]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/rdma/ib_verbs.h
IB/opa-vnic: Virtual Network Interface Controller (VNIC) documentation
[mirror_ubuntu-jammy-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
e2773c06 58
50174a7f 59#include <linux/if_link.h>
60063497 60#include <linux/atomic.h>
882214e2 61#include <linux/mmu_notifier.h>
7c0f6ba6 62#include <linux/uaccess.h>
43579b5f 63#include <linux/cgroup_rdma.h>
1da177e4 64
f0626710 65extern struct workqueue_struct *ib_wq;
14d3a3b2 66extern struct workqueue_struct *ib_comp_wq;
f0626710 67
1da177e4
LT
68union ib_gid {
69 u8 raw[16];
70 struct {
97f52eb4
SH
71 __be64 subnet_prefix;
72 __be64 interface_id;
1da177e4
LT
73 } global;
74};
75
e26be1bf
MS
76extern union ib_gid zgid;
77
b39ffa1d
MB
78enum ib_gid_type {
79 /* If link layer is Ethernet, this is RoCE V1 */
80 IB_GID_TYPE_IB = 0,
81 IB_GID_TYPE_ROCE = 0,
7766a99f 82 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
83 IB_GID_TYPE_SIZE
84};
85
7ead4bcb 86#define ROCE_V2_UDP_DPORT 4791
03db3a2d 87struct ib_gid_attr {
b39ffa1d 88 enum ib_gid_type gid_type;
03db3a2d
MB
89 struct net_device *ndev;
90};
91
07ebafba
TT
92enum rdma_node_type {
93 /* IB values map to NodeInfo:NodeType. */
94 RDMA_NODE_IB_CA = 1,
95 RDMA_NODE_IB_SWITCH,
96 RDMA_NODE_IB_ROUTER,
180771a3
UM
97 RDMA_NODE_RNIC,
98 RDMA_NODE_USNIC,
5db5765e 99 RDMA_NODE_USNIC_UDP,
1da177e4
LT
100};
101
a0c1b2a3
EC
102enum {
103 /* set the local administered indication */
104 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
105};
106
07ebafba
TT
107enum rdma_transport_type {
108 RDMA_TRANSPORT_IB,
180771a3 109 RDMA_TRANSPORT_IWARP,
248567f7
UM
110 RDMA_TRANSPORT_USNIC,
111 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
112};
113
6b90a6d6
MW
114enum rdma_protocol_type {
115 RDMA_PROTOCOL_IB,
116 RDMA_PROTOCOL_IBOE,
117 RDMA_PROTOCOL_IWARP,
118 RDMA_PROTOCOL_USNIC_UDP
119};
120
8385fd84
RD
121__attribute_const__ enum rdma_transport_type
122rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 123
c865f246
SK
124enum rdma_network_type {
125 RDMA_NETWORK_IB,
126 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
127 RDMA_NETWORK_IPV4,
128 RDMA_NETWORK_IPV6
129};
130
131static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
132{
133 if (network_type == RDMA_NETWORK_IPV4 ||
134 network_type == RDMA_NETWORK_IPV6)
135 return IB_GID_TYPE_ROCE_UDP_ENCAP;
136
137 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
138 return IB_GID_TYPE_IB;
139}
140
141static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
142 union ib_gid *gid)
143{
144 if (gid_type == IB_GID_TYPE_IB)
145 return RDMA_NETWORK_IB;
146
147 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
148 return RDMA_NETWORK_IPV4;
149 else
150 return RDMA_NETWORK_IPV6;
151}
152
a3f5adaf
EC
153enum rdma_link_layer {
154 IB_LINK_LAYER_UNSPECIFIED,
155 IB_LINK_LAYER_INFINIBAND,
156 IB_LINK_LAYER_ETHERNET,
157};
158
1da177e4 159enum ib_device_cap_flags {
7ca0bc53
LR
160 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
161 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
162 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
163 IB_DEVICE_RAW_MULTI = (1 << 3),
164 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
165 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
166 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
167 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
168 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
169 IB_DEVICE_INIT_TYPE = (1 << 9),
170 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
171 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
172 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
173 IB_DEVICE_SRQ_RESIZE = (1 << 13),
174 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
175
176 /*
177 * This device supports a per-device lkey or stag that can be
178 * used without performing a memory registration for the local
179 * memory. Note that ULPs should never check this flag, but
180 * instead of use the local_dma_lkey flag in the ib_pd structure,
181 * which will always contain a usable lkey.
182 */
7ca0bc53
LR
183 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
184 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
185 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
186 /*
187 * Devices should set IB_DEVICE_UD_IP_SUM if they support
188 * insertion of UDP and TCP checksum on outgoing UD IPoIB
189 * messages and can verify the validity of checksum for
190 * incoming messages. Setting this flag implies that the
191 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
192 */
7ca0bc53
LR
193 IB_DEVICE_UD_IP_CSUM = (1 << 18),
194 IB_DEVICE_UD_TSO = (1 << 19),
195 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
196
197 /*
198 * This device supports the IB "base memory management extension",
199 * which includes support for fast registrations (IB_WR_REG_MR,
200 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
201 * also be set by any iWarp device which must support FRs to comply
202 * to the iWarp verbs spec. iWarp devices also support the
203 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
204 * stag.
205 */
7ca0bc53
LR
206 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
207 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
208 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
209 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
210 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 211 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 212 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
213 /*
214 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
215 * support execution of WQEs that involve synchronization
216 * of I/O operations with single completion queue managed
217 * by hardware.
218 */
219 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
220 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
221 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 222 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 223 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 224 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 225 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 226 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
1b01d335
SG
227};
228
229enum ib_signature_prot_cap {
230 IB_PROT_T10DIF_TYPE_1 = 1,
231 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
232 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
233};
234
235enum ib_signature_guard_cap {
236 IB_GUARD_T10DIF_CRC = 1,
237 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
238};
239
240enum ib_atomic_cap {
241 IB_ATOMIC_NONE,
242 IB_ATOMIC_HCA,
243 IB_ATOMIC_GLOB
244};
245
860f10a7 246enum ib_odp_general_cap_bits {
25bf14d6
AK
247 IB_ODP_SUPPORT = 1 << 0,
248 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
249};
250
251enum ib_odp_transport_cap_bits {
252 IB_ODP_SUPPORT_SEND = 1 << 0,
253 IB_ODP_SUPPORT_RECV = 1 << 1,
254 IB_ODP_SUPPORT_WRITE = 1 << 2,
255 IB_ODP_SUPPORT_READ = 1 << 3,
256 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
257};
258
259struct ib_odp_caps {
260 uint64_t general_caps;
261 struct {
262 uint32_t rc_odp_caps;
263 uint32_t uc_odp_caps;
264 uint32_t ud_odp_caps;
265 } per_transport_caps;
266};
267
ccf20562
YH
268struct ib_rss_caps {
269 /* Corresponding bit will be set if qp type from
270 * 'enum ib_qp_type' is supported, e.g.
271 * supported_qpts |= 1 << IB_QPT_UD
272 */
273 u32 supported_qpts;
274 u32 max_rwq_indirection_tables;
275 u32 max_rwq_indirection_table_size;
276};
277
b9926b92
MB
278enum ib_cq_creation_flags {
279 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
8a06ce59 280 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
b9926b92
MB
281};
282
bcf4c1ea
MB
283struct ib_cq_init_attr {
284 unsigned int cqe;
285 int comp_vector;
286 u32 flags;
287};
288
1da177e4
LT
289struct ib_device_attr {
290 u64 fw_ver;
97f52eb4 291 __be64 sys_image_guid;
1da177e4
LT
292 u64 max_mr_size;
293 u64 page_size_cap;
294 u32 vendor_id;
295 u32 vendor_part_id;
296 u32 hw_ver;
297 int max_qp;
298 int max_qp_wr;
fb532d6a 299 u64 device_cap_flags;
1da177e4
LT
300 int max_sge;
301 int max_sge_rd;
302 int max_cq;
303 int max_cqe;
304 int max_mr;
305 int max_pd;
306 int max_qp_rd_atom;
307 int max_ee_rd_atom;
308 int max_res_rd_atom;
309 int max_qp_init_rd_atom;
310 int max_ee_init_rd_atom;
311 enum ib_atomic_cap atomic_cap;
5e80ba8f 312 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
313 int max_ee;
314 int max_rdd;
315 int max_mw;
316 int max_raw_ipv6_qp;
317 int max_raw_ethy_qp;
318 int max_mcast_grp;
319 int max_mcast_qp_attach;
320 int max_total_mcast_qp_attach;
321 int max_ah;
322 int max_fmr;
323 int max_map_per_fmr;
324 int max_srq;
325 int max_srq_wr;
326 int max_srq_sge;
00f7ec36 327 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
328 u16 max_pkeys;
329 u8 local_ca_ack_delay;
1b01d335
SG
330 int sig_prot_cap;
331 int sig_guard_cap;
860f10a7 332 struct ib_odp_caps odp_caps;
24306dc6
MB
333 uint64_t timestamp_mask;
334 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
335 struct ib_rss_caps rss_caps;
336 u32 max_wq_type_rq;
ebaaee25 337 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
1da177e4
LT
338};
339
340enum ib_mtu {
341 IB_MTU_256 = 1,
342 IB_MTU_512 = 2,
343 IB_MTU_1024 = 3,
344 IB_MTU_2048 = 4,
345 IB_MTU_4096 = 5
346};
347
348static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
349{
350 switch (mtu) {
351 case IB_MTU_256: return 256;
352 case IB_MTU_512: return 512;
353 case IB_MTU_1024: return 1024;
354 case IB_MTU_2048: return 2048;
355 case IB_MTU_4096: return 4096;
356 default: return -1;
357 }
358}
359
d3f4aadd
AR
360static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
361{
362 if (mtu >= 4096)
363 return IB_MTU_4096;
364 else if (mtu >= 2048)
365 return IB_MTU_2048;
366 else if (mtu >= 1024)
367 return IB_MTU_1024;
368 else if (mtu >= 512)
369 return IB_MTU_512;
370 else
371 return IB_MTU_256;
372}
373
1da177e4
LT
374enum ib_port_state {
375 IB_PORT_NOP = 0,
376 IB_PORT_DOWN = 1,
377 IB_PORT_INIT = 2,
378 IB_PORT_ARMED = 3,
379 IB_PORT_ACTIVE = 4,
380 IB_PORT_ACTIVE_DEFER = 5
381};
382
383enum ib_port_cap_flags {
384 IB_PORT_SM = 1 << 1,
385 IB_PORT_NOTICE_SUP = 1 << 2,
386 IB_PORT_TRAP_SUP = 1 << 3,
387 IB_PORT_OPT_IPD_SUP = 1 << 4,
388 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
389 IB_PORT_SL_MAP_SUP = 1 << 6,
390 IB_PORT_MKEY_NVRAM = 1 << 7,
391 IB_PORT_PKEY_NVRAM = 1 << 8,
392 IB_PORT_LED_INFO_SUP = 1 << 9,
393 IB_PORT_SM_DISABLED = 1 << 10,
394 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
395 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 396 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
397 IB_PORT_CM_SUP = 1 << 16,
398 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
399 IB_PORT_REINIT_SUP = 1 << 18,
400 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
401 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
402 IB_PORT_DR_NOTICE_SUP = 1 << 21,
403 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
404 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
405 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 406 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 407 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
408};
409
410enum ib_port_width {
411 IB_WIDTH_1X = 1,
412 IB_WIDTH_4X = 2,
413 IB_WIDTH_8X = 4,
414 IB_WIDTH_12X = 8
415};
416
417static inline int ib_width_enum_to_int(enum ib_port_width width)
418{
419 switch (width) {
420 case IB_WIDTH_1X: return 1;
421 case IB_WIDTH_4X: return 4;
422 case IB_WIDTH_8X: return 8;
423 case IB_WIDTH_12X: return 12;
424 default: return -1;
425 }
426}
427
2e96691c
OG
428enum ib_port_speed {
429 IB_SPEED_SDR = 1,
430 IB_SPEED_DDR = 2,
431 IB_SPEED_QDR = 4,
432 IB_SPEED_FDR10 = 8,
433 IB_SPEED_FDR = 16,
434 IB_SPEED_EDR = 32
435};
436
b40f4757
CL
437/**
438 * struct rdma_hw_stats
439 * @timestamp - Used by the core code to track when the last update was
440 * @lifespan - Used by the core code to determine how old the counters
441 * should be before being updated again. Stored in jiffies, defaults
442 * to 10 milliseconds, drivers can override the default be specifying
443 * their own value during their allocation routine.
444 * @name - Array of pointers to static names used for the counters in
445 * directory.
446 * @num_counters - How many hardware counters there are. If name is
447 * shorter than this number, a kernel oops will result. Driver authors
448 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
449 * in their code to prevent this.
450 * @value - Array of u64 counters that are accessed by the sysfs code and
451 * filled in by the drivers get_stats routine
452 */
453struct rdma_hw_stats {
454 unsigned long timestamp;
455 unsigned long lifespan;
456 const char * const *names;
457 int num_counters;
458 u64 value[];
7f624d02
SW
459};
460
b40f4757
CL
461#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
462/**
463 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
464 * for drivers.
465 * @names - Array of static const char *
466 * @num_counters - How many elements in array
467 * @lifespan - How many milliseconds between updates
468 */
469static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
470 const char * const *names, int num_counters,
471 unsigned long lifespan)
472{
473 struct rdma_hw_stats *stats;
474
475 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
476 GFP_KERNEL);
477 if (!stats)
478 return NULL;
479 stats->names = names;
480 stats->num_counters = num_counters;
481 stats->lifespan = msecs_to_jiffies(lifespan);
482
483 return stats;
484}
485
486
f9b22e35
IW
487/* Define bits for the various functionality this port needs to be supported by
488 * the core.
