_rq)(struct ib_qp *qp);
2111 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2112 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2113 int state);
2114 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2115 struct ifla_vf_info *ivf);
2116 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2117 struct ifla_vf_stats *stats);
2118 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2119 int type);
5fd251c8
YH
2120 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2121 struct ib_wq_init_attr *init_attr,
2122 struct ib_udata *udata);
2123 int (*destroy_wq)(struct ib_wq *wq);
2124 int (*modify_wq)(struct ib_wq *wq,
2125 struct ib_wq_attr *attr,
2126 u32 wq_attr_mask,
2127 struct ib_udata *udata);
6d39786b
YH
2128 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2129 struct ib_rwq_ind_table_init_attr *init_attr,
2130 struct ib_udata *udata);
2131 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
9b513090
RC
2132 struct ib_dma_mapping_ops *dma_ops;
2133
e2773c06 2134 struct module *owner;
f4e91eb4 2135 struct device dev;
35be0681 2136 struct kobject *ports_parent;
1da177e4
LT
2137 struct list_head port_list;
2138
2139 enum {
2140 IB_DEV_UNINITIALIZED,
2141 IB_DEV_REGISTERED,
2142 IB_DEV_UNREGISTERED
2143 } reg_state;
2144
274c0891 2145 int uverbs_abi_ver;
17a55f79 2146 u64 uverbs_cmd_mask;
f21519b2 2147 u64 uverbs_ex_cmd_mask;
274c0891 2148
bd99fdea 2149 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2150 __be64 node_guid;
96f15c03 2151 u32 local_dma_lkey;
4139032b 2152 u16 is_switch:1;
1da177e4
LT
2153 u8 node_type;
2154 u8 phys_port_cnt;
3e153a93 2155 struct ib_device_attr attrs;
b40f4757
CL
2156 struct attribute_group *hw_stats_ag;
2157 struct rdma_hw_stats *hw_stats;
7738613e
IW
2158
2159 /**
2160 * The following mandatory functions are used only at device
2161 * registration. Keep functions such as these at the end of this
2162 * structure to avoid cache line misses when accessing struct ib_device
2163 * in fast paths.
2164 */
2165 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
5fa76c20 2166 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
1da177e4
LT
2167};
2168
2169struct ib_client {
2170 char *name;
2171 void (*add) (struct ib_device *);
7c1eb45a 2172 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2173
9268f72d
YK
2174 /* Returns the net_dev belonging to this ib_client and matching the
2175 * given parameters.
2176 * @dev: An RDMA device that the net_dev use for communication.
2177 * @port: A physical port number on the RDMA device.
2178 * @pkey: P_Key that the net_dev uses if applicable.
2179 * @gid: A GID that the net_dev uses to communicate.
2180 * @addr: An IP address the net_dev is configured with.
2181 * @client_data: The device's client data set by ib_set_client_data().
2182 *
2183 * An ib_client that implements a net_dev on top of RDMA devices
2184 * (such as IP over IB) should implement this callback, allowing the
2185 * rdma_cm module to find the right net_dev for a given request.
2186 *
2187 * The caller is responsible for calling dev_put on the returned
2188 * netdev. */
2189 struct net_device *(*get_net_dev_by_params)(
2190 struct ib_device *dev,
2191 u8 port,
2192 u16 pkey,
2193 const union ib_gid *gid,
2194 const struct sockaddr *addr,
2195 void *client_data);
1da177e4
LT
2196 struct list_head list;
2197};
2198
2199struct ib_device *ib_alloc_device(size_t size);
2200void ib_dealloc_device(struct ib_device *device);
2201
5fa76c20
IW
2202void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2203
9a6edb60
RC
2204int ib_register_device(struct ib_device *device,
2205 int (*port_callback)(struct ib_device *,
2206 u8, struct kobject *));
1da177e4
LT
2207void ib_unregister_device(struct ib_device *device);
2208
2209int ib_register_client (struct ib_client *client);
2210void ib_unregister_client(struct ib_client *client);
2211
2212void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2213void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2214 void *data);
2215
e2773c06
RD
2216static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2217{
2218 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2219}
2220
2221static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2222{
43c61165 2223 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2224}
2225
301a721e
MB
2226static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2227 size_t offset,
2228 size_t len)
2229{
2230 const void __user *p = udata->inbuf + offset;
92d27ae6 2231 bool ret;
301a721e
MB
2232 u8 *buf;
2233
2234 if (len > USHRT_MAX)
2235 return false;
2236
92d27ae6
ME
2237 buf = memdup_user(p, len);
2238 if (IS_ERR(buf))
301a721e
MB
2239 return false;
2240
301a721e 2241 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2242 kfree(buf);
2243 return ret;
2244}
2245
8a51866f
RD
2246/**
2247 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2248 * contains all required attributes and no attributes not allowed for
2249 * the given QP state transition.
2250 * @cur_state: Current QP state
2251 * @next_state: Next QP state
2252 * @type: QP type
2253 * @mask: Mask of supplied QP attributes
dd5f03be 2254 * @ll : link layer of port
8a51866f
RD
2255 *
2256 * This function is a helper function that a low-level driver's
2257 * modify_qp method can use to validate the consumer's input. It
2258 * checks that cur_state and next_state are valid QP states, that a
2259 * transition from cur_state to next_state is allowed by the IB spec,
2260 * and that the attribute mask supplied is allowed for the transition.
