]> git.proxmox.com Git - mirror_iproute2.git/blame - include/uapi/linux/bpf.h
bridge: add support for isolated option
[mirror_iproute2.git] / include / uapi / linux / bpf.h
CommitLineData
ba914908 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
b54ac87e
DB
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef __LINUX_BPF_H__
9#define __LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_ALU64 0x07 /* alu mode in double word width */
18
19/* ld/ldx fields */
07ed8df6 20#define BPF_DW 0x18 /* double word (64-bit) */
b54ac87e
DB
21#define BPF_XADD 0xc0 /* exclusive add */
22
23/* alu/jmp fields */
24#define BPF_MOV 0xb0 /* mov reg to reg */
25#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
26
27/* change endianness of a register */
28#define BPF_END 0xd0 /* flags for endianness conversion: */
29#define BPF_TO_LE 0x00 /* convert to little-endian */
30#define BPF_TO_BE 0x08 /* convert to big-endian */
31#define BPF_FROM_LE BPF_TO_LE
32#define BPF_FROM_BE BPF_TO_BE
33
3af3d358 34/* jmp encodings */
b54ac87e 35#define BPF_JNE 0x50 /* jump != */
3af3d358
SH
36#define BPF_JLT 0xa0 /* LT is unsigned, '<' */
37#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
b54ac87e
DB
38#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
39#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
3af3d358
SH
40#define BPF_JSLT 0xc0 /* SLT is signed, '<' */
41#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
b54ac87e
DB
42#define BPF_CALL 0x80 /* function call */
43#define BPF_EXIT 0x90 /* function return */
44
45/* Register numbers */
46enum {
47 BPF_REG_0 = 0,
48 BPF_REG_1,
49 BPF_REG_2,
50 BPF_REG_3,
51 BPF_REG_4,
52 BPF_REG_5,
53 BPF_REG_6,
54 BPF_REG_7,
55 BPF_REG_8,
56 BPF_REG_9,
57 BPF_REG_10,
58 __MAX_BPF_REG,
59};
60
61/* BPF has 10 general purpose 64-bit registers and stack frame. */
62#define MAX_BPF_REG __MAX_BPF_REG
63
64struct bpf_insn {
65 __u8 code; /* opcode */
66 __u8 dst_reg:4; /* dest register */
67 __u8 src_reg:4; /* source register */
68 __s16 off; /* signed offset */
69 __s32 imm; /* signed immediate constant */
70};
71
b479a7d7
SH
72/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
73struct bpf_lpm_trie_key {
74 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
75 __u8 data[0]; /* Arbitrary size */
76};
77
0198930b 78/* BPF syscall commands, see bpf(2) man-page for details. */
b54ac87e 79enum bpf_cmd {
b54ac87e 80 BPF_MAP_CREATE,
b54ac87e 81 BPF_MAP_LOOKUP_ELEM,
b54ac87e 82 BPF_MAP_UPDATE_ELEM,
b54ac87e 83 BPF_MAP_DELETE_ELEM,
b54ac87e 84 BPF_MAP_GET_NEXT_KEY,
b54ac87e 85 BPF_PROG_LOAD,
0198930b
SH
86 BPF_OBJ_PIN,
87 BPF_OBJ_GET,
1a97748b
SH
88 BPF_PROG_ATTACH,
89 BPF_PROG_DETACH,
45f78b4d 90 BPF_PROG_TEST_RUN,
410556ad
SH
91 BPF_PROG_GET_NEXT_ID,
92 BPF_MAP_GET_NEXT_ID,
93 BPF_PROG_GET_FD_BY_ID,
94 BPF_MAP_GET_FD_BY_ID,
95 BPF_OBJ_GET_INFO_BY_FD,
f53da99a 96 BPF_PROG_QUERY,
dcf7997b 97 BPF_RAW_TRACEPOINT_OPEN,
fd95ec0e 98 BPF_BTF_LOAD,
4276e652 99 BPF_BTF_GET_FD_BY_ID,
57ac202c 100 BPF_TASK_FD_QUERY,
b54ac87e
DB
101};
102
103enum bpf_map_type {
104 BPF_MAP_TYPE_UNSPEC,
105 BPF_MAP_TYPE_HASH,
106 BPF_MAP_TYPE_ARRAY,
8f42ceaf 107 BPF_MAP_TYPE_PROG_ARRAY,
4f3489cd 108 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
8593b2ca
SH
109 BPF_MAP_TYPE_PERCPU_HASH,
110 BPF_MAP_TYPE_PERCPU_ARRAY,
2421ab75 111 BPF_MAP_TYPE_STACK_TRACE,
4824bb41 112 BPF_MAP_TYPE_CGROUP_ARRAY,
1a97748b
SH
113 BPF_MAP_TYPE_LRU_HASH,
114 BPF_MAP_TYPE_LRU_PERCPU_HASH,
b479a7d7 115 BPF_MAP_TYPE_LPM_TRIE,
45f78b4d
SH
116 BPF_MAP_TYPE_ARRAY_OF_MAPS,
117 BPF_MAP_TYPE_HASH_OF_MAPS,
f0b9b795 118 BPF_MAP_TYPE_DEVMAP,
18d7817c 119 BPF_MAP_TYPE_SOCKMAP,
fa19d6bc 120 BPF_MAP_TYPE_CPUMAP,
fd95ec0e 121 BPF_MAP_TYPE_XSKMAP,
4276e652 122 BPF_MAP_TYPE_SOCKHASH,
b54ac87e
DB
123};
124
125enum bpf_prog_type {
126 BPF_PROG_TYPE_UNSPEC,
127 BPF_PROG_TYPE_SOCKET_FILTER,
aeedd8e1 128 BPF_PROG_TYPE_KPROBE,
b54ac87e 129 BPF_PROG_TYPE_SCHED_CLS,
cbdc3ed8 130 BPF_PROG_TYPE_SCHED_ACT,
bc9fb257 131 BPF_PROG_TYPE_TRACEPOINT,
ba91cd9d 132 BPF_PROG_TYPE_XDP,
e8a67bc4 133 BPF_PROG_TYPE_PERF_EVENT,
1a97748b 134 BPF_PROG_TYPE_CGROUP_SKB,
143a704b
SH
135 BPF_PROG_TYPE_CGROUP_SOCK,
136 BPF_PROG_TYPE_LWT_IN,
137 BPF_PROG_TYPE_LWT_OUT,
138 BPF_PROG_TYPE_LWT_XMIT,
f0b9b795 139 BPF_PROG_TYPE_SOCK_OPS,
18d7817c 140 BPF_PROG_TYPE_SK_SKB,
665ef5a5 141 BPF_PROG_TYPE_CGROUP_DEVICE,
9effc146 142 BPF_PROG_TYPE_SK_MSG,
dcf7997b
SH
143 BPF_PROG_TYPE_RAW_TRACEPOINT,
144 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
57ac202c 145 BPF_PROG_TYPE_LWT_SEG6LOCAL,
17678d30 146 BPF_PROG_TYPE_LIRC_MODE2,
b54ac87e
DB
147};
148
1a97748b
SH
149enum bpf_attach_type {
150 BPF_CGROUP_INET_INGRESS,
151 BPF_CGROUP_INET_EGRESS,
143a704b 152 BPF_CGROUP_INET_SOCK_CREATE,
f0b9b795 153 BPF_CGROUP_SOCK_OPS,
8707fd8c
SH
154 BPF_SK_SKB_STREAM_PARSER,
155 BPF_SK_SKB_STREAM_VERDICT,
665ef5a5 156 BPF_CGROUP_DEVICE,
9effc146 157 BPF_SK_MSG_VERDICT,
dcf7997b
SH
158 BPF_CGROUP_INET4_BIND,
159 BPF_CGROUP_INET6_BIND,
160 BPF_CGROUP_INET4_CONNECT,
161 BPF_CGROUP_INET6_CONNECT,
162 BPF_CGROUP_INET4_POST_BIND,
163 BPF_CGROUP_INET6_POST_BIND,
17678d30
SH
164 BPF_CGROUP_UDP4_SENDMSG,
165 BPF_CGROUP_UDP6_SENDMSG,
166 BPF_LIRC_MODE2,
1a97748b
SH
167 __MAX_BPF_ATTACH_TYPE
168};
169
170#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
171
f53da99a
SH
172/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
173 *
174 * NONE(default): No further bpf programs allowed in the subtree.
175 *
176 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
177 * the program in this cgroup yields to sub-cgroup program.
178 *
179 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
180 * that cgroup program gets run in addition to the program in this cgroup.
181 *
182 * Only one program is allowed to be attached to a cgroup with
183 * NONE or BPF_F_ALLOW_OVERRIDE flag.
184 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
185 * release old program and attach the new one. Attach flags has to match.
186 *
187 * Multiple programs are allowed to be attached to a cgroup with
188 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
189 * (those that were attached first, run first)
190 * The programs of sub-cgroup are executed first, then programs of
191 * this cgroup and then programs of parent cgroup.
192 * When children program makes decision (like picking TCP CA or sock bind)
193 * parent program has a chance to override it.
194 *
195 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
196 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
197 * Ex1:
198 * cgrp1 (MULTI progs A, B) ->
199 * cgrp2 (OVERRIDE prog C) ->
200 * cgrp3 (MULTI prog D) ->
201 * cgrp4 (OVERRIDE prog E) ->
202 * cgrp5 (NONE prog F)
203 * the event in cgrp5 triggers execution of F,D,A,B in that order.
204 * if prog F is detached, the execution is E,D,A,B
205 * if prog F and D are detached, the execution is E,A,B
206 * if prog F, E and D are detached, the execution is C,A,B
207 *
208 * All eligible programs are executed regardless of return code from
209 * earlier programs.
cad54934
SH
210 */
211#define BPF_F_ALLOW_OVERRIDE (1U << 0)
f53da99a 212#define BPF_F_ALLOW_MULTI (1U << 1)
cad54934 213
a2325adf
SH
214/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
215 * verifier will perform strict alignment checking as if the kernel
216 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
217 * and NET_IP_ALIGN defined to 2.
218 */
219#define BPF_F_STRICT_ALIGNMENT (1U << 0)
220
f82517f8 221/* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
b54ac87e
DB
222#define BPF_PSEUDO_MAP_FD 1
223
f82517f8
DA
224/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
225 * offset to another bpf function
226 */
227#define BPF_PSEUDO_CALL 1
228
b54ac87e
DB
229/* flags for BPF_MAP_UPDATE_ELEM command */
230#define BPF_ANY 0 /* create new element or update existing */
231#define BPF_NOEXIST 1 /* create new element if it didn't exist */
232#define BPF_EXIST 2 /* update existing element */
233
18d7817c 234/* flags for BPF_MAP_CREATE command */
b7e0091a 235#define BPF_F_NO_PREALLOC (1U << 0)
1a97748b
SH
236/* Instead of having one common LRU list in the
237 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
238 * which can scale and perform better.
239 * Note, the LRU nodes (including free nodes) cannot be moved
240 * across different LRU lists.
241 */
242#define BPF_F_NO_COMMON_LRU (1U << 1)
18d7817c
SH
243/* Specify numa node during map creation */
244#define BPF_F_NUMA_NODE (1U << 2)
b7e0091a 245
f53da99a
SH
246/* flags for BPF_PROG_QUERY */
247#define BPF_F_QUERY_EFFECTIVE (1U << 0)
248
1db903de
SH
249#define BPF_OBJ_NAME_LEN 16U
250
fa19d6bc
SH
251/* Flags for accessing BPF object */
252#define BPF_F_RDONLY (1U << 3)
253#define BPF_F_WRONLY (1U << 4)
254
9effc146
DA
255/* Flag for stack_map, store build_id+offset instead of pointer */
256#define BPF_F_STACK_BUILD_ID (1U << 5)
257
258enum bpf_stack_build_id_status {
259 /* user space need an empty entry to identify end of a trace */
260 BPF_STACK_BUILD_ID_EMPTY = 0,
261 /* with valid build_id and offset */
262 BPF_STACK_BUILD_ID_VALID = 1,
263 /* couldn't get build_id, fallback to ip */
264 BPF_STACK_BUILD_ID_IP = 2,
265};
266
267#define BPF_BUILD_ID_SIZE 20
268struct bpf_stack_build_id {
269 __s32 status;
270 unsigned char build_id[BPF_BUILD_ID_SIZE];
271 union {
272 __u64 offset;
273 __u64 ip;
274 };
275};
276
b54ac87e
DB
277union bpf_attr {
278 struct { /* anonymous struct used by BPF_MAP_CREATE command */
279 __u32 map_type; /* one of enum bpf_map_type */
280 __u32 key_size; /* size of key in bytes */
281 __u32 value_size; /* size of value in bytes */
282 __u32 max_entries; /* max number of entries in a map */
18d7817c
SH
283 __u32 map_flags; /* BPF_MAP_CREATE related
284 * flags defined above.
