]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/rdma/ib_verbs.h
IB/mlx5: Mmap the HCA's core clock register to user-space
[mirror_ubuntu-bionic-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
e2773c06 58
60063497 59#include <linux/atomic.h>
882214e2 60#include <linux/mmu_notifier.h>
e2773c06 61#include <asm/uaccess.h>
1da177e4 62
f0626710 63extern struct workqueue_struct *ib_wq;
14d3a3b2 64extern struct workqueue_struct *ib_comp_wq;
f0626710 65
1da177e4
LT
66union ib_gid {
67 u8 raw[16];
68 struct {
97f52eb4
SH
69 __be64 subnet_prefix;
70 __be64 interface_id;
1da177e4
LT
71 } global;
72};
73
e26be1bf
MS
74extern union ib_gid zgid;
75
b39ffa1d
MB
76enum ib_gid_type {
77 /* If link layer is Ethernet, this is RoCE V1 */
78 IB_GID_TYPE_IB = 0,
79 IB_GID_TYPE_ROCE = 0,
7766a99f 80 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
81 IB_GID_TYPE_SIZE
82};
83
03db3a2d 84struct ib_gid_attr {
b39ffa1d 85 enum ib_gid_type gid_type;
03db3a2d
MB
86 struct net_device *ndev;
87};
88
07ebafba
TT
89enum rdma_node_type {
90 /* IB values map to NodeInfo:NodeType. */
91 RDMA_NODE_IB_CA = 1,
92 RDMA_NODE_IB_SWITCH,
93 RDMA_NODE_IB_ROUTER,
180771a3
UM
94 RDMA_NODE_RNIC,
95 RDMA_NODE_USNIC,
5db5765e 96 RDMA_NODE_USNIC_UDP,
1da177e4
LT
97};
98
07ebafba
TT
99enum rdma_transport_type {
100 RDMA_TRANSPORT_IB,
180771a3 101 RDMA_TRANSPORT_IWARP,
248567f7
UM
102 RDMA_TRANSPORT_USNIC,
103 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
104};
105
6b90a6d6
MW
106enum rdma_protocol_type {
107 RDMA_PROTOCOL_IB,
108 RDMA_PROTOCOL_IBOE,
109 RDMA_PROTOCOL_IWARP,
110 RDMA_PROTOCOL_USNIC_UDP
111};
112
8385fd84
RD
113__attribute_const__ enum rdma_transport_type
114rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 115
c865f246
SK
116enum rdma_network_type {
117 RDMA_NETWORK_IB,
118 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
119 RDMA_NETWORK_IPV4,
120 RDMA_NETWORK_IPV6
121};
122
123static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
124{
125 if (network_type == RDMA_NETWORK_IPV4 ||
126 network_type == RDMA_NETWORK_IPV6)
127 return IB_GID_TYPE_ROCE_UDP_ENCAP;
128
129 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
130 return IB_GID_TYPE_IB;
131}
132
133static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
134 union ib_gid *gid)
135{
136 if (gid_type == IB_GID_TYPE_IB)
137 return RDMA_NETWORK_IB;
138
139 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
140 return RDMA_NETWORK_IPV4;
141 else
142 return RDMA_NETWORK_IPV6;
143}
144
a3f5adaf
EC
145enum rdma_link_layer {
146 IB_LINK_LAYER_UNSPECIFIED,
147 IB_LINK_LAYER_INFINIBAND,
148 IB_LINK_LAYER_ETHERNET,
149};
150
1da177e4
LT
151enum ib_device_cap_flags {
152 IB_DEVICE_RESIZE_MAX_WR = 1,
153 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
154 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
155 IB_DEVICE_RAW_MULTI = (1<<3),
156 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
157 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
158 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
159 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
160 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
161 IB_DEVICE_INIT_TYPE = (1<<9),
162 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
163 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
164 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
165 IB_DEVICE_SRQ_RESIZE = (1<<13),
166 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
b1adc714
CH
167
168 /*
169 * This device supports a per-device lkey or stag that can be
170 * used without performing a memory registration for the local
171 * memory. Note that ULPs should never check this flag, but
172 * instead of use the local_dma_lkey flag in the ib_pd structure,
173 * which will always contain a usable lkey.
174 */
96f15c03 175 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 176 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
177 IB_DEVICE_MEM_WINDOW = (1<<17),
178 /*
179 * Devices should set IB_DEVICE_UD_IP_SUM if they support
180 * insertion of UDP and TCP checksum on outgoing UD IPoIB
181 * messages and can verify the validity of checksum for
182 * incoming messages. Setting this flag implies that the
183 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
184 */
185 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 186 IB_DEVICE_UD_TSO = (1<<19),
59991f94 187 IB_DEVICE_XRC = (1<<20),
b1adc714
CH
188
189 /*
190 * This device supports the IB "base memory management extension",
191 * which includes support for fast registrations (IB_WR_REG_MR,
192 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
193 * also be set by any iWarp device which must support FRs to comply
194 * to the iWarp verbs spec. iWarp devices also support the
195 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
196 * stag.
197 */
00f7ec36 198 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 199 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 200 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 201 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
470a5535
BW
202 IB_DEVICE_RC_IP_CSUM = (1<<25),
203 IB_DEVICE_RAW_IP_CSUM = (1<<26),
1b01d335 204 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
205 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
206 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
207};
208
209enum ib_signature_prot_cap {
210 IB_PROT_T10DIF_TYPE_1 = 1,
211 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
212 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
213};
214
215enum ib_signature_guard_cap {
216 IB_GUARD_T10DIF_CRC = 1,
217 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
218};
219
220enum ib_atomic_cap {
221 IB_ATOMIC_NONE,
222 IB_ATOMIC_HCA,
223 IB_ATOMIC_GLOB
224};
225
860f10a7
SG
226enum ib_odp_general_cap_bits {
227 IB_ODP_SUPPORT = 1 << 0,
228};
229
230enum ib_odp_transport_cap_bits {
231 IB_ODP_SUPPORT_SEND = 1 << 0,
232 IB_ODP_SUPPORT_RECV = 1 << 1,
233 IB_ODP_SUPPORT_WRITE = 1 << 2,
234 IB_ODP_SUPPORT_READ = 1 << 3,
235 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
236};
237
238struct ib_odp_caps {
239 uint64_t general_caps;
240 struct {
241 uint32_t rc_odp_caps;
242 uint32_t uc_odp_caps;
243 uint32_t ud_odp_caps;
244 } per_transport_caps;
245};
246
b9926b92
MB
247enum ib_cq_creation_flags {
248 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
249};
250
bcf4c1ea
MB
251struct ib_cq_init_attr {
252 unsigned int cqe;
253 int comp_vector;
254 u32 flags;
255};
256
1da177e4
LT
257struct ib_device_attr {
258 u64 fw_ver;
97f52eb4 259 __be64 sys_image_guid;
1da177e4
LT
260 u64 max_mr_size;
261 u64 page_size_cap;
262 u32 vendor_id;
263 u32 vendor_part_id;
264 u32 hw_ver;
265 int max_qp;
266 int max_qp_wr;
267 int device_cap_flags;
268 int max_sge;
269 int max_sge_rd;
270 int max_cq;
271 int max_cqe;
272 int max_mr;
273 int max_pd;
274 int max_qp_rd_atom;
275 int max_ee_rd_atom;
276 int max_res_rd_atom;
277 int max_qp_init_rd_atom;
278 int max_ee_init_rd_atom;
279 enum ib_atomic_cap atomic_cap;
5e80ba8f 280 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
281 int max_ee;
282 int max_rdd;
283 int max_mw;
284 int max_raw_ipv6_qp;
285 int max_raw_ethy_qp;
286 int max_mcast_grp;
287 int max_mcast_qp_attach;
288 int max_total_mcast_qp_attach;
289 int max_ah;
290 int max_fmr;
291 int max_map_per_fmr;
292 int max_srq;
293 int max_srq_wr;
294 int max_srq_sge;
00f7ec36 295 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
296 u16 max_pkeys;
297 u8 local_ca_ack_delay;
1b01d335
SG
298 int sig_prot_cap;
299 int sig_guard_cap;
860f10a7 300 struct ib_odp_caps odp_caps;
24306dc6
MB
301 uint64_t timestamp_mask;
302 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
303};
304
305enum ib_mtu {
306 IB_MTU_256 = 1,
307 IB_MTU_512 = 2,
308 IB_MTU_1024 = 3,
309 IB_MTU_2048 = 4,
310 IB_MTU_4096 = 5
311};
312
313static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
314{
315 switch (mtu) {
316 case IB_MTU_256: return 256;
317 case IB_MTU_512: return 512;
318 case IB_MTU_1024: return 1024;
319 case IB_MTU_2048: return 2048;
320 case IB_MTU_4096: return 4096;
321 default: return -1;
322 }
323}
324
325enum ib_port_state {
326 IB_PORT_NOP = 0,
327 IB_PORT_DOWN = 1,
328 IB_PORT_INIT = 2,
329 IB_PORT_ARMED = 3,
330 IB_PORT_ACTIVE = 4,
331 IB_PORT_ACTIVE_DEFER = 5
332};
333
334enum ib_port_cap_flags {
335 IB_PORT_SM = 1 << 1,
336 IB_PORT_NOTICE_SUP = 1 << 2,
337 IB_PORT_TRAP_SUP = 1 << 3,
338 IB_PORT_OPT_IPD_SUP = 1 << 4,
339 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
340 IB_PORT_SL_MAP_SUP = 1 << 6,
341 IB_PORT_MKEY_NVRAM = 1 << 7,
342 IB_PORT_PKEY_NVRAM = 1 << 8,
343 IB_PORT_LED_INFO_SUP = 1 << 9,
344 IB_PORT_SM_DISABLED = 1 << 10,
345 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
346 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 347 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
348 IB_PORT_CM_SUP = 1 << 16,
349 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
350 IB_PORT_REINIT_SUP = 1 << 18,
351 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
352 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
353 IB_PORT_DR_NOTICE_SUP = 1 << 21,
354 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
355 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
356 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 357 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 358 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
359};
360
361enum ib_port_width {
362 IB_WIDTH_1X = 1,
363 IB_WIDTH_4X = 2,
364 IB_WIDTH_8X = 4,
365 IB_WIDTH_12X = 8
366};
367
368static inline int ib_width_enum_to_int(enum ib_port_width width)
369{
370 switch (width) {
371 case IB_WIDTH_1X: return 1;
372 case IB_WIDTH_4X: return 4;
373 case IB_WIDTH_8X: return 8;
374 case IB_WIDTH_12X: return 12;
375 default: return -1;
376 }
377}
378
2e96691c
OG
379enum ib_port_speed {
380 IB_SPEED_SDR = 1,
381 IB_SPEED_DDR = 2,
382 IB_SPEED_QDR = 4,
383 IB_SPEED_FDR10 = 8,
384 IB_SPEED_FDR = 16,
385 IB_SPEED_EDR = 32
386};
387
7f624d02
SW
388struct ib_protocol_stats {
389 /* TBD... */
390};
391
392struct iw_protocol_stats {
393 u64 ipInReceives;
394 u64 ipInHdrErrors;
395 u64 ipInTooBigErrors;
396 u64 ipInNoRoutes;
397 u64 ipInAddrErrors;
398 u64 ipInUnknownProtos;
399 u64 ipInTruncatedPkts;
400 u64 ipInDiscards;
401 u64 ipInDelivers;
402 u64 ipOutForwDatagrams;
403 u64 ipOutRequests;
404 u64 ipOutDiscards;
405 u64 ipOutNoRoutes;
406 u64 ipReasmTimeout;
407 u64 ipReasmReqds;
408 u64 ipReasmOKs;
409 u64 ipReasmFails;
410 u64 ipFragOKs;
411 u64 ipFragFails;
412 u64 ipFragCreates;
413 u64 ipInMcastPkts;
414 u64 ipOutMcastPkts;
415 u64 ipInBcastPkts;
416 u64 ipOutBcastPkts;
417
418 u64 tcpRtoAlgorithm;
419 u64 tcpRtoMin;
420 u64 tcpRtoMax;
421 u64 tcpMaxConn;
422 u64 tcpActiveOpens;
423 u64 tcpPassiveOpens;
424 u64 tcpAttemptFails;
425 u64 tcpEstabResets;
426 u64 tcpCurrEstab;
427 u64 tcpInSegs;
428 u64 tcpOutSegs;
429 u64 tcpRetransSegs;
430 u64 tcpInErrs;
431 u64 tcpOutRsts;
432};
433
434union rdma_protocol_stats {
435 struct ib_protocol_stats ib;
436 struct iw_protocol_stats iw;
437};
438
f9b22e35
IW
439/* Define bits for the various functionality this port needs to be supported by
440 * the core.