2261 */
2262int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2263 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2264 enum rdma_link_layer ll);
8a51866f 2265
1da177e4
LT
2266int ib_register_event_handler (struct ib_event_handler *event_handler);
2267int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2268void ib_dispatch_event(struct ib_event *event);
2269
1da177e4
LT
2270int ib_query_port(struct ib_device *device,
2271 u8 port_num, struct ib_port_attr *port_attr);
2272
a3f5adaf
EC
2273enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2274 u8 port_num);
2275
4139032b
HR
2276/**
2277 * rdma_cap_ib_switch - Check if the device is IB switch
2278 * @device: Device to check
2279 *
2280 * Device driver is responsible for setting is_switch bit on
2281 * in ib_device structure at init time.
2282 *
2283 * Return: true if the device is IB switch.
2284 */
2285static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2286{
2287 return device->is_switch;
2288}
2289
0cf18d77
IW
2290/**
2291 * rdma_start_port - Return the first valid port number for the device
2292 * specified
2293 *
2294 * @device: Device to be checked
2295 *
2296 * Return start port number
2297 */
2298static inline u8 rdma_start_port(const struct ib_device *device)
2299{
4139032b 2300 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2301}
2302
2303/**
2304 * rdma_end_port - Return the last valid port number for the device
2305 * specified
2306 *
2307 * @device: Device to be checked
2308 *
2309 * Return last port number
2310 */
2311static inline u8 rdma_end_port(const struct ib_device *device)
2312{
4139032b 2313 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2314}
2315
5ede9289 2316static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2317{
f9b22e35 2318 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2319}
2320
5ede9289 2321static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2322{
2323 return device->port_immutable[port_num].core_cap_flags &
2324 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2325}
2326
2327static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2328{
2329 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2330}
2331
2332static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2333{
f9b22e35 2334 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2335}
2336
5ede9289 2337static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2338{
f9b22e35 2339 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2340}
2341
5ede9289 2342static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2343{
7766a99f
MB
2344 return rdma_protocol_ib(device, port_num) ||
2345 rdma_protocol_roce(device, port_num);
de66be94
MW
2346}
2347
aa773bd4
OG
2348static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2349{
2350 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2351}
2352
c757dea8 2353/**
296ec009 2354 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2355 * Management Datagrams.
296ec009
MW
2356 * @device: Device to check
2357 * @port_num: Port number to check
c757dea8 2358 *
296ec009
MW
2359 * Management Datagrams (MAD) are a required part of the InfiniBand
2360 * specification and are supported on all InfiniBand devices. A slightly
2361 * extended version are also supported on OPA interfaces.
c757dea8 2362 *
296ec009 2363 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2364 */
5ede9289 2365static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2366{
f9b22e35 2367 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2368}
2369
65995fee
IW
2370/**
2371 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2372 * Management Datagrams.
2373 * @device: Device to check
2374 * @port_num: Port number to check
2375 *
2376 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2377 * datagrams with their own versions. These OPA MADs share many but not all of
2378 * the characteristics of InfiniBand MADs.
2379 *
2380 * OPA MADs differ in the following ways:
2381 *
2382 * 1) MADs are variable size up to 2K
2383 * IBTA defined MADs remain fixed at 256 bytes
2384 * 2) OPA SMPs must carry valid PKeys
2385 * 3) OPA SMP packets are a different format
2386 *
2387 * Return: true if the port supports OPA MAD packet formats.
2388 */
2389static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2390{
2391 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2392 == RDMA_CORE_CAP_OPA_MAD;
2393}
2394
29541e3a 2395/**
296ec009
MW
2396 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2397 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2398 * @device: Device to check
2399 * @port_num: Port number to check
29541e3a 2400 *
296ec009
MW
2401 * Each InfiniBand node is required to provide a Subnet Management Agent
2402 * that the subnet manager can access. Prior to the fabric being fully
2403 * configured by the subnet manager, the SMA is accessed via a well known
2404 * interface called the Subnet Management Interface (SMI). This interface
2405 * uses directed route packets to communicate with the SM to get around the
2406 * chicken and egg problem of the SM needing to know what's on the fabric
2407 * in order to configure the fabric, and needing to configure the fabric in
2408 * order to send packets to the devices on the fabric. These directed
2409 * route packets do not need the fabric fully configured in order to reach
2410 * their destination. The SMI is the only method allowed to send
2411 * directed route packets on an InfiniBand fabric.
29541e3a 2412 *
296ec009 2413 * Return: true if the port provides an SMI.
29541e3a 2414 */
5ede9289 2415static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2416{
f9b22e35 2417 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2418}
2419
72219cea
MW
2420/**
2421 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2422 * Communication Manager.
296ec009
MW
2423 * @device: Device to check
2424 * @port_num: Port number to check
72219cea 2425 *
296ec009
MW
2426 * The InfiniBand Communication Manager is one of many pre-defined General
2427 * Service Agents (GSA) that are accessed via the General Service
2428 * Interface (GSI). It's role is to facilitate establishment of connections
2429 * between nodes as well as other management related tasks for established
2430 * connections.
72219cea 2431 *
296ec009
MW
2432 * Return: true if the port supports an IB CM (this does not guarantee that
2433 * a CM is actually running however).
72219cea 2434 */
5ede9289 2435static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2436{
f9b22e35 2437 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2438}
2439
04215330
MW
2440/**
2441 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2442 * Communication Manager.
296ec009
MW
2443 * @device: Device to check
2444 * @port_num: Port number to check
04215330 2445 *
296ec009
MW
2446 * Similar to above, but specific to iWARP connections which have a different
2447 * managment protocol than InfiniBand.
04215330 2448 *
296ec009
MW
2449 * Return: true if the port supports an iWARP CM (this does not guarantee that
2450 * a CM is actually running however).