489 */
490/* Management 0x00000FFF */
491#define RDMA_CORE_CAP_IB_MAD 0x00000001
492#define RDMA_CORE_CAP_IB_SMI 0x00000002
493#define RDMA_CORE_CAP_IB_CM 0x00000004
494#define RDMA_CORE_CAP_IW_CM 0x00000008
495#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 496#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
497
498/* Address format 0x000FF000 */
499#define RDMA_CORE_CAP_AF_IB 0x00001000
500#define RDMA_CORE_CAP_ETH_AH 0x00002000
501
502/* Protocol 0xFFF00000 */
503#define RDMA_CORE_CAP_PROT_IB 0x00100000
504#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
505#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 506#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 507#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 508#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35
IW
509
510#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
511 | RDMA_CORE_CAP_IB_MAD \
512 | RDMA_CORE_CAP_IB_SMI \
513 | RDMA_CORE_CAP_IB_CM \
514 | RDMA_CORE_CAP_IB_SA \
515 | RDMA_CORE_CAP_AF_IB)
516#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
517 | RDMA_CORE_CAP_IB_MAD \
518 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
519 | RDMA_CORE_CAP_AF_IB \
520 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
521#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
522 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
523 | RDMA_CORE_CAP_IB_MAD \
524 | RDMA_CORE_CAP_IB_CM \
525 | RDMA_CORE_CAP_AF_IB \
526 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
527#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
528 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
529#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
530 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 531
aa773bd4
OG
532#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
533
ce1e055f
OG
534#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
535
1da177e4 536struct ib_port_attr {
fad61ad4 537 u64 subnet_prefix;
1da177e4
LT
538 enum ib_port_state state;
539 enum ib_mtu max_mtu;
540 enum ib_mtu active_mtu;
541 int gid_tbl_len;
542 u32 port_cap_flags;
543 u32 max_msg_sz;
544 u32 bad_pkey_cntr;
545 u32 qkey_viol_cntr;
546 u16 pkey_tbl_len;
547 u16 lid;
548 u16 sm_lid;
549 u8 lmc;
550 u8 max_vl_num;
551 u8 sm_sl;
552 u8 subnet_timeout;
553 u8 init_type_reply;
554 u8 active_width;
555 u8 active_speed;
556 u8 phys_state;
a0c1b2a3 557 bool grh_required;
1da177e4
LT
558};
559
560enum ib_device_modify_flags {
c5bcbbb9
RD
561 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
562 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
563};
564
bd99fdea
YS
565#define IB_DEVICE_NODE_DESC_MAX 64
566
1da177e4
LT
567struct ib_device_modify {
568 u64 sys_image_guid;
bd99fdea 569 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
570};
571
572enum ib_port_modify_flags {
573 IB_PORT_SHUTDOWN = 1,
574 IB_PORT_INIT_TYPE = (1<<2),
575 IB_PORT_RESET_QKEY_CNTR = (1<<3)
576};
577
578struct ib_port_modify {
579 u32 set_port_cap_mask;
580 u32 clr_port_cap_mask;
581 u8 init_type;
582};
583
584enum ib_event_type {
585 IB_EVENT_CQ_ERR,
586 IB_EVENT_QP_FATAL,
587 IB_EVENT_QP_REQ_ERR,
588 IB_EVENT_QP_ACCESS_ERR,
589 IB_EVENT_COMM_EST,
590 IB_EVENT_SQ_DRAINED,
591 IB_EVENT_PATH_MIG,
592 IB_EVENT_PATH_MIG_ERR,
593 IB_EVENT_DEVICE_FATAL,
594 IB_EVENT_PORT_ACTIVE,
595 IB_EVENT_PORT_ERR,
596 IB_EVENT_LID_CHANGE,
597 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
598 IB_EVENT_SM_CHANGE,
599 IB_EVENT_SRQ_ERR,
600 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 601 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
602 IB_EVENT_CLIENT_REREGISTER,
603 IB_EVENT_GID_CHANGE,
f213c052 604 IB_EVENT_WQ_FATAL,
1da177e4
LT
605};
606
db7489e0 607const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 608
1da177e4
LT
609struct ib_event {
610 struct ib_device *device;
611 union {
612 struct ib_cq *cq;
613 struct ib_qp *qp;
d41fcc67 614 struct ib_srq *srq;
f213c052 615 struct ib_wq *wq;
1da177e4
LT
616 u8 port_num;
617 } element;
618 enum ib_event_type event;
619};
620
621struct ib_event_handler {
622 struct ib_device *device;
623 void (*handler)(struct ib_event_handler *, struct ib_event *);
624 struct list_head list;
625};
626
627#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
628 do { \
629 (_ptr)->device = _device; \
630 (_ptr)->handler = _handler; \
631 INIT_LIST_HEAD(&(_ptr)->list); \
632 } while (0)
633
634struct ib_global_route {
635 union ib_gid dgid;
636 u32 flow_label;
637 u8 sgid_index;
638 u8 hop_limit;
639 u8 traffic_class;
640};
641
513789ed 642struct ib_grh {
97f52eb4
SH
643 __be32 version_tclass_flow;
644 __be16 paylen;
513789ed
HR
645 u8 next_hdr;
646 u8 hop_limit;
647 union ib_gid sgid;
648 union ib_gid dgid;
649};
650
c865f246
SK
651union rdma_network_hdr {
652 struct ib_grh ibgrh;
653 struct {
654 /* The IB spec states that if it's IPv4, the header
655 * is located in the last 20 bytes of the header.
656 */
657 u8 reserved[20];
658 struct iphdr roce4grh;
659 };
660};
661
1da177e4
LT
662enum {
663 IB_MULTICAST_QPN = 0xffffff
664};
665
f3a7c66b 666#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 667#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 668
1da177e4
LT
669enum ib_ah_flags {
670 IB_AH_GRH = 1
671};
672
bf6a9e31
JM
673enum ib_rate {
674 IB_RATE_PORT_CURRENT = 0,
675 IB_RATE_2_5_GBPS = 2,
676 IB_RATE_5_GBPS = 5,
677 IB_RATE_10_GBPS = 3,
678 IB_RATE_20_GBPS = 6,
679 IB_RATE_30_GBPS = 4,
680 IB_RATE_40_GBPS = 7,
681 IB_RATE_60_GBPS = 8,
682 IB_RATE_80_GBPS = 9,
71eeba16
MA
683 IB_RATE_120_GBPS = 10,
684 IB_RATE_14_GBPS = 11,
685 IB_RATE_56_GBPS = 12,
686 IB_RATE_112_GBPS = 13,
687 IB_RATE_168_GBPS = 14,
688 IB_RATE_25_GBPS = 15,
689 IB_RATE_100_GBPS = 16,
690 IB_RATE_200_GBPS = 17,
691 IB_RATE_300_GBPS = 18
bf6a9e31
JM
692};
693
694/**
695 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
696 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
697 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
698 * @rate: rate to convert.
699 */
8385fd84 700__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 701
71eeba16
MA
702/**
703 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
704 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
705 * @rate: rate to convert.
706 */
8385fd84 707__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 708
17cd3a2d
SG
709
710/**
9bee178b
SG
711 * enum ib_mr_type - memory region type
712 * @IB_MR_TYPE_MEM_REG: memory region that is used for
713 * normal registration
714 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
715 * signature operations (data-integrity
716 * capable regions)
f5aa9159
SG
717 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
718 * register any arbitrary sg lists (without
719 * the normal mr constraints - see
720 * ib_map_mr_sg)
17cd3a2d 721 */
9bee178b
SG
722enum ib_mr_type {
723 IB_MR_TYPE_MEM_REG,
724 IB_MR_TYPE_SIGNATURE,
f5aa9159 725 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
726};
727
1b01d335 728/**
78eda2bb
SG
729 * Signature types
730 * IB_SIG_TYPE_NONE: Unprotected.
731 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 732 */
78eda2bb
SG
733enum ib_signature_type {
734 IB_SIG_TYPE_NONE,
735 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
736};
737
738/**
739 * Signature T10-DIF block-guard types
740 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
741 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
742 */
743enum ib_t10_dif_bg_type {
744 IB_T10DIF_CRC,
745 IB_T10DIF_CSUM
746};
747
748/**
749 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
750 * domain.
1b01d335
SG
751 * @bg_type: T10-DIF block guard type (CRC|CSUM)
752 * @pi_interval: protection information interval.
753 * @bg: seed of guard computation.
754 * @app_tag: application tag of guard block
755 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
756 * @ref_remap: Indicate wethear the reftag increments each block
757 * @app_escape: Indicate to skip block check if apptag=0xffff
758 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
759 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
760 */
761struct ib_t10_dif_domain {
1b01d335
SG
762 enum ib_t10_dif_bg_type bg_type;
763 u16 pi_interval;
764 u16 bg;
765 u16 app_tag;
766 u32 ref_tag;
78eda2bb
SG
767 bool ref_remap;
768 bool app_escape;
769 bool ref_escape;
770 u16 apptag_check_mask;
1b01d335
SG
771};
772
773/**
774 * struct ib_sig_domain - Parameters for signature domain
775 * @sig_type: specific signauture type
776 * @sig: union of all signature domain attributes that may
777 * be used to set domain layout.
778 */
779struct ib_sig_domain {
780 enum ib_signature_type sig_type;
781 union {
782 struct ib_t10_dif_domain dif;
783 } sig;
784};
785
786/**
787 * struct ib_sig_attrs - Parameters for signature handover operation
788 * @check_mask: bitmask for signature byte check (8 bytes)
789 * @mem: memory domain layout desciptor.
790 * @wire: wire domain layout desciptor.
791 */
792struct ib_sig_attrs {
793 u8 check_mask;
794 struct ib_sig_domain mem;
795 struct ib_sig_domain wire;
796};
797
798enum ib_sig_err_type {
799 IB_SIG_BAD_GUARD,
800 IB_SIG_BAD_REFTAG,
801 IB_SIG_BAD_APPTAG,
802};
803
804/**
805 * struct ib_sig_err - signature error descriptor
806 */
807struct ib_sig_err {
808 enum ib_sig_err_type err_type;
809 u32 expected;
810 u32 actual;
811 u64 sig_err_offset;
812 u32 key;
813};
814
815enum ib_mr_status_check {
816 IB_MR_CHECK_SIG_STATUS = 1,
817};
818
819/**
820 * struct ib_mr_status - Memory region status container
821 *
822 * @fail_status: Bitmask of MR checks status. For each
823 * failed check a corresponding status bit is set.
824 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
825 * failure.
826 */
827struct ib_mr_status {
828 u32 fail_status;
829 struct ib_sig_err sig_err;
830};
831
bf6a9e31
JM
832/**
833 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
834 * enum.
835 * @mult: multiple to convert.
836 */
8385fd84 837__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 838
1da177e4
LT
839struct ib_ah_attr {
840 struct ib_global_route grh;
841 u16 dlid;
842 u8 sl;
843 u8 src_path_bits;
844 u8 static_rate;
845 u8 ah_flags;
846 u8 port_num;
dd5f03be 847 u8 dmac[ETH_ALEN];
1da177e4
LT
848};
849
850enum ib_wc_status {
851 IB_WC_SUCCESS,
852 IB_WC_LOC_LEN_ERR,
853 IB_WC_LOC_QP_OP_ERR,
854 IB_WC_LOC_EEC_OP_ERR,
855 IB_WC_LOC_PROT_ERR,
856 IB_WC_WR_FLUSH_ERR,
857 IB_WC_MW_BIND_ERR,
858 IB_WC_BAD_RESP_ERR,
859 IB_WC_LOC_ACCESS_ERR,
860 IB_WC_REM_INV_REQ_ERR,
861 IB_WC_REM_ACCESS_ERR,
862 IB_WC_REM_OP_ERR,
863 IB_WC_RETRY_EXC_ERR,
864 IB_WC_RNR_RETRY_EXC_ERR,
865 IB_WC_LOC_RDD_VIOL_ERR,
866 IB_WC_REM_INV_RD_REQ_ERR,
867 IB_WC_REM_ABORT_ERR,
868 IB_WC_INV_EECN_ERR,
869 IB_WC_INV_EEC_STATE_ERR,
870 IB_WC_FATAL_ERR,
871 IB_WC_RESP_TIMEOUT_ERR,
872 IB_WC_GENERAL_ERR
873};
874
db7489e0 875const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 876
1da177e4
LT
877enum ib_wc_opcode {
878 IB_WC_SEND,
879 IB_WC_RDMA_WRITE,
880 IB_WC_RDMA_READ,
881 IB_WC_COMP_SWAP,
882 IB_WC_FETCH_ADD,
c93570f2 883 IB_WC_LSO,
00f7ec36 884 IB_WC_LOCAL_INV,
4c67e2bf 885 IB_WC_REG_MR,
5e80ba8f
VS
886 IB_WC_MASKED_COMP_SWAP,
887 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
888/*
889 * Set value of IB_WC_RECV so consumers can test if a completion is a
890 * receive by testing (opcode & IB_WC_RECV).
891 */
892 IB_WC_RECV = 1 << 7,
893 IB_WC_RECV_RDMA_WITH_IMM
894};
895
896enum ib_wc_flags {
897 IB_WC_GRH = 1,
00f7ec36
SW
898 IB_WC_WITH_IMM = (1<<1),
899 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 900 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
901 IB_WC_WITH_SMAC = (1<<4),
902 IB_WC_WITH_VLAN = (1<<5),
c865f246 903 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
904};
905
906struct ib_wc {
14d3a3b2
CH
907 union {
908 u64 wr_id;
909 struct ib_cqe *wr_cqe;
910 };
1da177e4
LT
911 enum ib_wc_status status;
912 enum ib_wc_opcode opcode;
913 u32 vendor_err;
914 u32 byte_len;
062dbb69 915 struct ib_qp *qp;
00f7ec36
SW
916 union {
917 __be32 imm_data;
918 u32 invalidate_rkey;
919 } ex;
1da177e4
LT
920 u32 src_qp;
921 int wc_flags;
922 u16 pkey_index;
923 u16 slid;
924 u8 sl;
925 u8 dlid_path_bits;
926 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
927 u8 smac[ETH_ALEN];
928 u16 vlan_id;
c865f246 929 u8 network_hdr_type;
1da177e4
LT
930};
931
ed23a727
RD
932enum ib_cq_notify_flags {
933 IB_CQ_SOLICITED = 1 << 0,
934 IB_CQ_NEXT_COMP = 1 << 1,
935 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
936 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
937};
938
96104eda 939enum ib_srq_type {
418d5130
SH
940 IB_SRQT_BASIC,
941 IB_SRQT_XRC
96104eda
SH
942};
943
d41fcc67
RD
944enum ib_srq_attr_mask {
945 IB_SRQ_MAX_WR = 1 << 0,
946 IB_SRQ_LIMIT = 1 << 1,
947};
948
949struct ib_srq_attr {
950 u32 max_wr;
951 u32 max_sge;
952 u32 srq_limit;
953};
954
955struct ib_srq_init_attr {
956 void (*event_handler)(struct ib_event *, void *);
957 void *srq_context;
958 struct ib_srq_attr attr;
96104eda 959 enum ib_srq_type srq_type;
418d5130
SH
960
961 union {
962 struct {
963 struct ib_xrcd *xrcd;
964 struct ib_cq *cq;
965 } xrc;
966 } ext;
d41fcc67
RD
967};
968
1da177e4
LT
969struct ib_qp_cap {
970 u32 max_send_wr;
971 u32 max_recv_wr;
972 u32 max_send_sge;
973 u32 max_recv_sge;
974 u32 max_inline_data;
a060b562
CH
975
976 /*
977 * Maximum number of rdma_rw_ctx structures in flight at a time.
