]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/rdma/ib_verbs.h
IB/uverbs: Add helper to get array size from ptr attribute
[mirror_ubuntu-hirsute-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090 44#include <linux/dma-mapping.h>
459d6e2a 45#include <linux/kref.h>
bfb3ea12
DB
46#include <linux/list.h>
47#include <linux/rwsem.h>
f0626710 48#include <linux/workqueue.h>
14d3a3b2 49#include <linux/irq_poll.h>
dd5f03be 50#include <uapi/linux/if_ether.h>
c865f246
SK
51#include <net/ipv6.h>
52#include <net/ip.h>
301a721e
MB
53#include <linux/string.h>
54#include <linux/slab.h>
2fc77572 55#include <linux/netdevice.h>
01b67117 56#include <linux/refcount.h>
50174a7f 57#include <linux/if_link.h>
60063497 58#include <linux/atomic.h>
882214e2 59#include <linux/mmu_notifier.h>
7c0f6ba6 60#include <linux/uaccess.h>
43579b5f 61#include <linux/cgroup_rdma.h>
ea6819e1 62#include <uapi/rdma/ib_user_verbs.h>
02d8883f 63#include <rdma/restrack.h>
0ede73bc 64#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 65#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 66
9abb0d1b
LR
67#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
b5231b01
JG
69struct ib_umem_odp;
70
f0626710 71extern struct workqueue_struct *ib_wq;
14d3a3b2 72extern struct workqueue_struct *ib_comp_wq;
f794809a 73extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 74
1da177e4
LT
75union ib_gid {
76 u8 raw[16];
77 struct {
97f52eb4
SH
78 __be64 subnet_prefix;
79 __be64 interface_id;
1da177e4
LT
80 } global;
81};
82
e26be1bf
MS
83extern union ib_gid zgid;
84
b39ffa1d
MB
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
7766a99f 89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
90 IB_GID_TYPE_SIZE
91};
92
7ead4bcb 93#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
94struct ib_gid_attr {
95 struct net_device *ndev;
598ff6ba 96 struct ib_device *device;
b150c386 97 union ib_gid gid;
598ff6ba
PP
98 enum ib_gid_type gid_type;
99 u16 index;
100 u8 port_num;
03db3a2d
MB
101};
102
07ebafba
TT
103enum rdma_node_type {
104 /* IB values map to NodeInfo:NodeType. */
105 RDMA_NODE_IB_CA = 1,
106 RDMA_NODE_IB_SWITCH,
107 RDMA_NODE_IB_ROUTER,
180771a3
UM
108 RDMA_NODE_RNIC,
109 RDMA_NODE_USNIC,
5db5765e 110 RDMA_NODE_USNIC_UDP,
1da177e4
LT
111};
112
a0c1b2a3
EC
113enum {
114 /* set the local administered indication */
115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
116};
117
07ebafba
TT
118enum rdma_transport_type {
119 RDMA_TRANSPORT_IB,
180771a3 120 RDMA_TRANSPORT_IWARP,
248567f7
UM
121 RDMA_TRANSPORT_USNIC,
122 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
123};
124
6b90a6d6
MW
125enum rdma_protocol_type {
126 RDMA_PROTOCOL_IB,
127 RDMA_PROTOCOL_IBOE,
128 RDMA_PROTOCOL_IWARP,
129 RDMA_PROTOCOL_USNIC_UDP
130};
131
8385fd84
RD
132__attribute_const__ enum rdma_transport_type
133rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 134
c865f246
SK
135enum rdma_network_type {
136 RDMA_NETWORK_IB,
137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 RDMA_NETWORK_IPV4,
139 RDMA_NETWORK_IPV6
140};
141
142static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143{
144 if (network_type == RDMA_NETWORK_IPV4 ||
145 network_type == RDMA_NETWORK_IPV6)
146 return IB_GID_TYPE_ROCE_UDP_ENCAP;
147
148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 return IB_GID_TYPE_IB;
150}
151
47ec3866
PP
152static inline enum rdma_network_type
153rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 154{
47ec3866 155 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
156 return RDMA_NETWORK_IB;
157
47ec3866 158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
159 return RDMA_NETWORK_IPV4;
160 else
161 return RDMA_NETWORK_IPV6;
162}
163
a3f5adaf
EC
164enum rdma_link_layer {
165 IB_LINK_LAYER_UNSPECIFIED,
166 IB_LINK_LAYER_INFINIBAND,
167 IB_LINK_LAYER_ETHERNET,
168};
169
1da177e4 170enum ib_device_cap_flags {
7ca0bc53
LR
171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
174 IB_DEVICE_RAW_MULTI = (1 << 3),
175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 180 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
184 IB_DEVICE_SRQ_RESIZE = (1 << 13),
185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
186
187 /*
188 * This device supports a per-device lkey or stag that can be
189 * used without performing a memory registration for the local
190 * memory. Note that ULPs should never check this flag, but
191 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 * which will always contain a usable lkey.
193 */
7ca0bc53 194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 195 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 196 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
197 /*
198 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 * messages and can verify the validity of checksum for
201 * incoming messages. Setting this flag implies that the
202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 */
7ca0bc53
LR
204 IB_DEVICE_UD_IP_CSUM = (1 << 18),
205 IB_DEVICE_UD_TSO = (1 << 19),
206 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
207
208 /*
209 * This device supports the IB "base memory management extension",
210 * which includes support for fast registrations (IB_WR_REG_MR,
211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
212 * also be set by any iWarp device which must support FRs to comply
213 * to the iWarp verbs spec. iWarp devices also support the
214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 * stag.
216 */
7ca0bc53
LR
217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
221 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 223 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
224 /*
225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 * support execution of WQEs that involve synchronization
227 * of I/O operations with single completion queue managed
228 * by hardware.
229 */
78b57f95 230 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
239 /* The device supports padding incoming writes to cacheline. */
240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
241};
242
243enum ib_signature_prot_cap {
244 IB_PROT_T10DIF_TYPE_1 = 1,
245 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
246 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
247};
248
249enum ib_signature_guard_cap {
250 IB_GUARD_T10DIF_CRC = 1,
251 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
252};
253
254enum ib_atomic_cap {
255 IB_ATOMIC_NONE,
256 IB_ATOMIC_HCA,
257 IB_ATOMIC_GLOB
258};
259
860f10a7 260enum ib_odp_general_cap_bits {
25bf14d6
AK
261 IB_ODP_SUPPORT = 1 << 0,
262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
263};
264
265enum ib_odp_transport_cap_bits {
266 IB_ODP_SUPPORT_SEND = 1 << 0,
267 IB_ODP_SUPPORT_RECV = 1 << 1,
268 IB_ODP_SUPPORT_WRITE = 1 << 2,
269 IB_ODP_SUPPORT_READ = 1 << 3,
270 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
271};
272
273struct ib_odp_caps {
274 uint64_t general_caps;
275 struct {
276 uint32_t rc_odp_caps;
277 uint32_t uc_odp_caps;
278 uint32_t ud_odp_caps;
279 } per_transport_caps;
280};
281
ccf20562
YH
282struct ib_rss_caps {
283 /* Corresponding bit will be set if qp type from
284 * 'enum ib_qp_type' is supported, e.g.
285 * supported_qpts |= 1 << IB_QPT_UD
286 */
287 u32 supported_qpts;
288 u32 max_rwq_indirection_tables;
289 u32 max_rwq_indirection_table_size;
290};
291
6938fc1e
AK
292enum ib_tm_cap_flags {
293 /* Support tag matching on RC transport */
294 IB_TM_CAP_RC = 1 << 0,
295};
296
78b1beb0 297struct ib_tm_caps {
6938fc1e
AK
298 /* Max size of RNDV header */
299 u32 max_rndv_hdr_size;
300 /* Max number of entries in tag matching list */
301 u32 max_num_tags;
302 /* From enum ib_tm_cap_flags */
303 u32 flags;
304 /* Max number of outstanding list operations */
305 u32 max_ops;
306 /* Max number of SGE in tag matching entry */
307 u32 max_sge;
308};
309
bcf4c1ea
MB
310struct ib_cq_init_attr {
311 unsigned int cqe;
312 int comp_vector;
313 u32 flags;
314};
315
869ddcf8
YC
316enum ib_cq_attr_mask {
317 IB_CQ_MODERATE = 1 << 0,
318};
319
18bd9072
YC
320struct ib_cq_caps {
321 u16 max_cq_moderation_count;
322 u16 max_cq_moderation_period;
323};
324
be934cca
AL
325struct ib_dm_mr_attr {
326 u64 length;
327 u64 offset;
328 u32 access_flags;
329};
330
bee76d7a
AL
331struct ib_dm_alloc_attr {
332 u64 length;
333 u32 alignment;
334 u32 flags;
335};
336
1da177e4
LT
337struct ib_device_attr {
338 u64 fw_ver;
97f52eb4 339 __be64 sys_image_guid;
1da177e4
LT
340 u64 max_mr_size;
341 u64 page_size_cap;
342 u32 vendor_id;
343 u32 vendor_part_id;
344 u32 hw_ver;
345 int max_qp;
346 int max_qp_wr;
fb532d6a 347 u64 device_cap_flags;
33023fb8
SW
348 int max_send_sge;
349 int max_recv_sge;
1da177e4
LT
350 int max_sge_rd;
351 int max_cq;
352 int max_cqe;
353 int max_mr;
354 int max_pd;
355 int max_qp_rd_atom;
356 int max_ee_rd_atom;
357 int max_res_rd_atom;
358 int max_qp_init_rd_atom;
359 int max_ee_init_rd_atom;
360 enum ib_atomic_cap atomic_cap;
5e80ba8f 361 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
362 int max_ee;
363 int max_rdd;
364 int max_mw;
365 int max_raw_ipv6_qp;
366 int max_raw_ethy_qp;
367 int max_mcast_grp;
368 int max_mcast_qp_attach;
369 int max_total_mcast_qp_attach;
370 int max_ah;
371 int max_fmr;
372 int max_map_per_fmr;
373 int max_srq;
374 int max_srq_wr;
375 int max_srq_sge;
00f7ec36 376 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
377 u16 max_pkeys;
378 u8 local_ca_ack_delay;
1b01d335
SG
379 int sig_prot_cap;
380 int sig_guard_cap;
860f10a7 381 struct ib_odp_caps odp_caps;
24306dc6
MB
382 uint64_t timestamp_mask;
383 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
384 struct ib_rss_caps rss_caps;
385 u32 max_wq_type_rq;
ebaaee25 386 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 387 struct ib_tm_caps tm_caps;
18bd9072 388 struct ib_cq_caps cq_caps;
1d8eeb9f 389 u64 max_dm_size;
1da177e4
LT
390};
391
392enum ib_mtu {
393 IB_MTU_256 = 1,
394 IB_MTU_512 = 2,
395 IB_MTU_1024 = 3,
396 IB_MTU_2048 = 4,
397 IB_MTU_4096 = 5
398};
399
400static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
401{
402 switch (mtu) {
403 case IB_MTU_256: return 256;
404 case IB_MTU_512: return 512;
405 case IB_MTU_1024: return 1024;
406 case IB_MTU_2048: return 2048;
407 case IB_MTU_4096: return 4096;
408 default: return -1;
409 }
410}
411
d3f4aadd
AR
412static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
413{
414 if (mtu >= 4096)
415 return IB_MTU_4096;
416 else if (mtu >= 2048)
417 return IB_MTU_2048;
418 else if (mtu >= 1024)
419 return IB_MTU_1024;
420 else if (mtu >= 512)
421 return IB_MTU_512;
422 else
423 return IB_MTU_256;
424}
425
1da177e4
LT
426enum ib_port_state {
427 IB_PORT_NOP = 0,
428 IB_PORT_DOWN = 1,
429 IB_PORT_INIT = 2,
430 IB_PORT_ARMED = 3,
431 IB_PORT_ACTIVE = 4,
432 IB_PORT_ACTIVE_DEFER = 5
433};
434
1da177e4
LT
435enum ib_port_width {
436 IB_WIDTH_1X = 1,
dbabf685 437 IB_WIDTH_2X = 16,
1da177e4
LT
438 IB_WIDTH_4X = 2,
439 IB_WIDTH_8X = 4,
440 IB_WIDTH_12X = 8
441};
442
443static inline int ib_width_enum_to_int(enum ib_port_width width)
444{
445 switch (width) {
446 case IB_WIDTH_1X: return 1;
dbabf685 447 case IB_WIDTH_2X: return 2;
1da177e4
LT
448 case IB_WIDTH_4X: return 4;
449 case IB_WIDTH_8X: return 8;
450 case IB_WIDTH_12X: return 12;
451 default: return -1;
452 }
453}
454
2e96691c
OG
455enum ib_port_speed {
456 IB_SPEED_SDR = 1,
457 IB_SPEED_DDR = 2,
458 IB_SPEED_QDR = 4,
459 IB_SPEED_FDR10 = 8,
460 IB_SPEED_FDR = 16,
12113a35
NO
461 IB_SPEED_EDR = 32,
462 IB_SPEED_HDR = 64
2e96691c
OG
463};
464
b40f4757
CL
465/**
466 * struct rdma_hw_stats
e945130b
MB
467 * @lock - Mutex to protect parallel write access to lifespan and values
468 * of counters, which are 64bits and not guaranteeed to be written
469 * atomicaly on 32bits systems.
b40f4757
CL
470 * @timestamp - Used by the core code to track when the last update was
471 * @lifespan - Used by the core code to determine how old the counters
472 * should be before being updated again. Stored in jiffies, defaults
473 * to 10 milliseconds, drivers can override the default be specifying
474 * their own value during their allocation routine.
475 * @name - Array of pointers to static names used for the counters in
476 * directory.
477 * @num_counters - How many hardware counters there are. If name is
478 * shorter than this number, a kernel oops will result. Driver authors
479 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
480 * in their code to prevent this.
481 * @value - Array of u64 counters that are accessed by the sysfs code and
482 * filled in by the drivers get_stats routine
483 */
484struct rdma_hw_stats {
e945130b 485 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
486 unsigned long timestamp;
487 unsigned long lifespan;
488 const char * const *names;
489 int num_counters;
490 u64 value[];
7f624d02
SW
491};
492
b40f4757
CL
493#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
494/**
495 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
496 * for drivers.
497 * @names - Array of static const char *
498 * @num_counters - How many elements in array
499 * @lifespan - How many milliseconds between updates
500 */
501static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
502 const char * const *names, int num_counters,
503 unsigned long lifespan)
504{
505 struct rdma_hw_stats *stats;
506
507 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
508 GFP_KERNEL);
509 if (!stats)
510 return NULL;
511 stats->names = names;
512 stats->num_counters = num_counters;
513 stats->lifespan = msecs_to_jiffies(lifespan);
514
515 return stats;
516}
517
518
f9b22e35
IW
519/* Define bits for the various functionality this port needs to be supported by
520 * the core.