285 */
45f78b4d 286 __u32 inner_map_fd; /* fd pointing to the inner map */
18d7817c
SH
287 __u32 numa_node; /* numa node (effective only if
288 * BPF_F_NUMA_NODE is set).
289 */
f53da99a 290 char map_name[BPF_OBJ_NAME_LEN];
c0788a09 291 __u32 map_ifindex; /* ifindex of netdev to create on */
fd95ec0e 292 __u32 btf_fd; /* fd pointing to a BTF type data */
57ac202c
DA
293 __u32 btf_key_type_id; /* BTF type_id of the key */
294 __u32 btf_value_type_id; /* BTF type_id of the value */
b54ac87e
DB
295 };
296
297 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
298 __u32 map_fd;
299 __aligned_u64 key;
300 union {
301 __aligned_u64 value;
302 __aligned_u64 next_key;
303 };
304 __u64 flags;
305 };
306
307 struct { /* anonymous struct used by BPF_PROG_LOAD command */
308 __u32 prog_type; /* one of enum bpf_prog_type */
309 __u32 insn_cnt;
310 __aligned_u64 insns;
311 __aligned_u64 license;
312 __u32 log_level; /* verbosity level of verifier */
313 __u32 log_size; /* size of user buffer */
314 __aligned_u64 log_buf; /* user supplied buffer */
aeedd8e1 315 __u32 kern_version; /* checked when prog_type=kprobe */
a2325adf 316 __u32 prog_flags;
f53da99a 317 char prog_name[BPF_OBJ_NAME_LEN];
b38778bb 318 __u32 prog_ifindex; /* ifindex of netdev to prep for */
dcf7997b
SH
319 /* For some prog types expected attach type must be known at
320 * load time to verify attach type specific parts of prog
321 * (context accesses, allowed helpers, etc).
322 */
323 __u32 expected_attach_type;
b54ac87e 324 };
0198930b
SH
325
326 struct { /* anonymous struct used by BPF_OBJ_* commands */
327 __aligned_u64 pathname;
328 __u32 bpf_fd;
fa19d6bc 329 __u32 file_flags;
0198930b 330 };
1a97748b
SH
331
332 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
333 __u32 target_fd; /* container object to attach to */
334 __u32 attach_bpf_fd; /* eBPF program to attach */
335 __u32 attach_type;
cad54934 336 __u32 attach_flags;
1a97748b 337 };
45f78b4d
SH
338
339 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
340 __u32 prog_fd;
341 __u32 retval;
342 __u32 data_size_in;
343 __u32 data_size_out;
344 __aligned_u64 data_in;
345 __aligned_u64 data_out;
346 __u32 repeat;
347 __u32 duration;
348 } test;
410556ad
SH
349
350 struct { /* anonymous struct used by BPF_*_GET_*_ID */
351 union {
352 __u32 start_id;
353 __u32 prog_id;
354 __u32 map_id;
4276e652 355 __u32 btf_id;
410556ad
SH
356 };
357 __u32 next_id;
fa19d6bc 358 __u32 open_flags;
410556ad
SH
359 };
360
361 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
362 __u32 bpf_fd;
363 __u32 info_len;
364 __aligned_u64 info;
365 } info;
f53da99a
SH
366
367 struct { /* anonymous struct used by BPF_PROG_QUERY command */
368 __u32 target_fd; /* container object to query */
369 __u32 attach_type;
370 __u32 query_flags;
371 __u32 attach_flags;
372 __aligned_u64 prog_ids;
373 __u32 prog_cnt;
374 } query;
dcf7997b
SH
375
376 struct {
377 __u64 name;
378 __u32 prog_fd;
379 } raw_tracepoint;
fd95ec0e
DA
380
381 struct { /* anonymous struct for BPF_BTF_LOAD */
382 __aligned_u64 btf;
383 __aligned_u64 btf_log_buf;
384 __u32 btf_size;
385 __u32 btf_log_size;
386 __u32 btf_log_level;
387 };
57ac202c
DA
388
389 struct {
390 __u32 pid; /* input: pid */
391 __u32 fd; /* input: fd */
392 __u32 flags; /* input: flags */
393 __u32 buf_len; /* input/output: buf len */
394 __aligned_u64 buf; /* input/output:
395 * tp_name for tracepoint
396 * symbol for kprobe
397 * filename for uprobe
398 */
399 __u32 prog_id; /* output: prod_id */
400 __u32 fd_type; /* output: BPF_FD_TYPE_* */
401 __u64 probe_offset; /* output: probe_offset */
402 __u64 probe_addr; /* output: probe_addr */
403 } task_fd_query;
b54ac87e
DB
404} __attribute__((aligned(8)));
405
fd95ec0e
DA
406/* The description below is an attempt at providing documentation to eBPF
407 * developers about the multiple available eBPF helper functions. It can be
408 * parsed and used to produce a manual page. The workflow is the following,
409 * and requires the rst2man utility:
410 *
411 * $ ./scripts/bpf_helpers_doc.py \
412 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
413 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
414 * $ man /tmp/bpf-helpers.7
415 *
416 * Note that in order to produce this external documentation, some RST
417 * formatting is used in the descriptions to get "bold" and "italics" in
418 * manual pages. Also note that the few trailing white spaces are
419 * intentional, removing them would break paragraphs for rst2man.
420 *
421 * Start of BPF helper function descriptions:
422 *
423 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
424 * Description
425 * Perform a lookup in *map* for an entry associated to *key*.
426 * Return
427 * Map value associated to *key*, or **NULL** if no entry was
428 * found.
429 *
430 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
431 * Description
432 * Add or update the value of the entry associated to *key* in
433 * *map* with *value*. *flags* is one of:
434 *
435 * **BPF_NOEXIST**
436 * The entry for *key* must not exist in the map.
437 * **BPF_EXIST**
438 * The entry for *key* must already exist in the map.
439 * **BPF_ANY**
440 * No condition on the existence of the entry for *key*.
441 *
442 * Flag value **BPF_NOEXIST** cannot be used for maps of types
443 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
444 * elements always exist), the helper would return an error.
445 * Return
446 * 0 on success, or a negative error in case of failure.
447 *
448 * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
449 * Description
450 * Delete entry with *key* from *map*.
451 * Return
452 * 0 on success, or a negative error in case of failure.
453 *
454 * int bpf_probe_read(void *dst, u32 size, const void *src)
455 * Description
456 * For tracing programs, safely attempt to read *size* bytes from
457 * address *src* and store the data in *dst*.
458 * Return
459 * 0 on success, or a negative error in case of failure.
1a97748b
SH
460 *
461 * u64 bpf_ktime_get_ns(void)
fd95ec0e
DA
462 * Description
463 * Return the time elapsed since system boot, in nanoseconds.
464 * Return
465 * Current *ktime*.
466 *
467 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
468 * Description
469 * This helper is a "printk()-like" facility for debugging. It
470 * prints a message defined by format *fmt* (of size *fmt_size*)
471 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
472 * available. It can take up to three additional **u64**
473 * arguments (as an eBPF helpers, the total number of arguments is
474 * limited to five).
475 *
476 * Each time the helper is called, it appends a line to the trace.
477 * The format of the trace is customizable, and the exact output
478 * one will get depends on the options set in
479 * *\/sys/kernel/debug/tracing/trace_options* (see also the
480 * *README* file under the same directory). However, it usually
481 * defaults to something like:
482 *
483 * ::
484 *
485 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
486 *
487 * In the above:
488 *
489 * * ``telnet`` is the name of the current task.
490 * * ``470`` is the PID of the current task.
491 * * ``001`` is the CPU number on which the task is
492 * running.
493 * * In ``.N..``, each character refers to a set of
494 * options (whether irqs are enabled, scheduling
495 * options, whether hard/softirqs are running, level of
496 * preempt_disabled respectively). **N** means that
497 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
498 * are set.
499 * * ``419421.045894`` is a timestamp.
500 * * ``0x00000001`` is a fake value used by BPF for the
501 * instruction pointer register.
502 * * ``<formatted msg>`` is the message formatted with
503 * *fmt*.
504 *
505 * The conversion specifiers supported by *fmt* are similar, but
506 * more limited than for printk(). They are **%d**, **%i**,
507 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
508 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
509 * of field, padding with zeroes, etc.) is available, and the
510 * helper will return **-EINVAL** (but print nothing) if it
511 * encounters an unknown specifier.
512 *
513 * Also, note that **bpf_trace_printk**\ () is slow, and should
514 * only be used for debugging purposes. For this reason, a notice
515 * bloc (spanning several lines) is printed to kernel logs and
516 * states that the helper should not be used "for production use"
517 * the first time this helper is used (or more precisely, when
518 * **trace_printk**\ () buffers are allocated). For passing values
519 * to user space, perf events should be preferred.
520 * Return
521 * The number of bytes written to the buffer, or a negative error
522 * in case of failure.
523 *
524 * u32 bpf_get_prandom_u32(void)
525 * Description
526 * Get a pseudo-random number.
527 *
528 * From a security point of view, this helper uses its own
529 * pseudo-random internal state, and cannot be used to infer the
530 * seed of other random functions in the kernel. However, it is
531 * essential to note that the generator used by the helper is not
532 * cryptographically secure.
533 * Return
534 * A random 32-bit unsigned value.
535 *
536 * u32 bpf_get_smp_processor_id(void)
537 * Description
538 * Get the SMP (symmetric multiprocessing) processor id. Note that
539 * all programs run with preemption disabled, which means that the
540 * SMP processor id is stable during all the execution of the
541 * program.
542 * Return
543 * The SMP id of the processor running the program.
544 *
545 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
546 * Description
547 * Store *len* bytes from address *from* into the packet
548 * associated to *skb*, at *offset*. *flags* are a combination of
549 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
550 * checksum for the packet after storing the bytes) and
551 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
552 * **->swhash** and *skb*\ **->l4hash** to 0).
553 *
554 * A call to this helper is susceptible to change the underlaying
555 * packet buffer. Therefore, at load time, all checks on pointers
556 * previously done by the verifier are invalidated and must be
557 * performed again, if the helper is used in combination with
558 * direct packet access.
559 * Return
560 * 0 on success, or a negative error in case of failure.
561 *
562 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
563 * Description
564 * Recompute the layer 3 (e.g. IP) checksum for the packet
565 * associated to *skb*. Computation is incremental, so the helper
566 * must know the former value of the header field that was
567 * modified (*from*), the new value of this field (*to*), and the
568 * number of bytes (2 or 4) for this field, stored in *size*.
569 * Alternatively, it is possible to store the difference between
570 * the previous and the new values of the header field in *to*, by
571 * setting *from* and *size* to 0. For both methods, *offset*
572 * indicates the location of the IP checksum within the packet.
573 *
574 * This helper works in combination with **bpf_csum_diff**\ (),
575 * which does not update the checksum in-place, but offers more
576 * flexibility and can handle sizes larger than 2 or 4 for the
577 * checksum to update.