978 * ib_create_qp() will calculate the right amount of neededed WRs
979 * and MRs based on this.
980 */
981 u32 max_rdma_ctxs;
1da177e4
LT
982};
983
984enum ib_sig_type {
985 IB_SIGNAL_ALL_WR,
986 IB_SIGNAL_REQ_WR
987};
988
989enum ib_qp_type {
990 /*
991 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
992 * here (and in that order) since the MAD layer uses them as
993 * indices into a 2-entry table.
994 */
995 IB_QPT_SMI,
996 IB_QPT_GSI,
997
998 IB_QPT_RC,
999 IB_QPT_UC,
1000 IB_QPT_UD,
1001 IB_QPT_RAW_IPV6,
b42b63cf 1002 IB_QPT_RAW_ETHERTYPE,
c938a616 1003 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1004 IB_QPT_XRC_INI = 9,
1005 IB_QPT_XRC_TGT,
0134f16b
JM
1006 IB_QPT_MAX,
1007 /* Reserve a range for qp types internal to the low level driver.
1008 * These qp types will not be visible at the IB core layer, so the
1009 * IB_QPT_MAX usages should not be affected in the core layer
1010 */
1011 IB_QPT_RESERVED1 = 0x1000,
1012 IB_QPT_RESERVED2,
1013 IB_QPT_RESERVED3,
1014 IB_QPT_RESERVED4,
1015 IB_QPT_RESERVED5,
1016 IB_QPT_RESERVED6,
1017 IB_QPT_RESERVED7,
1018 IB_QPT_RESERVED8,
1019 IB_QPT_RESERVED9,
1020 IB_QPT_RESERVED10,
1da177e4
LT
1021};
1022
b846f25a 1023enum ib_qp_create_flags {
47ee1b9f
RL
1024 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1025 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1026 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1027 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1028 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1029 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1030 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 1031 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
b531b909 1032 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1033 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
d2b57063
JM
1034 /* reserve bits 26-31 for low level drivers' internal use */
1035 IB_QP_CREATE_RESERVED_START = 1 << 26,
1036 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1037};
1038
73c40c61
YH
1039/*
1040 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1041 * callback to destroy the passed in QP.
1042 */
1043
1da177e4
LT
1044struct ib_qp_init_attr {
1045 void (*event_handler)(struct ib_event *, void *);
1046 void *qp_context;
1047 struct ib_cq *send_cq;
1048 struct ib_cq *recv_cq;
1049 struct ib_srq *srq;
b42b63cf 1050 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1051 struct ib_qp_cap cap;
1052 enum ib_sig_type sq_sig_type;
1053 enum ib_qp_type qp_type;
b846f25a 1054 enum ib_qp_create_flags create_flags;
a060b562
CH
1055
1056 /*
1057 * Only needed for special QP types, or when using the RW API.
1058 */
1059 u8 port_num;
a9017e23 1060 struct ib_rwq_ind_table *rwq_ind_tbl;
1da177e4
LT
1061};
1062
0e0ec7e0
SH
1063struct ib_qp_open_attr {
1064 void (*event_handler)(struct ib_event *, void *);
1065 void *qp_context;
1066 u32 qp_num;
1067 enum ib_qp_type qp_type;
1068};
1069
1da177e4
LT
1070enum ib_rnr_timeout {
1071 IB_RNR_TIMER_655_36 = 0,
1072 IB_RNR_TIMER_000_01 = 1,
1073 IB_RNR_TIMER_000_02 = 2,
1074 IB_RNR_TIMER_000_03 = 3,
1075 IB_RNR_TIMER_000_04 = 4,
1076 IB_RNR_TIMER_000_06 = 5,
1077 IB_RNR_TIMER_000_08 = 6,
1078 IB_RNR_TIMER_000_12 = 7,
1079 IB_RNR_TIMER_000_16 = 8,
1080 IB_RNR_TIMER_000_24 = 9,
1081 IB_RNR_TIMER_000_32 = 10,
1082 IB_RNR_TIMER_000_48 = 11,
1083 IB_RNR_TIMER_000_64 = 12,
1084 IB_RNR_TIMER_000_96 = 13,
1085 IB_RNR_TIMER_001_28 = 14,
1086 IB_RNR_TIMER_001_92 = 15,
1087 IB_RNR_TIMER_002_56 = 16,
1088 IB_RNR_TIMER_003_84 = 17,
1089 IB_RNR_TIMER_005_12 = 18,
1090 IB_RNR_TIMER_007_68 = 19,
1091 IB_RNR_TIMER_010_24 = 20,
1092 IB_RNR_TIMER_015_36 = 21,
1093 IB_RNR_TIMER_020_48 = 22,
1094 IB_RNR_TIMER_030_72 = 23,
1095 IB_RNR_TIMER_040_96 = 24,
1096 IB_RNR_TIMER_061_44 = 25,
1097 IB_RNR_TIMER_081_92 = 26,
1098 IB_RNR_TIMER_122_88 = 27,
1099 IB_RNR_TIMER_163_84 = 28,
1100 IB_RNR_TIMER_245_76 = 29,
1101 IB_RNR_TIMER_327_68 = 30,
1102 IB_RNR_TIMER_491_52 = 31
1103};
1104
1105enum ib_qp_attr_mask {
1106 IB_QP_STATE = 1,
1107 IB_QP_CUR_STATE = (1<<1),
1108 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1109 IB_QP_ACCESS_FLAGS = (1<<3),
1110 IB_QP_PKEY_INDEX = (1<<4),
1111 IB_QP_PORT = (1<<5),
1112 IB_QP_QKEY = (1<<6),
1113 IB_QP_AV = (1<<7),
1114 IB_QP_PATH_MTU = (1<<8),
1115 IB_QP_TIMEOUT = (1<<9),
1116 IB_QP_RETRY_CNT = (1<<10),
1117 IB_QP_RNR_RETRY = (1<<11),
1118 IB_QP_RQ_PSN = (1<<12),
1119 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1120 IB_QP_ALT_PATH = (1<<14),
1121 IB_QP_MIN_RNR_TIMER = (1<<15),
1122 IB_QP_SQ_PSN = (1<<16),
1123 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1124 IB_QP_PATH_MIG_STATE = (1<<18),
1125 IB_QP_CAP = (1<<19),
dd5f03be 1126 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1127 IB_QP_RESERVED1 = (1<<21),
1128 IB_QP_RESERVED2 = (1<<22),
1129 IB_QP_RESERVED3 = (1<<23),
1130 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1131 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1132};
1133
1134enum ib_qp_state {
1135 IB_QPS_RESET,
1136 IB_QPS_INIT,
1137 IB_QPS_RTR,
1138 IB_QPS_RTS,
1139 IB_QPS_SQD,
1140 IB_QPS_SQE,
1141 IB_QPS_ERR
1142};
1143
1144enum ib_mig_state {
1145 IB_MIG_MIGRATED,
1146 IB_MIG_REARM,
1147 IB_MIG_ARMED
1148};
1149
7083e42e
SM
1150enum ib_mw_type {
1151 IB_MW_TYPE_1 = 1,
1152 IB_MW_TYPE_2 = 2
1153};
1154
1da177e4
LT
1155struct ib_qp_attr {
1156 enum ib_qp_state qp_state;
1157 enum ib_qp_state cur_qp_state;
1158 enum ib_mtu path_mtu;
1159 enum ib_mig_state path_mig_state;
1160 u32 qkey;
1161 u32 rq_psn;
1162 u32 sq_psn;
1163 u32 dest_qp_num;
1164 int qp_access_flags;
1165 struct ib_qp_cap cap;
1166 struct ib_ah_attr ah_attr;
1167 struct ib_ah_attr alt_ah_attr;
1168 u16 pkey_index;
1169 u16 alt_pkey_index;
1170 u8 en_sqd_async_notify;
1171 u8 sq_draining;
1172 u8 max_rd_atomic;
1173 u8 max_dest_rd_atomic;
1174 u8 min_rnr_timer;
1175 u8 port_num;
1176 u8 timeout;
1177 u8 retry_cnt;
1178 u8 rnr_retry;
1179 u8 alt_port_num;
1180 u8 alt_timeout;
528e5a1b 1181 u32 rate_limit;
1da177e4
LT
1182};
1183
1184enum ib_wr_opcode {
1185 IB_WR_RDMA_WRITE,
1186 IB_WR_RDMA_WRITE_WITH_IMM,
1187 IB_WR_SEND,
1188 IB_WR_SEND_WITH_IMM,
1189 IB_WR_RDMA_READ,
1190 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1191 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1192 IB_WR_LSO,
1193 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1194 IB_WR_RDMA_READ_WITH_INV,
1195 IB_WR_LOCAL_INV,
4c67e2bf 1196 IB_WR_REG_MR,
5e80ba8f
VS
1197 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1198 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1199 IB_WR_REG_SIG_MR,
0134f16b
JM
1200 /* reserve values for low level drivers' internal use.
1201 * These values will not be used at all in the ib core layer.
1202 */
1203 IB_WR_RESERVED1 = 0xf0,
1204 IB_WR_RESERVED2,
1205 IB_WR_RESERVED3,
1206 IB_WR_RESERVED4,
1207 IB_WR_RESERVED5,
1208 IB_WR_RESERVED6,
1209 IB_WR_RESERVED7,
1210 IB_WR_RESERVED8,
1211 IB_WR_RESERVED9,
1212 IB_WR_RESERVED10,
1da177e4
LT
1213};
1214
1215enum ib_send_flags {
1216 IB_SEND_FENCE = 1,
1217 IB_SEND_SIGNALED = (1<<1),
1218 IB_SEND_SOLICITED = (1<<2),
e0605d91 1219 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1220 IB_SEND_IP_CSUM = (1<<4),
1221
1222 /* reserve bits 26-31 for low level drivers' internal use */
1223 IB_SEND_RESERVED_START = (1 << 26),
1224 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1225};
1226
1227struct ib_sge {
1228 u64 addr;
1229 u32 length;
1230 u32 lkey;
1231};
1232
14d3a3b2
CH
1233struct ib_cqe {
1234 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1235};
1236
1da177e4
LT
1237struct ib_send_wr {
1238 struct ib_send_wr *next;
14d3a3b2
CH
1239 union {
1240 u64 wr_id;
1241 struct ib_cqe *wr_cqe;
1242 };
1da177e4
LT
1243 struct ib_sge *sg_list;
1244 int num_sge;
1245 enum ib_wr_opcode opcode;
1246 int send_flags;
0f39cf3d
RD
1247 union {
1248 __be32 imm_data;
1249 u32 invalidate_rkey;
1250 } ex;
1da177e4
LT
1251};
1252
e622f2f4
CH
1253struct ib_rdma_wr {
1254 struct ib_send_wr wr;
1255 u64 remote_addr;
1256 u32 rkey;
1257};
1258
1259static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1260{
1261 return container_of(wr, struct ib_rdma_wr, wr);
1262}
1263
1264struct ib_atomic_wr {
1265 struct ib_send_wr wr;
1266 u64 remote_addr;
1267 u64 compare_add;
1268 u64 swap;
1269 u64 compare_add_mask;
1270 u64 swap_mask;
1271 u32 rkey;
1272};
1273
1274static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1275{
1276 return container_of(wr, struct ib_atomic_wr, wr);
1277}
1278
1279struct ib_ud_wr {
1280 struct ib_send_wr wr;
1281 struct ib_ah *ah;
1282 void *header;
1283 int hlen;
1284 int mss;
1285 u32 remote_qpn;
1286 u32 remote_qkey;
1287 u16 pkey_index; /* valid for GSI only */
1288 u8 port_num; /* valid for DR SMPs on switch only */
1289};
1290
1291static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1292{
1293 return container_of(wr, struct ib_ud_wr, wr);
1294}
1295
4c67e2bf
SG
1296struct ib_reg_wr {
1297 struct ib_send_wr wr;
1298 struct ib_mr *mr;
1299 u32 key;
1300 int access;
1301};
1302
1303static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1304{
1305 return container_of(wr, struct ib_reg_wr, wr);
1306}
1307
e622f2f4
CH
1308struct ib_sig_handover_wr {
1309 struct ib_send_wr wr;
1310 struct ib_sig_attrs *sig_attrs;
1311 struct ib_mr *sig_mr;
1312 int access_flags;
1313 struct ib_sge *prot;
1314};
1315
1316static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1317{
1318 return container_of(wr, struct ib_sig_handover_wr, wr);
1319}
1320
1da177e4
LT
1321struct ib_recv_wr {
1322 struct ib_recv_wr *next;
14d3a3b2
CH
1323 union {
1324 u64 wr_id;
1325 struct ib_cqe *wr_cqe;
1326 };
1da177e4
LT
1327 struct ib_sge *sg_list;
1328 int num_sge;
1329};
1330
1331enum ib_access_flags {
1332 IB_ACCESS_LOCAL_WRITE = 1,
1333 IB_ACCESS_REMOTE_WRITE = (1<<1),
1334 IB_ACCESS_REMOTE_READ = (1<<2),
1335 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1336 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1337 IB_ZERO_BASED = (1<<5),
1338 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1339};
1340
b7d3e0a9
CH
1341/*
1342 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1343 * are hidden here instead of a uapi header!