521 */
522/* Management 0x00000FFF */
523#define RDMA_CORE_CAP_IB_MAD 0x00000001
524#define RDMA_CORE_CAP_IB_SMI 0x00000002
525#define RDMA_CORE_CAP_IB_CM 0x00000004
526#define RDMA_CORE_CAP_IW_CM 0x00000008
527#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 528#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
529
530/* Address format 0x000FF000 */
531#define RDMA_CORE_CAP_AF_IB 0x00001000
532#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 533#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 534#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
535
536/* Protocol 0xFFF00000 */
537#define RDMA_CORE_CAP_PROT_IB 0x00100000
538#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
539#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 540#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 541#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 542#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 543
b02289b3
AK
544#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
545 | RDMA_CORE_CAP_PROT_ROCE \
546 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
547
f9b22e35
IW
548#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
549 | RDMA_CORE_CAP_IB_MAD \
550 | RDMA_CORE_CAP_IB_SMI \
551 | RDMA_CORE_CAP_IB_CM \
552 | RDMA_CORE_CAP_IB_SA \
553 | RDMA_CORE_CAP_AF_IB)
554#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
555 | RDMA_CORE_CAP_IB_MAD \
556 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
557 | RDMA_CORE_CAP_AF_IB \
558 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
559#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
560 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
561 | RDMA_CORE_CAP_IB_MAD \
562 | RDMA_CORE_CAP_IB_CM \
563 | RDMA_CORE_CAP_AF_IB \
564 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
565#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
566 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
567#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
568 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 569
aa773bd4
OG
570#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
571
ce1e055f
OG
572#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
573
1da177e4 574struct ib_port_attr {
fad61ad4 575 u64 subnet_prefix;
1da177e4
LT
576 enum ib_port_state state;
577 enum ib_mtu max_mtu;
578 enum ib_mtu active_mtu;
579 int gid_tbl_len;
2f944c0f
JG
580 unsigned int ip_gids:1;
581 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
582 u32 port_cap_flags;
583 u32 max_msg_sz;
584 u32 bad_pkey_cntr;
585 u32 qkey_viol_cntr;
586 u16 pkey_tbl_len;
db58540b 587 u32 sm_lid;
582faf31 588 u32 lid;
1da177e4
LT
589 u8 lmc;
590 u8 max_vl_num;
591 u8 sm_sl;
592 u8 subnet_timeout;
593 u8 init_type_reply;
594 u8 active_width;
595 u8 active_speed;
596 u8 phys_state;
1e8f43b7 597 u16 port_cap_flags2;
1da177e4
LT
598};
599
600enum ib_device_modify_flags {
c5bcbbb9
RD
601 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
602 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
603};
604
bd99fdea
YS
605#define IB_DEVICE_NODE_DESC_MAX 64
606
1da177e4
LT
607struct ib_device_modify {
608 u64 sys_image_guid;
bd99fdea 609 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
610};
611
612enum ib_port_modify_flags {
613 IB_PORT_SHUTDOWN = 1,
614 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
615 IB_PORT_RESET_QKEY_CNTR = (1<<3),
616 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
617};
618
619struct ib_port_modify {
620 u32 set_port_cap_mask;
621 u32 clr_port_cap_mask;
622 u8 init_type;
623};
624
625enum ib_event_type {
626 IB_EVENT_CQ_ERR,
627 IB_EVENT_QP_FATAL,
628 IB_EVENT_QP_REQ_ERR,
629 IB_EVENT_QP_ACCESS_ERR,
630 IB_EVENT_COMM_EST,
631 IB_EVENT_SQ_DRAINED,
632 IB_EVENT_PATH_MIG,
633 IB_EVENT_PATH_MIG_ERR,
634 IB_EVENT_DEVICE_FATAL,
635 IB_EVENT_PORT_ACTIVE,
636 IB_EVENT_PORT_ERR,
637 IB_EVENT_LID_CHANGE,
638 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
639 IB_EVENT_SM_CHANGE,
640 IB_EVENT_SRQ_ERR,
641 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 642 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
643 IB_EVENT_CLIENT_REREGISTER,
644 IB_EVENT_GID_CHANGE,
f213c052 645 IB_EVENT_WQ_FATAL,
1da177e4
LT
646};
647
db7489e0 648const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 649
1da177e4
LT
650struct ib_event {
651 struct ib_device *device;
652 union {
653 struct ib_cq *cq;
654 struct ib_qp *qp;
d41fcc67 655 struct ib_srq *srq;
f213c052 656 struct ib_wq *wq;
1da177e4
LT
657 u8 port_num;
658 } element;
659 enum ib_event_type event;
660};
661
662struct ib_event_handler {
663 struct ib_device *device;
664 void (*handler)(struct ib_event_handler *, struct ib_event *);
665 struct list_head list;
666};
667
668#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
669 do { \
670 (_ptr)->device = _device; \
671 (_ptr)->handler = _handler; \
672 INIT_LIST_HEAD(&(_ptr)->list); \
673 } while (0)
674
675struct ib_global_route {
8d9ec9ad 676 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
677 union ib_gid dgid;
678 u32 flow_label;
679 u8 sgid_index;
680 u8 hop_limit;
681 u8 traffic_class;
682};
683
513789ed 684struct ib_grh {
97f52eb4
SH
685 __be32 version_tclass_flow;
686 __be16 paylen;
513789ed
HR
687 u8 next_hdr;
688 u8 hop_limit;
689 union ib_gid sgid;
690 union ib_gid dgid;
691};
692
c865f246
SK
693union rdma_network_hdr {
694 struct ib_grh ibgrh;
695 struct {
696 /* The IB spec states that if it's IPv4, the header
697 * is located in the last 20 bytes of the header.
698 */
699 u8 reserved[20];
700 struct iphdr roce4grh;
701 };
702};
703
7dafbab3
DH
704#define IB_QPN_MASK 0xFFFFFF
705
1da177e4
LT
706enum {
707 IB_MULTICAST_QPN = 0xffffff
708};
709
f3a7c66b 710#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 711#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 712
1da177e4
LT
713enum ib_ah_flags {
714 IB_AH_GRH = 1
715};
716
bf6a9e31
JM
717enum ib_rate {
718 IB_RATE_PORT_CURRENT = 0,
719 IB_RATE_2_5_GBPS = 2,
720 IB_RATE_5_GBPS = 5,
721 IB_RATE_10_GBPS = 3,
722 IB_RATE_20_GBPS = 6,
723 IB_RATE_30_GBPS = 4,
724 IB_RATE_40_GBPS = 7,
725 IB_RATE_60_GBPS = 8,
726 IB_RATE_80_GBPS = 9,
71eeba16
MA
727 IB_RATE_120_GBPS = 10,
728 IB_RATE_14_GBPS = 11,
729 IB_RATE_56_GBPS = 12,
730 IB_RATE_112_GBPS = 13,
731 IB_RATE_168_GBPS = 14,
732 IB_RATE_25_GBPS = 15,
733 IB_RATE_100_GBPS = 16,
734 IB_RATE_200_GBPS = 17,
a5a5d199
MG
735 IB_RATE_300_GBPS = 18,
736 IB_RATE_28_GBPS = 19,
737 IB_RATE_50_GBPS = 20,
738 IB_RATE_400_GBPS = 21,
739 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
740};
741
742/**
743 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
744 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
745 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
746 * @rate: rate to convert.
747 */
8385fd84 748__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 749
71eeba16
MA
750/**
751 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
752 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
753 * @rate: rate to convert.
754 */
8385fd84 755__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 756
17cd3a2d
SG
757
758/**
9bee178b
SG
759 * enum ib_mr_type - memory region type
760 * @IB_MR_TYPE_MEM_REG: memory region that is used for
761 * normal registration
762 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
763 * signature operations (data-integrity
764 * capable regions)
f5aa9159
SG
765 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
766 * register any arbitrary sg lists (without
767 * the normal mr constraints - see
768 * ib_map_mr_sg)
17cd3a2d 769 */
9bee178b
SG
770enum ib_mr_type {
771 IB_MR_TYPE_MEM_REG,
772 IB_MR_TYPE_SIGNATURE,
f5aa9159 773 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
774};
775
1b01d335 776/**
78eda2bb
SG
777 * Signature types
778 * IB_SIG_TYPE_NONE: Unprotected.
779 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 780 */
78eda2bb
SG
781enum ib_signature_type {
782 IB_SIG_TYPE_NONE,
783 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
784};
785
786/**
787 * Signature T10-DIF block-guard types
788 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
789 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
790 */
791enum ib_t10_dif_bg_type {
792 IB_T10DIF_CRC,
793 IB_T10DIF_CSUM
794};
795
796/**
797 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
798 * domain.
1b01d335
SG
799 * @bg_type: T10-DIF block guard type (CRC|CSUM)
800 * @pi_interval: protection information interval.
801 * @bg: seed of guard computation.
802 * @app_tag: application tag of guard block
803 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
804 * @ref_remap: Indicate wethear the reftag increments each block
805 * @app_escape: Indicate to skip block check if apptag=0xffff
806 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
807 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
808 */
809struct ib_t10_dif_domain {
1b01d335
SG
810 enum ib_t10_dif_bg_type bg_type;
811 u16 pi_interval;
812 u16 bg;
813 u16 app_tag;
814 u32 ref_tag;
78eda2bb
SG
815 bool ref_remap;
816 bool app_escape;
817 bool ref_escape;
818 u16 apptag_check_mask;
1b01d335
SG
819};
820
821/**
822 * struct ib_sig_domain - Parameters for signature domain
823 * @sig_type: specific signauture type
824 * @sig: union of all signature domain attributes that may
825 * be used to set domain layout.
826 */
827struct ib_sig_domain {
828 enum ib_signature_type sig_type;
829 union {
830 struct ib_t10_dif_domain dif;
831 } sig;
832};
833
834/**
835 * struct ib_sig_attrs - Parameters for signature handover operation
836 * @check_mask: bitmask for signature byte check (8 bytes)
837 * @mem: memory domain layout desciptor.
838 * @wire: wire domain layout desciptor.
839 */
840struct ib_sig_attrs {
841 u8 check_mask;
842 struct ib_sig_domain mem;
843 struct ib_sig_domain wire;
844};
845
846enum ib_sig_err_type {
847 IB_SIG_BAD_GUARD,
848 IB_SIG_BAD_REFTAG,
849 IB_SIG_BAD_APPTAG,
850};
851
ca24da00
MG
852/**
853 * Signature check masks (8 bytes in total) according to the T10-PI standard:
854 * -------- -------- ------------
855 * | GUARD | APPTAG | REFTAG |
856 * | 2B | 2B | 4B |
857 * -------- -------- ------------
858 */
859enum {
860 IB_SIG_CHECK_GUARD = 0xc0,
861 IB_SIG_CHECK_APPTAG = 0x30,
862 IB_SIG_CHECK_REFTAG = 0x0f,
863};
864
1b01d335
SG
865/**
866 * struct ib_sig_err - signature error descriptor
867 */
868struct ib_sig_err {
869 enum ib_sig_err_type err_type;
870 u32 expected;
871 u32 actual;
872 u64 sig_err_offset;
873 u32 key;
874};
875
876enum ib_mr_status_check {
877 IB_MR_CHECK_SIG_STATUS = 1,
878};
879
880/**
881 * struct ib_mr_status - Memory region status container
882 *
883 * @fail_status: Bitmask of MR checks status. For each
884 * failed check a corresponding status bit is set.
885 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
886 * failure.
887 */
888struct ib_mr_status {
889 u32 fail_status;
890 struct ib_sig_err sig_err;
891};
892
bf6a9e31
JM
893/**
894 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
895 * enum.
896 * @mult: multiple to convert.
897 */
8385fd84 898__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 899
44c58487 900enum rdma_ah_attr_type {
87daac68 901 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
902 RDMA_AH_ATTR_TYPE_IB,
903 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 904 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
905};
906
907struct ib_ah_attr {
908 u16 dlid;
909 u8 src_path_bits;
910};
911
912struct roce_ah_attr {
913 u8 dmac[ETH_ALEN];
914};
915
64b4646e
DC
916struct opa_ah_attr {
917 u32 dlid;
918 u8 src_path_bits;
d98bb7f7 919 bool make_grd;
64b4646e
DC
920};
921
90898850 922struct rdma_ah_attr {
1da177e4 923 struct ib_global_route grh;
1da177e4 924 u8 sl;
1da177e4 925 u8 static_rate;
1da177e4 926 u8 port_num;
44c58487
DC
927 u8 ah_flags;
928 enum rdma_ah_attr_type type;
929 union {
930 struct ib_ah_attr ib;
931 struct roce_ah_attr roce;
64b4646e 932 struct opa_ah_attr opa;
44c58487 933 };
1da177e4
LT
934};
935
936enum ib_wc_status {
937 IB_WC_SUCCESS,
938 IB_WC_LOC_LEN_ERR,
939 IB_WC_LOC_QP_OP_ERR,
940 IB_WC_LOC_EEC_OP_ERR,
941 IB_WC_LOC_PROT_ERR,
942 IB_WC_WR_FLUSH_ERR,
943 IB_WC_MW_BIND_ERR,
944 IB_WC_BAD_RESP_ERR,
945 IB_WC_LOC_ACCESS_ERR,
946 IB_WC_REM_INV_REQ_ERR,
947 IB_WC_REM_ACCESS_ERR,
948 IB_WC_REM_OP_ERR,
949 IB_WC_RETRY_EXC_ERR,
950 IB_WC_RNR_RETRY_EXC_ERR,
951 IB_WC_LOC_RDD_VIOL_ERR,
952 IB_WC_REM_INV_RD_REQ_ERR,
953 IB_WC_REM_ABORT_ERR,
954 IB_WC_INV_EECN_ERR,
955 IB_WC_INV_EEC_STATE_ERR,
956 IB_WC_FATAL_ERR,
957 IB_WC_RESP_TIMEOUT_ERR,
958 IB_WC_GENERAL_ERR
959};
960
db7489e0 961const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 962
1da177e4
LT
963enum ib_wc_opcode {
964 IB_WC_SEND,
965 IB_WC_RDMA_WRITE,
966 IB_WC_RDMA_READ,
967 IB_WC_COMP_SWAP,
968 IB_WC_FETCH_ADD,
c93570f2 969 IB_WC_LSO,
00f7ec36 970 IB_WC_LOCAL_INV,
4c67e2bf 971 IB_WC_REG_MR,
5e80ba8f
VS
972 IB_WC_MASKED_COMP_SWAP,
973 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
974/*
975 * Set value of IB_WC_RECV so consumers can test if a completion is a
976 * receive by testing (opcode & IB_WC_RECV).
977 */
978 IB_WC_RECV = 1 << 7,
979 IB_WC_RECV_RDMA_WITH_IMM
980};
981
982enum ib_wc_flags {
983 IB_WC_GRH = 1,
00f7ec36
SW
984 IB_WC_WITH_IMM = (1<<1),
985 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 986 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
987 IB_WC_WITH_SMAC = (1<<4),
988 IB_WC_WITH_VLAN = (1<<5),
c865f246 989 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
990};
991
992struct ib_wc {
14d3a3b2
CH
993 union {
994 u64 wr_id;
995 struct ib_cqe *wr_cqe;
996 };
1da177e4
LT
997 enum ib_wc_status status;
998 enum ib_wc_opcode opcode;
999 u32 vendor_err;
1000 u32 byte_len;
062dbb69 1001 struct ib_qp *qp;
00f7ec36
SW
1002 union {
1003 __be32 imm_data;
1004 u32 invalidate_rkey;
1005 } ex;
1da177e4 1006 u32 src_qp;
cd2a6e7d 1007 u32 slid;
1da177e4
LT
1008 int wc_flags;
1009 u16 pkey_index;
1da177e4
LT
1010 u8 sl;
1011 u8 dlid_path_bits;
1012 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1013 u8 smac[ETH_ALEN];
1014 u16 vlan_id;
c865f246 1015 u8 network_hdr_type;
1da177e4
LT
1016};
1017
ed23a727
RD
1018enum ib_cq_notify_flags {
1019 IB_CQ_SOLICITED = 1 << 0,
1020 IB_CQ_NEXT_COMP = 1 << 1,
1021 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1022 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1023};
1024
96104eda 1025enum ib_srq_type {
418d5130 1026 IB_SRQT_BASIC,
9c2c8496
AK
1027 IB_SRQT_XRC,
1028 IB_SRQT_TM,
96104eda
SH
1029};
1030
1a56ff6d
AK
1031static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1032{
9c2c8496
AK
1033 return srq_type == IB_SRQT_XRC ||
1034 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1035}
1036
d41fcc67
RD
1037enum ib_srq_attr_mask {
1038 IB_SRQ_MAX_WR = 1 << 0,
1039 IB_SRQ_LIMIT = 1 << 1,
1040};
1041
1042struct ib_srq_attr {
1043 u32 max_wr;
1044 u32 max_sge;
1045 u32 srq_limit;
1046};
1047
1048struct ib_srq_init_attr {
1049 void (*event_handler)(struct ib_event *, void *);
1050 void *srq_context;
1051 struct ib_srq_attr attr;
96104eda 1052 enum ib_srq_type srq_type;
418d5130 1053
1a56ff6d
AK
1054 struct {
1055 struct ib_cq *cq;
1056 union {
1057 struct {
1058 struct ib_xrcd *xrcd;
1059 } xrc;
9c2c8496
AK
1060
1061 struct {
1062 u32 max_num_tags;
1063 } tag_matching;
1a56ff6d 1064 };
418d5130 1065 } ext;
d41fcc67
RD
1066};
1067
1da177e4
LT
1068struct ib_qp_cap {
1069 u32 max_send_wr;
1070 u32 max_recv_wr;
1071 u32 max_send_sge;
1072 u32 max_recv_sge;
1073 u32 max_inline_data;
a060b562
CH
1074
1075 /*
1076 * Maximum number of rdma_rw_ctx structures in flight at a time.
1077 * ib_create_qp() will calculate the right amount of neededed WRs
1078 * and MRs based on this.
1079 */
1080 u32 max_rdma_ctxs;
1da177e4
LT
1081};
1082
1083enum ib_sig_type {
1084 IB_SIGNAL_ALL_WR,
1085 IB_SIGNAL_REQ_WR
1086};
1087
1088enum ib_qp_type {
1089 /*
1090 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1091 * here (and in that order) since the MAD layer uses them as
1092 * indices into a 2-entry table.
1093 */
1094 IB_QPT_SMI,
1095 IB_QPT_GSI,
1096
1097 IB_QPT_RC,
1098 IB_QPT_UC,
1099 IB_QPT_UD,
1100 IB_QPT_RAW_IPV6,
b42b63cf 1101 IB_QPT_RAW_ETHERTYPE,
c938a616 1102 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1103 IB_QPT_XRC_INI = 9,
1104 IB_QPT_XRC_TGT,
0134f16b 1105 IB_QPT_MAX,
8011c1e3 1106 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1107 /* Reserve a range for qp types internal to the low level driver.