578 *
579 * A call to this helper is susceptible to change the underlaying
580 * packet buffer. Therefore, at load time, all checks on pointers
581 * previously done by the verifier are invalidated and must be
582 * performed again, if the helper is used in combination with
583 * direct packet access.
584 * Return
585 * 0 on success, or a negative error in case of failure.
586 *
587 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
588 * Description
589 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
590 * packet associated to *skb*. Computation is incremental, so the
591 * helper must know the former value of the header field that was
592 * modified (*from*), the new value of this field (*to*), and the
593 * number of bytes (2 or 4) for this field, stored on the lowest
594 * four bits of *flags*. Alternatively, it is possible to store
595 * the difference between the previous and the new values of the
596 * header field in *to*, by setting *from* and the four lowest
597 * bits of *flags* to 0. For both methods, *offset* indicates the
598 * location of the IP checksum within the packet. In addition to
599 * the size of the field, *flags* can be added (bitwise OR) actual
600 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
601 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
602 * for updates resulting in a null checksum the value is set to
603 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
604 * the checksum is to be computed against a pseudo-header.
605 *
606 * This helper works in combination with **bpf_csum_diff**\ (),
607 * which does not update the checksum in-place, but offers more
608 * flexibility and can handle sizes larger than 2 or 4 for the
609 * checksum to update.
610 *
611 * A call to this helper is susceptible to change the underlaying
612 * packet buffer. Therefore, at load time, all checks on pointers
613 * previously done by the verifier are invalidated and must be
614 * performed again, if the helper is used in combination with
615 * direct packet access.
616 * Return
617 * 0 on success, or a negative error in case of failure.
618 *
619 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
620 * Description
621 * This special helper is used to trigger a "tail call", or in
622 * other words, to jump into another eBPF program. The same stack
623 * frame is used (but values on stack and in registers for the
624 * caller are not accessible to the callee). This mechanism allows
625 * for program chaining, either for raising the maximum number of
626 * available eBPF instructions, or to execute given programs in
627 * conditional blocks. For security reasons, there is an upper
628 * limit to the number of successive tail calls that can be
629 * performed.
630 *
631 * Upon call of this helper, the program attempts to jump into a
632 * program referenced at index *index* in *prog_array_map*, a
633 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
634 * *ctx*, a pointer to the context.
635 *
636 * If the call succeeds, the kernel immediately runs the first
637 * instruction of the new program. This is not a function call,
638 * and it never returns to the previous program. If the call
639 * fails, then the helper has no effect, and the caller continues
640 * to run its subsequent instructions. A call can fail if the
641 * destination program for the jump does not exist (i.e. *index*
642 * is superior to the number of entries in *prog_array_map*), or
643 * if the maximum number of tail calls has been reached for this
644 * chain of programs. This limit is defined in the kernel by the
645 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
646 * which is currently set to 32.
647 * Return
648 * 0 on success, or a negative error in case of failure.
649 *
650 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
651 * Description
652 * Clone and redirect the packet associated to *skb* to another
653 * net device of index *ifindex*. Both ingress and egress
654 * interfaces can be used for redirection. The **BPF_F_INGRESS**
655 * value in *flags* is used to make the distinction (ingress path
656 * is selected if the flag is present, egress path otherwise).
657 * This is the only flag supported for now.
658 *
659 * In comparison with **bpf_redirect**\ () helper,
660 * **bpf_clone_redirect**\ () has the associated cost of
661 * duplicating the packet buffer, but this can be executed out of
662 * the eBPF program. Conversely, **bpf_redirect**\ () is more
663 * efficient, but it is handled through an action code where the
664 * redirection happens only after the eBPF program has returned.
665 *
666 * A call to this helper is susceptible to change the underlaying
667 * packet buffer. Therefore, at load time, all checks on pointers
668 * previously done by the verifier are invalidated and must be
669 * performed again, if the helper is used in combination with
670 * direct packet access.
671 * Return
672 * 0 on success, or a negative error in case of failure.
1a97748b
SH
673 *
674 * u64 bpf_get_current_pid_tgid(void)
fd95ec0e
DA
675 * Return
676 * A 64-bit integer containing the current tgid and pid, and
677 * created as such:
678 * *current_task*\ **->tgid << 32 \|**
679 * *current_task*\ **->pid**.
1a97748b
SH
680 *
681 * u64 bpf_get_current_uid_gid(void)
fd95ec0e
DA
682 * Return
683 * A 64-bit integer containing the current GID and UID, and
684 * created as such: *current_gid* **<< 32 \|** *current_uid*.
685 *
686 * int bpf_get_current_comm(char *buf, u32 size_of_buf)
687 * Description
688 * Copy the **comm** attribute of the current task into *buf* of
689 * *size_of_buf*. The **comm** attribute contains the name of
690 * the executable (excluding the path) for the current task. The
691 * *size_of_buf* must be strictly positive. On success, the
692 * helper makes sure that the *buf* is NUL-terminated. On failure,
693 * it is filled with zeroes.
694 * Return
695 * 0 on success, or a negative error in case of failure.
696 *
697 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
698 * Description
699 * Retrieve the classid for the current task, i.e. for the net_cls
700 * cgroup to which *skb* belongs.
701 *
702 * This helper can be used on TC egress path, but not on ingress.
703 *
704 * The net_cls cgroup provides an interface to tag network packets
705 * based on a user-provided identifier for all traffic coming from
706 * the tasks belonging to the related cgroup. See also the related
707 * kernel documentation, available from the Linux sources in file
708 * *Documentation/cgroup-v1/net_cls.txt*.
709 *
710 * The Linux kernel has two versions for cgroups: there are
711 * cgroups v1 and cgroups v2. Both are available to users, who can
712 * use a mixture of them, but note that the net_cls cgroup is for
713 * cgroup v1 only. This makes it incompatible with BPF programs
714 * run on cgroups, which is a cgroup-v2-only feature (a socket can
715 * only hold data for one version of cgroups at a time).
716 *
717 * This helper is only available is the kernel was compiled with
718 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
719 * "**y**" or to "**m**".
720 * Return
721 * The classid, or 0 for the default unconfigured classid.
722 *
723 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
724 * Description
725 * Push a *vlan_tci* (VLAN tag control information) of protocol
726 * *vlan_proto* to the packet associated to *skb*, then update
727 * the checksum. Note that if *vlan_proto* is different from
728 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
729 * be **ETH_P_8021Q**.
730 *
731 * A call to this helper is susceptible to change the underlaying
732 * packet buffer. Therefore, at load time, all checks on pointers
733 * previously done by the verifier are invalidated and must be
734 * performed again, if the helper is used in combination with
735 * direct packet access.
736 * Return
737 * 0 on success, or a negative error in case of failure.
738 *
739 * int bpf_skb_vlan_pop(struct sk_buff *skb)
740 * Description
741 * Pop a VLAN header from the packet associated to *skb*.
742 *
743 * A call to this helper is susceptible to change the underlaying
744 * packet buffer. Therefore, at load time, all checks on pointers
745 * previously done by the verifier are invalidated and must be
746 * performed again, if the helper is used in combination with
747 * direct packet access.
748 * Return
749 * 0 on success, or a negative error in case of failure.
750 *
751 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
752 * Description
753 * Get tunnel metadata. This helper takes a pointer *key* to an
754 * empty **struct bpf_tunnel_key** of **size**, that will be
755 * filled with tunnel metadata for the packet associated to *skb*.
756 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
757 * indicates that the tunnel is based on IPv6 protocol instead of
758 * IPv4.
759 *
760 * The **struct bpf_tunnel_key** is an object that generalizes the
761 * principal parameters used by various tunneling protocols into a
762 * single struct. This way, it can be used to easily make a
763 * decision based on the contents of the encapsulation header,
764 * "summarized" in this struct. In particular, it holds the IP
765 * address of the remote end (IPv4 or IPv6, depending on the case)
766 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
767 * this struct exposes the *key*\ **->tunnel_id**, which is
768 * generally mapped to a VNI (Virtual Network Identifier), making
769 * it programmable together with the **bpf_skb_set_tunnel_key**\
770 * () helper.
771 *
772 * Let's imagine that the following code is part of a program
773 * attached to the TC ingress interface, on one end of a GRE
774 * tunnel, and is supposed to filter out all messages coming from
775 * remote ends with IPv4 address other than 10.0.0.1:
776 *
777 * ::
778 *
779 * int ret;
780 * struct bpf_tunnel_key key = {};
781 *
782 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
783 * if (ret < 0)
784 * return TC_ACT_SHOT; // drop packet
785 *
786 * if (key.remote_ipv4 != 0x0a000001)
787 * return TC_ACT_SHOT; // drop packet
788 *
789 * return TC_ACT_OK; // accept packet
790 *
791 * This interface can also be used with all encapsulation devices
792 * that can operate in "collect metadata" mode: instead of having
793 * one network device per specific configuration, the "collect
794 * metadata" mode only requires a single device where the
795 * configuration can be extracted from this helper.
796 *
797 * This can be used together with various tunnels such as VXLan,
798 * Geneve, GRE or IP in IP (IPIP).
799 * Return
800 * 0 on success, or a negative error in case of failure.
801 *
802 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
803 * Description
804 * Populate tunnel metadata for packet associated to *skb.* The
805 * tunnel metadata is set to the contents of *key*, of *size*. The
806 * *flags* can be set to a combination of the following values:
807 *
808 * **BPF_F_TUNINFO_IPV6**
809 * Indicate that the tunnel is based on IPv6 protocol
810 * instead of IPv4.
811 * **BPF_F_ZERO_CSUM_TX**
812 * For IPv4 packets, add a flag to tunnel metadata
813 * indicating that checksum computation should be skipped
814 * and checksum set to zeroes.
815 * **BPF_F_DONT_FRAGMENT**
816 * Add a flag to tunnel metadata indicating that the
817 * packet should not be fragmented.
818 * **BPF_F_SEQ_NUMBER**
819 * Add a flag to tunnel metadata indicating that a
820 * sequence number should be added to tunnel header before
821 * sending the packet. This flag was added for GRE
822 * encapsulation, but might be used with other protocols
823 * as well in the future.
824 *
825 * Here is a typical usage on the transmit path:
826 *
827 * ::
828 *
829 * struct bpf_tunnel_key key;
830 * populate key ...
831 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
832 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
833 *
834 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
835 * helper for additional information.
836 * Return
837 * 0 on success, or a negative error in case of failure.
838 *
839 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
840 * Description
841 * Read the value of a perf event counter. This helper relies on a
842 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
843 * the perf event counter is selected when *map* is updated with
844 * perf event file descriptors. The *map* is an array whose size
845 * is the number of available CPUs, and each cell contains a value
846 * relative to one CPU. The value to retrieve is indicated by
847 * *flags*, that contains the index of the CPU to look up, masked
848 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
849 * **BPF_F_CURRENT_CPU** to indicate that the value for the
850 * current CPU should be retrieved.
851 *
852 * Note that before Linux 4.13, only hardware perf event can be
853 * retrieved.
854 *
855 * Also, be aware that the newer helper
856 * **bpf_perf_event_read_value**\ () is recommended over
857 * **bpf_perf_event_read**\ () in general. The latter has some ABI
858 * quirks where error and counter value are used as a return code
859 * (which is wrong to do since ranges may overlap). This issue is
860 * fixed with **bpf_perf_event_read_value**\ (), which at the same
861 * time provides more features over the **bpf_perf_event_read**\
862 * () interface. Please refer to the description of
863 * **bpf_perf_event_read_value**\ () for details.
864 * Return
865 * The value of the perf event counter read from the map, or a
866 * negative error code in case of failure.
867 *
868 * int bpf_redirect(u32 ifindex, u64 flags)
869 * Description
870 * Redirect the packet to another net device of index *ifindex*.
871 * This helper is somewhat similar to **bpf_clone_redirect**\
872 * (), except that the packet is not cloned, which provides
873 * increased performance.
874 *
875 * Except for XDP, both ingress and egress interfaces can be used
876 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
877 * to make the distinction (ingress path is selected if the flag
878 * is present, egress path otherwise). Currently, XDP only
879 * supports redirection to the egress interface, and accepts no
880 * flag at all.