1344 */
1da177e4
LT
1345enum ib_mr_rereg_flags {
1346 IB_MR_REREG_TRANS = 1,
1347 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1348 IB_MR_REREG_ACCESS = (1<<2),
1349 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1350};
1351
1da177e4
LT
1352struct ib_fmr_attr {
1353 int max_pages;
1354 int max_maps;
d36f34aa 1355 u8 page_shift;
1da177e4
LT
1356};
1357
882214e2
HE
1358struct ib_umem;
1359
38321256
MB
1360enum rdma_remove_reason {
1361 /* Userspace requested uobject deletion. Call could fail */
1362 RDMA_REMOVE_DESTROY,
1363 /* Context deletion. This call should delete the actual object itself */
1364 RDMA_REMOVE_CLOSE,
1365 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1366 RDMA_REMOVE_DRIVER_REMOVE,
1367 /* Context is being cleaned-up, but commit was just completed */
1368 RDMA_REMOVE_DURING_CLEANUP,
1369};
1370
43579b5f
PP
1371struct ib_rdmacg_object {
1372#ifdef CONFIG_CGROUP_RDMA
1373 struct rdma_cgroup *cg; /* owner rdma cgroup */
1374#endif
1375};
1376
e2773c06
RD
1377struct ib_ucontext {
1378 struct ib_device *device;
771addf6 1379 struct ib_uverbs_file *ufile;
f7c6a7b5 1380 int closing;
8ada2c1c 1381
38321256
MB
1382 /* locking the uobjects_list */
1383 struct mutex uobjects_lock;
1384 struct list_head uobjects;
1385 /* protects cleanup process from other actions */
1386 struct rw_semaphore cleanup_rwsem;
1387 enum rdma_remove_reason cleanup_reason;
1388
8ada2c1c 1389 struct pid *tgid;
882214e2
HE
1390#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1391 struct rb_root umem_tree;
1392 /*
1393 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1394 * mmu notifiers registration.
1395 */
1396 struct rw_semaphore umem_rwsem;
1397 void (*invalidate_range)(struct ib_umem *umem,
1398 unsigned long start, unsigned long end);
1399
1400 struct mmu_notifier mn;
1401 atomic_t notifier_count;
1402 /* A list of umems that don't have private mmu notifier counters yet. */
1403 struct list_head no_private_counters;
1404 int odp_mrs_count;
1405#endif
43579b5f
PP
1406
1407 struct ib_rdmacg_object cg_obj;
e2773c06
RD
1408};
1409
1410struct ib_uobject {
1411 u64 user_handle; /* handle given to us by userspace */
1412 struct ib_ucontext *context; /* associated user context */
9ead190b 1413 void *object; /* containing object */
e2773c06 1414 struct list_head list; /* link to context's list */
43579b5f 1415 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1416 int id; /* index into kernel idr */
9ead190b 1417 struct kref ref;
38321256 1418 atomic_t usecnt; /* protects exclusive access */
d144da8c 1419 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256
MB
1420
1421 const struct uverbs_obj_type *type;
e2773c06
RD
1422};
1423
cf8966b3
MB
1424struct ib_uobject_file {
1425 struct ib_uobject uobj;
1426 /* ufile contains the lock between context release and file close */
1427 struct ib_uverbs_file *ufile;
e2773c06
RD
1428};
1429
e2773c06 1430struct ib_udata {
309243ec 1431 const void __user *inbuf;
e2773c06
RD
1432 void __user *outbuf;
1433 size_t inlen;
1434 size_t outlen;
1435};
1436
1da177e4 1437struct ib_pd {
96249d70 1438 u32 local_dma_lkey;
ed082d36 1439 u32 flags;
e2773c06
RD
1440 struct ib_device *device;
1441 struct ib_uobject *uobject;
1442 atomic_t usecnt; /* count all resources */
50d46335 1443
ed082d36
CH
1444 u32 unsafe_global_rkey;
1445
50d46335
CH
1446 /*
1447 * Implementation details of the RDMA core, don't use in drivers:
1448 */
1449 struct ib_mr *__internal_mr;
1da177e4
LT
1450};
1451
59991f94
SH
1452struct ib_xrcd {
1453 struct ib_device *device;
d3d72d90 1454 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1455 struct inode *inode;
d3d72d90
SH
1456
1457 struct mutex tgt_qp_mutex;
1458 struct list_head tgt_qp_list;
59991f94
SH
1459};
1460
1da177e4
LT
1461struct ib_ah {
1462 struct ib_device *device;
1463 struct ib_pd *pd;
e2773c06 1464 struct ib_uobject *uobject;
1da177e4
LT
1465};
1466
1467typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1468
14d3a3b2
CH
1469enum ib_poll_context {
1470 IB_POLL_DIRECT, /* caller context, no hw completions */
1471 IB_POLL_SOFTIRQ, /* poll from softirq context */
1472 IB_POLL_WORKQUEUE, /* poll from workqueue */
1473};
1474
1da177e4 1475struct ib_cq {
e2773c06
RD
1476 struct ib_device *device;
1477 struct ib_uobject *uobject;
1478 ib_comp_handler comp_handler;
1479 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1480 void *cq_context;
e2773c06
RD
1481 int cqe;
1482 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1483 enum ib_poll_context poll_ctx;
1484 struct ib_wc *wc;
1485 union {
1486 struct irq_poll iop;
1487 struct work_struct work;
1488 };
1da177e4
LT
1489};
1490
1491struct ib_srq {
d41fcc67
RD
1492 struct ib_device *device;
1493 struct ib_pd *pd;
1494 struct ib_uobject *uobject;
1495 void (*event_handler)(struct ib_event *, void *);
1496 void *srq_context;
96104eda 1497 enum ib_srq_type srq_type;
1da177e4 1498 atomic_t usecnt;
418d5130
SH
1499
1500 union {
1501 struct {
1502 struct ib_xrcd *xrcd;
1503 struct ib_cq *cq;
1504 u32 srq_num;
1505 } xrc;
1506 } ext;
1da177e4
LT
1507};
1508
ebaaee25
NO
1509enum ib_raw_packet_caps {
1510 /* Strip cvlan from incoming packet and report it in the matching work
1511 * completion is supported.
1512 */
1513 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1514 /* Scatter FCS field of an incoming packet to host memory is supported.
1515 */
1516 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1517 /* Checksum offloads are supported (for both send and receive). */
1518 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1519};
1520
5fd251c8
YH
1521enum ib_wq_type {
1522 IB_WQT_RQ
1523};
1524
1525enum ib_wq_state {
1526 IB_WQS_RESET,
1527 IB_WQS_RDY,
1528 IB_WQS_ERR
1529};
1530
1531struct ib_wq {
1532 struct ib_device *device;
1533 struct ib_uobject *uobject;
1534 void *wq_context;
1535 void (*event_handler)(struct ib_event *, void *);
1536 struct ib_pd *pd;
1537 struct ib_cq *cq;
1538 u32 wq_num;
1539 enum ib_wq_state state;
1540 enum ib_wq_type wq_type;
1541 atomic_t usecnt;
1542};
1543
10bac72b
NO
1544enum ib_wq_flags {
1545 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1546 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
10bac72b
NO
1547};
1548
5fd251c8
YH
1549struct ib_wq_init_attr {
1550 void *wq_context;
1551 enum ib_wq_type wq_type;
1552 u32 max_wr;
1553 u32 max_sge;
1554 struct ib_cq *cq;
1555 void (*event_handler)(struct ib_event *, void *);
10bac72b 1556 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1557};
1558
1559enum ib_wq_attr_mask {
10bac72b
NO
1560 IB_WQ_STATE = 1 << 0,
1561 IB_WQ_CUR_STATE = 1 << 1,
1562 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1563};
1564
1565struct ib_wq_attr {
1566 enum ib_wq_state wq_state;
1567 enum ib_wq_state curr_wq_state;
10bac72b
NO
1568 u32 flags; /* Use enum ib_wq_flags */
1569 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1570};
1571
6d39786b
YH
1572struct ib_rwq_ind_table {
1573 struct ib_device *device;
1574 struct ib_uobject *uobject;
1575 atomic_t usecnt;
1576 u32 ind_tbl_num;
1577 u32 log_ind_tbl_size;
1578 struct ib_wq **ind_tbl;
1579};
1580
1581struct ib_rwq_ind_table_init_attr {
1582 u32 log_ind_tbl_size;
1583 /* Each entry is a pointer to Receive Work Queue */
1584 struct ib_wq **ind_tbl;
1585};
1586
632bc3f6
BVA
1587/*
1588 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1589 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1590 */
1da177e4
LT
1591struct ib_qp {
1592 struct ib_device *device;
1593 struct ib_pd *pd;
1594 struct ib_cq *send_cq;
1595 struct ib_cq *recv_cq;
fffb0383
CH
1596 spinlock_t mr_lock;
1597 int mrs_used;
a060b562 1598 struct list_head rdma_mrs;
0e353e34 1599 struct list_head sig_mrs;
1da177e4 1600 struct ib_srq *srq;
b42b63cf 1601 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1602 struct list_head xrcd_list;
fffb0383 1603
319a441d
HHZ
1604 /* count times opened, mcast attaches, flow attaches */
1605 atomic_t usecnt;
0e0ec7e0
SH
1606 struct list_head open_list;
1607 struct ib_qp *real_qp;
e2773c06 1608 struct ib_uobject *uobject;
1da177e4
LT
1609 void (*event_handler)(struct ib_event *, void *);
1610 void *qp_context;
1611 u32 qp_num;
632bc3f6
BVA
1612 u32 max_write_sge;
1613 u32 max_read_sge;
1da177e4 1614 enum ib_qp_type qp_type;
a9017e23 1615 struct ib_rwq_ind_table *rwq_ind_tbl;
1da177e4
LT
1616};
1617
1618struct ib_mr {
e2773c06
RD
1619 struct ib_device *device;
1620 struct ib_pd *pd;
e2773c06
RD
1621 u32 lkey;
1622 u32 rkey;
4c67e2bf
SG
1623 u64 iova;
1624 u32 length;
1625 unsigned int page_size;
d4a85c30 1626 bool need_inval;
fffb0383
CH
1627 union {
1628 struct ib_uobject *uobject; /* user */
1629 struct list_head qp_entry; /* FR */
1630 };
1da177e4
LT
1631};
1632
1633struct ib_mw {
1634 struct ib_device *device;
1635 struct ib_pd *pd;
e2773c06 1636 struct ib_uobject *uobject;
1da177e4 1637 u32 rkey;
7083e42e 1638 enum ib_mw_type type;
1da177e4
LT
1639};
1640
1641struct ib_fmr {
1642 struct ib_device *device;
1643 struct ib_pd *pd;
1644 struct list_head list;
1645 u32 lkey;
1646 u32 rkey;
1647};
1648
319a441d
HHZ
1649/* Supported steering options */
1650enum ib_flow_attr_type {
1651 /* steering according to rule specifications */
1652 IB_FLOW_ATTR_NORMAL = 0x0,
1653 /* default unicast and multicast rule -
1654 * receive all Eth traffic which isn't steered to any QP
1655 */
1656 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1657 /* default multicast rule -
1658 * receive all Eth multicast traffic which isn't steered to any QP
1659 */
1660 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1661 /* sniffer rule - receive all port traffic */
1662 IB_FLOW_ATTR_SNIFFER = 0x3
1663};
1664
1665/* Supported steering header types */
1666enum ib_flow_spec_type {
1667 /* L2 headers*/
76bd23b3
MR
1668 IB_FLOW_SPEC_ETH = 0x20,
1669 IB_FLOW_SPEC_IB = 0x22,
319a441d 1670 /* L3 header*/
76bd23b3
MR
1671 IB_FLOW_SPEC_IPV4 = 0x30,
1672 IB_FLOW_SPEC_IPV6 = 0x31,
319a441d 1673 /* L4 headers*/
76bd23b3
MR
1674 IB_FLOW_SPEC_TCP = 0x40,
1675 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1676 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
fbf46860 1677 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1678 /* Actions */
1679 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
319a441d 1680};
240ae00e 1681#define IB_FLOW_SPEC_LAYER_MASK 0xF0
fbf46860 1682#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
22878dbc 1683
319a441d
HHZ
1684/* Flow steering rule priority is set according to it's domain.
1685 * Lower domain value means higher priority.