04215330 2451 */
5ede9289 2452static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2453{
f9b22e35 2454 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2455}
2456
fe53ba2f
MW
2457/**
2458 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2459 * Subnet Administration.
296ec009
MW
2460 * @device: Device to check
2461 * @port_num: Port number to check
fe53ba2f 2462 *
296ec009
MW
2463 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2464 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2465 * fabrics, devices should resolve routes to other hosts by contacting the
2466 * SA to query the proper route.
fe53ba2f 2467 *
296ec009
MW
2468 * Return: true if the port should act as a client to the fabric Subnet
2469 * Administration interface. This does not imply that the SA service is
2470 * running locally.
fe53ba2f 2471 */
5ede9289 2472static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2473{
f9b22e35 2474 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2475}
2476
a31ad3b0
MW
2477/**
2478 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2479 * Multicast.
296ec009
MW
2480 * @device: Device to check
2481 * @port_num: Port number to check
a31ad3b0 2482 *
296ec009
MW
2483 * InfiniBand multicast registration is more complex than normal IPv4 or
2484 * IPv6 multicast registration. Each Host Channel Adapter must register
2485 * with the Subnet Manager when it wishes to join a multicast group. It
2486 * should do so only once regardless of how many queue pairs it subscribes
2487 * to this group. And it should leave the group only after all queue pairs
2488 * attached to the group have been detached.
a31ad3b0 2489 *
296ec009
MW
2490 * Return: true if the port must undertake the additional adminstrative
2491 * overhead of registering/unregistering with the SM and tracking of the
2492 * total number of queue pairs attached to the multicast group.
a31ad3b0 2493 */
5ede9289 2494static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2495{
2496 return rdma_cap_ib_sa(device, port_num);
2497}
2498
30a74ef4
MW
2499/**
2500 * rdma_cap_af_ib - Check if the port of device has the capability
2501 * Native Infiniband Address.
296ec009
MW
2502 * @device: Device to check
2503 * @port_num: Port number to check
30a74ef4 2504 *
296ec009
MW
2505 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2506 * GID. RoCE uses a different mechanism, but still generates a GID via
2507 * a prescribed mechanism and port specific data.
30a74ef4 2508 *
296ec009
MW
2509 * Return: true if the port uses a GID address to identify devices on the
2510 * network.
30a74ef4 2511 */
5ede9289 2512static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2513{
f9b22e35 2514 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2515}
2516
227128fc
MW
2517/**
2518 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2519 * Ethernet Address Handle.
2520 * @device: Device to check
2521 * @port_num: Port number to check
227128fc 2522 *
296ec009
MW
2523 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2524 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2525 * port. Normally, packet headers are generated by the sending host
2526 * adapter, but when sending connectionless datagrams, we must manually
2527 * inject the proper headers for the fabric we are communicating over.
227128fc 2528 *
296ec009
MW
2529 * Return: true if we are running as a RoCE port and must force the
2530 * addition of a Global Route Header built from our Ethernet Address
2531 * Handle into our header list for connectionless packets.
227128fc 2532 */
5ede9289 2533static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2534{
f9b22e35 2535 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2536}
2537
337877a4
IW
2538/**
2539 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2540 *
2541 * @device: Device
2542 * @port_num: Port number
2543 *
2544 * This MAD size includes the MAD headers and MAD payload. No other headers
2545 * are included.
2546 *
2547 * Return the max MAD size required by the Port. Will return 0 if the port
2548 * does not support MADs
2549 */
2550static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2551{
2552 return device->port_immutable[port_num].max_mad_size;
2553}
2554
03db3a2d
MB
2555/**
2556 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2557 * @device: Device to check
2558 * @port_num: Port number to check
2559 *
2560 * RoCE GID table mechanism manages the various GIDs for a device.
2561 *
2562 * NOTE: if allocating the port's GID table has failed, this call will still
2563 * return true, but any RoCE GID table API will fail.
2564 *
2565 * Return: true if the port uses RoCE GID table mechanism in order to manage
2566 * its GIDs.
2567 */
2568static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2569 u8 port_num)
2570{
2571 return rdma_protocol_roce(device, port_num) &&
2572 device->add_gid && device->del_gid;
2573}
2574
002516ed
CH
2575/*
2576 * Check if the device supports READ W/ INVALIDATE.
2577 */
2578static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2579{
2580 /*
2581 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2582 * has support for it yet.
2583 */
2584 return rdma_protocol_iwarp(dev, port_num);
2585}
2586
1da177e4 2587int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2588 u8 port_num, int index, union ib_gid *gid,
2589 struct ib_gid_attr *attr);
1da177e4 2590
50174a7f
EC
2591int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2592 int state);
2593int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2594 struct ifla_vf_info *info);
2595int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2596 struct ifla_vf_stats *stats);
2597int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2598 int type);
2599
1da177e4
LT
2600int ib_query_pkey(struct ib_device *device,
2601 u8 port_num, u16 index, u16 *pkey);
2602
2603int ib_modify_device(struct ib_device *device,
2604 int device_modify_mask,
2605 struct ib_device_modify *device_modify);
2606
2607int ib_modify_port(struct ib_device *device,
2608 u8 port_num, int port_modify_mask,
2609 struct ib_port_modify *port_modify);
2610
5eb620c8 2611int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2612 enum ib_gid_type gid_type, struct net_device *ndev,
2613 u8 *port_num, u16 *index);
5eb620c8
YE
2614
2615int ib_find_pkey(struct ib_device *device,
2616 u8 port_num, u16 pkey, u16 *index);
2617
ed082d36
CH
2618enum ib_pd_flags {
2619 /*
2620 * Create a memory registration for all memory in the system and place
2621 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2622 * ULPs to avoid the overhead of dynamic MRs.