1108 * These qp types will not be visible at the IB core layer, so the
1109 * IB_QPT_MAX usages should not be affected in the core layer
1110 */
1111 IB_QPT_RESERVED1 = 0x1000,
1112 IB_QPT_RESERVED2,
1113 IB_QPT_RESERVED3,
1114 IB_QPT_RESERVED4,
1115 IB_QPT_RESERVED5,
1116 IB_QPT_RESERVED6,
1117 IB_QPT_RESERVED7,
1118 IB_QPT_RESERVED8,
1119 IB_QPT_RESERVED9,
1120 IB_QPT_RESERVED10,
1da177e4
LT
1121};
1122
b846f25a 1123enum ib_qp_create_flags {
47ee1b9f
RL
1124 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1125 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1126 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1127 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1128 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1129 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1130 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1131 /* FREE = 1 << 7, */
b531b909 1132 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1133 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1134 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1135 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1136 /* reserve bits 26-31 for low level drivers' internal use */
1137 IB_QP_CREATE_RESERVED_START = 1 << 26,
1138 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1139};
1140
73c40c61
YH
1141/*
1142 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1143 * callback to destroy the passed in QP.
1144 */
1145
1da177e4 1146struct ib_qp_init_attr {
eb93c82e 1147 /* Consumer's event_handler callback must not block */
1da177e4 1148 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1149
1da177e4
LT
1150 void *qp_context;
1151 struct ib_cq *send_cq;
1152 struct ib_cq *recv_cq;
1153 struct ib_srq *srq;
b42b63cf 1154 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1155 struct ib_qp_cap cap;
1156 enum ib_sig_type sq_sig_type;
1157 enum ib_qp_type qp_type;
b56511c1 1158 u32 create_flags;
a060b562
CH
1159
1160 /*
1161 * Only needed for special QP types, or when using the RW API.
1162 */
1163 u8 port_num;
a9017e23 1164 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1165 u32 source_qpn;
1da177e4
LT
1166};
1167
0e0ec7e0
SH
1168struct ib_qp_open_attr {
1169 void (*event_handler)(struct ib_event *, void *);
1170 void *qp_context;
1171 u32 qp_num;
1172 enum ib_qp_type qp_type;
1173};
1174
1da177e4
LT
1175enum ib_rnr_timeout {
1176 IB_RNR_TIMER_655_36 = 0,
1177 IB_RNR_TIMER_000_01 = 1,
1178 IB_RNR_TIMER_000_02 = 2,
1179 IB_RNR_TIMER_000_03 = 3,
1180 IB_RNR_TIMER_000_04 = 4,
1181 IB_RNR_TIMER_000_06 = 5,
1182 IB_RNR_TIMER_000_08 = 6,
1183 IB_RNR_TIMER_000_12 = 7,
1184 IB_RNR_TIMER_000_16 = 8,
1185 IB_RNR_TIMER_000_24 = 9,
1186 IB_RNR_TIMER_000_32 = 10,
1187 IB_RNR_TIMER_000_48 = 11,
1188 IB_RNR_TIMER_000_64 = 12,
1189 IB_RNR_TIMER_000_96 = 13,
1190 IB_RNR_TIMER_001_28 = 14,
1191 IB_RNR_TIMER_001_92 = 15,
1192 IB_RNR_TIMER_002_56 = 16,
1193 IB_RNR_TIMER_003_84 = 17,
1194 IB_RNR_TIMER_005_12 = 18,
1195 IB_RNR_TIMER_007_68 = 19,
1196 IB_RNR_TIMER_010_24 = 20,
1197 IB_RNR_TIMER_015_36 = 21,
1198 IB_RNR_TIMER_020_48 = 22,
1199 IB_RNR_TIMER_030_72 = 23,
1200 IB_RNR_TIMER_040_96 = 24,
1201 IB_RNR_TIMER_061_44 = 25,
1202 IB_RNR_TIMER_081_92 = 26,
1203 IB_RNR_TIMER_122_88 = 27,
1204 IB_RNR_TIMER_163_84 = 28,
1205 IB_RNR_TIMER_245_76 = 29,
1206 IB_RNR_TIMER_327_68 = 30,
1207 IB_RNR_TIMER_491_52 = 31
1208};
1209
1210enum ib_qp_attr_mask {
1211 IB_QP_STATE = 1,
1212 IB_QP_CUR_STATE = (1<<1),
1213 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1214 IB_QP_ACCESS_FLAGS = (1<<3),
1215 IB_QP_PKEY_INDEX = (1<<4),
1216 IB_QP_PORT = (1<<5),
1217 IB_QP_QKEY = (1<<6),
1218 IB_QP_AV = (1<<7),
1219 IB_QP_PATH_MTU = (1<<8),
1220 IB_QP_TIMEOUT = (1<<9),
1221 IB_QP_RETRY_CNT = (1<<10),
1222 IB_QP_RNR_RETRY = (1<<11),
1223 IB_QP_RQ_PSN = (1<<12),
1224 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1225 IB_QP_ALT_PATH = (1<<14),
1226 IB_QP_MIN_RNR_TIMER = (1<<15),
1227 IB_QP_SQ_PSN = (1<<16),
1228 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1229 IB_QP_PATH_MIG_STATE = (1<<18),
1230 IB_QP_CAP = (1<<19),
dd5f03be 1231 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1232 IB_QP_RESERVED1 = (1<<21),
1233 IB_QP_RESERVED2 = (1<<22),
1234 IB_QP_RESERVED3 = (1<<23),
1235 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1236 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1237};
1238
1239enum ib_qp_state {
1240 IB_QPS_RESET,
1241 IB_QPS_INIT,
1242 IB_QPS_RTR,
1243 IB_QPS_RTS,
1244 IB_QPS_SQD,
1245 IB_QPS_SQE,
1246 IB_QPS_ERR
1247};
1248
1249enum ib_mig_state {
1250 IB_MIG_MIGRATED,
1251 IB_MIG_REARM,
1252 IB_MIG_ARMED
1253};
1254
7083e42e
SM
1255enum ib_mw_type {
1256 IB_MW_TYPE_1 = 1,
1257 IB_MW_TYPE_2 = 2
1258};
1259
1da177e4
LT
1260struct ib_qp_attr {
1261 enum ib_qp_state qp_state;
1262 enum ib_qp_state cur_qp_state;
1263 enum ib_mtu path_mtu;
1264 enum ib_mig_state path_mig_state;
1265 u32 qkey;
1266 u32 rq_psn;
1267 u32 sq_psn;
1268 u32 dest_qp_num;
1269 int qp_access_flags;
1270 struct ib_qp_cap cap;
90898850
DC
1271 struct rdma_ah_attr ah_attr;
1272 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1273 u16 pkey_index;
1274 u16 alt_pkey_index;
1275 u8 en_sqd_async_notify;
1276 u8 sq_draining;
1277 u8 max_rd_atomic;
1278 u8 max_dest_rd_atomic;
1279 u8 min_rnr_timer;
1280 u8 port_num;
1281 u8 timeout;
1282 u8 retry_cnt;
1283 u8 rnr_retry;
1284 u8 alt_port_num;
1285 u8 alt_timeout;
528e5a1b 1286 u32 rate_limit;
1da177e4
LT
1287};
1288
1289enum ib_wr_opcode {
9a59739b
JG
1290 /* These are shared with userspace */
1291 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1292 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1293 IB_WR_SEND = IB_UVERBS_WR_SEND,
1294 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1295 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1296 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1297 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1298 IB_WR_LSO = IB_UVERBS_WR_TSO,
1299 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1300 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1301 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1302 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1303 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1304 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1305 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1306
1307 /* These are kernel only and can not be issued by userspace */
1308 IB_WR_REG_MR = 0x20,
1b01d335 1309 IB_WR_REG_SIG_MR,
9a59739b 1310
0134f16b
JM
1311 /* reserve values for low level drivers' internal use.
1312 * These values will not be used at all in the ib core layer.
1313 */
1314 IB_WR_RESERVED1 = 0xf0,
1315 IB_WR_RESERVED2,
1316 IB_WR_RESERVED3,
1317 IB_WR_RESERVED4,
1318 IB_WR_RESERVED5,
1319 IB_WR_RESERVED6,
1320 IB_WR_RESERVED7,
1321 IB_WR_RESERVED8,
1322 IB_WR_RESERVED9,
1323 IB_WR_RESERVED10,
1da177e4
LT
1324};
1325
1326enum ib_send_flags {
1327 IB_SEND_FENCE = 1,
1328 IB_SEND_SIGNALED = (1<<1),
1329 IB_SEND_SOLICITED = (1<<2),
e0605d91 1330 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1331 IB_SEND_IP_CSUM = (1<<4),
1332
1333 /* reserve bits 26-31 for low level drivers' internal use */
1334 IB_SEND_RESERVED_START = (1 << 26),
1335 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1336};
1337
1338struct ib_sge {
1339 u64 addr;
1340 u32 length;
1341 u32 lkey;
1342};
1343
14d3a3b2
CH
1344struct ib_cqe {
1345 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1346};
1347
1da177e4
LT
1348struct ib_send_wr {
1349 struct ib_send_wr *next;
14d3a3b2
CH
1350 union {
1351 u64 wr_id;
1352 struct ib_cqe *wr_cqe;
1353 };
1da177e4
LT
1354 struct ib_sge *sg_list;
1355 int num_sge;
1356 enum ib_wr_opcode opcode;
1357 int send_flags;
0f39cf3d
RD
1358 union {
1359 __be32 imm_data;
1360 u32 invalidate_rkey;
1361 } ex;
1da177e4
LT
1362};
1363
e622f2f4
CH
1364struct ib_rdma_wr {
1365 struct ib_send_wr wr;
1366 u64 remote_addr;
1367 u32 rkey;
1368};
1369
f696bf6d 1370static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1371{
1372 return container_of(wr, struct ib_rdma_wr, wr);
1373}
1374
1375struct ib_atomic_wr {
1376 struct ib_send_wr wr;
1377 u64 remote_addr;
1378 u64 compare_add;
1379 u64 swap;
1380 u64 compare_add_mask;
1381 u64 swap_mask;
1382 u32 rkey;
1383};
1384
f696bf6d 1385static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1386{
1387 return container_of(wr, struct ib_atomic_wr, wr);
1388}
1389
1390struct ib_ud_wr {
1391 struct ib_send_wr wr;
1392 struct ib_ah *ah;
1393 void *header;
1394 int hlen;
1395 int mss;
1396 u32 remote_qpn;
1397 u32 remote_qkey;
1398 u16 pkey_index; /* valid for GSI only */
1399 u8 port_num; /* valid for DR SMPs on switch only */
1400};
1401
f696bf6d 1402static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1403{
1404 return container_of(wr, struct ib_ud_wr, wr);
1405}
1406
4c67e2bf
SG
1407struct ib_reg_wr {
1408 struct ib_send_wr wr;
1409 struct ib_mr *mr;
1410 u32 key;
1411 int access;
1412};
1413
f696bf6d 1414static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1415{
1416 return container_of(wr, struct ib_reg_wr, wr);
1417}
1418
e622f2f4
CH
1419struct ib_sig_handover_wr {
1420 struct ib_send_wr wr;
1421 struct ib_sig_attrs *sig_attrs;
1422 struct ib_mr *sig_mr;
1423 int access_flags;
1424 struct ib_sge *prot;
1425};
1426
f696bf6d
BVA
1427static inline const struct ib_sig_handover_wr *
1428sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1429{
1430 return container_of(wr, struct ib_sig_handover_wr, wr);
1431}
1432
1da177e4
LT
1433struct ib_recv_wr {
1434 struct ib_recv_wr *next;
14d3a3b2
CH
1435 union {
1436 u64 wr_id;
1437 struct ib_cqe *wr_cqe;
1438 };
1da177e4
LT
1439 struct ib_sge *sg_list;
1440 int num_sge;
1441};
1442
1443enum ib_access_flags {
4fca0377
JG
1444 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1445 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1446 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1447 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1448 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1449 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1450 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1451 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1452
1453 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1454};
1455
b7d3e0a9
CH
1456/*
1457 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1458 * are hidden here instead of a uapi header!
1459 */
1da177e4
LT
1460enum ib_mr_rereg_flags {
1461 IB_MR_REREG_TRANS = 1,
1462 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1463 IB_MR_REREG_ACCESS = (1<<2),
1464 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1465};
1466
1da177e4
LT
1467struct ib_fmr_attr {
1468 int max_pages;
1469 int max_maps;
d36f34aa 1470 u8 page_shift;
1da177e4
LT
1471};
1472
882214e2
HE
1473struct ib_umem;
1474
38321256 1475enum rdma_remove_reason {
1c77483e
YH
1476 /*
1477 * Userspace requested uobject deletion or initial try
1478 * to remove uobject via cleanup. Call could fail
1479 */
38321256
MB
1480 RDMA_REMOVE_DESTROY,
1481 /* Context deletion. This call should delete the actual object itself */
1482 RDMA_REMOVE_CLOSE,
1483 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1484 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1485 /* uobj is being cleaned-up before being committed */
1486 RDMA_REMOVE_ABORT,
38321256
MB
1487};
1488
43579b5f
PP
1489struct ib_rdmacg_object {
1490#ifdef CONFIG_CGROUP_RDMA
1491 struct rdma_cgroup *cg; /* owner rdma cgroup */
1492#endif
1493};
1494
e2773c06
RD
1495struct ib_ucontext {
1496 struct ib_device *device;
771addf6 1497 struct ib_uverbs_file *ufile;
e951747a
JG
1498 /*
1499 * 'closing' can be read by the driver only during a destroy callback,
1500 * it is set when we are closing the file descriptor and indicates
1501 * that mm_sem may be locked.
1502 */
6ceb6331 1503 bool closing;
8ada2c1c 1504
1c77483e 1505 bool cleanup_retryable;
38321256 1506
882214e2 1507#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
b5231b01 1508 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
882214e2 1509 unsigned long start, unsigned long end);
f27a0d50
JG
1510 struct mutex per_mm_list_lock;
1511 struct list_head per_mm_list;
882214e2 1512#endif
43579b5f
PP
1513
1514 struct ib_rdmacg_object cg_obj;
60615210
LR
1515 /*
1516 * Implementation details of the RDMA core, don't use in drivers:
1517 */
1518 struct rdma_restrack_entry res;
e2773c06
RD
1519};
1520
1521struct ib_uobject {
1522 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1523 /* ufile & ucontext owning this object */
1524 struct ib_uverbs_file *ufile;
1525 /* FIXME, save memory: ufile->context == context */
e2773c06 1526 struct ib_ucontext *context; /* associated user context */
9ead190b 1527 void *object; /* containing object */
e2773c06 1528 struct list_head list; /* link to context's list */
43579b5f 1529 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1530 int id; /* index into kernel idr */
9ead190b 1531 struct kref ref;
38321256 1532 atomic_t usecnt; /* protects exclusive access */
d144da8c 1533 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1534
6b0d08f4 1535 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1536};
1537
e2773c06 1538struct ib_udata {
309243ec 1539 const void __user *inbuf;
e2773c06
RD
1540 void __user *outbuf;
1541 size_t inlen;
1542 size_t outlen;
1543};
1544
1da177e4 1545struct ib_pd {
96249d70 1546 u32 local_dma_lkey;
ed082d36 1547 u32 flags;
e2773c06
RD
1548 struct ib_device *device;
1549 struct ib_uobject *uobject;
1550 atomic_t usecnt; /* count all resources */
50d46335 1551
ed082d36
CH
1552 u32 unsafe_global_rkey;
1553
50d46335
CH
1554 /*
1555 * Implementation details of the RDMA core, don't use in drivers:
1556 */
1557 struct ib_mr *__internal_mr;
02d8883f 1558 struct rdma_restrack_entry res;
1da177e4
LT
1559};
1560
59991f94
SH
1561struct ib_xrcd {
1562 struct ib_device *device;
d3d72d90 1563 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1564 struct inode *inode;
d3d72d90
SH
1565
1566 struct mutex tgt_qp_mutex;
1567 struct list_head tgt_qp_list;
59991f94
SH
1568};
1569
1da177e4
LT
1570struct ib_ah {
1571 struct ib_device *device;
1572 struct ib_pd *pd;
e2773c06 1573 struct ib_uobject *uobject;
1a1f460f 1574 const struct ib_gid_attr *sgid_attr;
44c58487 1575 enum rdma_ah_attr_type type;
1da177e4
LT
1576};
1577
1578typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1579
14d3a3b2 1580enum ib_poll_context {
f794809a
JM
1581 IB_POLL_DIRECT, /* caller context, no hw completions */
1582 IB_POLL_SOFTIRQ, /* poll from softirq context */
1583 IB_POLL_WORKQUEUE, /* poll from workqueue */
1584 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
14d3a3b2
CH
1585};
1586
1da177e4 1587struct ib_cq {
e2773c06
RD
1588 struct ib_device *device;
1589 struct ib_uobject *uobject;
1590 ib_comp_handler comp_handler;
1591 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1592 void *cq_context;
e2773c06
RD
1593 int cqe;
1594 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1595 enum ib_poll_context poll_ctx;
1596 struct ib_wc *wc;
1597 union {
1598 struct irq_poll iop;
1599 struct work_struct work;
1600 };
f794809a 1601 struct workqueue_struct *comp_wq;
02d8883f
LR
1602 /*
1603 * Implementation details of the RDMA core, don't use in drivers:
1604 */
1605 struct rdma_restrack_entry res;
1da177e4
LT
1606};
1607
1608struct ib_srq {
d41fcc67
RD
1609 struct ib_device *device;
1610 struct ib_pd *pd;
1611 struct ib_uobject *uobject;
1612 void (*event_handler)(struct ib_event *, void *);
1613 void *srq_context;
96104eda 1614 enum ib_srq_type srq_type;
1da177e4 1615 atomic_t usecnt;
418d5130 1616
1a56ff6d
AK
1617 struct {
1618 struct ib_cq *cq;
1619 union {
1620 struct {
1621 struct ib_xrcd *xrcd;
1622 u32 srq_num;
1623 } xrc;
1624 };
418d5130 1625 } ext;
1da177e4
LT
1626};
1627
ebaaee25
NO
1628enum ib_raw_packet_caps {
1629 /* Strip cvlan from incoming packet and report it in the matching work
1630 * completion is supported.