1686 */
1687enum ib_flow_domain {
1688 IB_FLOW_DOMAIN_USER,
1689 IB_FLOW_DOMAIN_ETHTOOL,
1690 IB_FLOW_DOMAIN_RFS,
1691 IB_FLOW_DOMAIN_NIC,
1692 IB_FLOW_DOMAIN_NUM /* Must be last */
1693};
1694
a3100a78
MV
1695enum ib_flow_flags {
1696 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1697 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1698};
1699
319a441d
HHZ
1700struct ib_flow_eth_filter {
1701 u8 dst_mac[6];
1702 u8 src_mac[6];
1703 __be16 ether_type;
1704 __be16 vlan_tag;
15dfbd6b
MG
1705 /* Must be last */
1706 u8 real_sz[0];
319a441d
HHZ
1707};
1708
1709struct ib_flow_spec_eth {
fbf46860 1710 u32 type;
319a441d
HHZ
1711 u16 size;
1712 struct ib_flow_eth_filter val;
1713 struct ib_flow_eth_filter mask;
1714};
1715
240ae00e
MB
1716struct ib_flow_ib_filter {
1717 __be16 dlid;
1718 __u8 sl;
15dfbd6b
MG
1719 /* Must be last */
1720 u8 real_sz[0];
240ae00e
MB
1721};
1722
1723struct ib_flow_spec_ib {
fbf46860 1724 u32 type;
240ae00e
MB
1725 u16 size;
1726 struct ib_flow_ib_filter val;
1727 struct ib_flow_ib_filter mask;
1728};
1729
989a3a8f
MG
1730/* IPv4 header flags */
1731enum ib_ipv4_flags {
1732 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1733 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1734 last have this flag set */
1735};
1736
319a441d
HHZ
1737struct ib_flow_ipv4_filter {
1738 __be32 src_ip;
1739 __be32 dst_ip;
989a3a8f
MG
1740 u8 proto;
1741 u8 tos;
1742 u8 ttl;
1743 u8 flags;
15dfbd6b
MG
1744 /* Must be last */
1745 u8 real_sz[0];
319a441d
HHZ
1746};
1747
1748struct ib_flow_spec_ipv4 {
fbf46860 1749 u32 type;
319a441d
HHZ
1750 u16 size;
1751 struct ib_flow_ipv4_filter val;
1752 struct ib_flow_ipv4_filter mask;
1753};
1754
4c2aae71
MG
1755struct ib_flow_ipv6_filter {
1756 u8 src_ip[16];
1757 u8 dst_ip[16];
a72c6a2b
MG
1758 __be32 flow_label;
1759 u8 next_hdr;
1760 u8 traffic_class;
1761 u8 hop_limit;
15dfbd6b
MG
1762 /* Must be last */
1763 u8 real_sz[0];
4c2aae71
MG
1764};
1765
1766struct ib_flow_spec_ipv6 {
fbf46860 1767 u32 type;
4c2aae71
MG
1768 u16 size;
1769 struct ib_flow_ipv6_filter val;
1770 struct ib_flow_ipv6_filter mask;
1771};
1772
319a441d
HHZ
1773struct ib_flow_tcp_udp_filter {
1774 __be16 dst_port;
1775 __be16 src_port;
15dfbd6b
MG
1776 /* Must be last */
1777 u8 real_sz[0];
319a441d
HHZ
1778};
1779
1780struct ib_flow_spec_tcp_udp {
fbf46860 1781 u32 type;
319a441d
HHZ
1782 u16 size;
1783 struct ib_flow_tcp_udp_filter val;
1784 struct ib_flow_tcp_udp_filter mask;
1785};
1786
0dbf3332
MR
1787struct ib_flow_tunnel_filter {
1788 __be32 tunnel_id;
1789 u8 real_sz[0];
1790};
1791
1792/* ib_flow_spec_tunnel describes the Vxlan tunnel
1793 * the tunnel_id from val has the vni value
1794 */
1795struct ib_flow_spec_tunnel {
fbf46860 1796 u32 type;
0dbf3332
MR
1797 u16 size;
1798 struct ib_flow_tunnel_filter val;
1799 struct ib_flow_tunnel_filter mask;
1800};
1801
460d0198
MR
1802struct ib_flow_spec_action_tag {
1803 enum ib_flow_spec_type type;
1804 u16 size;
1805 u32 tag_id;
1806};
1807
319a441d
HHZ
1808union ib_flow_spec {
1809 struct {
fbf46860 1810 u32 type;
319a441d
HHZ
1811 u16 size;
1812 };
1813 struct ib_flow_spec_eth eth;
240ae00e 1814 struct ib_flow_spec_ib ib;
319a441d
HHZ
1815 struct ib_flow_spec_ipv4 ipv4;
1816 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 1817 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 1818 struct ib_flow_spec_tunnel tunnel;
460d0198 1819 struct ib_flow_spec_action_tag flow_tag;
319a441d
HHZ
1820};
1821
1822struct ib_flow_attr {
1823 enum ib_flow_attr_type type;
1824 u16 size;
1825 u16 priority;
1826 u32 flags;
1827 u8 num_of_specs;
1828 u8 port;
1829 /* Following are the optional layers according to user request
1830 * struct ib_flow_spec_xxx
1831 * struct ib_flow_spec_yyy
1832 */
1833};
1834
1835struct ib_flow {
1836 struct ib_qp *qp;
1837 struct ib_uobject *uobject;
1838};
1839
4cd7c947 1840struct ib_mad_hdr;
1da177e4
LT
1841struct ib_grh;
1842
1843enum ib_process_mad_flags {
1844 IB_MAD_IGNORE_MKEY = 1,
1845 IB_MAD_IGNORE_BKEY = 2,
1846 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1847};
1848
1849enum ib_mad_result {
1850 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1851 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1852 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1853 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1854};
1855
1856#define IB_DEVICE_NAME_MAX 64
1857
21d6454a
JW
1858struct ib_port_cache {
1859 struct ib_pkey_cache *pkey;
1860 struct ib_gid_table *gid;
1861 u8 lmc;
1862 enum ib_port_state port_state;
1863};
1864
1da177e4
LT
1865struct ib_cache {
1866 rwlock_t lock;
1867 struct ib_event_handler event_handler;
21d6454a 1868 struct ib_port_cache *ports;
1da177e4
LT
1869};
1870
07ebafba
TT
1871struct iw_cm_verbs;
1872
7738613e
IW
1873struct ib_port_immutable {
1874 int pkey_tbl_len;
1875 int gid_tbl_len;
f9b22e35 1876 u32 core_cap_flags;
337877a4 1877 u32 max_mad_size;
7738613e
IW
1878};
1879
1da177e4 1880struct ib_device {
0957c29f
BVA
1881 /* Do not access @dma_device directly from ULP nor from HW drivers. */
1882 struct device *dma_device;
1883
1da177e4
LT
1884 char name[IB_DEVICE_NAME_MAX];
1885
1886 struct list_head event_handler_list;
1887 spinlock_t event_handler_lock;
1888
17a55f79 1889 spinlock_t client_data_lock;
1da177e4 1890 struct list_head core_list;
7c1eb45a
HE
1891 /* Access to the client_data_list is protected by the client_data_lock
1892 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1893 struct list_head client_data_list;
1da177e4
LT
1894
1895 struct ib_cache cache;
7738613e
IW
1896 /**
1897 * port_immutable is indexed by port number
1898 */
1899 struct ib_port_immutable *port_immutable;
1da177e4 1900
f4fd0b22
MT
1901 int num_comp_vectors;
1902
07ebafba
TT
1903 struct iw_cm_verbs *iwcm;
1904
b40f4757
CL
1905 /**
1906 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1907 * driver initialized data. The struct is kfree()'ed by the sysfs
1908 * core when the device is removed. A lifespan of -1 in the return
1909 * struct tells the core to set a default lifespan.
1910 */
1911 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1912 u8 port_num);
1913 /**
1914 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1915 * @index - The index in the value array we wish to have updated, or
1916 * num_counters if we want all stats updated
1917 * Return codes -
1918 * < 0 - Error, no counters updated
1919 * index - Updated the single counter pointed to by index
1920 * num_counters - Updated all counters (will reset the timestamp
1921 * and prevent further calls for lifespan milliseconds)
1922 * Drivers are allowed to update all counters in leiu of just the
1923 * one given in index at their option
1924 */
1925 int (*get_hw_stats)(struct ib_device *device,
1926 struct rdma_hw_stats *stats,
1927 u8 port, int index);
1da177e4 1928 int (*query_device)(struct ib_device *device,
2528e33e
MB
1929 struct ib_device_attr *device_attr,
1930 struct ib_udata *udata);
1da177e4
LT
1931 int (*query_port)(struct ib_device *device,
1932 u8 port_num,
1933 struct ib_port_attr *port_attr);
a3f5adaf
EC
1934 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1935 u8 port_num);
03db3a2d
MB
1936 /* When calling get_netdev, the HW vendor's driver should return the
1937 * net device of device @device at port @port_num or NULL if such
1938 * a net device doesn't exist. The vendor driver should call dev_hold
1939 * on this net device. The HW vendor's device driver must guarantee
1940 * that this function returns NULL before the net device reaches
1941 * NETDEV_UNREGISTER_FINAL state.
1942 */
1943 struct net_device *(*get_netdev)(struct ib_device *device,
1944 u8 port_num);
1da177e4
LT
1945 int (*query_gid)(struct ib_device *device,
1946 u8 port_num, int index,
1947 union ib_gid *gid);
03db3a2d
MB
1948 /* When calling add_gid, the HW vendor's driver should
1949 * add the gid of device @device at gid index @index of
1950 * port @port_num to be @gid. Meta-info of that gid (for example,
1951 * the network device related to this gid is available
1952 * at @attr. @context allows the HW vendor driver to store extra
1953 * information together with a GID entry. The HW vendor may allocate
1954 * memory to contain this information and store it in @context when a
1955 * new GID entry is written to. Params are consistent until the next
1956 * call of add_gid or delete_gid. The function should return 0 on
1957 * success or error otherwise. The function could be called
1958 * concurrently for different ports. This function is only called
1959 * when roce_gid_table is used.
1960 */
1961 int (*add_gid)(struct ib_device *device,
1962 u8 port_num,
1963 unsigned int index,
1964 const union ib_gid *gid,
1965 const struct ib_gid_attr *attr,
1966 void **context);
1967 /* When calling del_gid, the HW vendor's driver should delete the
1968 * gid of device @device at gid index @index of port @port_num.
1969 * Upon the deletion of a GID entry, the HW vendor must free any
1970 * allocated memory. The caller will clear @context afterwards.
1971 * This function is only called when roce_gid_table is used.
1972 */
1973 int (*del_gid)(struct ib_device *device,
1974 u8 port_num,
1975 unsigned int index,
1976 void **context);
1da177e4
LT
1977 int (*query_pkey)(struct ib_device *device,
1978 u8 port_num, u16 index, u16 *pkey);
1979 int (*modify_device)(struct ib_device *device,
1980 int device_modify_mask,
1981 struct ib_device_modify *device_modify);
1982 int (*modify_port)(struct ib_device *device,
1983 u8 port_num, int port_modify_mask,
1984 struct ib_port_modify *port_modify);
e2773c06
RD
1985 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1986 struct ib_udata *udata);
1987 int (*dealloc_ucontext)(struct ib_ucontext *context);
1988 int (*mmap)(struct ib_ucontext *context,
1989 struct vm_area_struct *vma);
1990 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1991 struct ib_ucontext *context,
1992 struct ib_udata *udata);
1da177e4
LT
1993 int (*dealloc_pd)(struct ib_pd *pd);
1994 struct ib_ah * (*create_ah)(struct ib_pd *pd,
477864c8
MS
1995 struct ib_ah_attr *ah_attr,
1996 struct ib_udata *udata);
1da177e4
LT
1997 int (*modify_ah)(struct ib_ah *ah,
1998 struct ib_ah_attr *ah_attr);
1999 int (*query_ah)(struct ib_ah *ah,
2000 struct ib_ah_attr *ah_attr);
2001 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2002 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2003 struct ib_srq_init_attr *srq_init_attr,
2004 struct ib_udata *udata);
2005 int (*modify_srq)(struct ib_srq *srq,
2006 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2007 enum ib_srq_attr_mask srq_attr_mask,
2008 struct ib_udata *udata);
d41fcc67
RD
2009 int (*query_srq)(struct ib_srq *srq,
2010 struct ib_srq_attr *srq_attr);
2011 int (*destroy_srq)(struct ib_srq *srq);
2012 int (*post_srq_recv)(struct ib_srq *srq,
2013 struct ib_recv_wr *recv_wr,
2014 struct ib_recv_wr **bad_recv_wr);
1da177e4 2015 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2016 struct ib_qp_init_attr *qp_init_attr,
2017 struct ib_udata *udata);
1da177e4
LT
2018 int (*modify_qp)(struct ib_qp *qp,
2019 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2020 int qp_attr_mask,
2021 struct ib_udata *udata);
1da177e4
LT
2022 int (*query_qp)(struct ib_qp *qp,
2023 struct ib_qp_attr *qp_attr,
2024 int qp_attr_mask,
2025 struct ib_qp_init_attr *qp_init_attr);
2026 int (*destroy_qp)(struct ib_qp *qp);
2027 int (*post_send)(struct ib_qp *qp,
2028 struct ib_send_wr *send_wr,
2029 struct ib_send_wr **bad_send_wr);
2030 int (*post_recv)(struct ib_qp *qp,
2031 struct ib_recv_wr *recv_wr,
2032 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2033 struct ib_cq * (*create_cq)(struct ib_device *device,
2034 const struct ib_cq_init_attr *attr,
e2773c06
RD
2035 struct ib_ucontext *context,
2036 struct ib_udata *udata);
2dd57162
EC
2037 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2038 u16 cq_period);
1da177e4 2039 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2040 int (*resize_cq)(struct ib_cq *cq, int cqe,
2041 struct ib_udata *udata);
1da177e4
LT
2042 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2043 struct ib_wc *wc);
2044 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2045 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2046 enum ib_cq_notify_flags flags);
1da177e4
LT
2047 int (*req_ncomp_notif)(struct ib_cq *cq,
2048 int wc_cnt);
2049 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2050 int mr_access_flags);
e2773c06 2051 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2052 u64 start, u64 length,
2053 u64 virt_addr,
e2773c06
RD
2054 int mr_access_flags,
2055 struct ib_udata *udata);
7e6edb9b
MB
2056 int (*rereg_user_mr)(struct ib_mr *mr,
2057 int flags,
2058 u64 start, u64 length,
2059 u64 virt_addr,
2060 int mr_access_flags,
2061 struct ib_pd *pd,
2062 struct ib_udata *udata);
1da177e4 2063 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2064 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2065 enum ib_mr_type mr_type,
2066 u32 max_num_sg);
4c67e2bf
SG
2067 int (*map_mr_sg)(struct ib_mr *mr,
2068 struct scatterlist *sg,
ff2ba993 2069 int sg_nents,
9aa8b321 2070 unsigned int *sg_offset);
7083e42e 2071 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2072 enum ib_mw_type type,
2073 struct ib_udata *udata);
1da177e4
LT
2074 int (*dealloc_mw)(struct ib_mw *mw);
2075 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2076 int mr_access_flags,
2077 struct ib_fmr_attr *fmr_attr);
2078 int (*map_phys_fmr)(struct ib_fmr *fmr,
2079 u64 *page_list, int list_len,
2080 u64 iova);
2081 int (*unmap_fmr)(struct list_head *fmr_list);
2082 int (*dealloc_fmr)(struct ib_fmr *fmr);
2083 int (*attach_mcast)(struct ib_qp *qp,
2084 union ib_gid *gid,
2085 u16 lid);
2086 int (*detach_mcast)(struct ib_qp *qp,
2087 union ib_gid *gid,
2088 u16 lid);
2089 int (*process_mad)(struct ib_device *device,
2090 int process_mad_flags,
2091 u8 port_num,
a97e2d86
IW
2092 const struct ib_wc *in_wc,
2093 const struct ib_grh *in_grh,
4cd7c947
IW
2094 const struct ib_mad_hdr *in_mad,
2095 size_t in_mad_size,
2096 struct ib_mad_hdr *out_mad,
2097 size_t *out_mad_size,
2098 u16 *out_mad_pkey_index);
59991f94
SH
2099 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2100 struct ib_ucontext *ucontext,
2101 struct ib_udata *udata);
2102 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2103 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2104 struct ib_flow_attr
2105 *flow_attr,
2106 int domain);
2107 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2108 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2109 struct ib_mr_status *mr_status);
036b1063 2110 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2111 void (*drain_rq)(struct ib_qp *qp);
2112 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2113 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2114 int state);
2115 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2116 struct ifla_vf_info *ivf);
2117 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2118 struct ifla_vf_stats *stats);
2119 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2120 int type);
5fd251c8
YH
2121 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2122 struct ib_wq_init_attr *init_attr,
2123 struct ib_udata *udata);
2124 int (*destroy_wq)(struct ib_wq *wq);
2125 int (*modify_wq)(struct ib_wq *wq,
2126 struct ib_wq_attr *attr,
2127 u32 wq_attr_mask,
2128 struct ib_udata *udata);
6d39786b
YH
2129 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2130 struct ib_rwq_ind_table_init_attr *init_attr,
2131 struct ib_udata *udata);
2132 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
9b513090 2133
e2773c06 2134 struct module *owner;
f4e91eb4 2135 struct device dev;
35be0681 2136 struct kobject *ports_parent;
1da177e4
LT
2137 struct list_head port_list;
2138
2139 enum {
2140 IB_DEV_UNINITIALIZED,
2141 IB_DEV_REGISTERED,
2142 IB_DEV_UNREGISTERED
2143 } reg_state;
2144
274c0891 2145 int uverbs_abi_ver;
17a55f79 2146 u64 uverbs_cmd_mask;
f21519b2 2147 u64 uverbs_ex_cmd_mask;
274c0891 2148
bd99fdea 2149 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2150 __be64 node_guid;
96f15c03 2151 u32 local_dma_lkey;
4139032b 2152 u16 is_switch:1;
1da177e4
LT
2153 u8 node_type;
2154 u8 phys_port_cnt;
3e153a93 2155 struct ib_device_attr attrs;
b40f4757
CL
2156 struct attribute_group *hw_stats_ag;
2157 struct rdma_hw_stats *hw_stats;
7738613e 2158
43579b5f
PP
2159#ifdef CONFIG_CGROUP_RDMA
2160 struct rdmacg_device cg_device;
2161#endif
2162
7738613e
IW
2163 /**
2164 * The following mandatory functions are used only at device
2165 * registration. Keep functions such as these at the end of this
2166 * structure to avoid cache line misses when accessing struct ib_device
2167 * in fast paths.