881 *
882 * The same effect can be attained with the more generic
883 * **bpf_redirect_map**\ (), which requires specific maps to be
884 * used but offers better performance.
885 * Return
886 * For XDP, the helper returns **XDP_REDIRECT** on success or
887 * **XDP_ABORTED** on error. For other program types, the values
888 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
889 * error.
890 *
891 * u32 bpf_get_route_realm(struct sk_buff *skb)
892 * Description
893 * Retrieve the realm or the route, that is to say the
894 * **tclassid** field of the destination for the *skb*. The
895 * indentifier retrieved is a user-provided tag, similar to the
896 * one used with the net_cls cgroup (see description for
897 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
898 * held by a route (a destination entry), not by a task.
899 *
900 * Retrieving this identifier works with the clsact TC egress hook
901 * (see also **tc-bpf(8)**), or alternatively on conventional
902 * classful egress qdiscs, but not on TC ingress path. In case of
903 * clsact TC egress hook, this has the advantage that, internally,
904 * the destination entry has not been dropped yet in the transmit
905 * path. Therefore, the destination entry does not need to be
906 * artificially held via **netif_keep_dst**\ () for a classful
907 * qdisc until the *skb* is freed.
908 *
909 * This helper is available only if the kernel was compiled with
910 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
911 * Return
912 * The realm of the route for the packet associated to *skb*, or 0
913 * if none was found.
914 *
915 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
916 * Description
917 * Write raw *data* blob into a special BPF perf event held by
918 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
919 * event must have the following attributes: **PERF_SAMPLE_RAW**
920 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
921 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
922 *
923 * The *flags* are used to indicate the index in *map* for which
924 * the value must be put, masked with **BPF_F_INDEX_MASK**.
925 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
926 * to indicate that the index of the current CPU core should be
927 * used.
928 *
929 * The value to write, of *size*, is passed through eBPF stack and
930 * pointed by *data*.
931 *
932 * The context of the program *ctx* needs also be passed to the
933 * helper.
934 *
935 * On user space, a program willing to read the values needs to
936 * call **perf_event_open**\ () on the perf event (either for
937 * one or for all CPUs) and to store the file descriptor into the
938 * *map*. This must be done before the eBPF program can send data
939 * into it. An example is available in file
940 * *samples/bpf/trace_output_user.c* in the Linux kernel source
941 * tree (the eBPF program counterpart is in
942 * *samples/bpf/trace_output_kern.c*).
943 *
944 * **bpf_perf_event_output**\ () achieves better performance
945 * than **bpf_trace_printk**\ () for sharing data with user
946 * space, and is much better suitable for streaming data from eBPF
947 * programs.
948 *
949 * Note that this helper is not restricted to tracing use cases
950 * and can be used with programs attached to TC or XDP as well,
951 * where it allows for passing data to user space listeners. Data
952 * can be:
953 *
954 * * Only custom structs,
955 * * Only the packet payload, or
956 * * A combination of both.
957 * Return
958 * 0 on success, or a negative error in case of failure.
959 *
960 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
961 * Description
962 * This helper was provided as an easy way to load data from a
963 * packet. It can be used to load *len* bytes from *offset* from
964 * the packet associated to *skb*, into the buffer pointed by
965 * *to*.
966 *
967 * Since Linux 4.7, usage of this helper has mostly been replaced
968 * by "direct packet access", enabling packet data to be
969 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
970 * pointing respectively to the first byte of packet data and to
971 * the byte after the last byte of packet data. However, it
972 * remains useful if one wishes to read large quantities of data
973 * at once from a packet into the eBPF stack.
974 * Return
975 * 0 on success, or a negative error in case of failure.
976 *
977 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
978 * Description
979 * Walk a user or a kernel stack and return its id. To achieve
980 * this, the helper needs *ctx*, which is a pointer to the context
981 * on which the tracing program is executed, and a pointer to a
982 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
983 *
984 * The last argument, *flags*, holds the number of stack frames to
985 * skip (from 0 to 255), masked with
986 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
987 * a combination of the following flags:
988 *
989 * **BPF_F_USER_STACK**
990 * Collect a user space stack instead of a kernel stack.
991 * **BPF_F_FAST_STACK_CMP**
992 * Compare stacks by hash only.
993 * **BPF_F_REUSE_STACKID**
994 * If two different stacks hash into the same *stackid*,
995 * discard the old one.
996 *
997 * The stack id retrieved is a 32 bit long integer handle which
998 * can be further combined with other data (including other stack
999 * ids) and used as a key into maps. This can be useful for
1000 * generating a variety of graphs (such as flame graphs or off-cpu
1001 * graphs).
1002 *
1003 * For walking a stack, this helper is an improvement over
1004 * **bpf_probe_read**\ (), which can be used with unrolled loops
1005 * but is not efficient and consumes a lot of eBPF instructions.
1006 * Instead, **bpf_get_stackid**\ () can collect up to
1007 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1008 * this limit can be controlled with the **sysctl** program, and
1009 * that it should be manually increased in order to profile long
1010 * user stacks (such as stacks for Java programs). To do so, use:
1011 *
1012 * ::
1013 *
1014 * # sysctl kernel.perf_event_max_stack=<new value>
fd95ec0e
DA
1015 * Return
1016 * The positive or null stack id on success, or a negative error
1017 * in case of failure.
1018 *
1019 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1020 * Description
1021 * Compute a checksum difference, from the raw buffer pointed by
1022 * *from*, of length *from_size* (that must be a multiple of 4),
1023 * towards the raw buffer pointed by *to*, of size *to_size*
1024 * (same remark). An optional *seed* can be added to the value
1025 * (this can be cascaded, the seed may come from a previous call
1026 * to the helper).
1027 *
1028 * This is flexible enough to be used in several ways:
1029 *
1030 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
1031 * checksum, it can be used when pushing new data.
1032 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
1033 * checksum, it can be used when removing data from a packet.
1034 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1035 * can be used to compute a diff. Note that *from_size* and
1036 * *to_size* do not need to be equal.
1037 *
1038 * This helper can be used in combination with
1039 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1040 * which one can feed in the difference computed with
1041 * **bpf_csum_diff**\ ().
1042 * Return
1043 * The checksum result, or a negative error code in case of
1044 * failure.
1045 *
1046 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1047 * Description
1048 * Retrieve tunnel options metadata for the packet associated to
1049 * *skb*, and store the raw tunnel option data to the buffer *opt*
1050 * of *size*.
1051 *
1052 * This helper can be used with encapsulation devices that can
1053 * operate in "collect metadata" mode (please refer to the related
1054 * note in the description of **bpf_skb_get_tunnel_key**\ () for
1055 * more details). A particular example where this can be used is
1056 * in combination with the Geneve encapsulation protocol, where it
1057 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1058 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
1059 * the eBPF program. This allows for full customization of these
1060 * headers.
1061 * Return
1062 * The size of the option data retrieved.
1063 *
1064 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1065 * Description
1066 * Set tunnel options metadata for the packet associated to *skb*
1067 * to the option data contained in the raw buffer *opt* of *size*.
1068 *
1069 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1070 * helper for additional information.
1071 * Return
1072 * 0 on success, or a negative error in case of failure.
1073 *
1074 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1075 * Description
1076 * Change the protocol of the *skb* to *proto*. Currently
1077 * supported are transition from IPv4 to IPv6, and from IPv6 to
1078 * IPv4. The helper takes care of the groundwork for the
1079 * transition, including resizing the socket buffer. The eBPF
1080 * program is expected to fill the new headers, if any, via
1081 * **skb_store_bytes**\ () and to recompute the checksums with
1082 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1083 * (). The main case for this helper is to perform NAT64
1084 * operations out of an eBPF program.
1085 *
1086 * Internally, the GSO type is marked as dodgy so that headers are
1087 * checked and segments are recalculated by the GSO/GRO engine.
1088 * The size for GSO target is adapted as well.
1089 *
1090 * All values for *flags* are reserved for future usage, and must
1091 * be left at zero.
1092 *
1093 * A call to this helper is susceptible to change the underlaying
1094 * packet buffer. Therefore, at load time, all checks on pointers
1095 * previously done by the verifier are invalidated and must be
1096 * performed again, if the helper is used in combination with
1097 * direct packet access.
1098 * Return
1099 * 0 on success, or a negative error in case of failure.
1100 *
1101 * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1102 * Description
1103 * Change the packet type for the packet associated to *skb*. This
1104 * comes down to setting *skb*\ **->pkt_type** to *type*, except
1105 * the eBPF program does not have a write access to *skb*\
1106 * **->pkt_type** beside this helper. Using a helper here allows
1107 * for graceful handling of errors.
1108 *
1109 * The major use case is to change incoming *skb*s to
1110 * **PACKET_HOST** in a programmatic way instead of having to
1111 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1112 * example.
1113 *
1114 * Note that *type* only allows certain values. At this time, they
1115 * are:
1116 *
1117 * **PACKET_HOST**
1118 * Packet is for us.
1119 * **PACKET_BROADCAST**
1120 * Send packet to all.
1121 * **PACKET_MULTICAST**
1122 * Send packet to group.
1123 * **PACKET_OTHERHOST**
1124 * Send packet to someone else.
1125 * Return
1126 * 0 on success, or a negative error in case of failure.
1127 *
1128 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1129 * Description
1130 * Check whether *skb* is a descendant of the cgroup2 held by
1131 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1132 * Return
1133 * The return value depends on the result of the test, and can be:
1134 *
1135 * * 0, if the *skb* failed the cgroup2 descendant test.
1136 * * 1, if the *skb* succeeded the cgroup2 descendant test.
1137 * * A negative error code, if an error occurred.
1138 *
1139 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1140 * Description
1141 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1142 * not set, in particular if the hash was cleared due to mangling,
1143 * recompute this hash. Later accesses to the hash can be done
1144 * directly with *skb*\ **->hash**.
1145 *
1146 * Calling **bpf_set_hash_invalid**\ (), changing a packet
1147 * prototype with **bpf_skb_change_proto**\ (), or calling
1148 * **bpf_skb_store_bytes**\ () with the
1149 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1150 * the hash and to trigger a new computation for the next call to
1151 * **bpf_get_hash_recalc**\ ().
1152 * Return
1153 * The 32-bit hash.
1a97748b
SH
1154 *
1155 * u64 bpf_get_current_task(void)
fd95ec0e
DA
1156 * Return
1157 * A pointer to the current task struct.
1158 *
1159 * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1160 * Description
1161 * Attempt in a safe way to write *len* bytes from the buffer
1162 * *src* to *dst* in memory. It only works for threads that are in
1163 * user context, and *dst* must be a valid user space address.
1164 *
1165 * This helper should not be used to implement any kind of
1166 * security mechanism because of TOC-TOU attacks, but rather to
1167 * debug, divert, and manipulate execution of semi-cooperative
1168 * processes.
1169 *
1170 * Keep in mind that this feature is meant for experiments, and it
1171 * has a risk of crashing the system and running programs.
1172 * Therefore, when an eBPF program using this helper is attached,
1173 * a warning including PID and process name is printed to kernel
1174 * logs.
1175 * Return
1176 * 0 on success, or a negative error in case of failure.
1177 *
1178 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1179 * Description
1180 * Check whether the probe is being run is the context of a given
1181 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1182 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1183 * Return
1184 * The return value depends on the result of the test, and can be:
1185 *
1186 * * 0, if the *skb* task belongs to the cgroup2.
1187 * * 1, if the *skb* task does not belong to the cgroup2.
1188 * * A negative error code, if an error occurred.
1189 *
1190 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1191 * Description
1192 * Resize (trim or grow) the packet associated to *skb* to the
1193 * new *len*. The *flags* are reserved for future usage, and must
1194 * be left at zero.