441 */
442/* Management 0x00000FFF */
443#define RDMA_CORE_CAP_IB_MAD 0x00000001
444#define RDMA_CORE_CAP_IB_SMI 0x00000002
445#define RDMA_CORE_CAP_IB_CM 0x00000004
446#define RDMA_CORE_CAP_IW_CM 0x00000008
447#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 448#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
449
450/* Address format 0x000FF000 */
451#define RDMA_CORE_CAP_AF_IB 0x00001000
452#define RDMA_CORE_CAP_ETH_AH 0x00002000
453
454/* Protocol 0xFFF00000 */
455#define RDMA_CORE_CAP_PROT_IB 0x00100000
456#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
457#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 458#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
f9b22e35
IW
459
460#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
461 | RDMA_CORE_CAP_IB_MAD \
462 | RDMA_CORE_CAP_IB_SMI \
463 | RDMA_CORE_CAP_IB_CM \
464 | RDMA_CORE_CAP_IB_SA \
465 | RDMA_CORE_CAP_AF_IB)
466#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
467 | RDMA_CORE_CAP_IB_MAD \
468 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
469 | RDMA_CORE_CAP_AF_IB \
470 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
471#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
472 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
473 | RDMA_CORE_CAP_IB_MAD \
474 | RDMA_CORE_CAP_IB_CM \
475 | RDMA_CORE_CAP_AF_IB \
476 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
477#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
478 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
479#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
480 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 481
1da177e4
LT
482struct ib_port_attr {
483 enum ib_port_state state;
484 enum ib_mtu max_mtu;
485 enum ib_mtu active_mtu;
486 int gid_tbl_len;
487 u32 port_cap_flags;
488 u32 max_msg_sz;
489 u32 bad_pkey_cntr;
490 u32 qkey_viol_cntr;
491 u16 pkey_tbl_len;
492 u16 lid;
493 u16 sm_lid;
494 u8 lmc;
495 u8 max_vl_num;
496 u8 sm_sl;
497 u8 subnet_timeout;
498 u8 init_type_reply;
499 u8 active_width;
500 u8 active_speed;
501 u8 phys_state;
502};
503
504enum ib_device_modify_flags {
c5bcbbb9
RD
505 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
506 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
507};
508
509struct ib_device_modify {
510 u64 sys_image_guid;
c5bcbbb9 511 char node_desc[64];
1da177e4
LT
512};
513
514enum ib_port_modify_flags {
515 IB_PORT_SHUTDOWN = 1,
516 IB_PORT_INIT_TYPE = (1<<2),
517 IB_PORT_RESET_QKEY_CNTR = (1<<3)
518};
519
520struct ib_port_modify {
521 u32 set_port_cap_mask;
522 u32 clr_port_cap_mask;
523 u8 init_type;
524};
525
526enum ib_event_type {
527 IB_EVENT_CQ_ERR,
528 IB_EVENT_QP_FATAL,
529 IB_EVENT_QP_REQ_ERR,
530 IB_EVENT_QP_ACCESS_ERR,
531 IB_EVENT_COMM_EST,
532 IB_EVENT_SQ_DRAINED,
533 IB_EVENT_PATH_MIG,
534 IB_EVENT_PATH_MIG_ERR,
535 IB_EVENT_DEVICE_FATAL,
536 IB_EVENT_PORT_ACTIVE,
537 IB_EVENT_PORT_ERR,
538 IB_EVENT_LID_CHANGE,
539 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
540 IB_EVENT_SM_CHANGE,
541 IB_EVENT_SRQ_ERR,
542 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 543 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
544 IB_EVENT_CLIENT_REREGISTER,
545 IB_EVENT_GID_CHANGE,
1da177e4
LT
546};
547
db7489e0 548const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 549
1da177e4
LT
550struct ib_event {
551 struct ib_device *device;
552 union {
553 struct ib_cq *cq;
554 struct ib_qp *qp;
d41fcc67 555 struct ib_srq *srq;
1da177e4
LT
556 u8 port_num;
557 } element;
558 enum ib_event_type event;
559};
560
561struct ib_event_handler {
562 struct ib_device *device;
563 void (*handler)(struct ib_event_handler *, struct ib_event *);
564 struct list_head list;
565};
566
567#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
568 do { \
569 (_ptr)->device = _device; \
570 (_ptr)->handler = _handler; \
571 INIT_LIST_HEAD(&(_ptr)->list); \
572 } while (0)
573
574struct ib_global_route {
575 union ib_gid dgid;
576 u32 flow_label;
577 u8 sgid_index;
578 u8 hop_limit;
579 u8 traffic_class;
580};
581
513789ed 582struct ib_grh {
97f52eb4
SH
583 __be32 version_tclass_flow;
584 __be16 paylen;
513789ed
HR
585 u8 next_hdr;
586 u8 hop_limit;
587 union ib_gid sgid;
588 union ib_gid dgid;
589};
590
c865f246
SK
591union rdma_network_hdr {
592 struct ib_grh ibgrh;
593 struct {
594 /* The IB spec states that if it's IPv4, the header
595 * is located in the last 20 bytes of the header.
596 */
597 u8 reserved[20];
598 struct iphdr roce4grh;
599 };
600};
601
1da177e4
LT
602enum {
603 IB_MULTICAST_QPN = 0xffffff
604};
605
f3a7c66b 606#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 607
1da177e4
LT
608enum ib_ah_flags {
609 IB_AH_GRH = 1
610};
611
bf6a9e31
JM
612enum ib_rate {
613 IB_RATE_PORT_CURRENT = 0,
614 IB_RATE_2_5_GBPS = 2,
615 IB_RATE_5_GBPS = 5,
616 IB_RATE_10_GBPS = 3,
617 IB_RATE_20_GBPS = 6,
618 IB_RATE_30_GBPS = 4,
619 IB_RATE_40_GBPS = 7,
620 IB_RATE_60_GBPS = 8,
621 IB_RATE_80_GBPS = 9,
71eeba16
MA
622 IB_RATE_120_GBPS = 10,
623 IB_RATE_14_GBPS = 11,
624 IB_RATE_56_GBPS = 12,
625 IB_RATE_112_GBPS = 13,
626 IB_RATE_168_GBPS = 14,
627 IB_RATE_25_GBPS = 15,
628 IB_RATE_100_GBPS = 16,
629 IB_RATE_200_GBPS = 17,
630 IB_RATE_300_GBPS = 18
bf6a9e31
JM
631};
632
633/**
634 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
635 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
636 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
637 * @rate: rate to convert.
638 */
8385fd84 639__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 640
71eeba16
MA
641/**
642 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
643 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
644 * @rate: rate to convert.
645 */
8385fd84 646__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 647
17cd3a2d
SG
648
649/**
9bee178b
SG
650 * enum ib_mr_type - memory region type
651 * @IB_MR_TYPE_MEM_REG: memory region that is used for
652 * normal registration
653 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
654 * signature operations (data-integrity
655 * capable regions)
17cd3a2d 656 */
9bee178b
SG
657enum ib_mr_type {
658 IB_MR_TYPE_MEM_REG,
659 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
660};
661
1b01d335 662/**
78eda2bb
SG
663 * Signature types
664 * IB_SIG_TYPE_NONE: Unprotected.
665 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 666 */
78eda2bb
SG
667enum ib_signature_type {
668 IB_SIG_TYPE_NONE,
669 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
670};
671
672/**
673 * Signature T10-DIF block-guard types
674 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
675 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
676 */
677enum ib_t10_dif_bg_type {
678 IB_T10DIF_CRC,
679 IB_T10DIF_CSUM
680};
681
682/**
683 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
684 * domain.
1b01d335
SG
685 * @bg_type: T10-DIF block guard type (CRC|CSUM)
686 * @pi_interval: protection information interval.
687 * @bg: seed of guard computation.
688 * @app_tag: application tag of guard block
689 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
690 * @ref_remap: Indicate wethear the reftag increments each block
691 * @app_escape: Indicate to skip block check if apptag=0xffff
692 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
693 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
694 */
695struct ib_t10_dif_domain {
1b01d335
SG
696 enum ib_t10_dif_bg_type bg_type;
697 u16 pi_interval;
698 u16 bg;
699 u16 app_tag;
700 u32 ref_tag;
78eda2bb
SG
701 bool ref_remap;
702 bool app_escape;
703 bool ref_escape;
704 u16 apptag_check_mask;
1b01d335
SG
705};
706
707/**
708 * struct ib_sig_domain - Parameters for signature domain
709 * @sig_type: specific signauture type
710 * @sig: union of all signature domain attributes that may
711 * be used to set domain layout.
712 */
713struct ib_sig_domain {
714 enum ib_signature_type sig_type;
715 union {
716 struct ib_t10_dif_domain dif;
717 } sig;
718};
719
720/**
721 * struct ib_sig_attrs - Parameters for signature handover operation
722 * @check_mask: bitmask for signature byte check (8 bytes)
723 * @mem: memory domain layout desciptor.
724 * @wire: wire domain layout desciptor.
725 */
726struct ib_sig_attrs {
727 u8 check_mask;
728 struct ib_sig_domain mem;
729 struct ib_sig_domain wire;
730};
731
732enum ib_sig_err_type {
733 IB_SIG_BAD_GUARD,
734 IB_SIG_BAD_REFTAG,
735 IB_SIG_BAD_APPTAG,
736};
737
738/**
739 * struct ib_sig_err - signature error descriptor
740 */
741struct ib_sig_err {
742 enum ib_sig_err_type err_type;
743 u32 expected;
744 u32 actual;
745 u64 sig_err_offset;
746 u32 key;
747};
748
749enum ib_mr_status_check {
750 IB_MR_CHECK_SIG_STATUS = 1,
751};
752
753/**
754 * struct ib_mr_status - Memory region status container
755 *
756 * @fail_status: Bitmask of MR checks status. For each
757 * failed check a corresponding status bit is set.
758 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
759 * failure.
760 */
761struct ib_mr_status {
762 u32 fail_status;
763 struct ib_sig_err sig_err;
764};
765
bf6a9e31
JM
766/**
767 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
768 * enum.
769 * @mult: multiple to convert.
770 */
8385fd84 771__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 772
1da177e4
LT
773struct ib_ah_attr {
774 struct ib_global_route grh;
775 u16 dlid;
776 u8 sl;
777 u8 src_path_bits;
778 u8 static_rate;
779 u8 ah_flags;
780 u8 port_num;
dd5f03be 781 u8 dmac[ETH_ALEN];
1da177e4
LT
782};
783
784enum ib_wc_status {
785 IB_WC_SUCCESS,
786 IB_WC_LOC_LEN_ERR,
787 IB_WC_LOC_QP_OP_ERR,
788 IB_WC_LOC_EEC_OP_ERR,
789 IB_WC_LOC_PROT_ERR,
790 IB_WC_WR_FLUSH_ERR,
791 IB_WC_MW_BIND_ERR,
792 IB_WC_BAD_RESP_ERR,
793 IB_WC_LOC_ACCESS_ERR,
794 IB_WC_REM_INV_REQ_ERR,
795 IB_WC_REM_ACCESS_ERR,
796 IB_WC_REM_OP_ERR,
797 IB_WC_RETRY_EXC_ERR,
798 IB_WC_RNR_RETRY_EXC_ERR,
799 IB_WC_LOC_RDD_VIOL_ERR,
800 IB_WC_REM_INV_RD_REQ_ERR,
801 IB_WC_REM_ABORT_ERR,
802 IB_WC_INV_EECN_ERR,
803 IB_WC_INV_EEC_STATE_ERR,
804 IB_WC_FATAL_ERR,
805 IB_WC_RESP_TIMEOUT_ERR,
806 IB_WC_GENERAL_ERR
807};
808
db7489e0 809const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 810
1da177e4
LT
811enum ib_wc_opcode {
812 IB_WC_SEND,
813 IB_WC_RDMA_WRITE,
814 IB_WC_RDMA_READ,
815 IB_WC_COMP_SWAP,
816 IB_WC_FETCH_ADD,
c93570f2 817 IB_WC_LSO,
00f7ec36 818 IB_WC_LOCAL_INV,
4c67e2bf 819 IB_WC_REG_MR,
5e80ba8f
VS
820 IB_WC_MASKED_COMP_SWAP,
821 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
822/*
823 * Set value of IB_WC_RECV so consumers can test if a completion is a
824 * receive by testing (opcode & IB_WC_RECV).