1631 */
1632 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1633 /* Scatter FCS field of an incoming packet to host memory is supported.
1634 */
1635 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1636 /* Checksum offloads are supported (for both send and receive). */
1637 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1638 /* When a packet is received for an RQ with no receive WQEs, the
1639 * packet processing is delayed.
1640 */
1641 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1642};
1643
5fd251c8
YH
1644enum ib_wq_type {
1645 IB_WQT_RQ
1646};
1647
1648enum ib_wq_state {
1649 IB_WQS_RESET,
1650 IB_WQS_RDY,
1651 IB_WQS_ERR
1652};
1653
1654struct ib_wq {
1655 struct ib_device *device;
1656 struct ib_uobject *uobject;
1657 void *wq_context;
1658 void (*event_handler)(struct ib_event *, void *);
1659 struct ib_pd *pd;
1660 struct ib_cq *cq;
1661 u32 wq_num;
1662 enum ib_wq_state state;
1663 enum ib_wq_type wq_type;
1664 atomic_t usecnt;
1665};
1666
10bac72b
NO
1667enum ib_wq_flags {
1668 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1669 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1670 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1671 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1672};
1673
5fd251c8
YH
1674struct ib_wq_init_attr {
1675 void *wq_context;
1676 enum ib_wq_type wq_type;
1677 u32 max_wr;
1678 u32 max_sge;
1679 struct ib_cq *cq;
1680 void (*event_handler)(struct ib_event *, void *);
10bac72b 1681 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1682};
1683
1684enum ib_wq_attr_mask {
10bac72b
NO
1685 IB_WQ_STATE = 1 << 0,
1686 IB_WQ_CUR_STATE = 1 << 1,
1687 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1688};
1689
1690struct ib_wq_attr {
1691 enum ib_wq_state wq_state;
1692 enum ib_wq_state curr_wq_state;
10bac72b
NO
1693 u32 flags; /* Use enum ib_wq_flags */
1694 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1695};
1696
6d39786b
YH
1697struct ib_rwq_ind_table {
1698 struct ib_device *device;
1699 struct ib_uobject *uobject;
1700 atomic_t usecnt;
1701 u32 ind_tbl_num;
1702 u32 log_ind_tbl_size;
1703 struct ib_wq **ind_tbl;
1704};
1705
1706struct ib_rwq_ind_table_init_attr {
1707 u32 log_ind_tbl_size;
1708 /* Each entry is a pointer to Receive Work Queue */
1709 struct ib_wq **ind_tbl;
1710};
1711
d291f1a6
DJ
1712enum port_pkey_state {
1713 IB_PORT_PKEY_NOT_VALID = 0,
1714 IB_PORT_PKEY_VALID = 1,
1715 IB_PORT_PKEY_LISTED = 2,
1716};
1717
1718struct ib_qp_security;
1719
1720struct ib_port_pkey {
1721 enum port_pkey_state state;
1722 u16 pkey_index;
1723 u8 port_num;
1724 struct list_head qp_list;
1725 struct list_head to_error_list;
1726 struct ib_qp_security *sec;
1727};
1728
1729struct ib_ports_pkeys {
1730 struct ib_port_pkey main;
1731 struct ib_port_pkey alt;
1732};
1733
1734struct ib_qp_security {
1735 struct ib_qp *qp;
1736 struct ib_device *dev;
1737 /* Hold this mutex when changing port and pkey settings. */
1738 struct mutex mutex;
1739 struct ib_ports_pkeys *ports_pkeys;
1740 /* A list of all open shared QP handles. Required to enforce security
1741 * properly for all users of a shared QP.
1742 */
1743 struct list_head shared_qp_list;
1744 void *security;
1745 bool destroying;
1746 atomic_t error_list_count;
1747 struct completion error_complete;
1748 int error_comps_pending;
1749};
1750
632bc3f6
BVA
1751/*
1752 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1753 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1754 */
1da177e4
LT
1755struct ib_qp {
1756 struct ib_device *device;
1757 struct ib_pd *pd;
1758 struct ib_cq *send_cq;
1759 struct ib_cq *recv_cq;
fffb0383
CH
1760 spinlock_t mr_lock;
1761 int mrs_used;
a060b562 1762 struct list_head rdma_mrs;
0e353e34 1763 struct list_head sig_mrs;
1da177e4 1764 struct ib_srq *srq;
b42b63cf 1765 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1766 struct list_head xrcd_list;
fffb0383 1767
319a441d
HHZ
1768 /* count times opened, mcast attaches, flow attaches */
1769 atomic_t usecnt;
0e0ec7e0
SH
1770 struct list_head open_list;
1771 struct ib_qp *real_qp;
e2773c06 1772 struct ib_uobject *uobject;
1da177e4
LT
1773 void (*event_handler)(struct ib_event *, void *);
1774 void *qp_context;
1a1f460f
JG
1775 /* sgid_attrs associated with the AV's */
1776 const struct ib_gid_attr *av_sgid_attr;
1777 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1778 u32 qp_num;
632bc3f6
BVA
1779 u32 max_write_sge;
1780 u32 max_read_sge;
1da177e4 1781 enum ib_qp_type qp_type;
a9017e23 1782 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1783 struct ib_qp_security *qp_sec;
498ca3c8 1784 u8 port;
02d8883f
LR
1785
1786 /*
1787 * Implementation details of the RDMA core, don't use in drivers:
1788 */
1789 struct rdma_restrack_entry res;
1da177e4
LT
1790};
1791
bee76d7a
AL
1792struct ib_dm {
1793 struct ib_device *device;
1794 u32 length;
1795 u32 flags;
1796 struct ib_uobject *uobject;
1797 atomic_t usecnt;
1798};
1799
1da177e4 1800struct ib_mr {
e2773c06
RD
1801 struct ib_device *device;
1802 struct ib_pd *pd;
e2773c06
RD
1803 u32 lkey;
1804 u32 rkey;
4c67e2bf 1805 u64 iova;
edd31551 1806 u64 length;
4c67e2bf 1807 unsigned int page_size;
d4a85c30 1808 bool need_inval;
fffb0383
CH
1809 union {
1810 struct ib_uobject *uobject; /* user */
1811 struct list_head qp_entry; /* FR */
1812 };
fccec5b8 1813
be934cca
AL
1814 struct ib_dm *dm;
1815
fccec5b8
SW
1816 /*
1817 * Implementation details of the RDMA core, don't use in drivers:
1818 */
1819 struct rdma_restrack_entry res;
1da177e4
LT
1820};
1821
1822struct ib_mw {
1823 struct ib_device *device;
1824 struct ib_pd *pd;
e2773c06 1825 struct ib_uobject *uobject;
1da177e4 1826 u32 rkey;
7083e42e 1827 enum ib_mw_type type;
1da177e4
LT
1828};
1829
1830struct ib_fmr {
1831 struct ib_device *device;
1832 struct ib_pd *pd;
1833 struct list_head list;
1834 u32 lkey;
1835 u32 rkey;
1836};
1837
319a441d
HHZ
1838/* Supported steering options */
1839enum ib_flow_attr_type {
1840 /* steering according to rule specifications */
1841 IB_FLOW_ATTR_NORMAL = 0x0,
1842 /* default unicast and multicast rule -
1843 * receive all Eth traffic which isn't steered to any QP
1844 */
1845 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1846 /* default multicast rule -
1847 * receive all Eth multicast traffic which isn't steered to any QP
1848 */
1849 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1850 /* sniffer rule - receive all port traffic */
1851 IB_FLOW_ATTR_SNIFFER = 0x3
1852};
1853
1854/* Supported steering header types */
1855enum ib_flow_spec_type {
1856 /* L2 headers*/
76bd23b3
MR
1857 IB_FLOW_SPEC_ETH = 0x20,
1858 IB_FLOW_SPEC_IB = 0x22,
319a441d 1859 /* L3 header*/
76bd23b3
MR
1860 IB_FLOW_SPEC_IPV4 = 0x30,
1861 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1862 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1863 /* L4 headers*/
76bd23b3
MR
1864 IB_FLOW_SPEC_TCP = 0x40,
1865 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1866 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1867 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1868 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1869 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1870 /* Actions */
1871 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1872 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1873 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1874 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1875};
240ae00e 1876#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1877#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1878
319a441d
HHZ
1879/* Flow steering rule priority is set according to it's domain.
1880 * Lower domain value means higher priority.
1881 */
1882enum ib_flow_domain {
1883 IB_FLOW_DOMAIN_USER,
1884 IB_FLOW_DOMAIN_ETHTOOL,
1885 IB_FLOW_DOMAIN_RFS,
1886 IB_FLOW_DOMAIN_NIC,
1887 IB_FLOW_DOMAIN_NUM /* Must be last */
1888};
1889
a3100a78
MV
1890enum ib_flow_flags {
1891 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1892 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1893 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1894};
1895
319a441d
HHZ
1896struct ib_flow_eth_filter {
1897 u8 dst_mac[6];
1898 u8 src_mac[6];
1899 __be16 ether_type;
1900 __be16 vlan_tag;
15dfbd6b
MG
1901 /* Must be last */
1902 u8 real_sz[0];
319a441d
HHZ
1903};
1904
1905struct ib_flow_spec_eth {
fbf46860 1906 u32 type;
319a441d
HHZ
1907 u16 size;
1908 struct ib_flow_eth_filter val;
1909 struct ib_flow_eth_filter mask;
1910};
1911
240ae00e
MB
1912struct ib_flow_ib_filter {
1913 __be16 dlid;
1914 __u8 sl;
15dfbd6b
MG
1915 /* Must be last */
1916 u8 real_sz[0];
240ae00e
MB
1917};
1918
1919struct ib_flow_spec_ib {
fbf46860 1920 u32 type;
240ae00e
MB
1921 u16 size;
1922 struct ib_flow_ib_filter val;
1923 struct ib_flow_ib_filter mask;
1924};
1925
989a3a8f
MG
1926/* IPv4 header flags */
1927enum ib_ipv4_flags {
1928 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1929 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1930 last have this flag set */
1931};
1932
319a441d
HHZ
1933struct ib_flow_ipv4_filter {
1934 __be32 src_ip;
1935 __be32 dst_ip;
989a3a8f
MG
1936 u8 proto;
1937 u8 tos;
1938 u8 ttl;
1939 u8 flags;
15dfbd6b
MG
1940 /* Must be last */
1941 u8 real_sz[0];
319a441d
HHZ
1942};
1943
1944struct ib_flow_spec_ipv4 {
fbf46860 1945 u32 type;
319a441d
HHZ
1946 u16 size;
1947 struct ib_flow_ipv4_filter val;
1948 struct ib_flow_ipv4_filter mask;
1949};
1950
4c2aae71
MG
1951struct ib_flow_ipv6_filter {
1952 u8 src_ip[16];
1953 u8 dst_ip[16];
a72c6a2b
MG
1954 __be32 flow_label;
1955 u8 next_hdr;
1956 u8 traffic_class;
1957 u8 hop_limit;
15dfbd6b
MG
1958 /* Must be last */
1959 u8 real_sz[0];
4c2aae71
MG
1960};
1961
1962struct ib_flow_spec_ipv6 {
fbf46860 1963 u32 type;
4c2aae71
MG
1964 u16 size;
1965 struct ib_flow_ipv6_filter val;
1966 struct ib_flow_ipv6_filter mask;
1967};
1968
319a441d
HHZ
1969struct ib_flow_tcp_udp_filter {
1970 __be16 dst_port;
1971 __be16 src_port;
15dfbd6b
MG
1972 /* Must be last */
1973 u8 real_sz[0];
319a441d
HHZ
1974};
1975
1976struct ib_flow_spec_tcp_udp {
fbf46860 1977 u32 type;
319a441d
HHZ
1978 u16 size;
1979 struct ib_flow_tcp_udp_filter val;
1980 struct ib_flow_tcp_udp_filter mask;
1981};
1982
0dbf3332
MR
1983struct ib_flow_tunnel_filter {
1984 __be32 tunnel_id;
1985 u8 real_sz[0];
1986};
1987
1988/* ib_flow_spec_tunnel describes the Vxlan tunnel
1989 * the tunnel_id from val has the vni value
1990 */
1991struct ib_flow_spec_tunnel {
fbf46860 1992 u32 type;
0dbf3332
MR
1993 u16 size;
1994 struct ib_flow_tunnel_filter val;
1995 struct ib_flow_tunnel_filter mask;
1996};
1997
56ab0b38
MB
1998struct ib_flow_esp_filter {
1999 __be32 spi;
2000 __be32 seq;
2001 /* Must be last */
2002 u8 real_sz[0];
2003};
2004
2005struct ib_flow_spec_esp {
2006 u32 type;
2007 u16 size;
2008 struct ib_flow_esp_filter val;
2009 struct ib_flow_esp_filter mask;
2010};
2011
d90e5e50
AL
2012struct ib_flow_gre_filter {
2013 __be16 c_ks_res0_ver;
2014 __be16 protocol;
2015 __be32 key;
2016 /* Must be last */
2017 u8 real_sz[0];
2018};
2019
2020struct ib_flow_spec_gre {
2021 u32 type;
2022 u16 size;
2023 struct ib_flow_gre_filter val;
2024 struct ib_flow_gre_filter mask;
2025};
2026
b04f0f03
AL
2027struct ib_flow_mpls_filter {
2028 __be32 tag;
2029 /* Must be last */
2030 u8 real_sz[0];
2031};
2032
2033struct ib_flow_spec_mpls {
2034 u32 type;
2035 u16 size;
2036 struct ib_flow_mpls_filter val;
2037 struct ib_flow_mpls_filter mask;
2038};
2039
460d0198
MR
2040struct ib_flow_spec_action_tag {
2041 enum ib_flow_spec_type type;
2042 u16 size;
2043 u32 tag_id;
2044};
2045
483a3966
SS
2046struct ib_flow_spec_action_drop {
2047 enum ib_flow_spec_type type;
2048 u16 size;
2049};
2050
9b828441
MB
2051struct ib_flow_spec_action_handle {
2052 enum ib_flow_spec_type type;
2053 u16 size;
2054 struct ib_flow_action *act;
2055};
2056
7eea23a5
RS
2057enum ib_counters_description {
2058 IB_COUNTER_PACKETS,
2059 IB_COUNTER_BYTES,
2060};
2061
2062struct ib_flow_spec_action_count {
2063 enum ib_flow_spec_type type;
2064 u16 size;
2065 struct ib_counters *counters;
2066};
2067
319a441d
HHZ
2068union ib_flow_spec {
2069 struct {
fbf46860 2070 u32 type;
319a441d
HHZ
2071 u16 size;
2072 };
2073 struct ib_flow_spec_eth eth;
240ae00e 2074 struct ib_flow_spec_ib ib;
319a441d
HHZ
2075 struct ib_flow_spec_ipv4 ipv4;
2076 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2077 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2078 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2079 struct ib_flow_spec_esp esp;
d90e5e50 2080 struct ib_flow_spec_gre gre;
b04f0f03 2081 struct ib_flow_spec_mpls mpls;
460d0198 2082 struct ib_flow_spec_action_tag flow_tag;
483a3966 2083 struct ib_flow_spec_action_drop drop;
9b828441 2084 struct ib_flow_spec_action_handle action;
7eea23a5 2085 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2086};
2087
2088struct ib_flow_attr {
2089 enum ib_flow_attr_type type;
2090 u16 size;
2091 u16 priority;
2092 u32 flags;
2093 u8 num_of_specs;
2094 u8 port;
7654cb1b 2095 union ib_flow_spec flows[];
319a441d
HHZ
2096};
2097
2098struct ib_flow {
2099 struct ib_qp *qp;
6cd080a6 2100 struct ib_device *device;
319a441d
HHZ
2101 struct ib_uobject *uobject;
2102};
2103
2eb9beae
MB
2104enum ib_flow_action_type {
2105 IB_FLOW_ACTION_UNSPECIFIED,
2106 IB_FLOW_ACTION_ESP = 1,
2107};
2108
2109struct ib_flow_action_attrs_esp_keymats {
2110 enum ib_uverbs_flow_action_esp_keymat protocol;
2111 union {
2112 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2113 } keymat;
2114};
2115
2116struct ib_flow_action_attrs_esp_replays {
2117 enum ib_uverbs_flow_action_esp_replay protocol;
2118 union {
2119 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2120 } replay;
2121};
2122
2123enum ib_flow_action_attrs_esp_flags {
2124 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2125 * This is done in order to share the same flags between user-space and
2126 * kernel and spare an unnecessary translation.