2168 */
2169 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
5fa76c20 2170 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
1da177e4
LT
2171};
2172
2173struct ib_client {
2174 char *name;
2175 void (*add) (struct ib_device *);
7c1eb45a 2176 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2177
9268f72d
YK
2178 /* Returns the net_dev belonging to this ib_client and matching the
2179 * given parameters.
2180 * @dev: An RDMA device that the net_dev use for communication.
2181 * @port: A physical port number on the RDMA device.
2182 * @pkey: P_Key that the net_dev uses if applicable.
2183 * @gid: A GID that the net_dev uses to communicate.
2184 * @addr: An IP address the net_dev is configured with.
2185 * @client_data: The device's client data set by ib_set_client_data().
2186 *
2187 * An ib_client that implements a net_dev on top of RDMA devices
2188 * (such as IP over IB) should implement this callback, allowing the
2189 * rdma_cm module to find the right net_dev for a given request.
2190 *
2191 * The caller is responsible for calling dev_put on the returned
2192 * netdev. */
2193 struct net_device *(*get_net_dev_by_params)(
2194 struct ib_device *dev,
2195 u8 port,
2196 u16 pkey,
2197 const union ib_gid *gid,
2198 const struct sockaddr *addr,
2199 void *client_data);
1da177e4
LT
2200 struct list_head list;
2201};
2202
2203struct ib_device *ib_alloc_device(size_t size);
2204void ib_dealloc_device(struct ib_device *device);
2205
5fa76c20
IW
2206void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2207
9a6edb60
RC
2208int ib_register_device(struct ib_device *device,
2209 int (*port_callback)(struct ib_device *,
2210 u8, struct kobject *));
1da177e4
LT
2211void ib_unregister_device(struct ib_device *device);
2212
2213int ib_register_client (struct ib_client *client);
2214void ib_unregister_client(struct ib_client *client);
2215
2216void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2217void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2218 void *data);
2219
e2773c06
RD
2220static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2221{
2222 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2223}
2224
2225static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2226{
43c61165 2227 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2228}
2229
301a721e
MB
2230static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2231 size_t offset,
2232 size_t len)
2233{
2234 const void __user *p = udata->inbuf + offset;
92d27ae6 2235 bool ret;
301a721e
MB
2236 u8 *buf;
2237
2238 if (len > USHRT_MAX)
2239 return false;
2240
92d27ae6
ME
2241 buf = memdup_user(p, len);
2242 if (IS_ERR(buf))
301a721e
MB
2243 return false;
2244
301a721e 2245 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2246 kfree(buf);
2247 return ret;
2248}
2249
8a51866f
RD
2250/**
2251 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2252 * contains all required attributes and no attributes not allowed for
2253 * the given QP state transition.
2254 * @cur_state: Current QP state
2255 * @next_state: Next QP state
2256 * @type: QP type
2257 * @mask: Mask of supplied QP attributes
dd5f03be 2258 * @ll : link layer of port
8a51866f
RD
2259 *
2260 * This function is a helper function that a low-level driver's
2261 * modify_qp method can use to validate the consumer's input. It
2262 * checks that cur_state and next_state are valid QP states, that a
2263 * transition from cur_state to next_state is allowed by the IB spec,
2264 * and that the attribute mask supplied is allowed for the transition.
2265 */
2266int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2267 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2268 enum rdma_link_layer ll);
8a51866f 2269
1da177e4
LT
2270int ib_register_event_handler (struct ib_event_handler *event_handler);
2271int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2272void ib_dispatch_event(struct ib_event *event);
2273
1da177e4
LT
2274int ib_query_port(struct ib_device *device,
2275 u8 port_num, struct ib_port_attr *port_attr);
2276
a3f5adaf
EC
2277enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2278 u8 port_num);
2279
4139032b
HR
2280/**
2281 * rdma_cap_ib_switch - Check if the device is IB switch
2282 * @device: Device to check
2283 *
2284 * Device driver is responsible for setting is_switch bit on
2285 * in ib_device structure at init time.
2286 *
2287 * Return: true if the device is IB switch.
2288 */
2289static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2290{
2291 return device->is_switch;
2292}
2293
0cf18d77
IW
2294/**
2295 * rdma_start_port - Return the first valid port number for the device
2296 * specified
2297 *
2298 * @device: Device to be checked
2299 *
2300 * Return start port number
2301 */
2302static inline u8 rdma_start_port(const struct ib_device *device)
2303{
4139032b 2304 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2305}
2306
2307/**
2308 * rdma_end_port - Return the last valid port number for the device
2309 * specified
2310 *
2311 * @device: Device to be checked
2312 *
2313 * Return last port number
2314 */
2315static inline u8 rdma_end_port(const struct ib_device *device)
2316{
4139032b 2317 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2318}
2319
24dc831b
YS
2320static inline int rdma_is_port_valid(const struct ib_device *device,
2321 unsigned int port)
2322{
2323 return (port >= rdma_start_port(device) &&
2324 port <= rdma_end_port(device));
2325}
2326
5ede9289 2327static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2328{
f9b22e35 2329 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2330}
2331
5ede9289 2332static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2333{
2334 return device->port_immutable[port_num].core_cap_flags &
2335 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2336}
2337
2338static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2339{
2340 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2341}
2342
2343static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2344{
f9b22e35 2345 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2346}
2347
5ede9289 2348static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2349{
f9b22e35 2350 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2351}
2352
5ede9289 2353static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2354{
7766a99f
MB
2355 return rdma_protocol_ib(device, port_num) ||
2356 rdma_protocol_roce(device, port_num);
de66be94
MW
2357}
2358
aa773bd4
OG
2359static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2360{
2361 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2362}
2363
ce1e055f
OG
2364static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2365{
2366 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2367}
2368
c757dea8 2369/**
296ec009 2370 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2371 * Management Datagrams.
296ec009
MW
2372 * @device: Device to check
2373 * @port_num: Port number to check
c757dea8 2374 *
296ec009
MW
2375 * Management Datagrams (MAD) are a required part of the InfiniBand
2376 * specification and are supported on all InfiniBand devices. A slightly
2377 * extended version are also supported on OPA interfaces.
c757dea8 2378 *
296ec009 2379 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2380 */
5ede9289 2381static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2382{
f9b22e35 2383 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2384}
2385
65995fee
IW
2386/**
2387 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2388 * Management Datagrams.
2389 * @device: Device to check
2390 * @port_num: Port number to check
2391 *
2392 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2393 * datagrams with their own versions. These OPA MADs share many but not all of
2394 * the characteristics of InfiniBand MADs.
2395 *
2396 * OPA MADs differ in the following ways:
2397 *
2398 * 1) MADs are variable size up to 2K
2399 * IBTA defined MADs remain fixed at 256 bytes
2400 * 2) OPA SMPs must carry valid PKeys
2401 * 3) OPA SMP packets are a different format
2402 *
2403 * Return: true if the port supports OPA MAD packet formats.
2404 */
2405static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2406{
2407 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2408 == RDMA_CORE_CAP_OPA_MAD;
2409}
2410
29541e3a 2411/**
296ec009
MW
2412 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2413 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2414 * @device: Device to check
2415 * @port_num: Port number to check
29541e3a 2416 *
296ec009
MW
2417 * Each InfiniBand node is required to provide a Subnet Management Agent
2418 * that the subnet manager can access. Prior to the fabric being fully
2419 * configured by the subnet manager, the SMA is accessed via a well known
2420 * interface called the Subnet Management Interface (SMI). This interface
2421 * uses directed route packets to communicate with the SM to get around the
2422 * chicken and egg problem of the SM needing to know what's on the fabric
2423 * in order to configure the fabric, and needing to configure the fabric in
2424 * order to send packets to the devices on the fabric. These directed
2425 * route packets do not need the fabric fully configured in order to reach
2426 * their destination. The SMI is the only method allowed to send
2427 * directed route packets on an InfiniBand fabric.
29541e3a 2428 *
296ec009 2429 * Return: true if the port provides an SMI.
29541e3a 2430 */
5ede9289 2431static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2432{
f9b22e35 2433 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2434}
2435
72219cea
MW
2436/**
2437 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2438 * Communication Manager.
296ec009
MW
2439 * @device: Device to check
2440 * @port_num: Port number to check
72219cea 2441 *
296ec009
MW
2442 * The InfiniBand Communication Manager is one of many pre-defined General
2443 * Service Agents (GSA) that are accessed via the General Service
2444 * Interface (GSI). It's role is to facilitate establishment of connections
2445 * between nodes as well as other management related tasks for established
2446 * connections.
72219cea 2447 *
296ec009
MW
2448 * Return: true if the port supports an IB CM (this does not guarantee that
2449 * a CM is actually running however).
72219cea 2450 */
5ede9289 2451static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2452{
f9b22e35 2453 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2454}
2455
04215330
MW
2456/**
2457 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2458 * Communication Manager.
296ec009
MW
2459 * @device: Device to check
2460 * @port_num: Port number to check
04215330 2461 *
296ec009
MW
2462 * Similar to above, but specific to iWARP connections which have a different
2463 * managment protocol than InfiniBand.
04215330 2464 *
296ec009
MW
2465 * Return: true if the port supports an iWARP CM (this does not guarantee that
2466 * a CM is actually running however).
04215330 2467 */
5ede9289 2468static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2469{
f9b22e35 2470 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2471}
2472
fe53ba2f
MW
2473/**
2474 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2475 * Subnet Administration.
296ec009
MW
2476 * @device: Device to check
2477 * @port_num: Port number to check
fe53ba2f 2478 *
296ec009
MW
2479 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2480 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2481 * fabrics, devices should resolve routes to other hosts by contacting the
2482 * SA to query the proper route.
fe53ba2f 2483 *
296ec009
MW
2484 * Return: true if the port should act as a client to the fabric Subnet
2485 * Administration interface. This does not imply that the SA service is
2486 * running locally.
fe53ba2f 2487 */
5ede9289 2488static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2489{
f9b22e35 2490 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2491}
2492
a31ad3b0
MW
2493/**
2494 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2495 * Multicast.
296ec009
MW
2496 * @device: Device to check
2497 * @port_num: Port number to check
a31ad3b0 2498 *
296ec009
MW
2499 * InfiniBand multicast registration is more complex than normal IPv4 or
2500 * IPv6 multicast registration. Each Host Channel Adapter must register
2501 * with the Subnet Manager when it wishes to join a multicast group. It
2502 * should do so only once regardless of how many queue pairs it subscribes
2503 * to this group. And it should leave the group only after all queue pairs
2504 * attached to the group have been detached.
a31ad3b0 2505 *
296ec009
MW
2506 * Return: true if the port must undertake the additional adminstrative
2507 * overhead of registering/unregistering with the SM and tracking of the
2508 * total number of queue pairs attached to the multicast group.
a31ad3b0 2509 */
5ede9289 2510static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2511{
2512 return rdma_cap_ib_sa(device, port_num);
2513}
2514
30a74ef4
MW
2515/**
2516 * rdma_cap_af_ib - Check if the port of device has the capability
2517 * Native Infiniband Address.
296ec009
MW
2518 * @device: Device to check
2519 * @port_num: Port number to check
30a74ef4 2520 *
296ec009
MW
2521 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2522 * GID. RoCE uses a different mechanism, but still generates a GID via
2523 * a prescribed mechanism and port specific data.
30a74ef4 2524 *
296ec009
MW
2525 * Return: true if the port uses a GID address to identify devices on the
2526 * network.
30a74ef4 2527 */
5ede9289 2528static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2529{
f9b22e35 2530 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2531}
2532
227128fc
MW
2533/**
2534 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2535 * Ethernet Address Handle.