1195 *
1196 * The basic idea is that the helper performs the needed work to
1197 * change the size of the packet, then the eBPF program rewrites
1198 * the rest via helpers like **bpf_skb_store_bytes**\ (),
1199 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1200 * and others. This helper is a slow path utility intended for
1201 * replies with control messages. And because it is targeted for
1202 * slow path, the helper itself can afford to be slow: it
1203 * implicitly linearizes, unclones and drops offloads from the
1204 * *skb*.
1205 *
1206 * A call to this helper is susceptible to change the underlaying
1207 * packet buffer. Therefore, at load time, all checks on pointers
1208 * previously done by the verifier are invalidated and must be
1209 * performed again, if the helper is used in combination with
1210 * direct packet access.
1211 * Return
1212 * 0 on success, or a negative error in case of failure.
1213 *
1214 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1215 * Description
1216 * Pull in non-linear data in case the *skb* is non-linear and not
1217 * all of *len* are part of the linear section. Make *len* bytes
1218 * from *skb* readable and writable. If a zero value is passed for
1219 * *len*, then the whole length of the *skb* is pulled.
1220 *
1221 * This helper is only needed for reading and writing with direct
1222 * packet access.
1223 *
1224 * For direct packet access, testing that offsets to access
1225 * are within packet boundaries (test on *skb*\ **->data_end**) is
1226 * susceptible to fail if offsets are invalid, or if the requested
1227 * data is in non-linear parts of the *skb*. On failure the
1228 * program can just bail out, or in the case of a non-linear
1229 * buffer, use a helper to make the data available. The
1230 * **bpf_skb_load_bytes**\ () helper is a first solution to access
1231 * the data. Another one consists in using **bpf_skb_pull_data**
1232 * to pull in once the non-linear parts, then retesting and
1233 * eventually access the data.
1234 *
1235 * At the same time, this also makes sure the *skb* is uncloned,
1236 * which is a necessary condition for direct write. As this needs
1237 * to be an invariant for the write part only, the verifier
1238 * detects writes and adds a prologue that is calling
1239 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
1240 * the very beginning in case it is indeed cloned.
1241 *
1242 * A call to this helper is susceptible to change the underlaying
1243 * packet buffer. Therefore, at load time, all checks on pointers
1244 * previously done by the verifier are invalidated and must be
1245 * performed again, if the helper is used in combination with
1246 * direct packet access.
1247 * Return
1248 * 0 on success, or a negative error in case of failure.
1249 *
1250 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1251 * Description
1252 * Add the checksum *csum* into *skb*\ **->csum** in case the
1253 * driver has supplied a checksum for the entire packet into that
1254 * field. Return an error otherwise. This helper is intended to be
1255 * used in combination with **bpf_csum_diff**\ (), in particular
1256 * when the checksum needs to be updated after data has been
1257 * written into the packet through direct packet access.
1258 * Return
1259 * The checksum on success, or a negative error code in case of
1260 * failure.
1261 *
1262 * void bpf_set_hash_invalid(struct sk_buff *skb)
1263 * Description
1264 * Invalidate the current *skb*\ **->hash**. It can be used after
1265 * mangling on headers through direct packet access, in order to
1266 * indicate that the hash is outdated and to trigger a
1267 * recalculation the next time the kernel tries to access this
1268 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
1269 *
1270 * int bpf_get_numa_node_id(void)
1271 * Description
1272 * Return the id of the current NUMA node. The primary use case
1273 * for this helper is the selection of sockets for the local NUMA
1274 * node, when the program is attached to sockets using the
1275 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1276 * but the helper is also available to other eBPF program types,
1277 * similarly to **bpf_get_smp_processor_id**\ ().
1278 * Return
1279 * The id of current NUMA node.
1280 *
1281 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1282 * Description
1283 * Grows headroom of packet associated to *skb* and adjusts the
1284 * offset of the MAC header accordingly, adding *len* bytes of
1285 * space. It automatically extends and reallocates memory as
1286 * required.
1287 *
1288 * This helper can be used on a layer 3 *skb* to push a MAC header
1289 * for redirection into a layer 2 device.
1290 *
1291 * All values for *flags* are reserved for future usage, and must
1292 * be left at zero.
1293 *
1294 * A call to this helper is susceptible to change the underlaying
1295 * packet buffer. Therefore, at load time, all checks on pointers
1296 * previously done by the verifier are invalidated and must be
1297 * performed again, if the helper is used in combination with
1298 * direct packet access.
1299 * Return
1300 * 0 on success, or a negative error in case of failure.
1301 *
1302 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1303 * Description
1304 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1305 * it is possible to use a negative value for *delta*. This helper
1306 * can be used to prepare the packet for pushing or popping
1307 * headers.
1308 *
1309 * A call to this helper is susceptible to change the underlaying
1310 * packet buffer. Therefore, at load time, all checks on pointers
1311 * previously done by the verifier are invalidated and must be
1312 * performed again, if the helper is used in combination with
1313 * direct packet access.
1314 * Return
1315 * 0 on success, or a negative error in case of failure.
a044b36a
SH
1316 *
1317 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
fd95ec0e
DA
1318 * Description
1319 * Copy a NUL terminated string from an unsafe address
1320 * *unsafe_ptr* to *dst*. The *size* should include the
1321 * terminating NUL byte. In case the string length is smaller than
1322 * *size*, the target is not padded with further NUL bytes. If the
1323 * string length is larger than *size*, just *size*-1 bytes are
1324 * copied and the last byte is set to NUL.
1325 *
1326 * On success, the length of the copied string is returned. This
1327 * makes this helper useful in tracing programs for reading
1328 * strings, and more importantly to get its length at runtime. See
1329 * the following snippet:
1330 *
1331 * ::
1332 *
1333 * SEC("kprobe/sys_open")
1334 * void bpf_sys_open(struct pt_regs *ctx)
1335 * {
1336 * char buf[PATHLEN]; // PATHLEN is defined to 256
1337 * int res = bpf_probe_read_str(buf, sizeof(buf),
1338 * ctx->di);
1339 *
1340 * // Consume buf, for example push it to
1341 * // userspace via bpf_perf_event_output(); we
1342 * // can use res (the string length) as event
1343 * // size, after checking its boundaries.
1344 * }
1345 *
1346 * In comparison, using **bpf_probe_read()** helper here instead
1347 * to read the string would require to estimate the length at
1348 * compile time, and would often result in copying more memory
1349 * than necessary.
1350 *
1351 * Another useful use case is when parsing individual process
1352 * arguments or individual environment variables navigating
1353 * *current*\ **->mm->arg_start** and *current*\
1354 * **->mm->env_start**: using this helper and the return value,
1355 * one can quickly iterate at the right offset of the memory area.
1356 * Return
1357 * On success, the strictly positive length of the string,
1358 * including the trailing NUL character. On error, a negative
1359 * value.
1360 *
1361 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1362 * Description
1363 * If the **struct sk_buff** pointed by *skb* has a known socket,
1364 * retrieve the cookie (generated by the kernel) of this socket.
1365 * If no cookie has been set yet, generate a new cookie. Once
1366 * generated, the socket cookie remains stable for the life of the
1367 * socket. This helper can be useful for monitoring per socket
1368 * networking traffic statistics as it provides a unique socket
1369 * identifier per namespace.
1370 * Return
1371 * A 8-byte long non-decreasing number on success, or 0 if the
1372 * socket field is missing inside *skb*.
1373 *
1374 * u32 bpf_get_socket_uid(struct sk_buff *skb)
1375 * Return
1376 * The owner UID of the socket associated to *skb*. If the socket
1377 * is **NULL**, or if it is not a full socket (i.e. if it is a
1378 * time-wait or a request socket instead), **overflowuid** value
1379 * is returned (note that **overflowuid** might also be the actual
1380 * UID value for the socket).
1381 *
1382 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1383 * Description
1384 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
1385 * to value *hash*.
1386 * Return
1387 * 0
1388 *
1389 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1390 * Description
1391 * Emulate a call to **setsockopt()** on the socket associated to
1392 * *bpf_socket*, which must be a full socket. The *level* at
1393 * which the option resides and the name *optname* of the option
1394 * must be specified, see **setsockopt(2)** for more information.
1395 * The option value of length *optlen* is pointed by *optval*.
1396 *
1397 * This helper actually implements a subset of **setsockopt()**.
1398 * It supports the following *level*\ s:
1399 *
1400 * * **SOL_SOCKET**, which supports the following *optname*\ s:
1401 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1402 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1403 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
1404 * **TCP_CONGESTION**, **TCP_BPF_IW**,
1405 * **TCP_BPF_SNDCWND_CLAMP**.
1406 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1407 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1408 * Return
1409 * 0 on success, or a negative error in case of failure.
1410 *
1411 * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 flags)
1412 * Description
1413 * Grow or shrink the room for data in the packet associated to
1414 * *skb* by *len_diff*, and according to the selected *mode*.
1415 *
1416 * There is a single supported mode at this time:
1417 *
1418 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1419 * (room space is added or removed below the layer 3 header).
1420 *
1421 * All values for *flags* are reserved for future usage, and must
1422 * be left at zero.
1423 *
1424 * A call to this helper is susceptible to change the underlaying
1425 * packet buffer. Therefore, at load time, all checks on pointers
1426 * previously done by the verifier are invalidated and must be
1427 * performed again, if the helper is used in combination with
1428 * direct packet access.
1429 * Return
1430 * 0 on success, or a negative error in case of failure.
1431 *
1432 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1433 * Description
1434 * Redirect the packet to the endpoint referenced by *map* at
1435 * index *key*. Depending on its type, this *map* can contain
1436 * references to net devices (for forwarding packets through other
1437 * ports), or to CPUs (for redirecting XDP frames to another CPU;
1438 * but this is only implemented for native XDP (with driver
1439 * support) as of this writing).
1440 *
1441 * All values for *flags* are reserved for future usage, and must
1442 * be left at zero.
1443 *
1444 * When used to redirect packets to net devices, this helper
1445 * provides a high performance increase over **bpf_redirect**\ ().
1446 * This is due to various implementation details of the underlying
1447 * mechanisms, one of which is the fact that **bpf_redirect_map**\
1448 * () tries to send packet as a "bulk" to the device.
1449 * Return
1450 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1451 *
1452 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1453 * Description
1454 * Redirect the packet to the socket referenced by *map* (of type
1455 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1456 * egress interfaces can be used for redirection. The
1457 * **BPF_F_INGRESS** value in *flags* is used to make the
1458 * distinction (ingress path is selected if the flag is present,
1459 * egress path otherwise). This is the only flag supported for now.
1460 * Return
1461 * **SK_PASS** on success, or **SK_DROP** on error.
1462 *
1463 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1464 * Description
1465 * Add an entry to, or update a *map* referencing sockets. The
1466 * *skops* is used as a new value for the entry associated to
1467 * *key*. *flags* is one of:
1468 *
1469 * **BPF_NOEXIST**
1470 * The entry for *key* must not exist in the map.
1471 * **BPF_EXIST**
1472 * The entry for *key* must already exist in the map.
1473 * **BPF_ANY**
1474 * No condition on the existence of the entry for *key*.
1475 *
1476 * If the *map* has eBPF programs (parser and verdict), those will
1477 * be inherited by the socket being added. If the socket is
1478 * already attached to eBPF programs, this results in an error.
1479 * Return
1480 * 0 on success, or a negative error in case of failure.
1481 *
1482 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1483 * Description
1484 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
1485 * *delta* (which can be positive or negative). Note that this
1486 * operation modifies the address stored in *xdp_md*\ **->data**,
1487 * so the latter must be loaded only after the helper has been
1488 * called.
1489 *
1490 * The use of *xdp_md*\ **->data_meta** is optional and programs
1491 * are not required to use it. The rationale is that when the
1492 * packet is processed with XDP (e.g. as DoS filter), it is
1493 * possible to push further meta data along with it before passing
1494 * to the stack, and to give the guarantee that an ingress eBPF
1495 * program attached as a TC classifier on the same device can pick
1496 * this up for further post-processing. Since TC works with socket
1497 * buffers, it remains possible to set from XDP the **mark** or
1498 * **priority** pointers, or other pointers for the socket buffer.