825 */
826 IB_WC_RECV = 1 << 7,
827 IB_WC_RECV_RDMA_WITH_IMM
828};
829
830enum ib_wc_flags {
831 IB_WC_GRH = 1,
00f7ec36
SW
832 IB_WC_WITH_IMM = (1<<1),
833 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 834 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
835 IB_WC_WITH_SMAC = (1<<4),
836 IB_WC_WITH_VLAN = (1<<5),
c865f246 837 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
838};
839
840struct ib_wc {
14d3a3b2
CH
841 union {
842 u64 wr_id;
843 struct ib_cqe *wr_cqe;
844 };
1da177e4
LT
845 enum ib_wc_status status;
846 enum ib_wc_opcode opcode;
847 u32 vendor_err;
848 u32 byte_len;
062dbb69 849 struct ib_qp *qp;
00f7ec36
SW
850 union {
851 __be32 imm_data;
852 u32 invalidate_rkey;
853 } ex;
1da177e4
LT
854 u32 src_qp;
855 int wc_flags;
856 u16 pkey_index;
857 u16 slid;
858 u8 sl;
859 u8 dlid_path_bits;
860 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
861 u8 smac[ETH_ALEN];
862 u16 vlan_id;
c865f246 863 u8 network_hdr_type;
1da177e4
LT
864};
865
ed23a727
RD
866enum ib_cq_notify_flags {
867 IB_CQ_SOLICITED = 1 << 0,
868 IB_CQ_NEXT_COMP = 1 << 1,
869 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
870 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
871};
872
96104eda 873enum ib_srq_type {
418d5130
SH
874 IB_SRQT_BASIC,
875 IB_SRQT_XRC
96104eda
SH
876};
877
d41fcc67
RD
878enum ib_srq_attr_mask {
879 IB_SRQ_MAX_WR = 1 << 0,
880 IB_SRQ_LIMIT = 1 << 1,
881};
882
883struct ib_srq_attr {
884 u32 max_wr;
885 u32 max_sge;
886 u32 srq_limit;
887};
888
889struct ib_srq_init_attr {
890 void (*event_handler)(struct ib_event *, void *);
891 void *srq_context;
892 struct ib_srq_attr attr;
96104eda 893 enum ib_srq_type srq_type;
418d5130
SH
894
895 union {
896 struct {
897 struct ib_xrcd *xrcd;
898 struct ib_cq *cq;
899 } xrc;
900 } ext;
d41fcc67
RD
901};
902
1da177e4
LT
903struct ib_qp_cap {
904 u32 max_send_wr;
905 u32 max_recv_wr;
906 u32 max_send_sge;
907 u32 max_recv_sge;
908 u32 max_inline_data;
909};
910
911enum ib_sig_type {
912 IB_SIGNAL_ALL_WR,
913 IB_SIGNAL_REQ_WR
914};
915
916enum ib_qp_type {
917 /*
918 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
919 * here (and in that order) since the MAD layer uses them as
920 * indices into a 2-entry table.
921 */
922 IB_QPT_SMI,
923 IB_QPT_GSI,
924
925 IB_QPT_RC,
926 IB_QPT_UC,
927 IB_QPT_UD,
928 IB_QPT_RAW_IPV6,
b42b63cf 929 IB_QPT_RAW_ETHERTYPE,
c938a616 930 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
931 IB_QPT_XRC_INI = 9,
932 IB_QPT_XRC_TGT,
0134f16b
JM
933 IB_QPT_MAX,
934 /* Reserve a range for qp types internal to the low level driver.
935 * These qp types will not be visible at the IB core layer, so the
936 * IB_QPT_MAX usages should not be affected in the core layer
937 */
938 IB_QPT_RESERVED1 = 0x1000,
939 IB_QPT_RESERVED2,
940 IB_QPT_RESERVED3,
941 IB_QPT_RESERVED4,
942 IB_QPT_RESERVED5,
943 IB_QPT_RESERVED6,
944 IB_QPT_RESERVED7,
945 IB_QPT_RESERVED8,
946 IB_QPT_RESERVED9,
947 IB_QPT_RESERVED10,
1da177e4
LT
948};
949
b846f25a 950enum ib_qp_create_flags {
47ee1b9f
RL
951 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
952 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 953 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 954 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 955 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
956 /* reserve bits 26-31 for low level drivers' internal use */
957 IB_QP_CREATE_RESERVED_START = 1 << 26,
958 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
959};
960
73c40c61
YH
961/*
962 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
963 * callback to destroy the passed in QP.
964 */
965
1da177e4
LT
966struct ib_qp_init_attr {
967 void (*event_handler)(struct ib_event *, void *);
968 void *qp_context;
969 struct ib_cq *send_cq;
970 struct ib_cq *recv_cq;
971 struct ib_srq *srq;
b42b63cf 972 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
973 struct ib_qp_cap cap;
974 enum ib_sig_type sq_sig_type;
975 enum ib_qp_type qp_type;
b846f25a 976 enum ib_qp_create_flags create_flags;
1da177e4
LT
977 u8 port_num; /* special QP types only */
978};
979
0e0ec7e0
SH
980struct ib_qp_open_attr {
981 void (*event_handler)(struct ib_event *, void *);
982 void *qp_context;
983 u32 qp_num;
984 enum ib_qp_type qp_type;
985};
986
1da177e4
LT
987enum ib_rnr_timeout {
988 IB_RNR_TIMER_655_36 = 0,
989 IB_RNR_TIMER_000_01 = 1,
990 IB_RNR_TIMER_000_02 = 2,
991 IB_RNR_TIMER_000_03 = 3,
992 IB_RNR_TIMER_000_04 = 4,
993 IB_RNR_TIMER_000_06 = 5,
994 IB_RNR_TIMER_000_08 = 6,
995 IB_RNR_TIMER_000_12 = 7,
996 IB_RNR_TIMER_000_16 = 8,
997 IB_RNR_TIMER_000_24 = 9,
998 IB_RNR_TIMER_000_32 = 10,
999 IB_RNR_TIMER_000_48 = 11,
1000 IB_RNR_TIMER_000_64 = 12,
1001 IB_RNR_TIMER_000_96 = 13,
1002 IB_RNR_TIMER_001_28 = 14,
1003 IB_RNR_TIMER_001_92 = 15,
1004 IB_RNR_TIMER_002_56 = 16,
1005 IB_RNR_TIMER_003_84 = 17,
1006 IB_RNR_TIMER_005_12 = 18,
1007 IB_RNR_TIMER_007_68 = 19,
1008 IB_RNR_TIMER_010_24 = 20,
1009 IB_RNR_TIMER_015_36 = 21,
1010 IB_RNR_TIMER_020_48 = 22,
1011 IB_RNR_TIMER_030_72 = 23,
1012 IB_RNR_TIMER_040_96 = 24,
1013 IB_RNR_TIMER_061_44 = 25,
1014 IB_RNR_TIMER_081_92 = 26,
1015 IB_RNR_TIMER_122_88 = 27,
1016 IB_RNR_TIMER_163_84 = 28,
1017 IB_RNR_TIMER_245_76 = 29,
1018 IB_RNR_TIMER_327_68 = 30,
1019 IB_RNR_TIMER_491_52 = 31
1020};
1021
1022enum ib_qp_attr_mask {
1023 IB_QP_STATE = 1,
1024 IB_QP_CUR_STATE = (1<<1),
1025 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1026 IB_QP_ACCESS_FLAGS = (1<<3),
1027 IB_QP_PKEY_INDEX = (1<<4),
1028 IB_QP_PORT = (1<<5),
1029 IB_QP_QKEY = (1<<6),
1030 IB_QP_AV = (1<<7),
1031 IB_QP_PATH_MTU = (1<<8),
1032 IB_QP_TIMEOUT = (1<<9),
1033 IB_QP_RETRY_CNT = (1<<10),
1034 IB_QP_RNR_RETRY = (1<<11),
1035 IB_QP_RQ_PSN = (1<<12),
1036 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1037 IB_QP_ALT_PATH = (1<<14),
1038 IB_QP_MIN_RNR_TIMER = (1<<15),
1039 IB_QP_SQ_PSN = (1<<16),
1040 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1041 IB_QP_PATH_MIG_STATE = (1<<18),
1042 IB_QP_CAP = (1<<19),
dd5f03be 1043 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1044 IB_QP_RESERVED1 = (1<<21),
1045 IB_QP_RESERVED2 = (1<<22),
1046 IB_QP_RESERVED3 = (1<<23),
1047 IB_QP_RESERVED4 = (1<<24),
1da177e4
LT
1048};
1049
1050enum ib_qp_state {
1051 IB_QPS_RESET,
1052 IB_QPS_INIT,
1053 IB_QPS_RTR,
1054 IB_QPS_RTS,
1055 IB_QPS_SQD,
1056 IB_QPS_SQE,
1057 IB_QPS_ERR
1058};
1059
1060enum ib_mig_state {
1061 IB_MIG_MIGRATED,
1062 IB_MIG_REARM,
1063 IB_MIG_ARMED
1064};
1065
7083e42e
SM
1066enum ib_mw_type {
1067 IB_MW_TYPE_1 = 1,
1068 IB_MW_TYPE_2 = 2
1069};
1070
1da177e4
LT
1071struct ib_qp_attr {
1072 enum ib_qp_state qp_state;
1073 enum ib_qp_state cur_qp_state;
1074 enum ib_mtu path_mtu;
1075 enum ib_mig_state path_mig_state;
1076 u32 qkey;
1077 u32 rq_psn;
1078 u32 sq_psn;
1079 u32 dest_qp_num;
1080 int qp_access_flags;
1081 struct ib_qp_cap cap;
1082 struct ib_ah_attr ah_attr;
1083 struct ib_ah_attr alt_ah_attr;
1084 u16 pkey_index;
1085 u16 alt_pkey_index;
1086 u8 en_sqd_async_notify;
1087 u8 sq_draining;
1088 u8 max_rd_atomic;
1089 u8 max_dest_rd_atomic;
1090 u8 min_rnr_timer;
1091 u8 port_num;
1092 u8 timeout;
1093 u8 retry_cnt;
1094 u8 rnr_retry;
1095 u8 alt_port_num;
1096 u8 alt_timeout;
1097};
1098
1099enum ib_wr_opcode {
1100 IB_WR_RDMA_WRITE,
1101 IB_WR_RDMA_WRITE_WITH_IMM,
1102 IB_WR_SEND,
1103 IB_WR_SEND_WITH_IMM,
1104 IB_WR_RDMA_READ,
1105 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1106 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1107 IB_WR_LSO,
1108 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1109 IB_WR_RDMA_READ_WITH_INV,
1110 IB_WR_LOCAL_INV,
4c67e2bf 1111 IB_WR_REG_MR,
5e80ba8f
VS
1112 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1113 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1114 IB_WR_REG_SIG_MR,
0134f16b
JM
1115 /* reserve values for low level drivers' internal use.
1116 * These values will not be used at all in the ib core layer.
1117 */
1118 IB_WR_RESERVED1 = 0xf0,
1119 IB_WR_RESERVED2,
1120 IB_WR_RESERVED3,
1121 IB_WR_RESERVED4,
1122 IB_WR_RESERVED5,
1123 IB_WR_RESERVED6,
1124 IB_WR_RESERVED7,
1125 IB_WR_RESERVED8,
1126 IB_WR_RESERVED9,
1127 IB_WR_RESERVED10,
1da177e4
LT
1128};
1129
1130enum ib_send_flags {
1131 IB_SEND_FENCE = 1,
1132 IB_SEND_SIGNALED = (1<<1),
1133 IB_SEND_SOLICITED = (1<<2),
e0605d91 1134 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1135 IB_SEND_IP_CSUM = (1<<4),
1136
1137 /* reserve bits 26-31 for low level drivers' internal use */
1138 IB_SEND_RESERVED_START = (1 << 26),
1139 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1140};
1141
1142struct ib_sge {
1143 u64 addr;
1144 u32 length;
1145 u32 lkey;
1146};
1147
14d3a3b2
CH
1148struct ib_cqe {
1149 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1150};
1151
1da177e4
LT
1152struct ib_send_wr {
1153 struct ib_send_wr *next;
14d3a3b2
CH
1154 union {
1155 u64 wr_id;
1156 struct ib_cqe *wr_cqe;
1157 };
1da177e4
LT
1158 struct ib_sge *sg_list;
1159 int num_sge;
1160 enum ib_wr_opcode opcode;
1161 int send_flags;
0f39cf3d
RD
1162 union {
1163 __be32 imm_data;
1164 u32 invalidate_rkey;
1165 } ex;
1da177e4
LT
1166};
1167
e622f2f4
CH
1168struct ib_rdma_wr {
1169 struct ib_send_wr wr;
1170 u64 remote_addr;
1171 u32 rkey;
1172};
1173
1174static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1175{
1176 return container_of(wr, struct ib_rdma_wr, wr);
1177}
1178
1179struct ib_atomic_wr {
1180 struct ib_send_wr wr;
1181 u64 remote_addr;
1182 u64 compare_add;
1183 u64 swap;
1184 u64 compare_add_mask;
1185 u64 swap_mask;
1186 u32 rkey;
1187};
1188
1189static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1190{
1191 return container_of(wr, struct ib_atomic_wr, wr);
1192}
1193
1194struct ib_ud_wr {
1195 struct ib_send_wr wr;
1196 struct ib_ah *ah;
1197 void *header;
1198 int hlen;
1199 int mss;
1200 u32 remote_qpn;
1201 u32 remote_qkey;
1202 u16 pkey_index; /* valid for GSI only */
1203 u8 port_num; /* valid for DR SMPs on switch only */
1204};
1205
1206static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1207{
1208 return container_of(wr, struct ib_ud_wr, wr);
1209}
1210
4c67e2bf
SG
1211struct ib_reg_wr {
1212 struct ib_send_wr wr;
1213 struct ib_mr *mr;
1214 u32 key;
1215 int access;
1216};
1217
1218static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1219{
1220 return container_of(wr, struct ib_reg_wr, wr);
1221}
1222
e622f2f4
CH
1223struct ib_sig_handover_wr {
1224 struct ib_send_wr wr;
1225 struct ib_sig_attrs *sig_attrs;
1226 struct ib_mr *sig_mr;
1227 int access_flags;
1228 struct ib_sge *prot;
1229};
1230
1231static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1232{
1233 return container_of(wr, struct ib_sig_handover_wr, wr);
1234}
1235
1da177e4
LT
1236struct ib_recv_wr {
1237 struct ib_recv_wr *next;
14d3a3b2
CH
1238 union {
1239 u64 wr_id;
1240 struct ib_cqe *wr_cqe;
1241 };
1da177e4
LT
1242 struct ib_sge *sg_list;
1243 int num_sge;
1244};
1245
1246enum ib_access_flags {
1247 IB_ACCESS_LOCAL_WRITE = 1,
1248 IB_ACCESS_REMOTE_WRITE = (1<<1),
1249 IB_ACCESS_REMOTE_READ = (1<<2),
1250 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1251 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1252 IB_ZERO_BASED = (1<<5),
1253 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1254};
1255
b7d3e0a9
CH
1256/*
1257 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1258 * are hidden here instead of a uapi header!