2623 *
2624 * This flag is generally considered unsafe and must only be used in
2625 * extremly trusted environments. Every use of it will log a warning
2626 * in the kernel log.
2627 */
2628 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2629};
1da177e4 2630
ed082d36
CH
2631struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2632 const char *caller);
2633#define ib_alloc_pd(device, flags) \
2634 __ib_alloc_pd((device), (flags), __func__)
7dd78647 2635void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2636
2637/**
2638 * ib_create_ah - Creates an address handle for the given address vector.
2639 * @pd: The protection domain associated with the address handle.
2640 * @ah_attr: The attributes of the address vector.
2641 *
2642 * The address handle is used to reference a local or global destination
2643 * in all UD QP post sends.
2644 */
2645struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2646
850d8fd7
MS
2647/**
2648 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2649 * work completion.
2650 * @hdr: the L3 header to parse
2651 * @net_type: type of header to parse
2652 * @sgid: place to store source gid
2653 * @dgid: place to store destination gid
2654 */
2655int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2656 enum rdma_network_type net_type,
2657 union ib_gid *sgid, union ib_gid *dgid);
2658
2659/**
2660 * ib_get_rdma_header_version - Get the header version
2661 * @hdr: the L3 header to parse
2662 */
2663int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2664
4e00d694
SH
2665/**
2666 * ib_init_ah_from_wc - Initializes address handle attributes from a
2667 * work completion.
2668 * @device: Device on which the received message arrived.
2669 * @port_num: Port on which the received message arrived.
2670 * @wc: Work completion associated with the received message.
2671 * @grh: References the received global route header. This parameter is
2672 * ignored unless the work completion indicates that the GRH is valid.
2673 * @ah_attr: Returned attributes that can be used when creating an address
2674 * handle for replying to the message.
2675 */
73cdaaee
IW
2676int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2677 const struct ib_wc *wc, const struct ib_grh *grh,
2678 struct ib_ah_attr *ah_attr);
4e00d694 2679
513789ed
HR
2680/**
2681 * ib_create_ah_from_wc - Creates an address handle associated with the
2682 * sender of the specified work completion.
2683 * @pd: The protection domain associated with the address handle.
2684 * @wc: Work completion information associated with a received message.
2685 * @grh: References the received global route header. This parameter is
2686 * ignored unless the work completion indicates that the GRH is valid.
2687 * @port_num: The outbound port number to associate with the address.
2688 *
2689 * The address handle is used to reference a local or global destination
2690 * in all UD QP post sends.
2691 */
73cdaaee
IW
2692struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2693 const struct ib_grh *grh, u8 port_num);
513789ed 2694
1da177e4
LT
2695/**
2696 * ib_modify_ah - Modifies the address vector associated with an address
2697 * handle.
2698 * @ah: The address handle to modify.
2699 * @ah_attr: The new address vector attributes to associate with the
2700 * address handle.
2701 */
2702int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2703
2704/**
2705 * ib_query_ah - Queries the address vector associated with an address
2706 * handle.
2707 * @ah: The address handle to query.
2708 * @ah_attr: The address vector attributes associated with the address
2709 * handle.
2710 */
2711int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2712
2713/**
2714 * ib_destroy_ah - Destroys an address handle.
2715 * @ah: The address handle to destroy.
2716 */
2717int ib_destroy_ah(struct ib_ah *ah);
2718
d41fcc67
RD
2719/**
2720 * ib_create_srq - Creates a SRQ associated with the specified protection
2721 * domain.
2722 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2723 * @srq_init_attr: A list of initial attributes required to create the
2724 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2725 * the actual capabilities of the created SRQ.
d41fcc67
RD
2726 *
2727 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2728 * requested size of the SRQ, and set to the actual values allocated
2729 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2730 * will always be at least as large as the requested values.
2731 */
2732struct ib_srq *ib_create_srq(struct ib_pd *pd,
2733 struct ib_srq_init_attr *srq_init_attr);
2734
2735/**
2736 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2737 * @srq: The SRQ to modify.
2738 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2739 * the current values of selected SRQ attributes are returned.
2740 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2741 * are being modified.
2742 *
2743 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2744 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2745 * the number of receives queued drops below the limit.
2746 */
2747int ib_modify_srq(struct ib_srq *srq,
2748 struct ib_srq_attr *srq_attr,
2749 enum ib_srq_attr_mask srq_attr_mask);
2750
2751/**
2752 * ib_query_srq - Returns the attribute list and current values for the
2753 * specified SRQ.
2754 * @srq: The SRQ to query.
2755 * @srq_attr: The attributes of the specified SRQ.
2756 */
2757int ib_query_srq(struct ib_srq *srq,
2758 struct ib_srq_attr *srq_attr);
2759
2760/**
2761 * ib_destroy_srq - Destroys the specified SRQ.
2762 * @srq: The SRQ to destroy.
2763 */
2764int ib_destroy_srq(struct ib_srq *srq);
2765
2766/**
2767 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2768 * @srq: The SRQ to post the work request on.
2769 * @recv_wr: A list of work requests to post on the receive queue.
2770 * @bad_recv_wr: On an immediate failure, this parameter will reference
2771 * the work request that failed to be posted on the QP.
2772 */
2773static inline int ib_post_srq_recv(struct ib_srq *srq,
2774 struct ib_recv_wr *recv_wr,
2775 struct ib_recv_wr **bad_recv_wr)
2776{
2777 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2778}
2779
1da177e4
LT
2780/**
2781 * ib_create_qp - Creates a QP associated with the specified protection
2782 * domain.