2127 */
2128
2129 /* Kernel flags */
2130 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2131 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2132};
2133
2134struct ib_flow_spec_list {
2135 struct ib_flow_spec_list *next;
2136 union ib_flow_spec spec;
2137};
2138
2139struct ib_flow_action_attrs_esp {
2140 struct ib_flow_action_attrs_esp_keymats *keymat;
2141 struct ib_flow_action_attrs_esp_replays *replay;
2142 struct ib_flow_spec_list *encap;
2143 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2144 * Value of 0 is a valid value.
2145 */
2146 u32 esn;
2147 u32 spi;
2148 u32 seq;
2149 u32 tfc_pad;
2150 /* Use enum ib_flow_action_attrs_esp_flags */
2151 u64 flags;
2152 u64 hard_limit_pkts;
2153};
2154
2155struct ib_flow_action {
2156 struct ib_device *device;
2157 struct ib_uobject *uobject;
2158 enum ib_flow_action_type type;
2159 atomic_t usecnt;
2160};
2161
4cd7c947 2162struct ib_mad_hdr;
1da177e4
LT
2163struct ib_grh;
2164
2165enum ib_process_mad_flags {
2166 IB_MAD_IGNORE_MKEY = 1,
2167 IB_MAD_IGNORE_BKEY = 2,
2168 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2169};
2170
2171enum ib_mad_result {
2172 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2173 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2174 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2175 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2176};
2177
21d6454a 2178struct ib_port_cache {
883c71fe 2179 u64 subnet_prefix;
21d6454a
JW
2180 struct ib_pkey_cache *pkey;
2181 struct ib_gid_table *gid;
2182 u8 lmc;
2183 enum ib_port_state port_state;
2184};
2185
1da177e4
LT
2186struct ib_cache {
2187 rwlock_t lock;
2188 struct ib_event_handler event_handler;
21d6454a 2189 struct ib_port_cache *ports;
1da177e4
LT
2190};
2191
07ebafba
TT
2192struct iw_cm_verbs;
2193
7738613e
IW
2194struct ib_port_immutable {
2195 int pkey_tbl_len;
2196 int gid_tbl_len;
f9b22e35 2197 u32 core_cap_flags;
337877a4 2198 u32 max_mad_size;
7738613e
IW
2199};
2200
2fc77572
VN
2201/* rdma netdev type - specifies protocol type */
2202enum rdma_netdev_t {
f0ad83ac
NV
2203 RDMA_NETDEV_OPA_VNIC,
2204 RDMA_NETDEV_IPOIB,
2fc77572
VN
2205};
2206
2207/**
2208 * struct rdma_netdev - rdma netdev
2209 * For cases where netstack interfacing is required.
2210 */
2211struct rdma_netdev {
2212 void *clnt_priv;
2213 struct ib_device *hca;
2214 u8 port_num;
2215
9f49a5b5
JG
2216 /*
2217 * cleanup function must be specified.
2218 * FIXME: This is only used for OPA_VNIC and that usage should be
2219 * removed too.
2220 */
8e959601
NV
2221 void (*free_rdma_netdev)(struct net_device *netdev);
2222
2fc77572
VN
2223 /* control functions */
2224 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2225 /* send packet */
2226 int (*send)(struct net_device *dev, struct sk_buff *skb,
2227 struct ib_ah *address, u32 dqpn);
2228 /* multicast */
2229 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2230 union ib_gid *gid, u16 mlid,
2231 int set_qkey, u32 qkey);
2232 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2233 union ib_gid *gid, u16 mlid);
2fc77572
VN
2234};
2235
f6a8a19b
DD
2236struct rdma_netdev_alloc_params {
2237 size_t sizeof_priv;
2238 unsigned int txqs;
2239 unsigned int rxqs;
2240 void *param;
2241
2242 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2243 struct net_device *netdev, void *param);
2244};
2245
d291f1a6
DJ
2246struct ib_port_pkey_list {
2247 /* Lock to hold while modifying the list. */
2248 spinlock_t list_lock;
2249 struct list_head pkey_list;
2250};
2251
fa9b1802
RS
2252struct ib_counters {
2253 struct ib_device *device;
2254 struct ib_uobject *uobject;
2255 /* num of objects attached */
2256 atomic_t usecnt;
2257};
2258
51d7a538
RS
2259struct ib_counters_read_attr {
2260 u64 *counters_buff;
2261 u32 ncounters;
2262 u32 flags; /* use enum ib_read_counters_flags */
2263};
2264
2eb9beae
MB
2265struct uverbs_attr_bundle;
2266
521ed0d9
KH
2267/**
2268 * struct ib_device_ops - InfiniBand device operations
2269 * This structure defines all the InfiniBand device operations, providers will
2270 * need to define the supported operations, otherwise they will be set to null.
2271 */
2272struct ib_device_ops {
2273 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2274 const struct ib_send_wr **bad_send_wr);
2275 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2276 const struct ib_recv_wr **bad_recv_wr);
2277 void (*drain_rq)(struct ib_qp *qp);
2278 void (*drain_sq)(struct ib_qp *qp);
2279 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2280 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2281 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2282 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2283 int (*post_srq_recv)(struct ib_srq *srq,
2284 const struct ib_recv_wr *recv_wr,
2285 const struct ib_recv_wr **bad_recv_wr);
2286 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2287 u8 port_num, const struct ib_wc *in_wc,
2288 const struct ib_grh *in_grh,
2289 const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2290 struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2291 u16 *out_mad_pkey_index);
2292 int (*query_device)(struct ib_device *device,
2293 struct ib_device_attr *device_attr,
2294 struct ib_udata *udata);
2295 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2296 struct ib_device_modify *device_modify);
2297 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2298 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2299 int comp_vector);
2300 int (*query_port)(struct ib_device *device, u8 port_num,
2301 struct ib_port_attr *port_attr);
2302 int (*modify_port)(struct ib_device *device, u8 port_num,
2303 int port_modify_mask,
2304 struct ib_port_modify *port_modify);
2305 /**
2306 * The following mandatory functions are used only at device
2307 * registration. Keep functions such as these at the end of this
2308 * structure to avoid cache line misses when accessing struct ib_device
2309 * in fast paths.
2310 */
2311 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2312 struct ib_port_immutable *immutable);
2313 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2314 u8 port_num);
2315 /**
2316 * When calling get_netdev, the HW vendor's driver should return the
2317 * net device of device @device at port @port_num or NULL if such
2318 * a net device doesn't exist. The vendor driver should call dev_hold
2319 * on this net device. The HW vendor's device driver must guarantee
2320 * that this function returns NULL before the net device has finished
2321 * NETDEV_UNREGISTER state.
2322 */
2323 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2324 /**
2325 * rdma netdev operation
2326 *
2327 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2328 * must return -EOPNOTSUPP if it doesn't support the specified type.
2329 */
2330 struct net_device *(*alloc_rdma_netdev)(
2331 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2332 const char *name, unsigned char name_assign_type,
2333 void (*setup)(struct net_device *));
2334
2335 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2336 enum rdma_netdev_t type,
2337 struct rdma_netdev_alloc_params *params);
2338 /**
2339 * query_gid should be return GID value for @device, when @port_num
2340 * link layer is either IB or iWarp. It is no-op if @port_num port
2341 * is RoCE link layer.
2342 */
2343 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2344 union ib_gid *gid);
2345 /**
2346 * When calling add_gid, the HW vendor's driver should add the gid
2347 * of device of port at gid index available at @attr. Meta-info of
2348 * that gid (for example, the network device related to this gid) is
2349 * available at @attr. @context allows the HW vendor driver to store
2350 * extra information together with a GID entry. The HW vendor driver may
2351 * allocate memory to contain this information and store it in @context
2352 * when a new GID entry is written to. Params are consistent until the
2353 * next call of add_gid or delete_gid. The function should return 0 on
2354 * success or error otherwise. The function could be called
2355 * concurrently for different ports. This function is only called when
2356 * roce_gid_table is used.
2357 */
2358 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2359 /**
2360 * When calling del_gid, the HW vendor's driver should delete the
2361 * gid of device @device at gid index gid_index of port port_num
2362 * available in @attr.
2363 * Upon the deletion of a GID entry, the HW vendor must free any
2364 * allocated memory. The caller will clear @context afterwards.
2365 * This function is only called when roce_gid_table is used.
2366 */
2367 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2368 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2369 u16 *pkey);
2370 struct ib_ucontext *(*alloc_ucontext)(struct ib_device *device,
2371 struct ib_udata *udata);
2372 int (*dealloc_ucontext)(struct ib_ucontext *context);
2373 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2374 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2375 struct ib_pd *(*alloc_pd)(struct ib_device *device,
2376 struct ib_ucontext *context,
2377 struct ib_udata *udata);
2378 int (*dealloc_pd)(struct ib_pd *pd);
2379 struct ib_ah *(*create_ah)(struct ib_pd *pd,
2380 struct rdma_ah_attr *ah_attr,
2381 struct ib_udata *udata);
2382 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2383 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2384 int (*destroy_ah)(struct ib_ah *ah);
2385 struct ib_srq *(*create_srq)(struct ib_pd *pd,
2386 struct ib_srq_init_attr *srq_init_attr,
2387 struct ib_udata *udata);
2388 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2389 enum ib_srq_attr_mask srq_attr_mask,
2390 struct ib_udata *udata);
2391 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2392 int (*destroy_srq)(struct ib_srq *srq);
2393 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2394 struct ib_qp_init_attr *qp_init_attr,
2395 struct ib_udata *udata);
2396 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2397 int qp_attr_mask, struct ib_udata *udata);
2398 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2399 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2400 int (*destroy_qp)(struct ib_qp *qp);
2401 struct ib_cq *(*create_cq)(struct ib_device *device,
2402 const struct ib_cq_init_attr *attr,
2403 struct ib_ucontext *context,
2404 struct ib_udata *udata);
2405 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2406 int (*destroy_cq)(struct ib_cq *cq);
2407 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2408 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2409 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2410 u64 virt_addr, int mr_access_flags,
2411 struct ib_udata *udata);
2412 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2413 u64 virt_addr, int mr_access_flags,
2414 struct ib_pd *pd, struct ib_udata *udata);
2415 int (*dereg_mr)(struct ib_mr *mr);
2416 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2417 u32 max_num_sg);
2418 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2419 unsigned int *sg_offset);
2420 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2421 struct ib_mr_status *mr_status);
2422 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2423 struct ib_udata *udata);
2424 int (*dealloc_mw)(struct ib_mw *mw);
2425 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2426 struct ib_fmr_attr *fmr_attr);
2427 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2428 u64 iova);
2429 int (*unmap_fmr)(struct list_head *fmr_list);
2430 int (*dealloc_fmr)(struct ib_fmr *fmr);
2431 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2432 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2433 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2434 struct ib_ucontext *ucontext,
2435 struct ib_udata *udata);
2436 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2437 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2438 struct ib_flow_attr *flow_attr,
2439 int domain, struct ib_udata *udata);
2440 int (*destroy_flow)(struct ib_flow *flow_id);
2441 struct ib_flow_action *(*create_flow_action_esp)(
2442 struct ib_device *device,
2443 const struct ib_flow_action_attrs_esp *attr,
2444 struct uverbs_attr_bundle *attrs);
2445 int (*destroy_flow_action)(struct ib_flow_action *action);
2446 int (*modify_flow_action_esp)(
2447 struct ib_flow_action *action,
2448 const struct ib_flow_action_attrs_esp *attr,
2449 struct uverbs_attr_bundle *attrs);
2450 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2451 int state);
2452 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2453 struct ifla_vf_info *ivf);
2454 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2455 struct ifla_vf_stats *stats);
2456 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2457 int type);
2458 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2459 struct ib_wq_init_attr *init_attr,
2460 struct ib_udata *udata);
2461 int (*destroy_wq)(struct ib_wq *wq);
2462 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2463 u32 wq_attr_mask, struct ib_udata *udata);
2464 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2465 struct ib_device *device,
2466 struct ib_rwq_ind_table_init_attr *init_attr,
2467 struct ib_udata *udata);
2468 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2469 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2470 struct ib_ucontext *context,
2471 struct ib_dm_alloc_attr *attr,
2472 struct uverbs_attr_bundle *attrs);
2473 int (*dealloc_dm)(struct ib_dm *dm);
2474 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2475 struct ib_dm_mr_attr *attr,
2476 struct uverbs_attr_bundle *attrs);
2477 struct ib_counters *(*create_counters)(
2478 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2479 int (*destroy_counters)(struct ib_counters *counters);
2480 int (*read_counters)(struct ib_counters *counters,
2481 struct ib_counters_read_attr *counters_read_attr,
2482 struct uverbs_attr_bundle *attrs);
2483 /**
2484 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2485 * driver initialized data. The struct is kfree()'ed by the sysfs
2486 * core when the device is removed. A lifespan of -1 in the return
2487 * struct tells the core to set a default lifespan.
2488 */
2489 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2490 u8 port_num);
2491 /**
2492 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2493 * @index - The index in the value array we wish to have updated, or
2494 * num_counters if we want all stats updated
2495 * Return codes -
2496 * < 0 - Error, no counters updated
2497 * index - Updated the single counter pointed to by index
2498 * num_counters - Updated all counters (will reset the timestamp
2499 * and prevent further calls for lifespan milliseconds)
2500 * Drivers are allowed to update all counters in leiu of just the
2501 * one given in index at their option
2502 */
2503 int (*get_hw_stats)(struct ib_device *device,
2504 struct rdma_hw_stats *stats, u8 port, int index);
2505};
2506
1da177e4 2507struct ib_device {
0957c29f
BVA
2508 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2509 struct device *dma_device;
3023a1e9 2510 struct ib_device_ops ops;
1da177e4
LT
2511 char name[IB_DEVICE_NAME_MAX];
2512
2513 struct list_head event_handler_list;
2514 spinlock_t event_handler_lock;
2515
e1f540c3 2516 rwlock_t client_data_lock;
1da177e4 2517 struct list_head core_list;
7c1eb45a 2518 /* Access to the client_data_list is protected by the client_data_lock
e1f540c3
PP
2519 * rwlock and the lists_rwsem read-write semaphore
2520 */
1da177e4 2521 struct list_head client_data_list;
1da177e4
LT
2522
2523 struct ib_cache cache;
7738613e
IW
2524 /**
2525 * port_immutable is indexed by port number
2526 */
2527 struct ib_port_immutable *port_immutable;
1da177e4 2528
f4fd0b22
MT
2529 int num_comp_vectors;
2530
d291f1a6
DJ
2531 struct ib_port_pkey_list *port_pkey_list;
2532
07ebafba
TT
2533 struct iw_cm_verbs *iwcm;
2534
e2773c06 2535 struct module *owner;
f4e91eb4 2536 struct device dev;
d4122f5a
PP
2537 /* First group for device attributes,
2538 * Second group for driver provided attributes (optional).
2539 * It is NULL terminated array.
2540 */
2541 const struct attribute_group *groups[3];
adee9f3f 2542
1ae4cfa0 2543 struct kobject *ports_kobj;
1da177e4
LT
2544 struct list_head port_list;
2545
2546 enum {
2547 IB_DEV_UNINITIALIZED,
2548 IB_DEV_REGISTERED,
2549 IB_DEV_UNREGISTERED
2550 } reg_state;
2551
274c0891 2552 int uverbs_abi_ver;
17a55f79 2553 u64 uverbs_cmd_mask;
f21519b2 2554 u64 uverbs_ex_cmd_mask;
274c0891 2555
bd99fdea 2556 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2557 __be64 node_guid;
96f15c03 2558 u32 local_dma_lkey;
4139032b 2559 u16 is_switch:1;
1da177e4
LT
2560 u8 node_type;
2561 u8 phys_port_cnt;
3e153a93 2562 struct ib_device_attr attrs;
b40f4757
CL
2563 struct attribute_group *hw_stats_ag;
2564 struct rdma_hw_stats *hw_stats;
7738613e 2565
43579b5f
PP
2566#ifdef CONFIG_CGROUP_RDMA
2567 struct rdmacg_device cg_device;
2568#endif
2569
ecc82c53 2570 u32 index;
02d8883f
LR
2571 /*
2572 * Implementation details of the RDMA core, don't use in drivers
2573 */
2574 struct rdma_restrack_root res;
ecc82c53 2575
0cbf432d 2576 const struct uapi_definition *driver_def;
0ede73bc 2577 enum rdma_driver_id driver_id;
01b67117
PP
2578 /*
2579 * Provides synchronization between device unregistration and netlink
2580 * commands on a device. To be used only by core.