1259 */
1da177e4
LT
1260enum ib_mr_rereg_flags {
1261 IB_MR_REREG_TRANS = 1,
1262 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1263 IB_MR_REREG_ACCESS = (1<<2),
1264 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1265};
1266
1da177e4
LT
1267struct ib_fmr_attr {
1268 int max_pages;
1269 int max_maps;
d36f34aa 1270 u8 page_shift;
1da177e4
LT
1271};
1272
882214e2
HE
1273struct ib_umem;
1274
e2773c06
RD
1275struct ib_ucontext {
1276 struct ib_device *device;
1277 struct list_head pd_list;
1278 struct list_head mr_list;
1279 struct list_head mw_list;
1280 struct list_head cq_list;
1281 struct list_head qp_list;
1282 struct list_head srq_list;
1283 struct list_head ah_list;
53d0bd1e 1284 struct list_head xrcd_list;
436f2ad0 1285 struct list_head rule_list;
f7c6a7b5 1286 int closing;
8ada2c1c
SR
1287
1288 struct pid *tgid;
882214e2
HE
1289#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1290 struct rb_root umem_tree;
1291 /*
1292 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1293 * mmu notifiers registration.
1294 */
1295 struct rw_semaphore umem_rwsem;
1296 void (*invalidate_range)(struct ib_umem *umem,
1297 unsigned long start, unsigned long end);
1298
1299 struct mmu_notifier mn;
1300 atomic_t notifier_count;
1301 /* A list of umems that don't have private mmu notifier counters yet. */
1302 struct list_head no_private_counters;
1303 int odp_mrs_count;
1304#endif
e2773c06
RD
1305};
1306
1307struct ib_uobject {
1308 u64 user_handle; /* handle given to us by userspace */
1309 struct ib_ucontext *context; /* associated user context */
9ead190b 1310 void *object; /* containing object */
e2773c06 1311 struct list_head list; /* link to context's list */
b3d636b0 1312 int id; /* index into kernel idr */
9ead190b
RD
1313 struct kref ref;
1314 struct rw_semaphore mutex; /* protects .live */
d144da8c 1315 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1316 int live;
e2773c06
RD
1317};
1318
e2773c06 1319struct ib_udata {
309243ec 1320 const void __user *inbuf;
e2773c06
RD
1321 void __user *outbuf;
1322 size_t inlen;
1323 size_t outlen;
1324};
1325
1da177e4 1326struct ib_pd {
96249d70 1327 u32 local_dma_lkey;
e2773c06
RD
1328 struct ib_device *device;
1329 struct ib_uobject *uobject;
1330 atomic_t usecnt; /* count all resources */
96249d70 1331 struct ib_mr *local_mr;
1da177e4
LT
1332};
1333
59991f94
SH
1334struct ib_xrcd {
1335 struct ib_device *device;
d3d72d90 1336 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1337 struct inode *inode;
d3d72d90
SH
1338
1339 struct mutex tgt_qp_mutex;
1340 struct list_head tgt_qp_list;
59991f94
SH
1341};
1342
1da177e4
LT
1343struct ib_ah {
1344 struct ib_device *device;
1345 struct ib_pd *pd;
e2773c06 1346 struct ib_uobject *uobject;
1da177e4
LT
1347};
1348
1349typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1350
14d3a3b2
CH
1351enum ib_poll_context {
1352 IB_POLL_DIRECT, /* caller context, no hw completions */
1353 IB_POLL_SOFTIRQ, /* poll from softirq context */
1354 IB_POLL_WORKQUEUE, /* poll from workqueue */
1355};
1356
1da177e4 1357struct ib_cq {
e2773c06
RD
1358 struct ib_device *device;
1359 struct ib_uobject *uobject;
1360 ib_comp_handler comp_handler;
1361 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1362 void *cq_context;
e2773c06
RD
1363 int cqe;
1364 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1365 enum ib_poll_context poll_ctx;
1366 struct ib_wc *wc;
1367 union {
1368 struct irq_poll iop;
1369 struct work_struct work;
1370 };
1da177e4
LT
1371};
1372
1373struct ib_srq {
d41fcc67
RD
1374 struct ib_device *device;
1375 struct ib_pd *pd;
1376 struct ib_uobject *uobject;
1377 void (*event_handler)(struct ib_event *, void *);
1378 void *srq_context;
96104eda 1379 enum ib_srq_type srq_type;
1da177e4 1380 atomic_t usecnt;
418d5130
SH
1381
1382 union {
1383 struct {
1384 struct ib_xrcd *xrcd;
1385 struct ib_cq *cq;
1386 u32 srq_num;
1387 } xrc;
1388 } ext;
1da177e4
LT
1389};
1390
1391struct ib_qp {
1392 struct ib_device *device;
1393 struct ib_pd *pd;
1394 struct ib_cq *send_cq;
1395 struct ib_cq *recv_cq;
1396 struct ib_srq *srq;
b42b63cf 1397 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1398 struct list_head xrcd_list;
319a441d
HHZ
1399 /* count times opened, mcast attaches, flow attaches */
1400 atomic_t usecnt;
0e0ec7e0
SH
1401 struct list_head open_list;
1402 struct ib_qp *real_qp;
e2773c06 1403 struct ib_uobject *uobject;
1da177e4
LT
1404 void (*event_handler)(struct ib_event *, void *);
1405 void *qp_context;
1406 u32 qp_num;
1407 enum ib_qp_type qp_type;
1408};
1409
1410struct ib_mr {
e2773c06
RD
1411 struct ib_device *device;
1412 struct ib_pd *pd;
1413 struct ib_uobject *uobject;
1414 u32 lkey;
1415 u32 rkey;
4c67e2bf
SG
1416 u64 iova;
1417 u32 length;
1418 unsigned int page_size;
1da177e4
LT
1419};
1420
1421struct ib_mw {
1422 struct ib_device *device;
1423 struct ib_pd *pd;
e2773c06 1424 struct ib_uobject *uobject;
1da177e4 1425 u32 rkey;
7083e42e 1426 enum ib_mw_type type;
1da177e4
LT
1427};
1428
1429struct ib_fmr {
1430 struct ib_device *device;
1431 struct ib_pd *pd;
1432 struct list_head list;
1433 u32 lkey;
1434 u32 rkey;
1435};
1436
319a441d
HHZ
1437/* Supported steering options */
1438enum ib_flow_attr_type {
1439 /* steering according to rule specifications */
1440 IB_FLOW_ATTR_NORMAL = 0x0,
1441 /* default unicast and multicast rule -
1442 * receive all Eth traffic which isn't steered to any QP
1443 */
1444 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1445 /* default multicast rule -
1446 * receive all Eth multicast traffic which isn't steered to any QP
1447 */
1448 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1449 /* sniffer rule - receive all port traffic */
1450 IB_FLOW_ATTR_SNIFFER = 0x3
1451};
1452
1453/* Supported steering header types */
1454enum ib_flow_spec_type {
1455 /* L2 headers*/
1456 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1457 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1458 /* L3 header*/
1459 IB_FLOW_SPEC_IPV4 = 0x30,
1460 /* L4 headers*/
1461 IB_FLOW_SPEC_TCP = 0x40,
1462 IB_FLOW_SPEC_UDP = 0x41
1463};
240ae00e 1464#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1465#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1466
319a441d
HHZ
1467/* Flow steering rule priority is set according to it's domain.
1468 * Lower domain value means higher priority.
1469 */
1470enum ib_flow_domain {
1471 IB_FLOW_DOMAIN_USER,
1472 IB_FLOW_DOMAIN_ETHTOOL,
1473 IB_FLOW_DOMAIN_RFS,
1474 IB_FLOW_DOMAIN_NIC,
1475 IB_FLOW_DOMAIN_NUM /* Must be last */
1476};
1477
1478struct ib_flow_eth_filter {
1479 u8 dst_mac[6];
1480 u8 src_mac[6];
1481 __be16 ether_type;
1482 __be16 vlan_tag;
1483};
1484
1485struct ib_flow_spec_eth {
1486 enum ib_flow_spec_type type;
1487 u16 size;
1488 struct ib_flow_eth_filter val;
1489 struct ib_flow_eth_filter mask;
1490};
1491
240ae00e
MB
1492struct ib_flow_ib_filter {
1493 __be16 dlid;
1494 __u8 sl;
1495};
1496
1497struct ib_flow_spec_ib {
1498 enum ib_flow_spec_type type;
1499 u16 size;
1500 struct ib_flow_ib_filter val;
1501 struct ib_flow_ib_filter mask;
1502};
1503
319a441d
HHZ
1504struct ib_flow_ipv4_filter {
1505 __be32 src_ip;
1506 __be32 dst_ip;
1507};
1508
1509struct ib_flow_spec_ipv4 {
1510 enum ib_flow_spec_type type;
1511 u16 size;
1512 struct ib_flow_ipv4_filter val;
1513 struct ib_flow_ipv4_filter mask;
1514};
1515
1516struct ib_flow_tcp_udp_filter {
1517 __be16 dst_port;
1518 __be16 src_port;
1519};
1520
1521struct ib_flow_spec_tcp_udp {
1522 enum ib_flow_spec_type type;
1523 u16 size;
1524 struct ib_flow_tcp_udp_filter val;
1525 struct ib_flow_tcp_udp_filter mask;
1526};
1527
1528union ib_flow_spec {
1529 struct {
1530 enum ib_flow_spec_type type;
1531 u16 size;
1532 };
1533 struct ib_flow_spec_eth eth;
240ae00e 1534 struct ib_flow_spec_ib ib;
319a441d
HHZ
1535 struct ib_flow_spec_ipv4 ipv4;
1536 struct ib_flow_spec_tcp_udp tcp_udp;
1537};
1538
1539struct ib_flow_attr {
1540 enum ib_flow_attr_type type;
1541 u16 size;
1542 u16 priority;
1543 u32 flags;
1544 u8 num_of_specs;
1545 u8 port;
1546 /* Following are the optional layers according to user request
1547 * struct ib_flow_spec_xxx
1548 * struct ib_flow_spec_yyy
1549 */
1550};
1551
1552struct ib_flow {
1553 struct ib_qp *qp;
1554 struct ib_uobject *uobject;
1555};
1556
4cd7c947 1557struct ib_mad_hdr;
1da177e4
LT
1558struct ib_grh;
1559
1560enum ib_process_mad_flags {
1561 IB_MAD_IGNORE_MKEY = 1,
1562 IB_MAD_IGNORE_BKEY = 2,
1563 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1564};
1565
1566enum ib_mad_result {
1567 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1568 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1569 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1570 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1571};
1572
1573#define IB_DEVICE_NAME_MAX 64
1574
1575struct ib_cache {
1576 rwlock_t lock;
1577 struct ib_event_handler event_handler;
1578 struct ib_pkey_cache **pkey_cache;
03db3a2d 1579 struct ib_gid_table **gid_cache;
6fb9cdbf 1580 u8 *lmc_cache;
1da177e4
LT
1581};
1582
9b513090
RC
1583struct ib_dma_mapping_ops {
1584 int (*mapping_error)(struct ib_device *dev,
1585 u64 dma_addr);
1586 u64 (*map_single)(struct ib_device *dev,
1587 void *ptr, size_t size,
1588 enum dma_data_direction direction);
1589 void (*unmap_single)(struct ib_device *dev,
1590 u64 addr, size_t size,
1591 enum dma_data_direction direction);
1592 u64 (*map_page)(struct ib_device *dev,
1593 struct page *page, unsigned long offset,
1594 size_t size,
1595 enum dma_data_direction direction);
1596 void (*unmap_page)(struct ib_device *dev,
1597 u64 addr, size_t size,
1598 enum dma_data_direction direction);
1599 int (*map_sg)(struct ib_device *dev,
1600 struct scatterlist *sg, int nents,
1601 enum dma_data_direction direction);
1602 void (*unmap_sg)(struct ib_device *dev,
1603 struct scatterlist *sg, int nents,
1604 enum dma_data_direction direction);
9b513090
RC
1605 void (*sync_single_for_cpu)(struct ib_device *dev,
1606 u64 dma_handle,
1607 size_t size,
4deccd6d 1608 enum dma_data_direction dir);
9b513090
RC
1609 void (*sync_single_for_device)(struct ib_device *dev,
1610 u64 dma_handle,
1611 size_t size,
1612 enum dma_data_direction dir);
1613 void *(*alloc_coherent)(struct ib_device *dev,
1614 size_t size,
1615 u64 *dma_handle,
1616 gfp_t flag);
1617 void (*free_coherent)(struct ib_device *dev,
1618 size_t size, void *cpu_addr,
1619 u64 dma_handle);
1620};
1621
07ebafba
TT
1622struct iw_cm_verbs;
1623
7738613e
IW
1624struct ib_port_immutable {
1625 int pkey_tbl_len;
1626 int gid_tbl_len;
f9b22e35 1627 u32 core_cap_flags;
337877a4 1628 u32 max_mad_size;
7738613e
IW
1629};
1630
1da177e4
LT
1631struct ib_device {
1632 struct device *dma_device;
1633
1634 char name[IB_DEVICE_NAME_MAX];
1635
1636 struct list_head event_handler_list;
1637 spinlock_t event_handler_lock;
1638
17a55f79 1639 spinlock_t client_data_lock;
1da177e4 1640 struct list_head core_list;
7c1eb45a
HE
1641 /* Access to the client_data_list is protected by the client_data_lock
1642 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1643 struct list_head client_data_list;
1da177e4
LT
1644
1645 struct ib_cache cache;
7738613e
IW
1646 /**
1647 * port_immutable is indexed by port number
1648 */
1649 struct ib_port_immutable *port_immutable;
1da177e4 1650
f4fd0b22
MT
1651 int num_comp_vectors;
1652
07ebafba
TT
1653 struct iw_cm_verbs *iwcm;
1654
7f624d02
SW
1655 int (*get_protocol_stats)(struct ib_device *device,
1656 union rdma_protocol_stats *stats);
1da177e4 1657 int (*query_device)(struct ib_device *device,
2528e33e
MB
1658 struct ib_device_attr *device_attr,
1659 struct ib_udata *udata);
1da177e4
LT
1660 int (*query_port)(struct ib_device *device,
1661 u8 port_num,
1662 struct ib_port_attr *port_attr);
a3f5adaf
EC
1663 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1664 u8 port_num);
03db3a2d
MB
1665 /* When calling get_netdev, the HW vendor's driver should return the
1666 * net device of device @device at port @port_num or NULL if such
1667 * a net device doesn't exist. The vendor driver should call dev_hold
1668 * on this net device. The HW vendor's device driver must guarantee
1669 * that this function returns NULL before the net device reaches
1670 * NETDEV_UNREGISTER_FINAL state.