1499 * Having this scratch space generic and programmable allows for
1500 * more flexibility as the user is free to store whatever meta
1501 * data they need.
1502 *
1503 * A call to this helper is susceptible to change the underlaying
1504 * packet buffer. Therefore, at load time, all checks on pointers
1505 * previously done by the verifier are invalidated and must be
1506 * performed again, if the helper is used in combination with
1507 * direct packet access.
1508 * Return
1509 * 0 on success, or a negative error in case of failure.
1510 *
1511 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1512 * Description
1513 * Read the value of a perf event counter, and store it into *buf*
1514 * of size *buf_size*. This helper relies on a *map* of type
1515 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1516 * counter is selected when *map* is updated with perf event file
1517 * descriptors. The *map* is an array whose size is the number of
1518 * available CPUs, and each cell contains a value relative to one
1519 * CPU. The value to retrieve is indicated by *flags*, that
1520 * contains the index of the CPU to look up, masked with
1521 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1522 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1523 * current CPU should be retrieved.
1524 *
1525 * This helper behaves in a way close to
1526 * **bpf_perf_event_read**\ () helper, save that instead of
1527 * just returning the value observed, it fills the *buf*
1528 * structure. This allows for additional data to be retrieved: in
1529 * particular, the enabled and running times (in *buf*\
1530 * **->enabled** and *buf*\ **->running**, respectively) are
1531 * copied. In general, **bpf_perf_event_read_value**\ () is
1532 * recommended over **bpf_perf_event_read**\ (), which has some
1533 * ABI issues and provides fewer functionalities.
1534 *
1535 * These values are interesting, because hardware PMU (Performance
1536 * Monitoring Unit) counters are limited resources. When there are
1537 * more PMU based perf events opened than available counters,
1538 * kernel will multiplex these events so each event gets certain
1539 * percentage (but not all) of the PMU time. In case that
1540 * multiplexing happens, the number of samples or counter value
1541 * will not reflect the case compared to when no multiplexing
1542 * occurs. This makes comparison between different runs difficult.
1543 * Typically, the counter value should be normalized before
1544 * comparing to other experiments. The usual normalization is done
1545 * as follows.
1546 *
1547 * ::
1548 *
1549 * normalized_counter = counter * t_enabled / t_running
1550 *
1551 * Where t_enabled is the time enabled for event and t_running is
1552 * the time running for event since last normalization. The
1553 * enabled and running times are accumulated since the perf event
1554 * open. To achieve scaling factor between two invocations of an
1555 * eBPF program, users can can use CPU id as the key (which is
1556 * typical for perf array usage model) to remember the previous
1557 * value and do the calculation inside the eBPF program.
1558 * Return
1559 * 0 on success, or a negative error in case of failure.
1560 *
1561 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1562 * Description
1563 * For en eBPF program attached to a perf event, retrieve the
1564 * value of the event counter associated to *ctx* and store it in
1565 * the structure pointed by *buf* and of size *buf_size*. Enabled
1566 * and running times are also stored in the structure (see
1567 * description of helper **bpf_perf_event_read_value**\ () for
1568 * more details).
1569 * Return
1570 * 0 on success, or a negative error in case of failure.
1571 *
1572 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1573 * Description
1574 * Emulate a call to **getsockopt()** on the socket associated to
1575 * *bpf_socket*, which must be a full socket. The *level* at
1576 * which the option resides and the name *optname* of the option
1577 * must be specified, see **getsockopt(2)** for more information.
1578 * The retrieved value is stored in the structure pointed by
1579 * *opval* and of length *optlen*.
1580 *
1581 * This helper actually implements a subset of **getsockopt()**.
1582 * It supports the following *level*\ s:
1583 *
1584 * * **IPPROTO_TCP**, which supports *optname*
1585 * **TCP_CONGESTION**.
1586 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1587 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1588 * Return
1589 * 0 on success, or a negative error in case of failure.
1590 *
1591 * int bpf_override_return(struct pt_reg *regs, u64 rc)
1592 * Description
1593 * Used for error injection, this helper uses kprobes to override
1594 * the return value of the probed function, and to set it to *rc*.
1595 * The first argument is the context *regs* on which the kprobe
1596 * works.
1597 *
1598 * This helper works by setting setting the PC (program counter)
1599 * to an override function which is run in place of the original
1600 * probed function. This means the probed function is not run at
1601 * all. The replacement function just returns with the required
1602 * value.
1603 *
1604 * This helper has security implications, and thus is subject to
1605 * restrictions. It is only available if the kernel was compiled
1606 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1607 * option, and in this case it only works on functions tagged with
1608 * **ALLOW_ERROR_INJECTION** in the kernel code.
1609 *
1610 * Also, the helper is only available for the architectures having
1611 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1612 * x86 architecture is the only one to support this feature.
1613 * Return
1614 * 0
1615 *
1616 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1617 * Description
1618 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1619 * for the full TCP socket associated to *bpf_sock_ops* to
1620 * *argval*.
1621 *
1622 * The primary use of this field is to determine if there should
1623 * be calls to eBPF programs of type
1624 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1625 * code. A program of the same type can change its value, per
1626 * connection and as necessary, when the connection is
1627 * established. This field is directly accessible for reading, but
1628 * this helper must be used for updates in order to return an
1629 * error if an eBPF program tries to set a callback that is not
1630 * supported in the current kernel.
1631 *
1632 * The supported callback values that *argval* can combine are:
1633 *
1634 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1635 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1636 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1637 *
1638 * Here are some examples of where one could call such eBPF
1639 * program:
1640 *
1641 * * When RTO fires.
1642 * * When a packet is retransmitted.
1643 * * When the connection terminates.
1644 * * When a packet is sent.
1645 * * When a packet is received.
1646 * Return
1647 * Code **-EINVAL** if the socket is not a full TCP socket;
1648 * otherwise, a positive number containing the bits that could not
1649 * be set is returned (which comes down to 0 if all bits were set
1650 * as required).
1651 *
1652 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1653 * Description
1654 * This helper is used in programs implementing policies at the
1655 * socket level. If the message *msg* is allowed to pass (i.e. if
1656 * the verdict eBPF program returns **SK_PASS**), redirect it to
1657 * the socket referenced by *map* (of type
1658 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1659 * egress interfaces can be used for redirection. The
1660 * **BPF_F_INGRESS** value in *flags* is used to make the
1661 * distinction (ingress path is selected if the flag is present,
1662 * egress path otherwise). This is the only flag supported for now.
1663 * Return
1664 * **SK_PASS** on success, or **SK_DROP** on error.
1665 *
1666 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1667 * Description
1668 * For socket policies, apply the verdict of the eBPF program to
1669 * the next *bytes* (number of bytes) of message *msg*.
1670 *
1671 * For example, this helper can be used in the following cases:
1672 *
1673 * * A single **sendmsg**\ () or **sendfile**\ () system call
1674 * contains multiple logical messages that the eBPF program is
1675 * supposed to read and for which it should apply a verdict.
1676 * * An eBPF program only cares to read the first *bytes* of a
1677 * *msg*. If the message has a large payload, then setting up
1678 * and calling the eBPF program repeatedly for all bytes, even
1679 * though the verdict is already known, would create unnecessary
1680 * overhead.
1681 *
1682 * When called from within an eBPF program, the helper sets a
1683 * counter internal to the BPF infrastructure, that is used to
1684 * apply the last verdict to the next *bytes*. If *bytes* is
1685 * smaller than the current data being processed from a
1686 * **sendmsg**\ () or **sendfile**\ () system call, the first
1687 * *bytes* will be sent and the eBPF program will be re-run with
1688 * the pointer for start of data pointing to byte number *bytes*
1689 * **+ 1**. If *bytes* is larger than the current data being
1690 * processed, then the eBPF verdict will be applied to multiple
1691 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1692 * consumed.
1693 *
1694 * Note that if a socket closes with the internal counter holding
1695 * a non-zero value, this is not a problem because data is not
1696 * being buffered for *bytes* and is sent as it is received.
1697 * Return
1698 * 0
1699 *
1700 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1701 * Description
1702 * For socket policies, prevent the execution of the verdict eBPF
1703 * program for message *msg* until *bytes* (byte number) have been
1704 * accumulated.
1705 *
1706 * This can be used when one needs a specific number of bytes
1707 * before a verdict can be assigned, even if the data spans
1708 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1709 * case would be a user calling **sendmsg**\ () repeatedly with
1710 * 1-byte long message segments. Obviously, this is bad for
1711 * performance, but it is still valid. If the eBPF program needs
1712 * *bytes* bytes to validate a header, this helper can be used to
1713 * prevent the eBPF program to be called again until *bytes* have
1714 * been accumulated.
1715 * Return
1716 * 0
1717 *
1718 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1719 * Description
1720 * For socket policies, pull in non-linear data from user space
1721 * for *msg* and set pointers *msg*\ **->data** and *msg*\
1722 * **->data_end** to *start* and *end* bytes offsets into *msg*,
1723 * respectively.
1724 *
1725 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1726 * *msg* it can only parse data that the (**data**, **data_end**)
1727 * pointers have already consumed. For **sendmsg**\ () hooks this
1728 * is likely the first scatterlist element. But for calls relying
1729 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1730 * be the range (**0**, **0**) because the data is shared with
1731 * user space and by default the objective is to avoid allowing
1732 * user space to modify data while (or after) eBPF verdict is
1733 * being decided. This helper can be used to pull in data and to
1734 * set the start and end pointer to given values. Data will be
1735 * copied if necessary (i.e. if data was not linear and if start
1736 * and end pointers do not point to the same chunk).
1737 *
1738 * A call to this helper is susceptible to change the underlaying
1739 * packet buffer. Therefore, at load time, all checks on pointers
1740 * previously done by the verifier are invalidated and must be
1741 * performed again, if the helper is used in combination with
1742 * direct packet access.
1743 *
1744 * All values for *flags* are reserved for future usage, and must
1745 * be left at zero.
1746 * Return
1747 * 0 on success, or a negative error in case of failure.
1748 *
1749 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1750 * Description
1751 * Bind the socket associated to *ctx* to the address pointed by
1752 * *addr*, of length *addr_len*. This allows for making outgoing
1753 * connection from the desired IP address, which can be useful for
1754 * example when all processes inside a cgroup should use one
1755 * single IP address on a host that has multiple IP configured.
1756 *
1757 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1758 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1759 * **AF_INET6**). Looking for a free port to bind to can be
1760 * expensive, therefore binding to port is not permitted by the
1761 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1762 * must be set to zero.
1763 * Return
1764 * 0 on success, or a negative error in case of failure.
1765 *
1766 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1767 * Description
1768 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1769 * only possible to shrink the packet as of this writing,
1770 * therefore *delta* must be a negative integer.
1771 *
1772 * A call to this helper is susceptible to change the underlaying
1773 * packet buffer. Therefore, at load time, all checks on pointers
1774 * previously done by the verifier are invalidated and must be
1775 * performed again, if the helper is used in combination with
1776 * direct packet access.
1777 * Return
1778 * 0 on success, or a negative error in case of failure.
1779 *
1780 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1781 * Description
1782 * Retrieve the XFRM state (IP transform framework, see also
1783 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1784 *
1785 * The retrieved value is stored in the **struct bpf_xfrm_state**
1786 * pointed by *xfrm_state* and of length *size*.
1787 *
1788 * All values for *flags* are reserved for future usage, and must
1789 * be left at zero.
1790 *
1791 * This helper is available only if the kernel was compiled with
1792 * **CONFIG_XFRM** configuration option.
1793 * Return
1794 * 0 on success, or a negative error in case of failure.
1795 *
1796 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1797 * Description
1798 * Return a user or a kernel stack in bpf program provided buffer.
1799 * To achieve this, the helper needs *ctx*, which is a pointer
1800 * to the context on which the tracing program is executed.