2783 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2784 * @qp_init_attr: A list of initial attributes required to create the
2785 * QP. If QP creation succeeds, then the attributes are updated to
2786 * the actual capabilities of the created QP.
1da177e4
LT
2787 */
2788struct ib_qp *ib_create_qp(struct ib_pd *pd,
2789 struct ib_qp_init_attr *qp_init_attr);
2790
2791/**
2792 * ib_modify_qp - Modifies the attributes for the specified QP and then
2793 * transitions the QP to the given state.
2794 * @qp: The QP to modify.
2795 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2796 * the current values of selected QP attributes are returned.
2797 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2798 * are being modified.
2799 */
2800int ib_modify_qp(struct ib_qp *qp,
2801 struct ib_qp_attr *qp_attr,
2802 int qp_attr_mask);
2803
2804/**
2805 * ib_query_qp - Returns the attribute list and current values for the
2806 * specified QP.
2807 * @qp: The QP to query.
2808 * @qp_attr: The attributes of the specified QP.
2809 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2810 * @qp_init_attr: Additional attributes of the selected QP.
2811 *
2812 * The qp_attr_mask may be used to limit the query to gathering only the
2813 * selected attributes.
2814 */
2815int ib_query_qp(struct ib_qp *qp,
2816 struct ib_qp_attr *qp_attr,
2817 int qp_attr_mask,
2818 struct ib_qp_init_attr *qp_init_attr);
2819
2820/**
2821 * ib_destroy_qp - Destroys the specified QP.
2822 * @qp: The QP to destroy.
2823 */
2824int ib_destroy_qp(struct ib_qp *qp);
2825
d3d72d90 2826/**
0e0ec7e0
SH
2827 * ib_open_qp - Obtain a reference to an existing sharable QP.
2828 * @xrcd - XRC domain
2829 * @qp_open_attr: Attributes identifying the QP to open.
2830 *
2831 * Returns a reference to a sharable QP.
2832 */
2833struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2834 struct ib_qp_open_attr *qp_open_attr);
2835
2836/**
2837 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2838 * @qp: The QP handle to release
2839 *
0e0ec7e0
SH
2840 * The opened QP handle is released by the caller. The underlying
2841 * shared QP is not destroyed until all internal references are released.
d3d72d90 2842 */
0e0ec7e0 2843int ib_close_qp(struct ib_qp *qp);
d3d72d90 2844
1da177e4
LT
2845/**
2846 * ib_post_send - Posts a list of work requests to the send queue of
2847 * the specified QP.
2848 * @qp: The QP to post the work request on.
2849 * @send_wr: A list of work requests to post on the send queue.
2850 * @bad_send_wr: On an immediate failure, this parameter will reference
2851 * the work request that failed to be posted on the QP.
55464d46
BVA
2852 *
2853 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2854 * error is returned, the QP state shall not be affected,
2855 * ib_post_send() will return an immediate error after queueing any
2856 * earlier work requests in the list.
1da177e4
LT
2857 */
2858static inline int ib_post_send(struct ib_qp *qp,
2859 struct ib_send_wr *send_wr,
2860 struct ib_send_wr **bad_send_wr)
2861{
2862 return qp->device->post_send(qp, send_wr, bad_send_wr);
2863}
2864
2865/**
2866 * ib_post_recv - Posts a list of work requests to the receive queue of
2867 * the specified QP.
2868 * @qp: The QP to post the work request on.
2869 * @recv_wr: A list of work requests to post on the receive queue.
2870 * @bad_recv_wr: On an immediate failure, this parameter will reference
2871 * the work request that failed to be posted on the QP.
2872 */
2873static inline int ib_post_recv(struct ib_qp *qp,
2874 struct ib_recv_wr *recv_wr,
2875 struct ib_recv_wr **bad_recv_wr)
2876{
2877 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2878}
2879
14d3a3b2
CH
2880struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2881 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2882void ib_free_cq(struct ib_cq *cq);
2883int ib_process_cq_direct(struct ib_cq *cq, int budget);
2884
1da177e4
LT
2885/**
2886 * ib_create_cq - Creates a CQ on the specified device.
2887 * @device: The device on which to create the CQ.
2888 * @comp_handler: A user-specified callback that is invoked when a
2889 * completion event occurs on the CQ.
2890 * @event_handler: A user-specified callback that is invoked when an
2891 * asynchronous event not associated with a completion occurs on the CQ.
2892 * @cq_context: Context associated with the CQ returned to the user via
2893 * the associated completion and event handlers.
8e37210b 2894 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2895 *
2896 * Users can examine the cq structure to determine the actual CQ size.
2897 */
2898struct ib_cq *ib_create_cq(struct ib_device *device,
2899 ib_comp_handler comp_handler,
2900 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2901 void *cq_context,
2902 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2903
2904/**
2905 * ib_resize_cq - Modifies the capacity of the CQ.
2906 * @cq: The CQ to resize.
2907 * @cqe: The minimum size of the CQ.
2908 *
2909 * Users can examine the cq structure to determine the actual CQ size.
2910 */
2911int ib_resize_cq(struct ib_cq *cq, int cqe);
2912
2dd57162
EC
2913/**
2914 * ib_modify_cq - Modifies moderation params of the CQ
2915 * @cq: The CQ to modify.
2916 * @cq_count: number of CQEs that will trigger an event
2917 * @cq_period: max period of time in usec before triggering an event
2918 *
2919 */
2920int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2921
1da177e4
LT
2922/**
2923 * ib_destroy_cq - Destroys the specified CQ.