2536 * @device: Device to check
2537 * @port_num: Port number to check
227128fc 2538 *
296ec009
MW
2539 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2540 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2541 * port. Normally, packet headers are generated by the sending host
2542 * adapter, but when sending connectionless datagrams, we must manually
2543 * inject the proper headers for the fabric we are communicating over.
227128fc 2544 *
296ec009
MW
2545 * Return: true if we are running as a RoCE port and must force the
2546 * addition of a Global Route Header built from our Ethernet Address
2547 * Handle into our header list for connectionless packets.
227128fc 2548 */
5ede9289 2549static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2550{
f9b22e35 2551 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2552}
2553
337877a4
IW
2554/**
2555 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2556 *
2557 * @device: Device
2558 * @port_num: Port number
2559 *
2560 * This MAD size includes the MAD headers and MAD payload. No other headers
2561 * are included.
2562 *
2563 * Return the max MAD size required by the Port. Will return 0 if the port
2564 * does not support MADs
2565 */
2566static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2567{
2568 return device->port_immutable[port_num].max_mad_size;
2569}
2570
03db3a2d
MB
2571/**
2572 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2573 * @device: Device to check
2574 * @port_num: Port number to check
2575 *
2576 * RoCE GID table mechanism manages the various GIDs for a device.
2577 *
2578 * NOTE: if allocating the port's GID table has failed, this call will still
2579 * return true, but any RoCE GID table API will fail.
2580 *
2581 * Return: true if the port uses RoCE GID table mechanism in order to manage
2582 * its GIDs.
2583 */
2584static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2585 u8 port_num)
2586{
2587 return rdma_protocol_roce(device, port_num) &&
2588 device->add_gid && device->del_gid;
2589}
2590
002516ed
CH
2591/*
2592 * Check if the device supports READ W/ INVALIDATE.
2593 */
2594static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2595{
2596 /*
2597 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2598 * has support for it yet.
2599 */
2600 return rdma_protocol_iwarp(dev, port_num);
2601}
2602
1da177e4 2603int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2604 u8 port_num, int index, union ib_gid *gid,
2605 struct ib_gid_attr *attr);
1da177e4 2606
50174a7f
EC
2607int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2608 int state);
2609int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2610 struct ifla_vf_info *info);
2611int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2612 struct ifla_vf_stats *stats);
2613int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2614 int type);
2615
1da177e4
LT
2616int ib_query_pkey(struct ib_device *device,
2617 u8 port_num, u16 index, u16 *pkey);
2618
2619int ib_modify_device(struct ib_device *device,
2620 int device_modify_mask,
2621 struct ib_device_modify *device_modify);
2622
2623int ib_modify_port(struct ib_device *device,
2624 u8 port_num, int port_modify_mask,
2625 struct ib_port_modify *port_modify);
2626
5eb620c8 2627int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2628 enum ib_gid_type gid_type, struct net_device *ndev,
2629 u8 *port_num, u16 *index);
5eb620c8
YE
2630
2631int ib_find_pkey(struct ib_device *device,
2632 u8 port_num, u16 pkey, u16 *index);
2633
ed082d36
CH
2634enum ib_pd_flags {
2635 /*
2636 * Create a memory registration for all memory in the system and place
2637 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2638 * ULPs to avoid the overhead of dynamic MRs.
2639 *
2640 * This flag is generally considered unsafe and must only be used in
2641 * extremly trusted environments. Every use of it will log a warning
2642 * in the kernel log.
2643 */
2644 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2645};
1da177e4 2646
ed082d36
CH
2647struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2648 const char *caller);
2649#define ib_alloc_pd(device, flags) \
2650 __ib_alloc_pd((device), (flags), __func__)
7dd78647 2651void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2652
2653/**
2654 * ib_create_ah - Creates an address handle for the given address vector.
2655 * @pd: The protection domain associated with the address handle.
2656 * @ah_attr: The attributes of the address vector.
2657 *
2658 * The address handle is used to reference a local or global destination
2659 * in all UD QP post sends.
2660 */
2661struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2662
850d8fd7
MS
2663/**
2664 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2665 * work completion.
2666 * @hdr: the L3 header to parse
2667 * @net_type: type of header to parse
2668 * @sgid: place to store source gid
2669 * @dgid: place to store destination gid
2670 */
2671int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2672 enum rdma_network_type net_type,
2673 union ib_gid *sgid, union ib_gid *dgid);
2674
2675/**
2676 * ib_get_rdma_header_version - Get the header version
2677 * @hdr: the L3 header to parse
2678 */
2679int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2680
4e00d694
SH
2681/**
2682 * ib_init_ah_from_wc - Initializes address handle attributes from a
2683 * work completion.
2684 * @device: Device on which the received message arrived.
2685 * @port_num: Port on which the received message arrived.
2686 * @wc: Work completion associated with the received message.
2687 * @grh: References the received global route header. This parameter is
2688 * ignored unless the work completion indicates that the GRH is valid.
2689 * @ah_attr: Returned attributes that can be used when creating an address
2690 * handle for replying to the message.
2691 */
73cdaaee
IW
2692int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2693 const struct ib_wc *wc, const struct ib_grh *grh,
2694 struct ib_ah_attr *ah_attr);
4e00d694 2695
513789ed
HR
2696/**
2697 * ib_create_ah_from_wc - Creates an address handle associated with the
2698 * sender of the specified work completion.
2699 * @pd: The protection domain associated with the address handle.
2700 * @wc: Work completion information associated with a received message.
2701 * @grh: References the received global route header. This parameter is
2702 * ignored unless the work completion indicates that the GRH is valid.
2703 * @port_num: The outbound port number to associate with the address.
2704 *
2705 * The address handle is used to reference a local or global destination
2706 * in all UD QP post sends.
2707 */
73cdaaee
IW
2708struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2709 const struct ib_grh *grh, u8 port_num);
513789ed 2710
1da177e4
LT
2711/**
2712 * ib_modify_ah - Modifies the address vector associated with an address
2713 * handle.
2714 * @ah: The address handle to modify.
2715 * @ah_attr: The new address vector attributes to associate with the
2716 * address handle.
2717 */
2718int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2719
2720/**
2721 * ib_query_ah - Queries the address vector associated with an address
2722 * handle.
2723 * @ah: The address handle to query.
2724 * @ah_attr: The address vector attributes associated with the address
2725 * handle.
2726 */
2727int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2728
2729/**
2730 * ib_destroy_ah - Destroys an address handle.
2731 * @ah: The address handle to destroy.
2732 */
2733int ib_destroy_ah(struct ib_ah *ah);
2734
d41fcc67
RD
2735/**
2736 * ib_create_srq - Creates a SRQ associated with the specified protection
2737 * domain.
2738 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2739 * @srq_init_attr: A list of initial attributes required to create the
2740 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2741 * the actual capabilities of the created SRQ.
d41fcc67
RD
2742 *
2743 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2744 * requested size of the SRQ, and set to the actual values allocated
2745 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2746 * will always be at least as large as the requested values.
2747 */
2748struct ib_srq *ib_create_srq(struct ib_pd *pd,
2749 struct ib_srq_init_attr *srq_init_attr);
2750
2751/**
2752 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2753 * @srq: The SRQ to modify.
2754 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2755 * the current values of selected SRQ attributes are returned.
2756 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2757 * are being modified.
2758 *
2759 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2760 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2761 * the number of receives queued drops below the limit.
2762 */
2763int ib_modify_srq(struct ib_srq *srq,
2764 struct ib_srq_attr *srq_attr,
2765 enum ib_srq_attr_mask srq_attr_mask);
2766
2767/**
2768 * ib_query_srq - Returns the attribute list and current values for the
2769 * specified SRQ.
2770 * @srq: The SRQ to query.
2771 * @srq_attr: The attributes of the specified SRQ.
2772 */
2773int ib_query_srq(struct ib_srq *srq,
2774 struct ib_srq_attr *srq_attr);
2775
2776/**
2777 * ib_destroy_srq - Destroys the specified SRQ.
2778 * @srq: The SRQ to destroy.
2779 */
2780int ib_destroy_srq(struct ib_srq *srq);
2781
2782/**
2783 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2784 * @srq: The SRQ to post the work request on.
2785 * @recv_wr: A list of work requests to post on the receive queue.
2786 * @bad_recv_wr: On an immediate failure, this parameter will reference
2787 * the work request that failed to be posted on the QP.
2788 */
2789static inline int ib_post_srq_recv(struct ib_srq *srq,
2790 struct ib_recv_wr *recv_wr,
2791 struct ib_recv_wr **bad_recv_wr)
2792{
2793 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2794}
2795
1da177e4
LT
2796/**
2797 * ib_create_qp - Creates a QP associated with the specified protection
2798 * domain.
2799 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2800 * @qp_init_attr: A list of initial attributes required to create the
2801 * QP. If QP creation succeeds, then the attributes are updated to
2802 * the actual capabilities of the created QP.
1da177e4
LT
2803 */
2804struct ib_qp *ib_create_qp(struct ib_pd *pd,
2805 struct ib_qp_init_attr *qp_init_attr);
2806
2807/**
2808 * ib_modify_qp - Modifies the attributes for the specified QP and then
2809 * transitions the QP to the given state.
2810 * @qp: The QP to modify.
2811 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2812 * the current values of selected QP attributes are returned.
2813 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2814 * are being modified.
2815 */
2816int ib_modify_qp(struct ib_qp *qp,
2817 struct ib_qp_attr *qp_attr,
2818 int qp_attr_mask);
2819
2820/**
2821 * ib_query_qp - Returns the attribute list and current values for the
2822 * specified QP.
2823 * @qp: The QP to query.
2824 * @qp_attr: The attributes of the specified QP.
2825 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2826 * @qp_init_attr: Additional attributes of the selected QP.
2827 *
2828 * The qp_attr_mask may be used to limit the query to gathering only the
2829 * selected attributes.
2830 */
2831int ib_query_qp(struct ib_qp *qp,
2832 struct ib_qp_attr *qp_attr,
2833 int qp_attr_mask,
2834 struct ib_qp_init_attr *qp_init_attr);
2835
2836/**
2837 * ib_destroy_qp - Destroys the specified QP.
2838 * @qp: The QP to destroy.
2839 */
2840int ib_destroy_qp(struct ib_qp *qp);
2841
d3d72d90 2842/**
0e0ec7e0
SH
2843 * ib_open_qp - Obtain a reference to an existing sharable QP.
2844 * @xrcd - XRC domain
2845 * @qp_open_attr: Attributes identifying the QP to open.
2846 *
2847 * Returns a reference to a sharable QP.
2848 */
2849struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2850 struct ib_qp_open_attr *qp_open_attr);
2851
2852/**
2853 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2854 * @qp: The QP handle to release
2855 *
0e0ec7e0
SH
2856 * The opened QP handle is released by the caller. The underlying
2857 * shared QP is not destroyed until all internal references are released.
d3d72d90 2858 */
0e0ec7e0 2859int ib_close_qp(struct ib_qp *qp);
d3d72d90 2860
1da177e4
LT
2861/**
2862 * ib_post_send - Posts a list of work requests to the send queue of
2863 * the specified QP.
2864 * @qp: The QP to post the work request on.
2865 * @send_wr: A list of work requests to post on the send queue.
2866 * @bad_send_wr: On an immediate failure, this parameter will reference
2867 * the work request that failed to be posted on the QP.
55464d46
BVA
2868 *
2869 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2870 * error is returned, the QP state shall not be affected,
2871 * ib_post_send() will return an immediate error after queueing any
2872 * earlier work requests in the list.
1da177e4
LT
2873 */
2874static inline int ib_post_send(struct ib_qp *qp,
2875 struct ib_send_wr *send_wr,
2876 struct ib_send_wr **bad_send_wr)
2877{
2878 return qp->device->post_send(qp, send_wr, bad_send_wr);
2879}
2880
2881/**
2882 * ib_post_recv - Posts a list of work requests to the receive queue of
2883 * the specified QP.
2884 * @qp: The QP to post the work request on.
2885 * @recv_wr: A list of work requests to post on the receive queue.
2886 * @bad_recv_wr: On an immediate failure, this parameter will reference
2887 * the work request that failed to be posted on the QP.
2888 */
2889static inline int ib_post_recv(struct ib_qp *qp,
2890 struct ib_recv_wr *recv_wr,
2891 struct ib_recv_wr **bad_recv_wr)
2892{
2893 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2894}
2895
14d3a3b2
CH
2896struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2897 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2898void ib_free_cq(struct ib_cq *cq);
2899int ib_process_cq_direct(struct ib_cq *cq, int budget);
2900
1da177e4
LT
2901/**
2902 * ib_create_cq - Creates a CQ on the specified device.
2903 * @device: The device on which to create the CQ.
2904 * @comp_handler: A user-specified callback that is invoked when a
2905 * completion event occurs on the CQ.
2906 * @event_handler: A user-specified callback that is invoked when an
2907 * asynchronous event not associated with a completion occurs on the CQ.
2908 * @cq_context: Context associated with the CQ returned to the user via
2909 * the associated completion and event handlers.
8e37210b 2910 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2911 *
2912 * Users can examine the cq structure to determine the actual CQ size.
2913 */
2914struct ib_cq *ib_create_cq(struct ib_device *device,
2915 ib_comp_handler comp_handler,
2916 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2917 void *cq_context,
2918 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2919
2920/**
2921 * ib_resize_cq - Modifies the capacity of the CQ.
2922 * @cq: The CQ to resize.
2923 * @cqe: The minimum size of the CQ.
2924 *
2925 * Users can examine the cq structure to determine the actual CQ size.
2926 */
2927int ib_resize_cq(struct ib_cq *cq, int cqe);
2928
2dd57162
EC
2929/**
2930 * ib_modify_cq - Modifies moderation params of the CQ
2931 * @cq: The CQ to modify.
2932 * @cq_count: number of CQEs that will trigger an event
2933 * @cq_period: max period of time in usec before triggering an event
2934 *
2935 */
2936int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2937
1da177e4
LT
2938/**
2939 * ib_destroy_cq - Destroys the specified CQ.
2940 * @cq: The CQ to destroy.