1801 * To store the stacktrace, the bpf program provides *buf* with
1802 * a nonnegative *size*.
1803 *
1804 * The last argument, *flags*, holds the number of stack frames to
1805 * skip (from 0 to 255), masked with
1806 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1807 * the following flags:
1808 *
1809 * **BPF_F_USER_STACK**
1810 * Collect a user space stack instead of a kernel stack.
1811 * **BPF_F_USER_BUILD_ID**
1812 * Collect buildid+offset instead of ips for user stack,
1813 * only valid if **BPF_F_USER_STACK** is also specified.
1814 *
1815 * **bpf_get_stack**\ () can collect up to
1816 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1817 * to sufficient large buffer size. Note that
1818 * this limit can be controlled with the **sysctl** program, and
1819 * that it should be manually increased in order to profile long
1820 * user stacks (such as stacks for Java programs). To do so, use:
1821 *
1822 * ::
1823 *
1824 * # sysctl kernel.perf_event_max_stack=<new value>
fd95ec0e 1825 * Return
17678d30
SH
1826 * A non-negative value equal to or less than *size* on success,
1827 * or a negative error in case of failure.
fd95ec0e
DA
1828 *
1829 * int skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1830 * Description
1831 * This helper is similar to **bpf_skb_load_bytes**\ () in that
1832 * it provides an easy way to load *len* bytes from *offset*
1833 * from the packet associated to *skb*, into the buffer pointed
1834 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1835 * a fifth argument *start_header* exists in order to select a
1836 * base offset to start from. *start_header* can be one of:
1837 *
1838 * **BPF_HDR_START_MAC**
1839 * Base offset to load data from is *skb*'s mac header.
1840 * **BPF_HDR_START_NET**
1841 * Base offset to load data from is *skb*'s network header.
1842 *
1843 * In general, "direct packet access" is the preferred method to
1844 * access packet data, however, this helper is in particular useful
1845 * in socket filters where *skb*\ **->data** does not always point
1846 * to the start of the mac header and where "direct packet access"
1847 * is not available.
fd95ec0e
DA
1848 * Return
1849 * 0 on success, or a negative error in case of failure.
1850 *
4276e652
DA
1851 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1852 * Description
1853 * Do FIB lookup in kernel tables using parameters in *params*.
1854 * If lookup is successful and result shows packet is to be
1855 * forwarded, the neighbor tables are searched for the nexthop.
1856 * If successful (ie., FIB lookup shows forwarding and nexthop
17678d30
SH
1857 * is resolved), the nexthop address is returned in ipv4_dst
1858 * or ipv6_dst based on family, smac is set to mac address of
1859 * egress device, dmac is set to nexthop mac address, rt_metric
1860 * is set to metric from route (IPv4/IPv6 only).
4276e652
DA
1861 *
1862 * *plen* argument is the size of the passed in struct.
17678d30
SH
1863 * *flags* argument can be a combination of one or more of the
1864 * following values:
4276e652 1865 *
17678d30
SH
1866 * **BPF_FIB_LOOKUP_DIRECT**
1867 * Do a direct table lookup vs full lookup using FIB
1868 * rules.
1869 * **BPF_FIB_LOOKUP_OUTPUT**
1870 * Perform lookup from an egress perspective (default is
1871 * ingress).
4276e652
DA
1872 *
1873 * *ctx* is either **struct xdp_md** for XDP programs or
1874 * **struct sk_buff** tc cls_act programs.
4276e652
DA
1875 * Return
1876 * Egress device index on success, 0 if packet needs to continue
1877 * up the stack for further processing or a negative error in case
1878 * of failure.
1879 *
1880 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1881 * Description
1882 * Add an entry to, or update a sockhash *map* referencing sockets.
1883 * The *skops* is used as a new value for the entry associated to
1884 * *key*. *flags* is one of:
1885 *
1886 * **BPF_NOEXIST**
1887 * The entry for *key* must not exist in the map.
1888 * **BPF_EXIST**
1889 * The entry for *key* must already exist in the map.
1890 * **BPF_ANY**
1891 * No condition on the existence of the entry for *key*.
1892 *
1893 * If the *map* has eBPF programs (parser and verdict), those will
1894 * be inherited by the socket being added. If the socket is
1895 * already attached to eBPF programs, this results in an error.
1896 * Return
1897 * 0 on success, or a negative error in case of failure.
1898 *
1899 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1900 * Description
1901 * This helper is used in programs implementing policies at the
1902 * socket level. If the message *msg* is allowed to pass (i.e. if
1903 * the verdict eBPF program returns **SK_PASS**), redirect it to
1904 * the socket referenced by *map* (of type
1905 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1906 * egress interfaces can be used for redirection. The
1907 * **BPF_F_INGRESS** value in *flags* is used to make the
1908 * distinction (ingress path is selected if the flag is present,
1909 * egress path otherwise). This is the only flag supported for now.
1910 * Return
1911 * **SK_PASS** on success, or **SK_DROP** on error.
1912 *
1913 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
1914 * Description
1915 * This helper is used in programs implementing policies at the
1916 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
1917 * if the verdeict eBPF program returns **SK_PASS**), redirect it
1918 * to the socket referenced by *map* (of type
1919 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1920 * egress interfaces can be used for redirection. The
1921 * **BPF_F_INGRESS** value in *flags* is used to make the
1922 * distinction (ingress path is selected if the flag is present,
1923 * egress otherwise). This is the only flag supported for now.
1924 * Return
1925 * **SK_PASS** on success, or **SK_DROP** on error.
57ac202c
DA
1926 *
1927 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
1928 * Description
1929 * Encapsulate the packet associated to *skb* within a Layer 3
1930 * protocol header. This header is provided in the buffer at
1931 * address *hdr*, with *len* its size in bytes. *type* indicates
1932 * the protocol of the header and can be one of:
1933 *
1934 * **BPF_LWT_ENCAP_SEG6**
1935 * IPv6 encapsulation with Segment Routing Header
1936 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
1937 * the IPv6 header is computed by the kernel.
1938 * **BPF_LWT_ENCAP_SEG6_INLINE**
1939 * Only works if *skb* contains an IPv6 packet. Insert a
1940 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
1941 * the IPv6 header.
1942 *
1943 * A call to this helper is susceptible to change the underlaying
1944 * packet buffer. Therefore, at load time, all checks on pointers
1945 * previously done by the verifier are invalidated and must be
1946 * performed again, if the helper is used in combination with
1947 * direct packet access.
1948 * Return
1949 * 0 on success, or a negative error in case of failure.
1950 *
1951 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
1952 * Description
1953 * Store *len* bytes from address *from* into the packet
1954 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
1955 * inside the outermost IPv6 Segment Routing Header can be
1956 * modified through this helper.
1957 *
1958 * A call to this helper is susceptible to change the underlaying
1959 * packet buffer. Therefore, at load time, all checks on pointers
1960 * previously done by the verifier are invalidated and must be
1961 * performed again, if the helper is used in combination with
1962 * direct packet access.
1963 * Return
1964 * 0 on success, or a negative error in case of failure.
1965 *
1966 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
1967 * Description
1968 * Adjust the size allocated to TLVs in the outermost IPv6
1969 * Segment Routing Header contained in the packet associated to
1970 * *skb*, at position *offset* by *delta* bytes. Only offsets
1971 * after the segments are accepted. *delta* can be as well
1972 * positive (growing) as negative (shrinking).
1973 *
1974 * A call to this helper is susceptible to change the underlaying
1975 * packet buffer. Therefore, at load time, all checks on pointers
1976 * previously done by the verifier are invalidated and must be
1977 * performed again, if the helper is used in combination with
1978 * direct packet access.
1979 * Return
1980 * 0 on success, or a negative error in case of failure.
1981 *
1982 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
1983 * Description
1984 * Apply an IPv6 Segment Routing action of type *action* to the
1985 * packet associated to *skb*. Each action takes a parameter
1986 * contained at address *param*, and of length *param_len* bytes.
1987 * *action* can be one of:
1988 *
1989 * **SEG6_LOCAL_ACTION_END_X**
1990 * End.X action: Endpoint with Layer-3 cross-connect.
1991 * Type of *param*: **struct in6_addr**.
1992 * **SEG6_LOCAL_ACTION_END_T**
1993 * End.T action: Endpoint with specific IPv6 table lookup.
1994 * Type of *param*: **int**.
1995 * **SEG6_LOCAL_ACTION_END_B6**
1996 * End.B6 action: Endpoint bound to an SRv6 policy.
1997 * Type of param: **struct ipv6_sr_hdr**.
1998 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
1999 * End.B6.Encap action: Endpoint bound to an SRv6
2000 * encapsulation policy.
2001 * Type of param: **struct ipv6_sr_hdr**.
2002 *
2003 * A call to this helper is susceptible to change the underlaying
2004 * packet buffer. Therefore, at load time, all checks on pointers
2005 * previously done by the verifier are invalidated and must be
2006 * performed again, if the helper is used in combination with
2007 * direct packet access.
2008 * Return
2009 * 0 on success, or a negative error in case of failure.
17678d30
SH
2010 *
2011 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2012 * Description
2013 * This helper is used in programs implementing IR decoding, to
2014 * report a successfully decoded key press with *scancode*,
2015 * *toggle* value in the given *protocol*. The scancode will be
2016 * translated to a keycode using the rc keymap, and reported as
2017 * an input key down event. After a period a key up event is
2018 * generated. This period can be extended by calling either
2019 * **bpf_rc_keydown** () again with the same values, or calling
2020 * **bpf_rc_repeat** ().
2021 *
2022 * Some protocols include a toggle bit, in case the button was
2023 * released and pressed again between consecutive scancodes.
2024 *
2025 * The *ctx* should point to the lirc sample as passed into
2026 * the program.
2027 *
2028 * The *protocol* is the decoded protocol number (see
2029 * **enum rc_proto** for some predefined values).
2030 *
2031 * This helper is only available is the kernel was compiled with
2032 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2033 * "**y**".
2034 *
2035 * Return
2036 * 0
2037 *
2038 * int bpf_rc_repeat(void *ctx)
2039 * Description
2040 * This helper is used in programs implementing IR decoding, to
2041 * report a successfully decoded repeat key message. This delays
2042 * the generation of a key up event for previously generated
2043 * key down event.
2044 *
2045 * Some IR protocols like NEC have a special IR message for
2046 * repeating last button, for when a button is held down.
2047 *
2048 * The *ctx* should point to the lirc sample as passed into
2049 * the program.
2050 *
2051 * This helper is only available is the kernel was compiled with
2052 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2053 * "**y**".
2054 *
2055 * Return
2056 * 0
2057 *
2058 * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
2059 * Description
2060 * Return the cgroup v2 id of the socket associated with the *skb*.
2061 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2062 * helper for cgroup v1 by providing a tag resp. identifier that
2063 * can be matched on or used for map lookups e.g. to implement
2064 * policy. The cgroup v2 id of a given path in the hierarchy is
2065 * exposed in user space through the f_handle API in order to get
2066 * to the same 64-bit id.
2067 *
2068 * This helper can be used on TC egress path, but not on ingress,
2069 * and is available only if the kernel was compiled with the
2070 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
2071 * Return
2072 * The id is returned or 0 in case the id could not be retrieved.
2073 *
2074 * u64 bpf_get_current_cgroup_id(void)
2075 * Return
2076 * A 64-bit integer containing the current cgroup id based
2077 * on the cgroup within which the current task is running.