2924 * @cq: The CQ to destroy.
2925 */
2926int ib_destroy_cq(struct ib_cq *cq);
2927
2928/**
2929 * ib_poll_cq - poll a CQ for completion(s)
2930 * @cq:the CQ being polled
2931 * @num_entries:maximum number of completions to return
2932 * @wc:array of at least @num_entries &struct ib_wc where completions
2933 * will be returned
2934 *
2935 * Poll a CQ for (possibly multiple) completions. If the return value
2936 * is < 0, an error occurred. If the return value is >= 0, it is the
2937 * number of completions returned. If the return value is
2938 * non-negative and < num_entries, then the CQ was emptied.
2939 */
2940static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2941 struct ib_wc *wc)
2942{
2943 return cq->device->poll_cq(cq, num_entries, wc);
2944}
2945
2946/**
2947 * ib_peek_cq - Returns the number of unreaped completions currently
2948 * on the specified CQ.
2949 * @cq: The CQ to peek.
2950 * @wc_cnt: A minimum number of unreaped completions to check for.
2951 *
2952 * If the number of unreaped completions is greater than or equal to wc_cnt,
2953 * this function returns wc_cnt, otherwise, it returns the actual number of
2954 * unreaped completions.
2955 */
2956int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2957
2958/**
2959 * ib_req_notify_cq - Request completion notification on a CQ.
2960 * @cq: The CQ to generate an event for.
ed23a727
RD
2961 * @flags:
2962 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2963 * to request an event on the next solicited event or next work
2964 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2965 * may also be |ed in to request a hint about missed events, as
2966 * described below.
2967 *
2968 * Return Value:
2969 * < 0 means an error occurred while requesting notification
2970 * == 0 means notification was requested successfully, and if
2971 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2972 * were missed and it is safe to wait for another event. In
2973 * this case is it guaranteed that any work completions added
2974 * to the CQ since the last CQ poll will trigger a completion
2975 * notification event.
2976 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2977 * in. It means that the consumer must poll the CQ again to
2978 * make sure it is empty to avoid missing an event because of a
2979 * race between requesting notification and an entry being
2980 * added to the CQ. This return value means it is possible
2981 * (but not guaranteed) that a work completion has been added
2982 * to the CQ since the last poll without triggering a
2983 * completion notification event.
1da177e4
LT
2984 */
2985static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2986 enum ib_cq_notify_flags flags)
1da177e4 2987{
ed23a727 2988 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2989}
2990
2991/**
2992 * ib_req_ncomp_notif - Request completion notification when there are
2993 * at least the specified number of unreaped completions on the CQ.
2994 * @cq: The CQ to generate an event for.
2995 * @wc_cnt: The number of unreaped completions that should be on the
2996 * CQ before an event is generated.
2997 */
2998static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2999{
3000 return cq->device->req_ncomp_notif ?
3001 cq->device->req_ncomp_notif(cq, wc_cnt) :
3002 -ENOSYS;
3003}
3004
9b513090
RC
3005/**
3006 * ib_dma_mapping_error - check a DMA addr for error
3007 * @dev: The device for which the dma_addr was created
3008 * @dma_addr: The DMA address to check
3009 */
3010static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3011{
d1998ef3
BC
3012 if (dev->dma_ops)
3013 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 3014 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3015}
3016
3017/**
3018 * ib_dma_map_single - Map a kernel virtual address to DMA address
3019 * @dev: The device for which the dma_addr is to be created
3020 * @cpu_addr: The kernel virtual address
3021 * @size: The size of the region in bytes
3022 * @direction: The direction of the DMA
3023 */
3024static inline u64 ib_dma_map_single(struct ib_device *dev,
3025 void *cpu_addr, size_t size,
3026 enum dma_data_direction direction)
3027{
d1998ef3
BC
3028 if (dev->dma_ops)
3029 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3030 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3031}
3032
3033/**
3034 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3035 * @dev: The device for which the DMA address was created
3036 * @addr: The DMA address
3037 * @size: The size of the region in bytes
3038 * @direction: The direction of the DMA
3039 */
3040static inline void ib_dma_unmap_single(struct ib_device *dev,
3041 u64 addr, size_t size,
3042 enum dma_data_direction direction)
3043{
d1998ef3
BC
3044 if (dev->dma_ops)
3045 dev->dma_ops->unmap_single(dev, addr, size, direction);
3046 else
9b513090
RC
3047 dma_unmap_single(dev->dma_device, addr, size, direction);
3048}
3049
cb9fbc5c
AK
3050static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3051 void *cpu_addr, size_t size,
3052 enum dma_data_direction direction,
00085f1e 3053 unsigned long dma_attrs)
cb9fbc5c
AK
3054{
3055 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
00085f1e 3056 direction, dma_attrs);
cb9fbc5c
AK
3057}
3058
3059static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3060 u64 addr, size_t size,
3061 enum dma_data_direction direction,
00085f1e 3062 unsigned long dma_attrs)
cb9fbc5c
AK
3063{
3064 return dma_unmap_single_attrs(dev->dma_device, addr, size,
00085f1e 3065 direction, dma_attrs);
cb9fbc5c
AK
3066}
3067
9b513090
RC
3068/**
3069 * ib_dma_map_page - Map a physical page to DMA address
3070 * @dev: The device for which the dma_addr is to be created
3071 * @page: The page to be mapped
3072 * @offset: The offset within the page
3073 * @size: The size of the region in bytes
3074 * @direction: The direction of the DMA
3075 */
3076static inline u64 ib_dma_map_page(struct ib_device *dev,
3077 struct page *page,
3078 unsigned long offset,
3079 size_t size,
3080 enum dma_data_direction direction)
3081{
d1998ef3
BC
3082 if (dev->dma_ops)
3083 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3084 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3085}