2581 */
2582 refcount_t refcount;
2583 struct completion unreg_completion;
1da177e4
LT
2584};
2585
2586struct ib_client {
2587 char *name;
2588 void (*add) (struct ib_device *);
7c1eb45a 2589 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2590
9268f72d
YK
2591 /* Returns the net_dev belonging to this ib_client and matching the
2592 * given parameters.
2593 * @dev: An RDMA device that the net_dev use for communication.
2594 * @port: A physical port number on the RDMA device.
2595 * @pkey: P_Key that the net_dev uses if applicable.
2596 * @gid: A GID that the net_dev uses to communicate.
2597 * @addr: An IP address the net_dev is configured with.
2598 * @client_data: The device's client data set by ib_set_client_data().
2599 *
2600 * An ib_client that implements a net_dev on top of RDMA devices
2601 * (such as IP over IB) should implement this callback, allowing the
2602 * rdma_cm module to find the right net_dev for a given request.
2603 *
2604 * The caller is responsible for calling dev_put on the returned
2605 * netdev. */
2606 struct net_device *(*get_net_dev_by_params)(
2607 struct ib_device *dev,
2608 u8 port,
2609 u16 pkey,
2610 const union ib_gid *gid,
2611 const struct sockaddr *addr,
2612 void *client_data);
1da177e4
LT
2613 struct list_head list;
2614};
2615
2616struct ib_device *ib_alloc_device(size_t size);
2617void ib_dealloc_device(struct ib_device *device);
2618
9abb0d1b 2619void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2620
e349f858
JG
2621int ib_register_device(struct ib_device *device, const char *name,
2622 int (*port_callback)(struct ib_device *, u8,
2623 struct kobject *));
1da177e4
LT
2624void ib_unregister_device(struct ib_device *device);
2625
2626int ib_register_client (struct ib_client *client);
2627void ib_unregister_client(struct ib_client *client);
2628
2629void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2630void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2631 void *data);
521ed0d9
KH
2632void ib_set_device_ops(struct ib_device *device,
2633 const struct ib_device_ops *ops);
1da177e4 2634
5f9794dc
JG
2635#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2636int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2637 unsigned long pfn, unsigned long size, pgprot_t prot);
2638int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2639 struct vm_area_struct *vma, struct page *page,
2640 unsigned long size);
2641#else
2642static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2643 struct vm_area_struct *vma,
2644 unsigned long pfn, unsigned long size,
2645 pgprot_t prot)
2646{
2647 return -EINVAL;
2648}
2649static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2650 struct vm_area_struct *vma, struct page *page,
2651 unsigned long size)
2652{
2653 return -EINVAL;
2654}
2655#endif
2656
e2773c06
RD
2657static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2658{
2659 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2660}
2661
2662static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2663{
43c61165 2664 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2665}
2666
c66db311
MB
2667static inline bool ib_is_buffer_cleared(const void __user *p,
2668 size_t len)
301a721e 2669{
92d27ae6 2670 bool ret;
301a721e
MB
2671 u8 *buf;
2672
2673 if (len > USHRT_MAX)
2674 return false;
2675
92d27ae6
ME
2676 buf = memdup_user(p, len);
2677 if (IS_ERR(buf))
301a721e
MB
2678 return false;
2679
301a721e 2680 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2681 kfree(buf);
2682 return ret;
2683}
2684
c66db311
MB
2685static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2686 size_t offset,
2687 size_t len)
2688{
2689 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2690}
2691
1c77483e
YH
2692/**
2693 * ib_is_destroy_retryable - Check whether the uobject destruction
2694 * is retryable.
2695 * @ret: The initial destruction return code
2696 * @why: remove reason
2697 * @uobj: The uobject that is destroyed
2698 *
2699 * This function is a helper function that IB layer and low-level drivers
2700 * can use to consider whether the destruction of the given uobject is
2701 * retry-able.
2702 * It checks the original return code, if it wasn't success the destruction
2703 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2704 * the remove reason. (i.e. why).
2705 * Must be called with the object locked for destroy.
2706 */
2707static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2708 struct ib_uobject *uobj)
2709{
2710 return ret && (why == RDMA_REMOVE_DESTROY ||
2711 uobj->context->cleanup_retryable);
2712}
2713
2714/**
2715 * ib_destroy_usecnt - Called during destruction to check the usecnt
2716 * @usecnt: The usecnt atomic
2717 * @why: remove reason
2718 * @uobj: The uobject that is destroyed
2719 *
2720 * Non-zero usecnts will block destruction unless destruction was triggered by
2721 * a ucontext cleanup.
2722 */
2723static inline int ib_destroy_usecnt(atomic_t *usecnt,
2724 enum rdma_remove_reason why,
2725 struct ib_uobject *uobj)
2726{
2727 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2728 return -EBUSY;
2729 return 0;
2730}
2731
8a51866f
RD
2732/**
2733 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2734 * contains all required attributes and no attributes not allowed for
2735 * the given QP state transition.
2736 * @cur_state: Current QP state
2737 * @next_state: Next QP state
2738 * @type: QP type
2739 * @mask: Mask of supplied QP attributes
2740 *
2741 * This function is a helper function that a low-level driver's
2742 * modify_qp method can use to validate the consumer's input. It
2743 * checks that cur_state and next_state are valid QP states, that a
2744 * transition from cur_state to next_state is allowed by the IB spec,
2745 * and that the attribute mask supplied is allowed for the transition.
2746 */
19b1f540 2747bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2748 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2749
dcc9881e
LR
2750void ib_register_event_handler(struct ib_event_handler *event_handler);
2751void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2752void ib_dispatch_event(struct ib_event *event);
2753
1da177e4
LT
2754int ib_query_port(struct ib_device *device,
2755 u8 port_num, struct ib_port_attr *port_attr);
2756
a3f5adaf
EC
2757enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2758 u8 port_num);
2759
4139032b
HR
2760/**
2761 * rdma_cap_ib_switch - Check if the device is IB switch
2762 * @device: Device to check
2763 *
2764 * Device driver is responsible for setting is_switch bit on
2765 * in ib_device structure at init time.
2766 *
2767 * Return: true if the device is IB switch.
2768 */
2769static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2770{
2771 return device->is_switch;
2772}
2773
0cf18d77
IW
2774/**
2775 * rdma_start_port - Return the first valid port number for the device
2776 * specified
2777 *
2778 * @device: Device to be checked
2779 *
2780 * Return start port number
2781 */
2782static inline u8 rdma_start_port(const struct ib_device *device)
2783{
4139032b 2784 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2785}
2786
2787/**
2788 * rdma_end_port - Return the last valid port number for the device
2789 * specified
2790 *
2791 * @device: Device to be checked
2792 *
2793 * Return last port number
2794 */
2795static inline u8 rdma_end_port(const struct ib_device *device)
2796{
4139032b 2797 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2798}
2799
24dc831b
YS
2800static inline int rdma_is_port_valid(const struct ib_device *device,
2801 unsigned int port)
2802{
2803 return (port >= rdma_start_port(device) &&
2804 port <= rdma_end_port(device));
2805}
2806
b02289b3
AK
2807static inline bool rdma_is_grh_required(const struct ib_device *device,
2808 u8 port_num)
2809{
2810 return device->port_immutable[port_num].core_cap_flags &
2811 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2812}
2813
5ede9289 2814static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2815{
f9b22e35 2816 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2817}
2818
5ede9289 2819static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2820{
2821 return device->port_immutable[port_num].core_cap_flags &
2822 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2823}
2824
2825static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2826{
2827 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2828}
2829
2830static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2831{
f9b22e35 2832 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2833}
2834
5ede9289 2835static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2836{
f9b22e35 2837 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2838}
2839
5ede9289 2840static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2841{
7766a99f
MB
2842 return rdma_protocol_ib(device, port_num) ||
2843 rdma_protocol_roce(device, port_num);
de66be94
MW
2844}
2845
aa773bd4
OG
2846static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2847{
2848 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2849}
2850
ce1e055f
OG
2851static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2852{
2853 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2854}
2855
c757dea8 2856/**
296ec009 2857 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2858 * Management Datagrams.
296ec009
MW
2859 * @device: Device to check
2860 * @port_num: Port number to check
c757dea8 2861 *
296ec009
MW
2862 * Management Datagrams (MAD) are a required part of the InfiniBand
2863 * specification and are supported on all InfiniBand devices. A slightly
2864 * extended version are also supported on OPA interfaces.
c757dea8 2865 *
296ec009 2866 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2867 */
5ede9289 2868static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2869{
f9b22e35 2870 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2871}
2872
65995fee
IW
2873/**
2874 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2875 * Management Datagrams.
2876 * @device: Device to check
2877 * @port_num: Port number to check
2878 *
2879 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2880 * datagrams with their own versions. These OPA MADs share many but not all of
2881 * the characteristics of InfiniBand MADs.
2882 *
2883 * OPA MADs differ in the following ways:
2884 *
2885 * 1) MADs are variable size up to 2K
2886 * IBTA defined MADs remain fixed at 256 bytes
2887 * 2) OPA SMPs must carry valid PKeys
2888 * 3) OPA SMP packets are a different format
2889 *
2890 * Return: true if the port supports OPA MAD packet formats.
2891 */
2892static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2893{
2894 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2895 == RDMA_CORE_CAP_OPA_MAD;
2896}
2897
29541e3a 2898/**
296ec009
MW
2899 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2900 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2901 * @device: Device to check
2902 * @port_num: Port number to check
29541e3a 2903 *
296ec009
MW
2904 * Each InfiniBand node is required to provide a Subnet Management Agent
2905 * that the subnet manager can access. Prior to the fabric being fully
2906 * configured by the subnet manager, the SMA is accessed via a well known
2907 * interface called the Subnet Management Interface (SMI). This interface
2908 * uses directed route packets to communicate with the SM to get around the
2909 * chicken and egg problem of the SM needing to know what's on the fabric
2910 * in order to configure the fabric, and needing to configure the fabric in
2911 * order to send packets to the devices on the fabric. These directed
2912 * route packets do not need the fabric fully configured in order to reach
2913 * their destination. The SMI is the only method allowed to send
2914 * directed route packets on an InfiniBand fabric.
29541e3a 2915 *
296ec009 2916 * Return: true if the port provides an SMI.
29541e3a 2917 */
5ede9289 2918static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2919{
f9b22e35 2920 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2921}
2922
72219cea
MW
2923/**
2924 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2925 * Communication Manager.
296ec009
MW
2926 * @device: Device to check
2927 * @port_num: Port number to check
72219cea 2928 *
296ec009
MW
2929 * The InfiniBand Communication Manager is one of many pre-defined General
2930 * Service Agents (GSA) that are accessed via the General Service
2931 * Interface (GSI). It's role is to facilitate establishment of connections
2932 * between nodes as well as other management related tasks for established
2933 * connections.
72219cea 2934 *
296ec009
MW
2935 * Return: true if the port supports an IB CM (this does not guarantee that
2936 * a CM is actually running however).
72219cea 2937 */
5ede9289 2938static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2939{
f9b22e35 2940 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2941}
2942
04215330
MW
2943/**
2944 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2945 * Communication Manager.
296ec009
MW
2946 * @device: Device to check
2947 * @port_num: Port number to check
04215330 2948 *
296ec009
MW
2949 * Similar to above, but specific to iWARP connections which have a different
2950 * managment protocol than InfiniBand.
04215330 2951 *
296ec009
MW
2952 * Return: true if the port supports an iWARP CM (this does not guarantee that
2953 * a CM is actually running however).
04215330 2954 */
5ede9289 2955static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2956{
f9b22e35 2957 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2958}
2959
fe53ba2f
MW
2960/**
2961 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2962 * Subnet Administration.
296ec009
MW
2963 * @device: Device to check
2964 * @port_num: Port number to check
fe53ba2f 2965 *
296ec009
MW
2966 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2967 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2968 * fabrics, devices should resolve routes to other hosts by contacting the
2969 * SA to query the proper route.
fe53ba2f 2970 *
296ec009
MW
2971 * Return: true if the port should act as a client to the fabric Subnet
2972 * Administration interface. This does not imply that the SA service is
2973 * running locally.
fe53ba2f 2974 */
5ede9289 2975static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2976{
f9b22e35 2977 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2978}
2979
a31ad3b0
MW
2980/**
2981 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2982 * Multicast.
296ec009
MW
2983 * @device: Device to check
2984 * @port_num: Port number to check
a31ad3b0 2985 *
296ec009
MW
2986 * InfiniBand multicast registration is more complex than normal IPv4 or
2987 * IPv6 multicast registration. Each Host Channel Adapter must register
2988 * with the Subnet Manager when it wishes to join a multicast group. It
2989 * should do so only once regardless of how many queue pairs it subscribes
2990 * to this group. And it should leave the group only after all queue pairs
2991 * attached to the group have been detached.
a31ad3b0 2992 *
296ec009
MW
2993 * Return: true if the port must undertake the additional adminstrative
2994 * overhead of registering/unregistering with the SM and tracking of the
2995 * total number of queue pairs attached to the multicast group.
a31ad3b0 2996 */
5ede9289 2997static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2998{
2999 return rdma_cap_ib_sa(device, port_num);
3000}
3001
30a74ef4
MW
3002/**
3003 * rdma_cap_af_ib - Check if the port of device has the capability
3004 * Native Infiniband Address.
296ec009
MW
3005 * @device: Device to check
3006 * @port_num: Port number to check
30a74ef4 3007 *
296ec009
MW
3008 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3009 * GID. RoCE uses a different mechanism, but still generates a GID via
3010 * a prescribed mechanism and port specific data.
30a74ef4 3011 *
296ec009
MW
3012 * Return: true if the port uses a GID address to identify devices on the
3013 * network.
30a74ef4 3014 */
5ede9289 3015static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 3016{
f9b22e35 3017 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3018}
3019
227128fc
MW
3020/**
3021 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3022 * Ethernet Address Handle.
3023 * @device: Device to check
3024 * @port_num: Port number to check
227128fc 3025 *
296ec009
MW
3026 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3027 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3028 * port. Normally, packet headers are generated by the sending host
3029 * adapter, but when sending connectionless datagrams, we must manually
3030 * inject the proper headers for the fabric we are communicating over.
227128fc 3031 *
296ec009
MW
3032 * Return: true if we are running as a RoCE port and must force the
3033 * addition of a Global Route Header built from our Ethernet Address
3034 * Handle into our header list for connectionless packets.
227128fc 3035 */
5ede9289 3036static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3037{
f9b22e35 3038 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3039}
3040
94d595c5
DC
3041/**
3042 * rdma_cap_opa_ah - Check if the port of device supports
3043 * OPA Address handles
3044 * @device: Device to check
3045 * @port_num: Port number to check
3046 *
3047 * Return: true if we are running on an OPA device which supports
3048 * the extended OPA addressing.
3049 */
3050static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3051{
3052 return (device->port_immutable[port_num].core_cap_flags &
3053 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3054}
3055
337877a4
IW
3056/**
3057 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3058 *
3059 * @device: Device
3060 * @port_num: Port number
3061 *
3062 * This MAD size includes the MAD headers and MAD payload. No other headers
3063 * are included.
3064 *
3065 * Return the max MAD size required by the Port. Will return 0 if the port
3066 * does not support MADs
3067 */
3068static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3069{
3070 return device->port_immutable[port_num].max_mad_size;
3071}
3072
03db3a2d
MB
3073/**
3074 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3075 * @device: Device to check
3076 * @port_num: Port number to check
3077 *
3078 * RoCE GID table mechanism manages the various GIDs for a device.
3079 *
3080 * NOTE: if allocating the port's GID table has failed, this call will still
3081 * return true, but any RoCE GID table API will fail.
3082 *
3083 * Return: true if the port uses RoCE GID table mechanism in order to manage
3084 * its GIDs.
3085 */
3086static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3087 u8 port_num)
3088{
3089 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3090 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3091}
3092
002516ed
CH
3093/*
3094 * Check if the device supports READ W/ INVALIDATE.
3095 */
3096static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3097{
3098 /*
3099 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3100 * has support for it yet.
3101 */
3102 return rdma_protocol_iwarp(dev, port_num);
3103}
3104
50174a7f
EC
3105int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3106 int state);
3107int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3108 struct ifla_vf_info *info);
3109int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3110 struct ifla_vf_stats *stats);
3111int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3112 int type);
3113
1da177e4
LT
3114int ib_query_pkey(struct ib_device *device,
3115 u8 port_num, u16 index, u16 *pkey);
3116
3117int ib_modify_device(struct ib_device *device,
3118 int device_modify_mask,
3119 struct ib_device_modify *device_modify);
3120
3121int ib_modify_port(struct ib_device *device,
3122 u8 port_num, int port_modify_mask,
3123 struct ib_port_modify *port_modify);
3124
5eb620c8 3125int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3126 u8 *port_num, u16 *index);
5eb620c8
YE
3127
3128int ib_find_pkey(struct ib_device *device,
3129 u8 port_num, u16 pkey, u16 *index);
3130
ed082d36
CH
3131enum ib_pd_flags {
3132 /*
3133 * Create a memory registration for all memory in the system and place
3134 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3135 * ULPs to avoid the overhead of dynamic MRs.