1671 */
1672 struct net_device *(*get_netdev)(struct ib_device *device,
1673 u8 port_num);
1da177e4
LT
1674 int (*query_gid)(struct ib_device *device,
1675 u8 port_num, int index,
1676 union ib_gid *gid);
03db3a2d
MB
1677 /* When calling add_gid, the HW vendor's driver should
1678 * add the gid of device @device at gid index @index of
1679 * port @port_num to be @gid. Meta-info of that gid (for example,
1680 * the network device related to this gid is available
1681 * at @attr. @context allows the HW vendor driver to store extra
1682 * information together with a GID entry. The HW vendor may allocate
1683 * memory to contain this information and store it in @context when a
1684 * new GID entry is written to. Params are consistent until the next
1685 * call of add_gid or delete_gid. The function should return 0 on
1686 * success or error otherwise. The function could be called
1687 * concurrently for different ports. This function is only called
1688 * when roce_gid_table is used.
1689 */
1690 int (*add_gid)(struct ib_device *device,
1691 u8 port_num,
1692 unsigned int index,
1693 const union ib_gid *gid,
1694 const struct ib_gid_attr *attr,
1695 void **context);
1696 /* When calling del_gid, the HW vendor's driver should delete the
1697 * gid of device @device at gid index @index of port @port_num.
1698 * Upon the deletion of a GID entry, the HW vendor must free any
1699 * allocated memory. The caller will clear @context afterwards.
1700 * This function is only called when roce_gid_table is used.
1701 */
1702 int (*del_gid)(struct ib_device *device,
1703 u8 port_num,
1704 unsigned int index,
1705 void **context);
1da177e4
LT
1706 int (*query_pkey)(struct ib_device *device,
1707 u8 port_num, u16 index, u16 *pkey);
1708 int (*modify_device)(struct ib_device *device,
1709 int device_modify_mask,
1710 struct ib_device_modify *device_modify);
1711 int (*modify_port)(struct ib_device *device,
1712 u8 port_num, int port_modify_mask,
1713 struct ib_port_modify *port_modify);
e2773c06
RD
1714 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1715 struct ib_udata *udata);
1716 int (*dealloc_ucontext)(struct ib_ucontext *context);
1717 int (*mmap)(struct ib_ucontext *context,
1718 struct vm_area_struct *vma);
1719 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1720 struct ib_ucontext *context,
1721 struct ib_udata *udata);
1da177e4
LT
1722 int (*dealloc_pd)(struct ib_pd *pd);
1723 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1724 struct ib_ah_attr *ah_attr);
1725 int (*modify_ah)(struct ib_ah *ah,
1726 struct ib_ah_attr *ah_attr);
1727 int (*query_ah)(struct ib_ah *ah,
1728 struct ib_ah_attr *ah_attr);
1729 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1730 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1731 struct ib_srq_init_attr *srq_init_attr,
1732 struct ib_udata *udata);
1733 int (*modify_srq)(struct ib_srq *srq,
1734 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1735 enum ib_srq_attr_mask srq_attr_mask,
1736 struct ib_udata *udata);
d41fcc67
RD
1737 int (*query_srq)(struct ib_srq *srq,
1738 struct ib_srq_attr *srq_attr);
1739 int (*destroy_srq)(struct ib_srq *srq);
1740 int (*post_srq_recv)(struct ib_srq *srq,
1741 struct ib_recv_wr *recv_wr,
1742 struct ib_recv_wr **bad_recv_wr);
1da177e4 1743 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1744 struct ib_qp_init_attr *qp_init_attr,
1745 struct ib_udata *udata);
1da177e4
LT
1746 int (*modify_qp)(struct ib_qp *qp,
1747 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1748 int qp_attr_mask,
1749 struct ib_udata *udata);
1da177e4
LT
1750 int (*query_qp)(struct ib_qp *qp,
1751 struct ib_qp_attr *qp_attr,
1752 int qp_attr_mask,
1753 struct ib_qp_init_attr *qp_init_attr);
1754 int (*destroy_qp)(struct ib_qp *qp);
1755 int (*post_send)(struct ib_qp *qp,
1756 struct ib_send_wr *send_wr,
1757 struct ib_send_wr **bad_send_wr);
1758 int (*post_recv)(struct ib_qp *qp,
1759 struct ib_recv_wr *recv_wr,
1760 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1761 struct ib_cq * (*create_cq)(struct ib_device *device,
1762 const struct ib_cq_init_attr *attr,
e2773c06
RD
1763 struct ib_ucontext *context,
1764 struct ib_udata *udata);
2dd57162
EC
1765 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1766 u16 cq_period);
1da177e4 1767 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1768 int (*resize_cq)(struct ib_cq *cq, int cqe,
1769 struct ib_udata *udata);
1da177e4
LT
1770 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1771 struct ib_wc *wc);
1772 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1773 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1774 enum ib_cq_notify_flags flags);
1da177e4
LT
1775 int (*req_ncomp_notif)(struct ib_cq *cq,
1776 int wc_cnt);
1777 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1778 int mr_access_flags);
e2773c06 1779 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1780 u64 start, u64 length,
1781 u64 virt_addr,
e2773c06
RD
1782 int mr_access_flags,
1783 struct ib_udata *udata);
7e6edb9b
MB
1784 int (*rereg_user_mr)(struct ib_mr *mr,
1785 int flags,
1786 u64 start, u64 length,
1787 u64 virt_addr,
1788 int mr_access_flags,
1789 struct ib_pd *pd,
1790 struct ib_udata *udata);
1da177e4 1791 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1792 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1793 enum ib_mr_type mr_type,
1794 u32 max_num_sg);
4c67e2bf
SG
1795 int (*map_mr_sg)(struct ib_mr *mr,
1796 struct scatterlist *sg,
1797 int sg_nents);
7083e42e
SM
1798 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1799 enum ib_mw_type type);
1da177e4
LT
1800 int (*dealloc_mw)(struct ib_mw *mw);
1801 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1802 int mr_access_flags,
1803 struct ib_fmr_attr *fmr_attr);
1804 int (*map_phys_fmr)(struct ib_fmr *fmr,
1805 u64 *page_list, int list_len,
1806 u64 iova);
1807 int (*unmap_fmr)(struct list_head *fmr_list);
1808 int (*dealloc_fmr)(struct ib_fmr *fmr);
1809 int (*attach_mcast)(struct ib_qp *qp,
1810 union ib_gid *gid,
1811 u16 lid);
1812 int (*detach_mcast)(struct ib_qp *qp,
1813 union ib_gid *gid,
1814 u16 lid);
1815 int (*process_mad)(struct ib_device *device,
1816 int process_mad_flags,
1817 u8 port_num,
a97e2d86
IW
1818 const struct ib_wc *in_wc,
1819 const struct ib_grh *in_grh,
4cd7c947
IW
1820 const struct ib_mad_hdr *in_mad,
1821 size_t in_mad_size,
1822 struct ib_mad_hdr *out_mad,
1823 size_t *out_mad_size,
1824 u16 *out_mad_pkey_index);
59991f94
SH
1825 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1826 struct ib_ucontext *ucontext,
1827 struct ib_udata *udata);
1828 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1829 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1830 struct ib_flow_attr
1831 *flow_attr,
1832 int domain);
1833 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1834 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1835 struct ib_mr_status *mr_status);
036b1063 1836 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1da177e4 1837
9b513090
RC
1838 struct ib_dma_mapping_ops *dma_ops;
1839
e2773c06 1840 struct module *owner;
f4e91eb4 1841 struct device dev;
35be0681 1842 struct kobject *ports_parent;
1da177e4
LT
1843 struct list_head port_list;
1844
1845 enum {
1846 IB_DEV_UNINITIALIZED,
1847 IB_DEV_REGISTERED,
1848 IB_DEV_UNREGISTERED
1849 } reg_state;
1850
274c0891 1851 int uverbs_abi_ver;
17a55f79 1852 u64 uverbs_cmd_mask;
f21519b2 1853 u64 uverbs_ex_cmd_mask;
274c0891 1854
c5bcbbb9 1855 char node_desc[64];
cf311cd4 1856 __be64 node_guid;
96f15c03 1857 u32 local_dma_lkey;
4139032b 1858 u16 is_switch:1;
1da177e4
LT
1859 u8 node_type;
1860 u8 phys_port_cnt;
3e153a93 1861 struct ib_device_attr attrs;
7738613e
IW
1862
1863 /**
1864 * The following mandatory functions are used only at device
1865 * registration. Keep functions such as these at the end of this
1866 * structure to avoid cache line misses when accessing struct ib_device
1867 * in fast paths.
1868 */
1869 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1870};
1871
1872struct ib_client {
1873 char *name;
1874 void (*add) (struct ib_device *);
7c1eb45a 1875 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1876
9268f72d
YK
1877 /* Returns the net_dev belonging to this ib_client and matching the
1878 * given parameters.
1879 * @dev: An RDMA device that the net_dev use for communication.
1880 * @port: A physical port number on the RDMA device.
1881 * @pkey: P_Key that the net_dev uses if applicable.
1882 * @gid: A GID that the net_dev uses to communicate.
1883 * @addr: An IP address the net_dev is configured with.
1884 * @client_data: The device's client data set by ib_set_client_data().
1885 *
1886 * An ib_client that implements a net_dev on top of RDMA devices
1887 * (such as IP over IB) should implement this callback, allowing the
1888 * rdma_cm module to find the right net_dev for a given request.