3086
3087/**
3088 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3089 * @dev: The device for which the DMA address was created
3090 * @addr: The DMA address
3091 * @size: The size of the region in bytes
3092 * @direction: The direction of the DMA
3093 */
3094static inline void ib_dma_unmap_page(struct ib_device *dev,
3095 u64 addr, size_t size,
3096 enum dma_data_direction direction)
3097{
d1998ef3
BC
3098 if (dev->dma_ops)
3099 dev->dma_ops->unmap_page(dev, addr, size, direction);
3100 else
9b513090
RC
3101 dma_unmap_page(dev->dma_device, addr, size, direction);
3102}
3103
3104/**
3105 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3106 * @dev: The device for which the DMA addresses are to be created
3107 * @sg: The array of scatter/gather entries
3108 * @nents: The number of scatter/gather entries
3109 * @direction: The direction of the DMA
3110 */
3111static inline int ib_dma_map_sg(struct ib_device *dev,
3112 struct scatterlist *sg, int nents,
3113 enum dma_data_direction direction)
3114{
d1998ef3
BC
3115 if (dev->dma_ops)
3116 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3117 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3118}
3119
3120/**
3121 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3122 * @dev: The device for which the DMA addresses were created
3123 * @sg: The array of scatter/gather entries
3124 * @nents: The number of scatter/gather entries
3125 * @direction: The direction of the DMA
3126 */
3127static inline void ib_dma_unmap_sg(struct ib_device *dev,
3128 struct scatterlist *sg, int nents,
3129 enum dma_data_direction direction)
3130{
d1998ef3
BC
3131 if (dev->dma_ops)
3132 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3133 else
9b513090
RC
3134 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3135}
3136
cb9fbc5c
AK
3137static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3138 struct scatterlist *sg, int nents,
3139 enum dma_data_direction direction,
00085f1e 3140 unsigned long dma_attrs)
cb9fbc5c 3141{
d9703650
PP
3142 if (dev->dma_ops)
3143 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3144 dma_attrs);
3145 else
3146 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3147 dma_attrs);
cb9fbc5c
AK
3148}
3149
3150static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3151 struct scatterlist *sg, int nents,
3152 enum dma_data_direction direction,
00085f1e 3153 unsigned long dma_attrs)
cb9fbc5c 3154{
d9703650
PP
3155 if (dev->dma_ops)
3156 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3157 dma_attrs);
3158 else
3159 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3160 dma_attrs);
cb9fbc5c 3161}
9b513090
RC
3162/**
3163 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3164 * @dev: The device for which the DMA addresses were created
3165 * @sg: The scatter/gather entry
ea58a595
MM
3166 *
3167 * Note: this function is obsolete. To do: change all occurrences of
3168 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3169 */
3170static inline u64 ib_sg_dma_address(struct ib_device *dev,
3171 struct scatterlist *sg)
3172{
d1998ef3 3173 return sg_dma_address(sg);
9b513090
RC
3174}
3175
3176/**
3177 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3178 * @dev: The device for which the DMA addresses were created
3179 * @sg: The scatter/gather entry
ea58a595
MM
3180 *
3181 * Note: this function is obsolete. To do: change all occurrences of
3182 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3183 */
3184static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3185 struct scatterlist *sg)
3186{
d1998ef3 3187 return sg_dma_len(sg);
9b513090
RC
3188}
3189
3190/**
3191 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3192 * @dev: The device for which the DMA address was created
3193 * @addr: The DMA address
3194 * @size: The size of the region in bytes
3195 * @dir: The direction of the DMA
3196 */
3197static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3198 u64 addr,
3199 size_t size,
3200 enum dma_data_direction dir)
3201{
d1998ef3
BC
3202 if (dev->dma_ops)
3203 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3204 else
9b513090
RC
3205 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3206}
3207
3208/**
3209 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3210 * @dev: The device for which the DMA address was created
3211 * @addr: The DMA address
3212 * @size: The size of the region in bytes
3213 * @dir: The direction of the DMA
3214 */
3215static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3216 u64 addr,
3217 size_t size,
3218 enum dma_data_direction dir)
3219{
d1998ef3
BC
3220 if (dev->dma_ops)
3221 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3222 else
9b513090
RC
3223 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3224}
3225
3226/**
3227 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3228 * @dev: The device for which the DMA address is requested
3229 * @size: The size of the region to allocate in bytes
3230 * @dma_handle: A pointer for returning the DMA address of the region
3231 * @flag: memory allocator flags
3232 */
3233static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3234 size_t size,
3235 u64 *dma_handle,
3236 gfp_t flag)
3237{
d1998ef3
BC
3238 if (dev->dma_ops)
3239 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
3240 else {
3241 dma_addr_t handle;
3242 void *ret;
3243
3244 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3245 *dma_handle = handle;
3246 return ret;
3247 }
9b513090
RC
3248}
3249
3250/**
3251 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3252 * @dev: The device for which the DMA addresses were allocated
3253 * @size: The size of the region
3254 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3255 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3256 */
3257static inline void ib_dma_free_coherent(struct ib_device *dev,
3258 size_t size, void *cpu_addr,
3259 u64 dma_handle)
3260{
d1998ef3
BC
3261 if (dev->dma_ops)
3262 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3263 else
9b513090
RC
3264 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3265}
3266
1da177e4
LT
3267/**
3268 * ib_dereg_mr - Deregisters a memory region and removes it from the
3269 * HCA translation table.