3136 *
3137 * This flag is generally considered unsafe and must only be used in
3138 * extremly trusted environments. Every use of it will log a warning
3139 * in the kernel log.
3140 */
3141 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3142};
1da177e4 3143
ed082d36
CH
3144struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3145 const char *caller);
3146#define ib_alloc_pd(device, flags) \
e4496447 3147 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
7dd78647 3148void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
3149
3150/**
0a18cfe4 3151 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3152 * @pd: The protection domain associated with the address handle.
3153 * @ah_attr: The attributes of the address vector.
3154 *
3155 * The address handle is used to reference a local or global destination
3156 * in all UD QP post sends.
3157 */
0a18cfe4 3158struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 3159
5cda6587
PP
3160/**
3161 * rdma_create_user_ah - Creates an address handle for the given address vector.
3162 * It resolves destination mac address for ah attribute of RoCE type.
3163 * @pd: The protection domain associated with the address handle.
3164 * @ah_attr: The attributes of the address vector.
3165 * @udata: pointer to user's input output buffer information need by
3166 * provider driver.
3167 *
3168 * It returns 0 on success and returns appropriate error code on error.
3169 * The address handle is used to reference a local or global destination
3170 * in all UD QP post sends.
3171 */
3172struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3173 struct rdma_ah_attr *ah_attr,
3174 struct ib_udata *udata);
850d8fd7
MS
3175/**
3176 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3177 * work completion.
3178 * @hdr: the L3 header to parse
3179 * @net_type: type of header to parse
3180 * @sgid: place to store source gid
3181 * @dgid: place to store destination gid
3182 */
3183int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3184 enum rdma_network_type net_type,
3185 union ib_gid *sgid, union ib_gid *dgid);
3186
3187/**
3188 * ib_get_rdma_header_version - Get the header version
3189 * @hdr: the L3 header to parse
3190 */
3191int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3192
4e00d694 3193/**
f6bdb142 3194 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3195 * work completion.
3196 * @device: Device on which the received message arrived.
3197 * @port_num: Port on which the received message arrived.
3198 * @wc: Work completion associated with the received message.
3199 * @grh: References the received global route header. This parameter is
3200 * ignored unless the work completion indicates that the GRH is valid.
3201 * @ah_attr: Returned attributes that can be used when creating an address
3202 * handle for replying to the message.
b7403217
PP
3203 * When ib_init_ah_attr_from_wc() returns success,
3204 * (a) for IB link layer it optionally contains a reference to SGID attribute
3205 * when GRH is present for IB link layer.
3206 * (b) for RoCE link layer it contains a reference to SGID attribute.
3207 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3208 * attributes which are initialized using ib_init_ah_attr_from_wc().
3209 *
4e00d694 3210 */
f6bdb142
PP
3211int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3212 const struct ib_wc *wc, const struct ib_grh *grh,
3213 struct rdma_ah_attr *ah_attr);
4e00d694 3214
513789ed
HR
3215/**
3216 * ib_create_ah_from_wc - Creates an address handle associated with the
3217 * sender of the specified work completion.
3218 * @pd: The protection domain associated with the address handle.
3219 * @wc: Work completion information associated with a received message.
3220 * @grh: References the received global route header. This parameter is
3221 * ignored unless the work completion indicates that the GRH is valid.
3222 * @port_num: The outbound port number to associate with the address.
3223 *
3224 * The address handle is used to reference a local or global destination
3225 * in all UD QP post sends.
3226 */
73cdaaee
IW
3227struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3228 const struct ib_grh *grh, u8 port_num);
513789ed 3229
1da177e4 3230/**
67b985b6 3231 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3232 * handle.
3233 * @ah: The address handle to modify.
3234 * @ah_attr: The new address vector attributes to associate with the
3235 * address handle.
3236 */
67b985b6 3237int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3238
3239/**
bfbfd661 3240 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3241 * handle.
3242 * @ah: The address handle to query.
3243 * @ah_attr: The address vector attributes associated with the address
3244 * handle.
3245 */
bfbfd661 3246int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3247
3248/**
36523159 3249 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
3250 * @ah: The address handle to destroy.
3251 */
36523159 3252int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 3253
d41fcc67
RD
3254/**
3255 * ib_create_srq - Creates a SRQ associated with the specified protection
3256 * domain.
3257 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3258 * @srq_init_attr: A list of initial attributes required to create the
3259 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3260 * the actual capabilities of the created SRQ.
d41fcc67
RD
3261 *
3262 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3263 * requested size of the SRQ, and set to the actual values allocated
3264 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3265 * will always be at least as large as the requested values.
3266 */
3267struct ib_srq *ib_create_srq(struct ib_pd *pd,
3268 struct ib_srq_init_attr *srq_init_attr);
3269
3270/**
3271 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3272 * @srq: The SRQ to modify.
3273 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3274 * the current values of selected SRQ attributes are returned.
3275 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3276 * are being modified.
3277 *
3278 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3279 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3280 * the number of receives queued drops below the limit.
3281 */
3282int ib_modify_srq(struct ib_srq *srq,
3283 struct ib_srq_attr *srq_attr,
3284 enum ib_srq_attr_mask srq_attr_mask);
3285
3286/**
3287 * ib_query_srq - Returns the attribute list and current values for the
3288 * specified SRQ.
3289 * @srq: The SRQ to query.
3290 * @srq_attr: The attributes of the specified SRQ.
3291 */
3292int ib_query_srq(struct ib_srq *srq,
3293 struct ib_srq_attr *srq_attr);
3294
3295/**
3296 * ib_destroy_srq - Destroys the specified SRQ.
3297 * @srq: The SRQ to destroy.
3298 */
3299int ib_destroy_srq(struct ib_srq *srq);
3300
3301/**
3302 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3303 * @srq: The SRQ to post the work request on.
3304 * @recv_wr: A list of work requests to post on the receive queue.
3305 * @bad_recv_wr: On an immediate failure, this parameter will reference
3306 * the work request that failed to be posted on the QP.
3307 */
3308static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3309 const struct ib_recv_wr *recv_wr,
3310 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3311{
d34ac5cd 3312 const struct ib_recv_wr *dummy;
bb039a87 3313
3023a1e9
KH
3314 return srq->device->ops.post_srq_recv(srq, recv_wr,
3315 bad_recv_wr ? : &dummy);
d41fcc67
RD
3316}
3317
1da177e4
LT
3318/**
3319 * ib_create_qp - Creates a QP associated with the specified protection
3320 * domain.
3321 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3322 * @qp_init_attr: A list of initial attributes required to create the
3323 * QP. If QP creation succeeds, then the attributes are updated to
3324 * the actual capabilities of the created QP.
1da177e4
LT
3325 */
3326struct ib_qp *ib_create_qp(struct ib_pd *pd,
3327 struct ib_qp_init_attr *qp_init_attr);
3328
a512c2fb
PP
3329/**
3330 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3331 * @qp: The QP to modify.
3332 * @attr: On input, specifies the QP attributes to modify. On output,
3333 * the current values of selected QP attributes are returned.
3334 * @attr_mask: A bit-mask used to specify which attributes of the QP
3335 * are being modified.
3336 * @udata: pointer to user's input output buffer information
3337 * are being modified.
3338 * It returns 0 on success and returns appropriate error code on error.
3339 */
3340int ib_modify_qp_with_udata(struct ib_qp *qp,
3341 struct ib_qp_attr *attr,
3342 int attr_mask,
3343 struct ib_udata *udata);
3344
1da177e4
LT
3345/**
3346 * ib_modify_qp - Modifies the attributes for the specified QP and then
3347 * transitions the QP to the given state.
3348 * @qp: The QP to modify.
3349 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3350 * the current values of selected QP attributes are returned.
3351 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3352 * are being modified.
3353 */
3354int ib_modify_qp(struct ib_qp *qp,
3355 struct ib_qp_attr *qp_attr,
3356 int qp_attr_mask);
3357
3358/**
3359 * ib_query_qp - Returns the attribute list and current values for the
3360 * specified QP.
3361 * @qp: The QP to query.
3362 * @qp_attr: The attributes of the specified QP.
3363 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3364 * @qp_init_attr: Additional attributes of the selected QP.
3365 *
3366 * The qp_attr_mask may be used to limit the query to gathering only the
3367 * selected attributes.
3368 */
3369int ib_query_qp(struct ib_qp *qp,
3370 struct ib_qp_attr *qp_attr,
3371 int qp_attr_mask,
3372 struct ib_qp_init_attr *qp_init_attr);
3373
3374/**
3375 * ib_destroy_qp - Destroys the specified QP.
3376 * @qp: The QP to destroy.
3377 */
3378int ib_destroy_qp(struct ib_qp *qp);
3379
d3d72d90 3380/**
0e0ec7e0
SH
3381 * ib_open_qp - Obtain a reference to an existing sharable QP.
3382 * @xrcd - XRC domain
3383 * @qp_open_attr: Attributes identifying the QP to open.
3384 *
3385 * Returns a reference to a sharable QP.
3386 */
3387struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3388 struct ib_qp_open_attr *qp_open_attr);
3389
3390/**
3391 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3392 * @qp: The QP handle to release
3393 *
0e0ec7e0
SH
3394 * The opened QP handle is released by the caller. The underlying
3395 * shared QP is not destroyed until all internal references are released.
d3d72d90 3396 */
0e0ec7e0 3397int ib_close_qp(struct ib_qp *qp);
d3d72d90 3398
1da177e4
LT
3399/**
3400 * ib_post_send - Posts a list of work requests to the send queue of
3401 * the specified QP.
3402 * @qp: The QP to post the work request on.
3403 * @send_wr: A list of work requests to post on the send queue.
3404 * @bad_send_wr: On an immediate failure, this parameter will reference
3405 * the work request that failed to be posted on the QP.
55464d46
BVA
3406 *
3407 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3408 * error is returned, the QP state shall not be affected,
3409 * ib_post_send() will return an immediate error after queueing any
3410 * earlier work requests in the list.
1da177e4
LT
3411 */
3412static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3413 const struct ib_send_wr *send_wr,
3414 const struct ib_send_wr **bad_send_wr)
1da177e4 3415{
d34ac5cd 3416 const struct ib_send_wr *dummy;
bb039a87 3417
3023a1e9 3418 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3419}
3420
3421/**
3422 * ib_post_recv - Posts a list of work requests to the receive queue of
3423 * the specified QP.
3424 * @qp: The QP to post the work request on.
3425 * @recv_wr: A list of work requests to post on the receive queue.
3426 * @bad_recv_wr: On an immediate failure, this parameter will reference
3427 * the work request that failed to be posted on the QP.
3428 */
3429static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3430 const struct ib_recv_wr *recv_wr,
3431 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3432{
d34ac5cd 3433 const struct ib_recv_wr *dummy;
bb039a87 3434
3023a1e9 3435 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3436}
3437
f66c8ba4
LR
3438struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3439 int nr_cqe, int comp_vector,
3440 enum ib_poll_context poll_ctx, const char *caller);
3441#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3442 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3443
14d3a3b2
CH
3444void ib_free_cq(struct ib_cq *cq);
3445int ib_process_cq_direct(struct ib_cq *cq, int budget);
3446
1da177e4
LT
3447/**
3448 * ib_create_cq - Creates a CQ on the specified device.
3449 * @device: The device on which to create the CQ.
3450 * @comp_handler: A user-specified callback that is invoked when a
3451 * completion event occurs on the CQ.
3452 * @event_handler: A user-specified callback that is invoked when an
3453 * asynchronous event not associated with a completion occurs on the CQ.
3454 * @cq_context: Context associated with the CQ returned to the user via
3455 * the associated completion and event handlers.
8e37210b 3456 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3457 *
3458 * Users can examine the cq structure to determine the actual CQ size.
3459 */
7350cdd0
BP
3460struct ib_cq *__ib_create_cq(struct ib_device *device,
3461 ib_comp_handler comp_handler,
3462 void (*event_handler)(struct ib_event *, void *),
3463 void *cq_context,
3464 const struct ib_cq_init_attr *cq_attr,
3465 const char *caller);
3466#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3467 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3468
3469/**
3470 * ib_resize_cq - Modifies the capacity of the CQ.
3471 * @cq: The CQ to resize.
3472 * @cqe: The minimum size of the CQ.
3473 *
3474 * Users can examine the cq structure to determine the actual CQ size.
3475 */
3476int ib_resize_cq(struct ib_cq *cq, int cqe);
3477
2dd57162 3478/**
4190b4e9 3479 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3480 * @cq: The CQ to modify.
3481 * @cq_count: number of CQEs that will trigger an event
3482 * @cq_period: max period of time in usec before triggering an event
3483 *
3484 */
4190b4e9 3485int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3486
1da177e4
LT
3487/**
3488 * ib_destroy_cq - Destroys the specified CQ.
3489 * @cq: The CQ to destroy.
3490 */
3491int ib_destroy_cq(struct ib_cq *cq);
3492
3493/**
3494 * ib_poll_cq - poll a CQ for completion(s)
3495 * @cq:the CQ being polled
3496 * @num_entries:maximum number of completions to return
3497 * @wc:array of at least @num_entries &struct ib_wc where completions
3498 * will be returned
3499 *
3500 * Poll a CQ for (possibly multiple) completions. If the return value
3501 * is < 0, an error occurred. If the return value is >= 0, it is the
3502 * number of completions returned. If the return value is
3503 * non-negative and < num_entries, then the CQ was emptied.
3504 */
3505static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3506 struct ib_wc *wc)
3507{
3023a1e9 3508 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3509}
3510
1da177e4
LT
3511/**
3512 * ib_req_notify_cq - Request completion notification on a CQ.
3513 * @cq: The CQ to generate an event for.
ed23a727
RD
3514 * @flags:
3515 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3516 * to request an event on the next solicited event or next work
3517 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3518 * may also be |ed in to request a hint about missed events, as
3519 * described below.
3520 *
3521 * Return Value:
3522 * < 0 means an error occurred while requesting notification
3523 * == 0 means notification was requested successfully, and if
3524 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3525 * were missed and it is safe to wait for another event. In
3526 * this case is it guaranteed that any work completions added
3527 * to the CQ since the last CQ poll will trigger a completion
3528 * notification event.
3529 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3530 * in. It means that the consumer must poll the CQ again to
3531 * make sure it is empty to avoid missing an event because of a
3532 * race between requesting notification and an entry being
3533 * added to the CQ. This return value means it is possible
3534 * (but not guaranteed) that a work completion has been added
3535 * to the CQ since the last poll without triggering a
3536 * completion notification event.
1da177e4
LT
3537 */
3538static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3539 enum ib_cq_notify_flags flags)
1da177e4 3540{
3023a1e9 3541 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
3542}
3543
3544/**
3545 * ib_req_ncomp_notif - Request completion notification when there are
3546 * at least the specified number of unreaped completions on the CQ.
3547 * @cq: The CQ to generate an event for.
3548 * @wc_cnt: The number of unreaped completions that should be on the
3549 * CQ before an event is generated.
3550 */
3551static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3552{
3023a1e9
KH
3553 return cq->device->ops.req_ncomp_notif ?