1889 *
1890 * The caller is responsible for calling dev_put on the returned
1891 * netdev. */
1892 struct net_device *(*get_net_dev_by_params)(
1893 struct ib_device *dev,
1894 u8 port,
1895 u16 pkey,
1896 const union ib_gid *gid,
1897 const struct sockaddr *addr,
1898 void *client_data);
1da177e4
LT
1899 struct list_head list;
1900};
1901
1902struct ib_device *ib_alloc_device(size_t size);
1903void ib_dealloc_device(struct ib_device *device);
1904
9a6edb60
RC
1905int ib_register_device(struct ib_device *device,
1906 int (*port_callback)(struct ib_device *,
1907 u8, struct kobject *));
1da177e4
LT
1908void ib_unregister_device(struct ib_device *device);
1909
1910int ib_register_client (struct ib_client *client);
1911void ib_unregister_client(struct ib_client *client);
1912
1913void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1914void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1915 void *data);
1916
e2773c06
RD
1917static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1918{
1919 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1920}
1921
1922static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1923{
43c61165 1924 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1925}
1926
301a721e
MB
1927static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1928 size_t offset,
1929 size_t len)
1930{
1931 const void __user *p = udata->inbuf + offset;
1932 bool ret = false;
1933 u8 *buf;
1934
1935 if (len > USHRT_MAX)
1936 return false;
1937
1938 buf = kmalloc(len, GFP_KERNEL);
1939 if (!buf)
1940 return false;
1941
1942 if (copy_from_user(buf, p, len))
1943 goto free;
1944
1945 ret = !memchr_inv(buf, 0, len);
1946
1947free:
1948 kfree(buf);
1949 return ret;
1950}
1951
8a51866f
RD
1952/**
1953 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1954 * contains all required attributes and no attributes not allowed for
1955 * the given QP state transition.
1956 * @cur_state: Current QP state
1957 * @next_state: Next QP state
1958 * @type: QP type
1959 * @mask: Mask of supplied QP attributes
dd5f03be 1960 * @ll : link layer of port
8a51866f
RD
1961 *
1962 * This function is a helper function that a low-level driver's
1963 * modify_qp method can use to validate the consumer's input. It
1964 * checks that cur_state and next_state are valid QP states, that a
1965 * transition from cur_state to next_state is allowed by the IB spec,
1966 * and that the attribute mask supplied is allowed for the transition.
1967 */
1968int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1969 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1970 enum rdma_link_layer ll);
8a51866f 1971
1da177e4
LT
1972int ib_register_event_handler (struct ib_event_handler *event_handler);
1973int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1974void ib_dispatch_event(struct ib_event *event);
1975
1da177e4
LT
1976int ib_query_port(struct ib_device *device,
1977 u8 port_num, struct ib_port_attr *port_attr);
1978
a3f5adaf
EC
1979enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1980 u8 port_num);
1981
4139032b
HR
1982/**
1983 * rdma_cap_ib_switch - Check if the device is IB switch
1984 * @device: Device to check
1985 *
1986 * Device driver is responsible for setting is_switch bit on
1987 * in ib_device structure at init time.
1988 *
1989 * Return: true if the device is IB switch.
1990 */
1991static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1992{
1993 return device->is_switch;
1994}
1995
0cf18d77
IW
1996/**
1997 * rdma_start_port - Return the first valid port number for the device
1998 * specified
1999 *
2000 * @device: Device to be checked
2001 *
2002 * Return start port number
2003 */
2004static inline u8 rdma_start_port(const struct ib_device *device)
2005{
4139032b 2006 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2007}
2008
2009/**
2010 * rdma_end_port - Return the last valid port number for the device
2011 * specified
2012 *
2013 * @device: Device to be checked
2014 *
2015 * Return last port number
2016 */
2017static inline u8 rdma_end_port(const struct ib_device *device)
2018{
4139032b 2019 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2020}
2021
5ede9289 2022static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2023{
f9b22e35 2024 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2025}
2026
5ede9289 2027static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2028{
2029 return device->port_immutable[port_num].core_cap_flags &
2030 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2031}
2032
2033static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2034{
2035 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2036}
2037
2038static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2039{
f9b22e35 2040 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2041}
2042
5ede9289 2043static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2044{
f9b22e35 2045 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2046}
2047
5ede9289 2048static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2049{
7766a99f
MB
2050 return rdma_protocol_ib(device, port_num) ||
2051 rdma_protocol_roce(device, port_num);
de66be94
MW
2052}
2053
c757dea8 2054/**
296ec009 2055 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2056 * Management Datagrams.
296ec009
MW
2057 * @device: Device to check
2058 * @port_num: Port number to check
c757dea8 2059 *
296ec009
MW
2060 * Management Datagrams (MAD) are a required part of the InfiniBand
2061 * specification and are supported on all InfiniBand devices. A slightly
2062 * extended version are also supported on OPA interfaces.
c757dea8 2063 *
296ec009 2064 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2065 */
5ede9289 2066static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2067{
f9b22e35 2068 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2069}
2070
65995fee
IW
2071/**
2072 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2073 * Management Datagrams.
2074 * @device: Device to check
2075 * @port_num: Port number to check
2076 *
2077 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2078 * datagrams with their own versions. These OPA MADs share many but not all of
2079 * the characteristics of InfiniBand MADs.
2080 *
2081 * OPA MADs differ in the following ways:
2082 *
2083 * 1) MADs are variable size up to 2K
2084 * IBTA defined MADs remain fixed at 256 bytes
2085 * 2) OPA SMPs must carry valid PKeys
2086 * 3) OPA SMP packets are a different format
2087 *
2088 * Return: true if the port supports OPA MAD packet formats.
2089 */
2090static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2091{
2092 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2093 == RDMA_CORE_CAP_OPA_MAD;
2094}
2095
29541e3a 2096/**
296ec009
MW
2097 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2098 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2099 * @device: Device to check
2100 * @port_num: Port number to check
29541e3a 2101 *
296ec009
MW
2102 * Each InfiniBand node is required to provide a Subnet Management Agent
2103 * that the subnet manager can access. Prior to the fabric being fully
2104 * configured by the subnet manager, the SMA is accessed via a well known
2105 * interface called the Subnet Management Interface (SMI). This interface
2106 * uses directed route packets to communicate with the SM to get around the
2107 * chicken and egg problem of the SM needing to know what's on the fabric
2108 * in order to configure the fabric, and needing to configure the fabric in
2109 * order to send packets to the devices on the fabric. These directed
2110 * route packets do not need the fabric fully configured in order to reach
2111 * their destination. The SMI is the only method allowed to send
2112 * directed route packets on an InfiniBand fabric.
29541e3a 2113 *
296ec009 2114 * Return: true if the port provides an SMI.
29541e3a 2115 */
5ede9289 2116static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2117{
f9b22e35 2118 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2119}
2120
72219cea
MW
2121/**
2122 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2123 * Communication Manager.
296ec009
MW
2124 * @device: Device to check
2125 * @port_num: Port number to check
72219cea 2126 *
296ec009
MW
2127 * The InfiniBand Communication Manager is one of many pre-defined General
2128 * Service Agents (GSA) that are accessed via the General Service
2129 * Interface (GSI). It's role is to facilitate establishment of connections
2130 * between nodes as well as other management related tasks for established
2131 * connections.
72219cea 2132 *
296ec009
MW
2133 * Return: true if the port supports an IB CM (this does not guarantee that
2134 * a CM is actually running however).
72219cea 2135 */
5ede9289 2136static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2137{
f9b22e35 2138 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2139}
2140
04215330
MW
2141/**
2142 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2143 * Communication Manager.
296ec009
MW
2144 * @device: Device to check
2145 * @port_num: Port number to check
04215330 2146 *
296ec009
MW
2147 * Similar to above, but specific to iWARP connections which have a different
2148 * managment protocol than InfiniBand.
04215330 2149 *
296ec009
MW
2150 * Return: true if the port supports an iWARP CM (this does not guarantee that
2151 * a CM is actually running however).
04215330 2152 */
5ede9289 2153static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2154{
f9b22e35 2155 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2156}
2157
fe53ba2f
MW
2158/**
2159 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2160 * Subnet Administration.
296ec009
MW
2161 * @device: Device to check
2162 * @port_num: Port number to check
fe53ba2f 2163 *
296ec009
MW
2164 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2165 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2166 * fabrics, devices should resolve routes to other hosts by contacting the
2167 * SA to query the proper route.
fe53ba2f 2168 *
296ec009
MW
2169 * Return: true if the port should act as a client to the fabric Subnet
2170 * Administration interface. This does not imply that the SA service is
2171 * running locally.
fe53ba2f 2172 */
5ede9289 2173static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2174{
f9b22e35 2175 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2176}
2177
a31ad3b0
MW
2178/**
2179 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2180 * Multicast.
296ec009
MW
2181 * @device: Device to check
2182 * @port_num: Port number to check
a31ad3b0 2183 *
296ec009
MW
2184 * InfiniBand multicast registration is more complex than normal IPv4 or
2185 * IPv6 multicast registration. Each Host Channel Adapter must register
2186 * with the Subnet Manager when it wishes to join a multicast group. It
2187 * should do so only once regardless of how many queue pairs it subscribes
2188 * to this group. And it should leave the group only after all queue pairs
2189 * attached to the group have been detached.
a31ad3b0 2190 *
296ec009
MW
2191 * Return: true if the port must undertake the additional adminstrative
2192 * overhead of registering/unregistering with the SM and tracking of the
2193 * total number of queue pairs attached to the multicast group.
a31ad3b0 2194 */
5ede9289 2195static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2196{
2197 return rdma_cap_ib_sa(device, port_num);
2198}
2199
30a74ef4
MW
2200/**
2201 * rdma_cap_af_ib - Check if the port of device has the capability
2202 * Native Infiniband Address.
296ec009
MW
2203 * @device: Device to check
2204 * @port_num: Port number to check
30a74ef4 2205 *
296ec009
MW
2206 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2207 * GID. RoCE uses a different mechanism, but still generates a GID via
2208 * a prescribed mechanism and port specific data.
30a74ef4 2209 *
296ec009
MW
2210 * Return: true if the port uses a GID address to identify devices on the
2211 * network.
30a74ef4 2212 */
5ede9289 2213static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2214{
f9b22e35 2215 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2216}
2217
227128fc
MW
2218/**
2219 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2220 * Ethernet Address Handle.
2221 * @device: Device to check
2222 * @port_num: Port number to check
227128fc 2223 *
296ec009
MW
2224 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2225 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2226 * port. Normally, packet headers are generated by the sending host
2227 * adapter, but when sending connectionless datagrams, we must manually
2228 * inject the proper headers for the fabric we are communicating over.
227128fc 2229 *
296ec009
MW
2230 * Return: true if we are running as a RoCE port and must force the
2231 * addition of a Global Route Header built from our Ethernet Address
2232 * Handle into our header list for connectionless packets.
227128fc 2233 */
5ede9289 2234static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2235{
f9b22e35 2236 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2237}
2238
337877a4
IW
2239/**
2240 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2241 *
2242 * @device: Device
2243 * @port_num: Port number
2244 *
2245 * This MAD size includes the MAD headers and MAD payload. No other headers
2246 * are included.
2247 *
2248 * Return the max MAD size required by the Port. Will return 0 if the port
2249 * does not support MADs
2250 */
2251static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2252{
2253 return device->port_immutable[port_num].max_mad_size;
2254}
2255
03db3a2d
MB
2256/**
2257 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2258 * @device: Device to check
2259 * @port_num: Port number to check
2260 *
2261 * RoCE GID table mechanism manages the various GIDs for a device.
2262 *
2263 * NOTE: if allocating the port's GID table has failed, this call will still
2264 * return true, but any RoCE GID table API will fail.
2265 *
2266 * Return: true if the port uses RoCE GID table mechanism in order to manage
2267 * its GIDs.
2268 */
2269static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2270 u8 port_num)
2271{
2272 return rdma_protocol_roce(device, port_num) &&
2273 device->add_gid && device->del_gid;
2274}
2275
1da177e4 2276int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2277 u8 port_num, int index, union ib_gid *gid,
2278 struct ib_gid_attr *attr);
1da177e4
LT
2279
2280int ib_query_pkey(struct ib_device *device,
2281 u8 port_num, u16 index, u16 *pkey);
2282
2283int ib_modify_device(struct ib_device *device,
2284 int device_modify_mask,
2285 struct ib_device_modify *device_modify);
2286
2287int ib_modify_port(struct ib_device *device,
2288 u8 port_num, int port_modify_mask,
2289 struct ib_port_modify *port_modify);
2290
5eb620c8 2291int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2292 enum ib_gid_type gid_type, struct net_device *ndev,
2293 u8 *port_num, u16 *index);
5eb620c8
YE
2294
2295int ib_find_pkey(struct ib_device *device,
2296 u8 port_num, u16 pkey, u16 *index);
2297
1da177e4
LT
2298struct ib_pd *ib_alloc_pd(struct ib_device *device);
2299
7dd78647 2300void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2301
2302/**
2303 * ib_create_ah - Creates an address handle for the given address vector.