3270 * @mr: The memory region to deregister.
7083e42e
SM
3271 *
3272 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3273 */
3274int ib_dereg_mr(struct ib_mr *mr);
3275
9bee178b
SG
3276struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3277 enum ib_mr_type mr_type,
3278 u32 max_num_sg);
00f7ec36 3279
00f7ec36
SW
3280/**
3281 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3282 * R_Key and L_Key.
3283 * @mr - struct ib_mr pointer to be updated.
3284 * @newkey - new key to be used.
3285 */
3286static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3287{
3288 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3289 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3290}
3291
7083e42e
SM
3292/**
3293 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3294 * for calculating a new rkey for type 2 memory windows.
3295 * @rkey - the rkey to increment.
3296 */
3297static inline u32 ib_inc_rkey(u32 rkey)
3298{
3299 const u32 mask = 0x000000ff;
3300 return ((rkey + 1) & mask) | (rkey & ~mask);
3301}
3302
1da177e4
LT
3303/**
3304 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3305 * @pd: The protection domain associated with the unmapped region.
3306 * @mr_access_flags: Specifies the memory access rights.
3307 * @fmr_attr: Attributes of the unmapped region.
3308 *
3309 * A fast memory region must be mapped before it can be used as part of
3310 * a work request.
3311 */
3312struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3313 int mr_access_flags,
3314 struct ib_fmr_attr *fmr_attr);
3315
3316/**
3317 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3318 * @fmr: The fast memory region to associate with the pages.
3319 * @page_list: An array of physical pages to map to the fast memory region.
3320 * @list_len: The number of pages in page_list.
3321 * @iova: The I/O virtual address to use with the mapped region.
3322 */
3323static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3324 u64 *page_list, int list_len,
3325 u64 iova)
3326{
3327 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3328}
3329
3330/**
3331 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3332 * @fmr_list: A linked list of fast memory regions to unmap.
3333 */
3334int ib_unmap_fmr(struct list_head *fmr_list);
3335
3336/**
3337 * ib_dealloc_fmr - Deallocates a fast memory region.
3338 * @fmr: The fast memory region to deallocate.
3339 */
3340int ib_dealloc_fmr(struct ib_fmr *fmr);
3341
3342/**
3343 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3344 * @qp: QP to attach to the multicast group. The QP must be type
3345 * IB_QPT_UD.
3346 * @gid: Multicast group GID.
3347 * @lid: Multicast group LID in host byte order.
3348 *
3349 * In order to send and receive multicast packets, subnet
3350 * administration must have created the multicast group and configured
3351 * the fabric appropriately. The port associated with the specified
3352 * QP must also be a member of the multicast group.
3353 */
3354int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3355
3356/**
3357 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3358 * @qp: QP to detach from the multicast group.
3359 * @gid: Multicast group GID.
3360 * @lid: Multicast group LID in host byte order.
3361 */
3362int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3363
59991f94
SH
3364/**
3365 * ib_alloc_xrcd - Allocates an XRC domain.
3366 * @device: The device on which to allocate the XRC domain.
3367 */
3368struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3369
3370/**
3371 * ib_dealloc_xrcd - Deallocates an XRC domain.
3372 * @xrcd: The XRC domain to deallocate.
3373 */
3374int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3375
319a441d
HHZ
3376struct ib_flow *ib_create_flow(struct ib_qp *qp,
3377 struct ib_flow_attr *flow_attr, int domain);
3378int ib_destroy_flow(struct ib_flow *flow_id);
3379
1c636f80
EC
3380static inline int ib_check_mr_access(int flags)
3381{
3382 /*
3383 * Local write permission is required if remote write or
3384 * remote atomic permission is also requested.
3385 */
3386 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3387 !(flags & IB_ACCESS_LOCAL_WRITE))
3388 return -EINVAL;
3389
3390 return 0;
3391}
3392
1b01d335
SG
3393/**
3394 * ib_check_mr_status: lightweight check of MR status.
3395 * This routine may provide status checks on a selected
3396 * ib_mr. first use is for signature status check.
3397 *
3398 * @mr: A memory region.
3399 * @check_mask: Bitmask of which checks to perform from
3400 * ib_mr_status_check enumeration.
3401 * @mr_status: The container of relevant status checks.
3402 * failed checks will be indicated in the status bitmask
3403 * and the relevant info shall be in the error item.
3404 */
3405int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3406 struct ib_mr_status *mr_status);
3407
9268f72d
YK
3408struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3409 u16 pkey, const union ib_gid *gid,
3410 const struct sockaddr *addr);
5fd251c8
YH
3411struct ib_wq *ib_create_wq(struct ib_pd *pd,
3412 struct ib_wq_init_attr *init_attr);
3413int ib_destroy_wq(struct ib_wq *wq);
3414int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3415 u32 wq_attr_mask);
6d39786b
YH
3416struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3417 struct ib_rwq_ind_table_init_attr*
3418 wq_ind_table_init_attr);
3419int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3420
ff2ba993 3421int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3422 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3423
3424static inline int
ff2ba993 3425ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3426 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3427{
3428 int n;
3429
ff2ba993 3430 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3431 mr->iova = 0;
3432
3433 return n;
3434}
3435
ff2ba993 3436int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3437 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3438
765d6774
SW
3439void ib_drain_rq(struct ib_qp *qp);
3440void ib_drain_sq(struct ib_qp *qp);
3441void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3442
c90ea9d8
MS
3443int ib_resolve_eth_dmac(struct ib_device *device,
3444 struct ib_ah_attr *ah_attr);
1da177e4 3445#endif /* IB_VERBS_H */