3554 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
1da177e4
LT
3555 -ENOSYS;
3556}
3557
9b513090
RC
3558/**
3559 * ib_dma_mapping_error - check a DMA addr for error
3560 * @dev: The device for which the dma_addr was created
3561 * @dma_addr: The DMA address to check
3562 */
3563static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3564{
0957c29f 3565 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3566}
3567
3568/**
3569 * ib_dma_map_single - Map a kernel virtual address to DMA address
3570 * @dev: The device for which the dma_addr is to be created
3571 * @cpu_addr: The kernel virtual address
3572 * @size: The size of the region in bytes
3573 * @direction: The direction of the DMA
3574 */
3575static inline u64 ib_dma_map_single(struct ib_device *dev,
3576 void *cpu_addr, size_t size,
3577 enum dma_data_direction direction)
3578{
0957c29f 3579 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3580}
3581
3582/**
3583 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3584 * @dev: The device for which the DMA address was created
3585 * @addr: The DMA address
3586 * @size: The size of the region in bytes
3587 * @direction: The direction of the DMA
3588 */
3589static inline void ib_dma_unmap_single(struct ib_device *dev,
3590 u64 addr, size_t size,
3591 enum dma_data_direction direction)
3592{
0957c29f 3593 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3594}
3595
9b513090
RC
3596/**
3597 * ib_dma_map_page - Map a physical page to DMA address
3598 * @dev: The device for which the dma_addr is to be created
3599 * @page: The page to be mapped
3600 * @offset: The offset within the page
3601 * @size: The size of the region in bytes
3602 * @direction: The direction of the DMA
3603 */
3604static inline u64 ib_dma_map_page(struct ib_device *dev,
3605 struct page *page,
3606 unsigned long offset,
3607 size_t size,
3608 enum dma_data_direction direction)
3609{
0957c29f 3610 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3611}
3612
3613/**
3614 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3615 * @dev: The device for which the DMA address was created
3616 * @addr: The DMA address
3617 * @size: The size of the region in bytes
3618 * @direction: The direction of the DMA
3619 */
3620static inline void ib_dma_unmap_page(struct ib_device *dev,
3621 u64 addr, size_t size,
3622 enum dma_data_direction direction)
3623{
0957c29f 3624 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3625}
3626
3627/**
3628 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3629 * @dev: The device for which the DMA addresses are to be created
3630 * @sg: The array of scatter/gather entries
3631 * @nents: The number of scatter/gather entries
3632 * @direction: The direction of the DMA
3633 */
3634static inline int ib_dma_map_sg(struct ib_device *dev,
3635 struct scatterlist *sg, int nents,
3636 enum dma_data_direction direction)
3637{
0957c29f 3638 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3639}
3640
3641/**
3642 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3643 * @dev: The device for which the DMA addresses were created
3644 * @sg: The array of scatter/gather entries
3645 * @nents: The number of scatter/gather entries
3646 * @direction: The direction of the DMA
3647 */
3648static inline void ib_dma_unmap_sg(struct ib_device *dev,
3649 struct scatterlist *sg, int nents,
3650 enum dma_data_direction direction)
3651{
0957c29f 3652 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3653}
3654
cb9fbc5c
AK
3655static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3656 struct scatterlist *sg, int nents,
3657 enum dma_data_direction direction,
00085f1e 3658 unsigned long dma_attrs)
cb9fbc5c 3659{
0957c29f
BVA
3660 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3661 dma_attrs);
cb9fbc5c
AK
3662}
3663
3664static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3665 struct scatterlist *sg, int nents,
3666 enum dma_data_direction direction,
00085f1e 3667 unsigned long dma_attrs)
cb9fbc5c 3668{
0957c29f 3669 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3670}
9b513090
RC
3671/**
3672 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3673 * @dev: The device for which the DMA addresses were created
3674 * @sg: The scatter/gather entry
ea58a595
MM
3675 *
3676 * Note: this function is obsolete. To do: change all occurrences of
3677 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3678 */
3679static inline u64 ib_sg_dma_address(struct ib_device *dev,
3680 struct scatterlist *sg)
3681{
d1998ef3 3682 return sg_dma_address(sg);
9b513090
RC
3683}
3684
3685/**
3686 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3687 * @dev: The device for which the DMA addresses were created
3688 * @sg: The scatter/gather entry
ea58a595
MM
3689 *
3690 * Note: this function is obsolete. To do: change all occurrences of
3691 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3692 */
3693static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3694 struct scatterlist *sg)
3695{
d1998ef3 3696 return sg_dma_len(sg);
9b513090
RC
3697}
3698
3699/**
3700 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3701 * @dev: The device for which the DMA address was created
3702 * @addr: The DMA address
3703 * @size: The size of the region in bytes
3704 * @dir: The direction of the DMA
3705 */
3706static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3707 u64 addr,
3708 size_t size,
3709 enum dma_data_direction dir)
3710{
0957c29f 3711 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3712}
3713
3714/**
3715 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3716 * @dev: The device for which the DMA address was created
3717 * @addr: The DMA address
3718 * @size: The size of the region in bytes
3719 * @dir: The direction of the DMA
3720 */
3721static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3722 u64 addr,
3723 size_t size,
3724 enum dma_data_direction dir)
3725{
0957c29f 3726 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3727}
3728
3729/**
3730 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3731 * @dev: The device for which the DMA address is requested
3732 * @size: The size of the region to allocate in bytes
3733 * @dma_handle: A pointer for returning the DMA address of the region
3734 * @flag: memory allocator flags
3735 */
3736static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3737 size_t size,
d43dbacf 3738 dma_addr_t *dma_handle,
9b513090
RC
3739 gfp_t flag)
3740{
0957c29f 3741 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3742}
3743
3744/**
3745 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3746 * @dev: The device for which the DMA addresses were allocated
3747 * @size: The size of the region
3748 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3749 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3750 */
3751static inline void ib_dma_free_coherent(struct ib_device *dev,
3752 size_t size, void *cpu_addr,
d43dbacf 3753 dma_addr_t dma_handle)
9b513090 3754{
0957c29f 3755 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3756}
3757
1da177e4
LT
3758/**
3759 * ib_dereg_mr - Deregisters a memory region and removes it from the
3760 * HCA translation table.
3761 * @mr: The memory region to deregister.
7083e42e
SM
3762 *
3763 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3764 */
3765int ib_dereg_mr(struct ib_mr *mr);
3766
9bee178b
SG
3767struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3768 enum ib_mr_type mr_type,
3769 u32 max_num_sg);
00f7ec36 3770
00f7ec36
SW
3771/**
3772 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3773 * R_Key and L_Key.
3774 * @mr - struct ib_mr pointer to be updated.
3775 * @newkey - new key to be used.
3776 */
3777static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3778{
3779 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3780 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3781}
3782
7083e42e
SM
3783/**
3784 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3785 * for calculating a new rkey for type 2 memory windows.
3786 * @rkey - the rkey to increment.
3787 */
3788static inline u32 ib_inc_rkey(u32 rkey)
3789{
3790 const u32 mask = 0x000000ff;
3791 return ((rkey + 1) & mask) | (rkey & ~mask);
3792}
3793
1da177e4
LT
3794/**
3795 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3796 * @pd: The protection domain associated with the unmapped region.
3797 * @mr_access_flags: Specifies the memory access rights.
3798 * @fmr_attr: Attributes of the unmapped region.
3799 *
3800 * A fast memory region must be mapped before it can be used as part of
3801 * a work request.
3802 */
3803struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3804 int mr_access_flags,
3805 struct ib_fmr_attr *fmr_attr);
3806
3807/**
3808 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3809 * @fmr: The fast memory region to associate with the pages.
3810 * @page_list: An array of physical pages to map to the fast memory region.
3811 * @list_len: The number of pages in page_list.
3812 * @iova: The I/O virtual address to use with the mapped region.
3813 */
3814static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3815 u64 *page_list, int list_len,
3816 u64 iova)
3817{
3023a1e9 3818 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
1da177e4
LT
3819}
3820
3821/**
3822 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3823 * @fmr_list: A linked list of fast memory regions to unmap.
3824 */
3825int ib_unmap_fmr(struct list_head *fmr_list);
3826
3827/**
3828 * ib_dealloc_fmr - Deallocates a fast memory region.
3829 * @fmr: The fast memory region to deallocate.
3830 */
3831int ib_dealloc_fmr(struct ib_fmr *fmr);
3832
3833/**
3834 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3835 * @qp: QP to attach to the multicast group. The QP must be type
3836 * IB_QPT_UD.
3837 * @gid: Multicast group GID.
3838 * @lid: Multicast group LID in host byte order.
3839 *
3840 * In order to send and receive multicast packets, subnet
3841 * administration must have created the multicast group and configured
3842 * the fabric appropriately. The port associated with the specified
3843 * QP must also be a member of the multicast group.
3844 */
3845int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3846
3847/**
3848 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3849 * @qp: QP to detach from the multicast group.
3850 * @gid: Multicast group GID.
3851 * @lid: Multicast group LID in host byte order.
3852 */
3853int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3854
59991f94
SH
3855/**
3856 * ib_alloc_xrcd - Allocates an XRC domain.
3857 * @device: The device on which to allocate the XRC domain.
f66c8ba4 3858 * @caller: Module name for kernel consumers
59991f94 3859 */
f66c8ba4
LR
3860struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3861#define ib_alloc_xrcd(device) \
3862 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
3863
3864/**
3865 * ib_dealloc_xrcd - Deallocates an XRC domain.
3866 * @xrcd: The XRC domain to deallocate.
3867 */
3868int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3869
1c636f80
EC
3870static inline int ib_check_mr_access(int flags)
3871{
3872 /*
3873 * Local write permission is required if remote write or
3874 * remote atomic permission is also requested.
3875 */
3876 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3877 !(flags & IB_ACCESS_LOCAL_WRITE))
3878 return -EINVAL;
3879
3880 return 0;
3881}
3882
08bb558a
JM
3883static inline bool ib_access_writable(int access_flags)
3884{
3885 /*
3886 * We have writable memory backing the MR if any of the following
3887 * access flags are set. "Local write" and "remote write" obviously
3888 * require write access. "Remote atomic" can do things like fetch and
3889 * add, which will modify memory, and "MW bind" can change permissions
3890 * by binding a window.
3891 */
3892 return access_flags &
3893 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3894 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3895}
3896
1b01d335
SG
3897/**
3898 * ib_check_mr_status: lightweight check of MR status.
3899 * This routine may provide status checks on a selected
3900 * ib_mr. first use is for signature status check.
3901 *
3902 * @mr: A memory region.
3903 * @check_mask: Bitmask of which checks to perform from
3904 * ib_mr_status_check enumeration.
3905 * @mr_status: The container of relevant status checks.
3906 * failed checks will be indicated in the status bitmask
3907 * and the relevant info shall be in the error item.
3908 */
3909int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3910 struct ib_mr_status *mr_status);
3911
9268f72d
YK
3912struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3913 u16 pkey, const union ib_gid *gid,
3914 const struct sockaddr *addr);
5fd251c8
YH
3915struct ib_wq *ib_create_wq(struct ib_pd *pd,
3916 struct ib_wq_init_attr *init_attr);
3917int ib_destroy_wq(struct ib_wq *wq);
3918int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3919 u32 wq_attr_mask);
6d39786b
YH
3920struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3921 struct ib_rwq_ind_table_init_attr*
3922 wq_ind_table_init_attr);
3923int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3924
ff2ba993 3925int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3926 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3927
3928static inline int
ff2ba993 3929ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3930 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3931{
3932 int n;
3933
ff2ba993 3934 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3935 mr->iova = 0;
3936
3937 return n;
3938}
3939
ff2ba993 3940int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3941 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3942
765d6774
SW
3943void ib_drain_rq(struct ib_qp *qp);
3944void ib_drain_sq(struct ib_qp *qp);
3945void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3946
d4186194 3947int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3948
3949static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3950{
44c58487
DC
3951 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3952 return attr->roce.dmac;
3953 return NULL;
2224c47a
DC
3954}
3955
64b4646e 3956static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3957{
44c58487 3958 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3959 attr->ib.dlid = (u16)dlid;
3960 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3961 attr->opa.dlid = dlid;
2224c47a
DC
3962}
3963
64b4646e 3964static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3965{
44c58487
DC
3966 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3967 return attr->ib.dlid;
64b4646e
DC
3968 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3969 return attr->opa.dlid;
44c58487 3970 return 0;
2224c47a
DC
3971}
3972
3973static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3974{
3975 attr->sl = sl;
3976}
3977
3978static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3979{
3980 return attr->sl;
3981}
3982
3983static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3984 u8 src_path_bits)
3985{
44c58487
DC
3986 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3987 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
3988 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3989 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
3990}
3991
3992static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3993{
44c58487
DC
3994 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3995 return attr->ib.src_path_bits;
64b4646e
DC
3996 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3997 return attr->opa.src_path_bits;
44c58487 3998 return 0;
2224c47a
DC
3999}
4000
d98bb7f7
DH
4001static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4002 bool make_grd)
4003{
4004 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4005 attr->opa.make_grd = make_grd;
4006}
4007
4008static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4009{
4010 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4011 return attr->opa.make_grd;
4012 return false;
4013}
4014
2224c47a
DC
4015static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4016{
4017 attr->port_num = port_num;
4018}
4019
4020static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4021{
4022 return attr->port_num;
4023}
4024
4025static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4026 u8 static_rate)
4027{
4028 attr->static_rate = static_rate;
4029}
4030
4031static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4032{
4033 return attr->static_rate;
4034}
4035
4036static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4037 enum ib_ah_flags flag)
4038{
4039 attr->ah_flags = flag;
4040}
4041
4042static inline enum ib_ah_flags
4043 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4044{
4045 return attr->ah_flags;
4046}
4047
4048static inline const struct ib_global_route
4049 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4050{
4051 return &attr->grh;
4052}
4053
4054/*To retrieve and modify the grh */
4055static inline struct ib_global_route
4056 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4057{
4058 return &attr->grh;
4059}
4060
4061static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4062{
4063 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4064
4065 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4066}
4067
4068static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4069 __be64 prefix)
4070{
4071 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4072
4073 grh->dgid.global.subnet_prefix = prefix;
4074}
4075
4076static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4077 __be64 if_id)
4078{
4079 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4080
4081 grh->dgid.global.interface_id = if_id;
4082}
4083
4084static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4085 union ib_gid *dgid, u32 flow_label,
4086 u8 sgid_index, u8 hop_limit,
4087 u8 traffic_class)
4088{
4089 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4090
4091 attr->ah_flags = IB_AH_GRH;
4092 if (dgid)
4093 grh->dgid = *dgid;
4094 grh->flow_label = flow_label;
4095 grh->sgid_index = sgid_index;
4096 grh->hop_limit = hop_limit;
4097 grh->traffic_class = traffic_class;
8d9ec9ad 4098 grh->sgid_attr = NULL;
2224c47a 4099}
44c58487 4100
8d9ec9ad
JG
4101void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4102void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4103 u32 flow_label, u8 hop_limit, u8 traffic_class,
4104 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4105void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4106 const struct rdma_ah_attr *src);
4107void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4108 const struct rdma_ah_attr *new);
4109void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4110
87daac68
DH
4111/**
4112 * rdma_ah_find_type - Return address handle type.
4113 *
4114 * @dev: Device to be checked
4115 * @port_num: Port number
4116 */
44c58487 4117static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4118 u8 port_num)
44c58487 4119{
a6532e71 4120 if (rdma_protocol_roce(dev, port_num))
44c58487 4121 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4122 if (rdma_protocol_ib(dev, port_num)) {
4123 if (rdma_cap_opa_ah(dev, port_num))
4124 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4125 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4126 }
4127
4128 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4129}
7db20ecd 4130
62ede777
HD
4131/**
4132 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4133 * In the current implementation the only way to get
4134 * get the 32bit lid is from other sources for OPA.
4135 * For IB, lids will always be 16bits so cast the
4136 * value accordingly.
4137 *
4138 * @lid: A 32bit LID
4139 */
4140static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4141{
62ede777
HD
4142 WARN_ON_ONCE(lid & 0xFFFF0000);
4143 return (u16)lid;
7db20ecd
HD
4144}
4145
62ede777
HD
4146/**
4147 * ib_lid_be16 - Return lid in 16bit BE encoding.
4148 *
4149 * @lid: A 32bit LID
4150 */
4151static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4152{
62ede777
HD
4153 WARN_ON_ONCE(lid & 0xFFFF0000);
4154 return cpu_to_be16((u16)lid);
7db20ecd 4155}
32043830 4156
c66cd353
SG
4157/**
4158 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4159 * vector
4160 * @device: the rdma device
4161 * @comp_vector: index of completion vector
4162 *
4163 * Returns NULL on failure, otherwise a corresponding cpu map of the
4164 * completion vector (returns all-cpus map if the device driver doesn't
4165 * implement get_vector_affinity).
4166 */
4167static inline const struct cpumask *
4168ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4169{
4170 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4171 !device->ops.get_vector_affinity)
c66cd353
SG
4172 return NULL;
4173
3023a1e9 4174 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4175
4176}
4177
32f69e4b
DJ
4178/**
4179 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4180 * and add their gids, as needed, to the relevant RoCE devices.
4181 *
4182 * @device: the rdma device
4183 */
4184void rdma_roce_rescan_device(struct ib_device *ibdev);
4185
8313c10f 4186struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4187
15a1b4be
JG
4188
4189int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b
DD
4190
4191struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4192 enum rdma_netdev_t type, const char *name,
4193 unsigned char name_assign_type,
4194 void (*setup)(struct net_device *));
5d6b0cb3
DD
4195
4196int rdma_init_netdev(struct ib_device *device, u8 port_num,
4197 enum rdma_netdev_t type, const char *name,
4198 unsigned char name_assign_type,
4199 void (*setup)(struct net_device *),
4200 struct net_device *netdev);
4201
d4122f5a
PP
4202/**
4203 * rdma_set_device_sysfs_group - Set device attributes group to have
4204 * driver specific sysfs entries at
4205 * for infiniband class.
4206 *
4207 * @device: device pointer for which attributes to be created
4208 * @group: Pointer to group which should be added when device
4209 * is registered with sysfs.
4210 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4211 * group per device to have sysfs attributes.
4212 *
4213 * NOTE: New drivers should not make use of this API; instead new device
4214 * parameter should be exposed via netlink command. This API and mechanism
4215 * exist only for existing drivers.
4216 */
4217static inline void
4218rdma_set_device_sysfs_group(struct ib_device *dev,
4219 const struct attribute_group *group)
4220{
4221 dev->groups[1] = group;
4222}
4223
1da177e4 4224#endif /* IB_VERBS_H */