2304 * @pd: The protection domain associated with the address handle.
2305 * @ah_attr: The attributes of the address vector.
2306 *
2307 * The address handle is used to reference a local or global destination
2308 * in all UD QP post sends.
2309 */
2310struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2311
4e00d694
SH
2312/**
2313 * ib_init_ah_from_wc - Initializes address handle attributes from a
2314 * work completion.
2315 * @device: Device on which the received message arrived.
2316 * @port_num: Port on which the received message arrived.
2317 * @wc: Work completion associated with the received message.
2318 * @grh: References the received global route header. This parameter is
2319 * ignored unless the work completion indicates that the GRH is valid.
2320 * @ah_attr: Returned attributes that can be used when creating an address
2321 * handle for replying to the message.
2322 */
73cdaaee
IW
2323int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2324 const struct ib_wc *wc, const struct ib_grh *grh,
2325 struct ib_ah_attr *ah_attr);
4e00d694 2326
513789ed
HR
2327/**
2328 * ib_create_ah_from_wc - Creates an address handle associated with the
2329 * sender of the specified work completion.
2330 * @pd: The protection domain associated with the address handle.
2331 * @wc: Work completion information associated with a received message.
2332 * @grh: References the received global route header. This parameter is
2333 * ignored unless the work completion indicates that the GRH is valid.
2334 * @port_num: The outbound port number to associate with the address.
2335 *
2336 * The address handle is used to reference a local or global destination
2337 * in all UD QP post sends.
2338 */
73cdaaee
IW
2339struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2340 const struct ib_grh *grh, u8 port_num);
513789ed 2341
1da177e4
LT
2342/**
2343 * ib_modify_ah - Modifies the address vector associated with an address
2344 * handle.
2345 * @ah: The address handle to modify.
2346 * @ah_attr: The new address vector attributes to associate with the
2347 * address handle.
2348 */
2349int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2350
2351/**
2352 * ib_query_ah - Queries the address vector associated with an address
2353 * handle.
2354 * @ah: The address handle to query.
2355 * @ah_attr: The address vector attributes associated with the address
2356 * handle.
2357 */
2358int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2359
2360/**
2361 * ib_destroy_ah - Destroys an address handle.
2362 * @ah: The address handle to destroy.
2363 */
2364int ib_destroy_ah(struct ib_ah *ah);
2365
d41fcc67
RD
2366/**
2367 * ib_create_srq - Creates a SRQ associated with the specified protection
2368 * domain.
2369 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2370 * @srq_init_attr: A list of initial attributes required to create the
2371 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2372 * the actual capabilities of the created SRQ.
d41fcc67
RD
2373 *
2374 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2375 * requested size of the SRQ, and set to the actual values allocated
2376 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2377 * will always be at least as large as the requested values.
2378 */
2379struct ib_srq *ib_create_srq(struct ib_pd *pd,
2380 struct ib_srq_init_attr *srq_init_attr);
2381
2382/**
2383 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2384 * @srq: The SRQ to modify.
2385 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2386 * the current values of selected SRQ attributes are returned.
2387 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2388 * are being modified.
2389 *
2390 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2391 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2392 * the number of receives queued drops below the limit.
2393 */
2394int ib_modify_srq(struct ib_srq *srq,
2395 struct ib_srq_attr *srq_attr,
2396 enum ib_srq_attr_mask srq_attr_mask);
2397
2398/**
2399 * ib_query_srq - Returns the attribute list and current values for the
2400 * specified SRQ.
2401 * @srq: The SRQ to query.
2402 * @srq_attr: The attributes of the specified SRQ.
2403 */
2404int ib_query_srq(struct ib_srq *srq,
2405 struct ib_srq_attr *srq_attr);
2406
2407/**
2408 * ib_destroy_srq - Destroys the specified SRQ.
2409 * @srq: The SRQ to destroy.
2410 */
2411int ib_destroy_srq(struct ib_srq *srq);
2412
2413/**
2414 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2415 * @srq: The SRQ to post the work request on.
2416 * @recv_wr: A list of work requests to post on the receive queue.
2417 * @bad_recv_wr: On an immediate failure, this parameter will reference
2418 * the work request that failed to be posted on the QP.
2419 */
2420static inline int ib_post_srq_recv(struct ib_srq *srq,
2421 struct ib_recv_wr *recv_wr,
2422 struct ib_recv_wr **bad_recv_wr)
2423{
2424 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2425}
2426
1da177e4
LT
2427/**
2428 * ib_create_qp - Creates a QP associated with the specified protection
2429 * domain.
2430 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2431 * @qp_init_attr: A list of initial attributes required to create the
2432 * QP. If QP creation succeeds, then the attributes are updated to
2433 * the actual capabilities of the created QP.
1da177e4
LT
2434 */
2435struct ib_qp *ib_create_qp(struct ib_pd *pd,
2436 struct ib_qp_init_attr *qp_init_attr);
2437
2438/**
2439 * ib_modify_qp - Modifies the attributes for the specified QP and then
2440 * transitions the QP to the given state.
2441 * @qp: The QP to modify.
2442 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2443 * the current values of selected QP attributes are returned.
2444 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2445 * are being modified.
2446 */
2447int ib_modify_qp(struct ib_qp *qp,
2448 struct ib_qp_attr *qp_attr,
2449 int qp_attr_mask);
2450
2451/**
2452 * ib_query_qp - Returns the attribute list and current values for the
2453 * specified QP.
2454 * @qp: The QP to query.
2455 * @qp_attr: The attributes of the specified QP.
2456 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2457 * @qp_init_attr: Additional attributes of the selected QP.
2458 *
2459 * The qp_attr_mask may be used to limit the query to gathering only the
2460 * selected attributes.
2461 */
2462int ib_query_qp(struct ib_qp *qp,
2463 struct ib_qp_attr *qp_attr,
2464 int qp_attr_mask,
2465 struct ib_qp_init_attr *qp_init_attr);
2466
2467/**
2468 * ib_destroy_qp - Destroys the specified QP.
2469 * @qp: The QP to destroy.
2470 */
2471int ib_destroy_qp(struct ib_qp *qp);
2472
d3d72d90 2473/**
0e0ec7e0
SH
2474 * ib_open_qp - Obtain a reference to an existing sharable QP.
2475 * @xrcd - XRC domain
2476 * @qp_open_attr: Attributes identifying the QP to open.
2477 *
2478 * Returns a reference to a sharable QP.
2479 */
2480struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2481 struct ib_qp_open_attr *qp_open_attr);
2482
2483/**
2484 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2485 * @qp: The QP handle to release
2486 *
0e0ec7e0
SH
2487 * The opened QP handle is released by the caller. The underlying
2488 * shared QP is not destroyed until all internal references are released.
d3d72d90 2489 */
0e0ec7e0 2490int ib_close_qp(struct ib_qp *qp);
d3d72d90 2491
1da177e4
LT
2492/**
2493 * ib_post_send - Posts a list of work requests to the send queue of
2494 * the specified QP.
2495 * @qp: The QP to post the work request on.
2496 * @send_wr: A list of work requests to post on the send queue.
2497 * @bad_send_wr: On an immediate failure, this parameter will reference
2498 * the work request that failed to be posted on the QP.
55464d46
BVA
2499 *
2500 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2501 * error is returned, the QP state shall not be affected,
2502 * ib_post_send() will return an immediate error after queueing any
2503 * earlier work requests in the list.
1da177e4
LT
2504 */
2505static inline int ib_post_send(struct ib_qp *qp,
2506 struct ib_send_wr *send_wr,
2507 struct ib_send_wr **bad_send_wr)
2508{
2509 return qp->device->post_send(qp, send_wr, bad_send_wr);
2510}
2511
2512/**
2513 * ib_post_recv - Posts a list of work requests to the receive queue of
2514 * the specified QP.
2515 * @qp: The QP to post the work request on.
2516 * @recv_wr: A list of work requests to post on the receive queue.
2517 * @bad_recv_wr: On an immediate failure, this parameter will reference
2518 * the work request that failed to be posted on the QP.
2519 */
2520static inline int ib_post_recv(struct ib_qp *qp,
2521 struct ib_recv_wr *recv_wr,
2522 struct ib_recv_wr **bad_recv_wr)
2523{
2524 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2525}
2526
14d3a3b2
CH
2527struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2528 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2529void ib_free_cq(struct ib_cq *cq);
2530int ib_process_cq_direct(struct ib_cq *cq, int budget);
2531
1da177e4
LT
2532/**
2533 * ib_create_cq - Creates a CQ on the specified device.
2534 * @device: The device on which to create the CQ.
2535 * @comp_handler: A user-specified callback that is invoked when a
2536 * completion event occurs on the CQ.
2537 * @event_handler: A user-specified callback that is invoked when an
2538 * asynchronous event not associated with a completion occurs on the CQ.
2539 * @cq_context: Context associated with the CQ returned to the user via
2540 * the associated completion and event handlers.
8e37210b 2541 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2542 *
2543 * Users can examine the cq structure to determine the actual CQ size.
2544 */
2545struct ib_cq *ib_create_cq(struct ib_device *device,
2546 ib_comp_handler comp_handler,
2547 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2548 void *cq_context,
2549 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2550
2551/**
2552 * ib_resize_cq - Modifies the capacity of the CQ.
2553 * @cq: The CQ to resize.
2554 * @cqe: The minimum size of the CQ.
2555 *
2556 * Users can examine the cq structure to determine the actual CQ size.
2557 */
2558int ib_resize_cq(struct ib_cq *cq, int cqe);
2559
2dd57162
EC
2560/**
2561 * ib_modify_cq - Modifies moderation params of the CQ
2562 * @cq: The CQ to modify.
2563 * @cq_count: number of CQEs that will trigger an event
2564 * @cq_period: max period of time in usec before triggering an event
2565 *
2566 */
2567int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2568
1da177e4
LT
2569/**
2570 * ib_destroy_cq - Destroys the specified CQ.
2571 * @cq: The CQ to destroy.
2572 */
2573int ib_destroy_cq(struct ib_cq *cq);
2574
2575/**
2576 * ib_poll_cq - poll a CQ for completion(s)
2577 * @cq:the CQ being polled
2578 * @num_entries:maximum number of completions to return
2579 * @wc:array of at least @num_entries &struct ib_wc where completions
2580 * will be returned
2581 *
2582 * Poll a CQ for (possibly multiple) completions. If the return value
2583 * is < 0, an error occurred. If the return value is >= 0, it is the
2584 * number of completions returned. If the return value is
2585 * non-negative and < num_entries, then the CQ was emptied.
2586 */
2587static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2588 struct ib_wc *wc)
2589{
2590 return cq->device->poll_cq(cq, num_entries, wc);
2591}
2592
2593/**
2594 * ib_peek_cq - Returns the number of unreaped completions currently
2595 * on the specified CQ.
2596 * @cq: The CQ to peek.
2597 * @wc_cnt: A minimum number of unreaped completions to check for.
2598 *
2599 * If the number of unreaped completions is greater than or equal to wc_cnt,
2600 * this function returns wc_cnt, otherwise, it returns the actual number of
2601 * unreaped completions.
2602 */
2603int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2604
2605/**
2606 * ib_req_notify_cq - Request completion notification on a CQ.
2607 * @cq: The CQ to generate an event for.
ed23a727
RD
2608 * @flags:
2609 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2610 * to request an event on the next solicited event or next work
2611 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2612 * may also be |ed in to request a hint about missed events, as
2613 * described below.
2614 *
2615 * Return Value:
2616 * < 0 means an error occurred while requesting notification
2617 * == 0 means notification was requested successfully, and if
2618 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2619 * were missed and it is safe to wait for another event. In
2620 * this case is it guaranteed that any work completions added
2621 * to the CQ since the last CQ poll will trigger a completion
2622 * notification event.
2623 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2624 * in. It means that the consumer must poll the CQ again to
2625 * make sure it is empty to avoid missing an event because of a
2626 * race between requesting notification and an entry being
2627 * added to the CQ. This return value means it is possible
2628 * (but not guaranteed) that a work completion has been added
2629 * to the CQ since the last poll without triggering a
2630 * completion notification event.
1da177e4
LT
2631 */
2632static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2633 enum ib_cq_notify_flags flags)
1da177e4 2634{
ed23a727 2635 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2636}
2637
2638/**
2639 * ib_req_ncomp_notif - Request completion notification when there are
2640 * at least the specified number of unreaped completions on the CQ.
2641 * @cq: The CQ to generate an event for.
2642 * @wc_cnt: The number of unreaped completions that should be on the
2643 * CQ before an event is generated.
2644 */
2645static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2646{
2647 return cq->device->req_ncomp_notif ?
2648 cq->device->req_ncomp_notif(cq, wc_cnt) :
2649 -ENOSYS;
2650}
2651
2652/**
2653 * ib_get_dma_mr - Returns a memory region for system memory that is
2654 * usable for DMA.
2655 * @pd: The protection domain associated with the memory region.