2941 */
2942int ib_destroy_cq(struct ib_cq *cq);
2943
2944/**
2945 * ib_poll_cq - poll a CQ for completion(s)
2946 * @cq:the CQ being polled
2947 * @num_entries:maximum number of completions to return
2948 * @wc:array of at least @num_entries &struct ib_wc where completions
2949 * will be returned
2950 *
2951 * Poll a CQ for (possibly multiple) completions. If the return value
2952 * is < 0, an error occurred. If the return value is >= 0, it is the
2953 * number of completions returned. If the return value is
2954 * non-negative and < num_entries, then the CQ was emptied.
2955 */
2956static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2957 struct ib_wc *wc)
2958{
2959 return cq->device->poll_cq(cq, num_entries, wc);
2960}
2961
2962/**
2963 * ib_peek_cq - Returns the number of unreaped completions currently
2964 * on the specified CQ.
2965 * @cq: The CQ to peek.
2966 * @wc_cnt: A minimum number of unreaped completions to check for.
2967 *
2968 * If the number of unreaped completions is greater than or equal to wc_cnt,
2969 * this function returns wc_cnt, otherwise, it returns the actual number of
2970 * unreaped completions.
2971 */
2972int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2973
2974/**
2975 * ib_req_notify_cq - Request completion notification on a CQ.
2976 * @cq: The CQ to generate an event for.
ed23a727
RD
2977 * @flags:
2978 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2979 * to request an event on the next solicited event or next work
2980 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2981 * may also be |ed in to request a hint about missed events, as
2982 * described below.
2983 *
2984 * Return Value:
2985 * < 0 means an error occurred while requesting notification
2986 * == 0 means notification was requested successfully, and if
2987 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2988 * were missed and it is safe to wait for another event. In
2989 * this case is it guaranteed that any work completions added
2990 * to the CQ since the last CQ poll will trigger a completion
2991 * notification event.
2992 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2993 * in. It means that the consumer must poll the CQ again to
2994 * make sure it is empty to avoid missing an event because of a
2995 * race between requesting notification and an entry being
2996 * added to the CQ. This return value means it is possible
2997 * (but not guaranteed) that a work completion has been added
2998 * to the CQ since the last poll without triggering a
2999 * completion notification event.
1da177e4
LT
3000 */
3001static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3002 enum ib_cq_notify_flags flags)
1da177e4 3003{
ed23a727 3004 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3005}
3006
3007/**
3008 * ib_req_ncomp_notif - Request completion notification when there are
3009 * at least the specified number of unreaped completions on the CQ.
3010 * @cq: The CQ to generate an event for.
3011 * @wc_cnt: The number of unreaped completions that should be on the
3012 * CQ before an event is generated.
3013 */
3014static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3015{
3016 return cq->device->req_ncomp_notif ?
3017 cq->device->req_ncomp_notif(cq, wc_cnt) :
3018 -ENOSYS;
3019}
3020
9b513090
RC
3021/**
3022 * ib_dma_mapping_error - check a DMA addr for error
3023 * @dev: The device for which the dma_addr was created
3024 * @dma_addr: The DMA address to check
3025 */
3026static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3027{
0957c29f 3028 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3029}
3030
3031/**
3032 * ib_dma_map_single - Map a kernel virtual address to DMA address
3033 * @dev: The device for which the dma_addr is to be created
3034 * @cpu_addr: The kernel virtual address
3035 * @size: The size of the region in bytes
3036 * @direction: The direction of the DMA
3037 */
3038static inline u64 ib_dma_map_single(struct ib_device *dev,
3039 void *cpu_addr, size_t size,
3040 enum dma_data_direction direction)
3041{
0957c29f 3042 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3043}
3044
3045/**
3046 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3047 * @dev: The device for which the DMA address was created
3048 * @addr: The DMA address
3049 * @size: The size of the region in bytes
3050 * @direction: The direction of the DMA
3051 */
3052static inline void ib_dma_unmap_single(struct ib_device *dev,
3053 u64 addr, size_t size,
3054 enum dma_data_direction direction)
3055{
0957c29f 3056 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3057}
3058
9b513090
RC
3059/**
3060 * ib_dma_map_page - Map a physical page to DMA address
3061 * @dev: The device for which the dma_addr is to be created
3062 * @page: The page to be mapped
3063 * @offset: The offset within the page
3064 * @size: The size of the region in bytes
3065 * @direction: The direction of the DMA
3066 */
3067static inline u64 ib_dma_map_page(struct ib_device *dev,
3068 struct page *page,
3069 unsigned long offset,
3070 size_t size,
3071 enum dma_data_direction direction)
3072{
0957c29f 3073 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3074}
3075
3076/**
3077 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3078 * @dev: The device for which the DMA address was created
3079 * @addr: The DMA address
3080 * @size: The size of the region in bytes
3081 * @direction: The direction of the DMA
3082 */
3083static inline void ib_dma_unmap_page(struct ib_device *dev,
3084 u64 addr, size_t size,
3085 enum dma_data_direction direction)
3086{
0957c29f 3087 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3088}
3089
3090/**
3091 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3092 * @dev: The device for which the DMA addresses are to be created
3093 * @sg: The array of scatter/gather entries
3094 * @nents: The number of scatter/gather entries
3095 * @direction: The direction of the DMA
3096 */
3097static inline int ib_dma_map_sg(struct ib_device *dev,
3098 struct scatterlist *sg, int nents,
3099 enum dma_data_direction direction)
3100{
0957c29f 3101 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3102}
3103
3104/**
3105 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3106 * @dev: The device for which the DMA addresses were created
3107 * @sg: The array of scatter/gather entries
3108 * @nents: The number of scatter/gather entries
3109 * @direction: The direction of the DMA
3110 */
3111static inline void ib_dma_unmap_sg(struct ib_device *dev,
3112 struct scatterlist *sg, int nents,
3113 enum dma_data_direction direction)
3114{
0957c29f 3115 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3116}
3117
cb9fbc5c
AK
3118static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3119 struct scatterlist *sg, int nents,
3120 enum dma_data_direction direction,
00085f1e 3121 unsigned long dma_attrs)
cb9fbc5c 3122{
0957c29f
BVA
3123 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3124 dma_attrs);
cb9fbc5c
AK
3125}
3126
3127static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3128 struct scatterlist *sg, int nents,
3129 enum dma_data_direction direction,
00085f1e 3130 unsigned long dma_attrs)
cb9fbc5c 3131{
0957c29f 3132 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3133}
9b513090
RC
3134/**
3135 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3136 * @dev: The device for which the DMA addresses were created
3137 * @sg: The scatter/gather entry
ea58a595
MM
3138 *
3139 * Note: this function is obsolete. To do: change all occurrences of
3140 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3141 */
3142static inline u64 ib_sg_dma_address(struct ib_device *dev,
3143 struct scatterlist *sg)
3144{
d1998ef3 3145 return sg_dma_address(sg);
9b513090
RC
3146}
3147
3148/**
3149 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3150 * @dev: The device for which the DMA addresses were created
3151 * @sg: The scatter/gather entry
ea58a595
MM
3152 *
3153 * Note: this function is obsolete. To do: change all occurrences of
3154 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3155 */
3156static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3157 struct scatterlist *sg)
3158{
d1998ef3 3159 return sg_dma_len(sg);
9b513090
RC
3160}
3161
3162/**
3163 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3164 * @dev: The device for which the DMA address was created
3165 * @addr: The DMA address
3166 * @size: The size of the region in bytes
3167 * @dir: The direction of the DMA
3168 */
3169static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3170 u64 addr,
3171 size_t size,
3172 enum dma_data_direction dir)
3173{
0957c29f 3174 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3175}
3176
3177/**
3178 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3179 * @dev: The device for which the DMA address was created
3180 * @addr: The DMA address
3181 * @size: The size of the region in bytes
3182 * @dir: The direction of the DMA
3183 */
3184static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3185 u64 addr,
3186 size_t size,
3187 enum dma_data_direction dir)
3188{
0957c29f 3189 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3190}
3191
3192/**
3193 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3194 * @dev: The device for which the DMA address is requested
3195 * @size: The size of the region to allocate in bytes
3196 * @dma_handle: A pointer for returning the DMA address of the region
3197 * @flag: memory allocator flags
3198 */
3199static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3200 size_t size,
d43dbacf 3201 dma_addr_t *dma_handle,
9b513090
RC
3202 gfp_t flag)
3203{
0957c29f 3204 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3205}
3206
3207/**
3208 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3209 * @dev: The device for which the DMA addresses were allocated
3210 * @size: The size of the region
3211 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3212 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3213 */
3214static inline void ib_dma_free_coherent(struct ib_device *dev,
3215 size_t size, void *cpu_addr,
d43dbacf 3216 dma_addr_t dma_handle)
9b513090 3217{
0957c29f 3218 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3219}
3220
1da177e4
LT
3221/**
3222 * ib_dereg_mr - Deregisters a memory region and removes it from the
3223 * HCA translation table.
3224 * @mr: The memory region to deregister.
7083e42e
SM
3225 *
3226 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3227 */
3228int ib_dereg_mr(struct ib_mr *mr);
3229
9bee178b
SG
3230struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3231 enum ib_mr_type mr_type,
3232 u32 max_num_sg);
00f7ec36 3233
00f7ec36
SW
3234/**
3235 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3236 * R_Key and L_Key.
3237 * @mr - struct ib_mr pointer to be updated.
3238 * @newkey - new key to be used.
3239 */
3240static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3241{
3242 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3243 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3244}
3245
7083e42e
SM
3246/**
3247 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3248 * for calculating a new rkey for type 2 memory windows.
3249 * @rkey - the rkey to increment.
3250 */
3251static inline u32 ib_inc_rkey(u32 rkey)
3252{
3253 const u32 mask = 0x000000ff;
3254 return ((rkey + 1) & mask) | (rkey & ~mask);
3255}
3256
1da177e4
LT
3257/**
3258 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3259 * @pd: The protection domain associated with the unmapped region.
3260 * @mr_access_flags: Specifies the memory access rights.
3261 * @fmr_attr: Attributes of the unmapped region.
3262 *
3263 * A fast memory region must be mapped before it can be used as part of
3264 * a work request.
3265 */
3266struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3267 int mr_access_flags,
3268 struct ib_fmr_attr *fmr_attr);
3269
3270/**
3271 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3272 * @fmr: The fast memory region to associate with the pages.
3273 * @page_list: An array of physical pages to map to the fast memory region.
3274 * @list_len: The number of pages in page_list.
3275 * @iova: The I/O virtual address to use with the mapped region.
3276 */
3277static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3278 u64 *page_list, int list_len,
3279 u64 iova)
3280{
3281 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3282}
3283
3284/**
3285 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3286 * @fmr_list: A linked list of fast memory regions to unmap.
3287 */
3288int ib_unmap_fmr(struct list_head *fmr_list);
3289
3290/**
3291 * ib_dealloc_fmr - Deallocates a fast memory region.
3292 * @fmr: The fast memory region to deallocate.
3293 */
3294int ib_dealloc_fmr(struct ib_fmr *fmr);
3295
3296/**
3297 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3298 * @qp: QP to attach to the multicast group. The QP must be type
3299 * IB_QPT_UD.
3300 * @gid: Multicast group GID.
3301 * @lid: Multicast group LID in host byte order.
3302 *
3303 * In order to send and receive multicast packets, subnet
3304 * administration must have created the multicast group and configured
3305 * the fabric appropriately. The port associated with the specified
3306 * QP must also be a member of the multicast group.
3307 */
3308int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3309
3310/**
3311 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3312 * @qp: QP to detach from the multicast group.
3313 * @gid: Multicast group GID.
3314 * @lid: Multicast group LID in host byte order.
3315 */
3316int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3317
59991f94
SH
3318/**
3319 * ib_alloc_xrcd - Allocates an XRC domain.
3320 * @device: The device on which to allocate the XRC domain.
3321 */
3322struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3323
3324/**
3325 * ib_dealloc_xrcd - Deallocates an XRC domain.
3326 * @xrcd: The XRC domain to deallocate.
3327 */
3328int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3329
319a441d
HHZ
3330struct ib_flow *ib_create_flow(struct ib_qp *qp,
3331 struct ib_flow_attr *flow_attr, int domain);
3332int ib_destroy_flow(struct ib_flow *flow_id);
3333
1c636f80
EC
3334static inline int ib_check_mr_access(int flags)
3335{
3336 /*
3337 * Local write permission is required if remote write or
3338 * remote atomic permission is also requested.
3339 */
3340 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3341 !(flags & IB_ACCESS_LOCAL_WRITE))
3342 return -EINVAL;
3343
3344 return 0;
3345}
3346
1b01d335
SG
3347/**
3348 * ib_check_mr_status: lightweight check of MR status.
3349 * This routine may provide status checks on a selected
3350 * ib_mr. first use is for signature status check.
3351 *
3352 * @mr: A memory region.
3353 * @check_mask: Bitmask of which checks to perform from
3354 * ib_mr_status_check enumeration.
3355 * @mr_status: The container of relevant status checks.
3356 * failed checks will be indicated in the status bitmask
3357 * and the relevant info shall be in the error item.
3358 */
3359int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3360 struct ib_mr_status *mr_status);
3361
9268f72d
YK
3362struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3363 u16 pkey, const union ib_gid *gid,
3364 const struct sockaddr *addr);
5fd251c8
YH
3365struct ib_wq *ib_create_wq(struct ib_pd *pd,
3366 struct ib_wq_init_attr *init_attr);
3367int ib_destroy_wq(struct ib_wq *wq);
3368int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3369 u32 wq_attr_mask);
6d39786b
YH
3370struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3371 struct ib_rwq_ind_table_init_attr*
3372 wq_ind_table_init_attr);
3373int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3374
ff2ba993 3375int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3376 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3377
3378static inline int
ff2ba993 3379ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3380 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3381{
3382 int n;
3383
ff2ba993 3384 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3385 mr->iova = 0;
3386
3387 return n;
3388}
3389
ff2ba993 3390int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3391 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3392
765d6774
SW
3393void ib_drain_rq(struct ib_qp *qp);
3394void ib_drain_sq(struct ib_qp *qp);
3395void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3396
c90ea9d8
MS
3397int ib_resolve_eth_dmac(struct ib_device *device,
3398 struct ib_ah_attr *ah_attr);
1da177e4 3399#endif /* IB_VERBS_H */