2656 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2657 *
2658 * Note that the ib_dma_*() functions defined below must be used
2659 * to create/destroy addresses used with the Lkey or Rkey returned
2660 * by ib_get_dma_mr().
1da177e4
LT
2661 */
2662struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2663
9b513090
RC
2664/**
2665 * ib_dma_mapping_error - check a DMA addr for error
2666 * @dev: The device for which the dma_addr was created
2667 * @dma_addr: The DMA address to check
2668 */
2669static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2670{
d1998ef3
BC
2671 if (dev->dma_ops)
2672 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2673 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2674}
2675
2676/**
2677 * ib_dma_map_single - Map a kernel virtual address to DMA address
2678 * @dev: The device for which the dma_addr is to be created
2679 * @cpu_addr: The kernel virtual address
2680 * @size: The size of the region in bytes
2681 * @direction: The direction of the DMA
2682 */
2683static inline u64 ib_dma_map_single(struct ib_device *dev,
2684 void *cpu_addr, size_t size,
2685 enum dma_data_direction direction)
2686{
d1998ef3
BC
2687 if (dev->dma_ops)
2688 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2689 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2690}
2691
2692/**
2693 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2694 * @dev: The device for which the DMA address was created
2695 * @addr: The DMA address
2696 * @size: The size of the region in bytes
2697 * @direction: The direction of the DMA
2698 */
2699static inline void ib_dma_unmap_single(struct ib_device *dev,
2700 u64 addr, size_t size,
2701 enum dma_data_direction direction)
2702{
d1998ef3
BC
2703 if (dev->dma_ops)
2704 dev->dma_ops->unmap_single(dev, addr, size, direction);
2705 else
9b513090
RC
2706 dma_unmap_single(dev->dma_device, addr, size, direction);
2707}
2708
cb9fbc5c
AK
2709static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2710 void *cpu_addr, size_t size,
2711 enum dma_data_direction direction,
2712 struct dma_attrs *attrs)
2713{
2714 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2715 direction, attrs);
2716}
2717
2718static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2719 u64 addr, size_t size,
2720 enum dma_data_direction direction,
2721 struct dma_attrs *attrs)
2722{
2723 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2724 direction, attrs);
2725}
2726
9b513090
RC
2727/**
2728 * ib_dma_map_page - Map a physical page to DMA address
2729 * @dev: The device for which the dma_addr is to be created
2730 * @page: The page to be mapped
2731 * @offset: The offset within the page
2732 * @size: The size of the region in bytes
2733 * @direction: The direction of the DMA
2734 */
2735static inline u64 ib_dma_map_page(struct ib_device *dev,
2736 struct page *page,
2737 unsigned long offset,
2738 size_t size,
2739 enum dma_data_direction direction)
2740{
d1998ef3
BC
2741 if (dev->dma_ops)
2742 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2743 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2744}
2745
2746/**
2747 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2748 * @dev: The device for which the DMA address was created
2749 * @addr: The DMA address
2750 * @size: The size of the region in bytes
2751 * @direction: The direction of the DMA
2752 */
2753static inline void ib_dma_unmap_page(struct ib_device *dev,
2754 u64 addr, size_t size,
2755 enum dma_data_direction direction)
2756{
d1998ef3
BC
2757 if (dev->dma_ops)
2758 dev->dma_ops->unmap_page(dev, addr, size, direction);
2759 else
9b513090
RC
2760 dma_unmap_page(dev->dma_device, addr, size, direction);
2761}
2762
2763/**
2764 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2765 * @dev: The device for which the DMA addresses are to be created
2766 * @sg: The array of scatter/gather entries
2767 * @nents: The number of scatter/gather entries
2768 * @direction: The direction of the DMA
2769 */
2770static inline int ib_dma_map_sg(struct ib_device *dev,
2771 struct scatterlist *sg, int nents,
2772 enum dma_data_direction direction)
2773{
d1998ef3
BC
2774 if (dev->dma_ops)
2775 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2776 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2777}
2778
2779/**
2780 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2781 * @dev: The device for which the DMA addresses were created
2782 * @sg: The array of scatter/gather entries
2783 * @nents: The number of scatter/gather entries
2784 * @direction: The direction of the DMA
2785 */
2786static inline void ib_dma_unmap_sg(struct ib_device *dev,
2787 struct scatterlist *sg, int nents,
2788 enum dma_data_direction direction)
2789{
d1998ef3
BC
2790 if (dev->dma_ops)
2791 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2792 else
9b513090
RC
2793 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2794}
2795
cb9fbc5c
AK
2796static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2797 struct scatterlist *sg, int nents,
2798 enum dma_data_direction direction,
2799 struct dma_attrs *attrs)
2800{
2801 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2802}
2803
2804static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2805 struct scatterlist *sg, int nents,
2806 enum dma_data_direction direction,
2807 struct dma_attrs *attrs)
2808{
2809 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2810}
9b513090
RC
2811/**
2812 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2813 * @dev: The device for which the DMA addresses were created
2814 * @sg: The scatter/gather entry
ea58a595
MM
2815 *
2816 * Note: this function is obsolete. To do: change all occurrences of
2817 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2818 */
2819static inline u64 ib_sg_dma_address(struct ib_device *dev,
2820 struct scatterlist *sg)
2821{
d1998ef3 2822 return sg_dma_address(sg);
9b513090
RC
2823}
2824
2825/**
2826 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2827 * @dev: The device for which the DMA addresses were created
2828 * @sg: The scatter/gather entry
ea58a595
MM
2829 *
2830 * Note: this function is obsolete. To do: change all occurrences of
2831 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2832 */
2833static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2834 struct scatterlist *sg)
2835{
d1998ef3 2836 return sg_dma_len(sg);
9b513090
RC
2837}
2838
2839/**
2840 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2841 * @dev: The device for which the DMA address was created
2842 * @addr: The DMA address
2843 * @size: The size of the region in bytes
2844 * @dir: The direction of the DMA
2845 */
2846static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2847 u64 addr,
2848 size_t size,
2849 enum dma_data_direction dir)
2850{
d1998ef3
BC
2851 if (dev->dma_ops)
2852 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2853 else
9b513090
RC
2854 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2855}
2856
2857/**
2858 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2859 * @dev: The device for which the DMA address was created
2860 * @addr: The DMA address
2861 * @size: The size of the region in bytes
2862 * @dir: The direction of the DMA
2863 */
2864static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2865 u64 addr,
2866 size_t size,
2867 enum dma_data_direction dir)
2868{
d1998ef3
BC
2869 if (dev->dma_ops)
2870 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2871 else
9b513090
RC
2872 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2873}
2874
2875/**
2876 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2877 * @dev: The device for which the DMA address is requested
2878 * @size: The size of the region to allocate in bytes
2879 * @dma_handle: A pointer for returning the DMA address of the region
2880 * @flag: memory allocator flags
2881 */
2882static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2883 size_t size,
2884 u64 *dma_handle,
2885 gfp_t flag)
2886{
d1998ef3
BC
2887 if (dev->dma_ops)
2888 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2889 else {
2890 dma_addr_t handle;
2891 void *ret;
2892
2893 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2894 *dma_handle = handle;
2895 return ret;
2896 }
9b513090
RC
2897}
2898
2899/**
2900 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2901 * @dev: The device for which the DMA addresses were allocated
2902 * @size: The size of the region
2903 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2904 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2905 */
2906static inline void ib_dma_free_coherent(struct ib_device *dev,
2907 size_t size, void *cpu_addr,
2908 u64 dma_handle)
2909{
d1998ef3
BC
2910 if (dev->dma_ops)
2911 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2912 else
9b513090
RC
2913 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2914}
2915
1da177e4
LT
2916/**
2917 * ib_dereg_mr - Deregisters a memory region and removes it from the
2918 * HCA translation table.
2919 * @mr: The memory region to deregister.
7083e42e
SM
2920 *
2921 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2922 */
2923int ib_dereg_mr(struct ib_mr *mr);
2924
9bee178b
SG
2925struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2926 enum ib_mr_type mr_type,
2927 u32 max_num_sg);
00f7ec36 2928
00f7ec36
SW
2929/**
2930 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2931 * R_Key and L_Key.
2932 * @mr - struct ib_mr pointer to be updated.
2933 * @newkey - new key to be used.
2934 */
2935static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2936{
2937 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2938 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2939}
2940
7083e42e
SM
2941/**
2942 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2943 * for calculating a new rkey for type 2 memory windows.
2944 * @rkey - the rkey to increment.
2945 */
2946static inline u32 ib_inc_rkey(u32 rkey)
2947{
2948 const u32 mask = 0x000000ff;
2949 return ((rkey + 1) & mask) | (rkey & ~mask);
2950}
2951
1da177e4
LT
2952/**
2953 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2954 * @pd: The protection domain associated with the unmapped region.
2955 * @mr_access_flags: Specifies the memory access rights.
2956 * @fmr_attr: Attributes of the unmapped region.
2957 *
2958 * A fast memory region must be mapped before it can be used as part of
2959 * a work request.
2960 */
2961struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2962 int mr_access_flags,
2963 struct ib_fmr_attr *fmr_attr);
2964
2965/**
2966 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2967 * @fmr: The fast memory region to associate with the pages.
2968 * @page_list: An array of physical pages to map to the fast memory region.
2969 * @list_len: The number of pages in page_list.
2970 * @iova: The I/O virtual address to use with the mapped region.
2971 */
2972static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2973 u64 *page_list, int list_len,
2974 u64 iova)
2975{
2976 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2977}
2978
2979/**
2980 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2981 * @fmr_list: A linked list of fast memory regions to unmap.
2982 */
2983int ib_unmap_fmr(struct list_head *fmr_list);
2984
2985/**
2986 * ib_dealloc_fmr - Deallocates a fast memory region.
2987 * @fmr: The fast memory region to deallocate.
2988 */
2989int ib_dealloc_fmr(struct ib_fmr *fmr);
2990
2991/**
2992 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2993 * @qp: QP to attach to the multicast group. The QP must be type
2994 * IB_QPT_UD.
2995 * @gid: Multicast group GID.
2996 * @lid: Multicast group LID in host byte order.
2997 *
2998 * In order to send and receive multicast packets, subnet
2999 * administration must have created the multicast group and configured
3000 * the fabric appropriately. The port associated with the specified
3001 * QP must also be a member of the multicast group.
3002 */
3003int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3004
3005/**
3006 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3007 * @qp: QP to detach from the multicast group.
3008 * @gid: Multicast group GID.
3009 * @lid: Multicast group LID in host byte order.
3010 */
3011int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3012
59991f94
SH
3013/**
3014 * ib_alloc_xrcd - Allocates an XRC domain.
3015 * @device: The device on which to allocate the XRC domain.
3016 */
3017struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3018
3019/**
3020 * ib_dealloc_xrcd - Deallocates an XRC domain.
3021 * @xrcd: The XRC domain to deallocate.
3022 */
3023int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3024
319a441d
HHZ
3025struct ib_flow *ib_create_flow(struct ib_qp *qp,
3026 struct ib_flow_attr *flow_attr, int domain);
3027int ib_destroy_flow(struct ib_flow *flow_id);
3028
1c636f80
EC
3029static inline int ib_check_mr_access(int flags)
3030{
3031 /*
3032 * Local write permission is required if remote write or
3033 * remote atomic permission is also requested.
3034 */
3035 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3036 !(flags & IB_ACCESS_LOCAL_WRITE))
3037 return -EINVAL;
3038
3039 return 0;
3040}
3041
1b01d335
SG
3042/**
3043 * ib_check_mr_status: lightweight check of MR status.
3044 * This routine may provide status checks on a selected
3045 * ib_mr. first use is for signature status check.
3046 *
3047 * @mr: A memory region.
3048 * @check_mask: Bitmask of which checks to perform from
3049 * ib_mr_status_check enumeration.
3050 * @mr_status: The container of relevant status checks.
3051 * failed checks will be indicated in the status bitmask
3052 * and the relevant info shall be in the error item.
3053 */
3054int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3055 struct ib_mr_status *mr_status);
3056
9268f72d
YK
3057struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3058 u16 pkey, const union ib_gid *gid,
3059 const struct sockaddr *addr);
3060
4c67e2bf
SG
3061int ib_map_mr_sg(struct ib_mr *mr,
3062 struct scatterlist *sg,
3063 int sg_nents,
3064 unsigned int page_size);
3065
3066static inline int
3067ib_map_mr_sg_zbva(struct ib_mr *mr,
3068 struct scatterlist *sg,
3069 int sg_nents,
3070 unsigned int page_size)
3071{
3072 int n;
3073
3074 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3075 mr->iova = 0;
3076
3077 return n;
3078}
3079
3080int ib_sg_to_pages(struct ib_mr *mr,
3081 struct scatterlist *sgl,
3082 int sg_nents,
3083 int (*set_page)(struct ib_mr *, u64));
3084
1da177e4 3085#endif /* IB_VERBS_H */