1a97748b
SH
2078 */
2079#define __BPF_FUNC_MAPPER(FN) \
2080 FN(unspec), \
2081 FN(map_lookup_elem), \
2082 FN(map_update_elem), \
2083 FN(map_delete_elem), \
2084 FN(probe_read), \
2085 FN(ktime_get_ns), \
2086 FN(trace_printk), \
2087 FN(get_prandom_u32), \
2088 FN(get_smp_processor_id), \
2089 FN(skb_store_bytes), \
2090 FN(l3_csum_replace), \
2091 FN(l4_csum_replace), \
2092 FN(tail_call), \
2093 FN(clone_redirect), \
2094 FN(get_current_pid_tgid), \
2095 FN(get_current_uid_gid), \
2096 FN(get_current_comm), \
2097 FN(get_cgroup_classid), \
2098 FN(skb_vlan_push), \
2099 FN(skb_vlan_pop), \
2100 FN(skb_get_tunnel_key), \
2101 FN(skb_set_tunnel_key), \
2102 FN(perf_event_read), \
2103 FN(redirect), \
2104 FN(get_route_realm), \
2105 FN(perf_event_output), \
2106 FN(skb_load_bytes), \
2107 FN(get_stackid), \
2108 FN(csum_diff), \
2109 FN(skb_get_tunnel_opt), \
2110 FN(skb_set_tunnel_opt), \
2111 FN(skb_change_proto), \
2112 FN(skb_change_type), \
2113 FN(skb_under_cgroup), \
2114 FN(get_hash_recalc), \
2115 FN(get_current_task), \
2116 FN(probe_write_user), \
2117 FN(current_task_under_cgroup), \
2118 FN(skb_change_tail), \
2119 FN(skb_pull_data), \
2120 FN(csum_update), \
2121 FN(set_hash_invalid), \
143a704b 2122 FN(get_numa_node_id), \
3dd0bb51 2123 FN(skb_change_head), \
a044b36a 2124 FN(xdp_adjust_head), \
45f78b4d
SH
2125 FN(probe_read_str), \
2126 FN(get_socket_cookie), \
b68581d4 2127 FN(get_socket_uid), \
f0b9b795
SH
2128 FN(set_hash), \
2129 FN(setsockopt), \
2130 FN(skb_adjust_room), \
18d7817c
SH
2131 FN(redirect_map), \
2132 FN(sk_redirect_map), \
2133 FN(sock_map_update), \
f53da99a
SH
2134 FN(xdp_adjust_meta), \
2135 FN(perf_event_read_value), \
fa19d6bc 2136 FN(perf_prog_read_value), \
f82517f8 2137 FN(getsockopt), \
07ed8df6 2138 FN(override_return), \
9effc146
DA
2139 FN(sock_ops_cb_flags_set), \
2140 FN(msg_redirect_map), \
2141 FN(msg_apply_bytes), \
2142 FN(msg_cork_bytes), \
dcf7997b 2143 FN(msg_pull_data), \
fd95ec0e
DA
2144 FN(bind), \
2145 FN(xdp_adjust_tail), \
2146 FN(skb_get_xfrm_state), \
2147 FN(get_stack), \
4276e652
DA
2148 FN(skb_load_bytes_relative), \
2149 FN(fib_lookup), \
2150 FN(sock_hash_update), \
2151 FN(msg_redirect_hash), \
57ac202c
DA
2152 FN(sk_redirect_hash), \
2153 FN(lwt_push_encap), \
2154 FN(lwt_seg6_store_bytes), \
2155 FN(lwt_seg6_adjust_srh), \
17678d30
SH
2156 FN(lwt_seg6_action), \
2157 FN(rc_repeat), \
2158 FN(rc_keydown), \
2159 FN(skb_cgroup_id), \
2160 FN(get_current_cgroup_id),
1a97748b 2161
b54ac87e
DB
2162/* integer value in 'imm' field of BPF_CALL instruction selects which helper
2163 * function eBPF program intends to call
2164 */
1a97748b 2165#define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
b54ac87e 2166enum bpf_func_id {
1a97748b 2167 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
b54ac87e
DB
2168 __BPF_FUNC_MAX_ID,
2169};
1a97748b 2170#undef __BPF_ENUM_FN
b54ac87e 2171
7321b7db
SH
2172/* All flags used by eBPF helper functions, placed here. */
2173
2174/* BPF_FUNC_skb_store_bytes flags. */
2175#define BPF_F_RECOMPUTE_CSUM (1ULL << 0)
b7e0091a 2176#define BPF_F_INVALIDATE_HASH (1ULL << 1)
7321b7db
SH
2177
2178/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2179 * First 4 bits are for passing the header field size.
2180 */
2181#define BPF_F_HDR_FIELD_MASK 0xfULL
2182
2183/* BPF_FUNC_l4_csum_replace flags. */
2184#define BPF_F_PSEUDO_HDR (1ULL << 4)
2421ab75 2185#define BPF_F_MARK_MANGLED_0 (1ULL << 5)
b479a7d7 2186#define BPF_F_MARK_ENFORCE (1ULL << 6)
7321b7db
SH
2187
2188/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2189#define BPF_F_INGRESS (1ULL << 0)
2190
2191/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2192#define BPF_F_TUNINFO_IPV6 (1ULL << 0)
2193
fd95ec0e 2194/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2421ab75
SH
2195#define BPF_F_SKIP_FIELD_MASK 0xffULL
2196#define BPF_F_USER_STACK (1ULL << 8)
fd95ec0e 2197/* flags used by BPF_FUNC_get_stackid only. */
2421ab75
SH
2198#define BPF_F_FAST_STACK_CMP (1ULL << 9)
2199#define BPF_F_REUSE_STACKID (1ULL << 10)
fd95ec0e
DA
2200/* flags used by BPF_FUNC_get_stack only. */
2201#define BPF_F_USER_BUILD_ID (1ULL << 11)
2421ab75 2202
b7e0091a
SH
2203/* BPF_FUNC_skb_set_tunnel_key flags. */
2204#define BPF_F_ZERO_CSUM_TX (1ULL << 1)
2205#define BPF_F_DONT_FRAGMENT (1ULL << 2)
8c278eca 2206#define BPF_F_SEQ_NUMBER (1ULL << 3)
b7e0091a 2207
f53da99a
SH
2208/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2209 * BPF_FUNC_perf_event_read_value flags.
2210 */
32c0b9b7
SH
2211#define BPF_F_INDEX_MASK 0xffffffffULL
2212#define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK
ba91cd9d
SH
2213/* BPF_FUNC_perf_event_output for sk_buff input context. */
2214#define BPF_F_CTXLEN_MASK (0xfffffULL << 32)
32c0b9b7 2215
f0b9b795
SH
2216/* Mode for BPF_FUNC_skb_adjust_room helper. */
2217enum bpf_adj_room_mode {
2218 BPF_ADJ_ROOM_NET,
2219};
2220
fd95ec0e
DA
2221/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2222enum bpf_hdr_start_off {
2223 BPF_HDR_START_MAC,
2224 BPF_HDR_START_NET,
2225};
2226
57ac202c
DA
2227/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2228enum bpf_lwt_encap_mode {
2229 BPF_LWT_ENCAP_SEG6,
2230 BPF_LWT_ENCAP_SEG6_INLINE
2231};
2232
b54ac87e
DB
2233/* user accessible mirror of in-kernel sk_buff.
2234 * new fields can only be added to the end of this structure
2235 */
2236struct __sk_buff {
2237 __u32 len;
2238 __u32 pkt_type;
2239 __u32 mark;
2240 __u32 queue_mapping;
cbdc3ed8
SH
2241 __u32 protocol;
2242 __u32 vlan_present;
2243 __u32 vlan_tci;
2244 __u32 vlan_proto;
e46efaed 2245 __u32 priority;
ff631c3a
SH
2246 __u32 ingress_ifindex;
2247 __u32 ifindex;
2248 __u32 tc_index;
2249 __u32 cb[5];
4f3489cd 2250 __u32 hash;
4e39bfb9 2251 __u32 tc_classid;
31ce6e01
SH
2252 __u32 data;
2253 __u32 data_end;
5b0aa887 2254 __u32 napi_id;
18d7817c 2255
1db903de 2256 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
18d7817c
SH
2257 __u32 family;
2258 __u32 remote_ip4; /* Stored in network byte order */
2259 __u32 local_ip4; /* Stored in network byte order */
2260 __u32 remote_ip6[4]; /* Stored in network byte order */
2261 __u32 local_ip6[4]; /* Stored in network byte order */
2262 __u32 remote_port; /* Stored in network byte order */
2263 __u32 local_port; /* stored in host byte order */
1db903de
SH
2264 /* ... here. */
2265
2266 __u32 data_meta;
b54ac87e
DB
2267};
2268
089d93d6
SH
2269struct bpf_tunnel_key {
2270 __u32 tunnel_id;
7321b7db
SH
2271 union {
2272 __u32 remote_ipv4;
2273 __u32 remote_ipv6[4];
2274 };
2275 __u8 tunnel_tos;
2276 __u8 tunnel_ttl;
17678d30 2277 __u16 tunnel_ext; /* Padding, future use. */
b7e0091a 2278 __u32 tunnel_label;
089d93d6
SH
2279};
2280
fd95ec0e
DA
2281/* user accessible mirror of in-kernel xfrm_state.
2282 * new fields can only be added to the end of this structure
2283 */
2284struct bpf_xfrm_state {
2285 __u32 reqid;
2286 __u32 spi; /* Stored in network byte order */
2287 __u16 family;
17678d30 2288 __u16 ext; /* Padding, future use. */
fd95ec0e
DA
2289 union {
2290 __u32 remote_ipv4; /* Stored in network byte order */
2291 __u32 remote_ipv6[4]; /* Stored in network byte order */
2292 };
2293};
2294
143a704b
SH
2295/* Generic BPF return codes which all BPF program types may support.
2296 * The values are binary compatible with their TC_ACT_* counter-part to
2297 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2298 * programs.
2299 *
2300 * XDP is handled seprately, see XDP_*.
2301 */
2302enum bpf_ret_code {
2303 BPF_OK = 0,
2304 /* 1 reserved */
2305 BPF_DROP = 2,
2306 /* 3-6 reserved */
2307 BPF_REDIRECT = 7,
2308 /* >127 are reserved for prog type specific return codes */
2309};
2310
2311struct bpf_sock {
2312 __u32 bound_dev_if;
2313 __u32 family;
2314 __u32 type;
2315 __u32 protocol;
4a5b3035
SH
2316 __u32 mark;
2317 __u32 priority;
dcf7997b
SH
2318 __u32 src_ip4; /* Allows 1,2,4-byte read.
2319 * Stored in network byte order.
2320 */
2321 __u32 src_ip6[4]; /* Allows 1,2,4-byte read.
2322 * Stored in network byte order.
2323 */
2324 __u32 src_port; /* Allows 4-byte read.
2325 * Stored in host byte order
2326 */
143a704b
SH
2327};
2328
3dd0bb51
SH
2329#define XDP_PACKET_HEADROOM 256
2330
ba91cd9d
SH
2331/* User return codes for XDP prog type.
2332 * A valid XDP program must return one of these defined values. All other
44cf8415
SH
2333 * return codes are reserved for future use. Unknown return codes will
2334 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
ba91cd9d
SH
2335 */
2336enum xdp_action {
2337 XDP_ABORTED = 0,
2338 XDP_DROP,
2339 XDP_PASS,
2340 XDP_TX,
f0b9b795 2341 XDP_REDIRECT,
ba91cd9d
SH
2342};
2343
2344/* user accessible metadata for XDP packet hook
2345 * new fields must be added to the end of this structure
2346 */
2347struct xdp_md {
2348 __u32 data;
2349 __u32 data_end;
1db903de 2350 __u32 data_meta;
c0788a09
DA
2351 /* Below access go through struct xdp_rxq_info */
2352 __u32 ingress_ifindex; /* rxq->dev->ifindex */
2353 __u32 rx_queue_index; /* rxq->queue_index */
ba91cd9d
SH
2354};
2355
18d7817c 2356enum sk_action {
fe388b9e
SH
2357 SK_DROP = 0,
2358 SK_PASS,
18d7817c
SH
2359};
2360
9effc146
DA
2361/* user accessible metadata for SK_MSG packet hook, new fields must
2362 * be added to the end of this structure
2363 */
2364struct sk_msg_md {
2365 void *data;
2366 void *data_end;
57ac202c
DA
2367
2368 __u32 family;
2369 __u32 remote_ip4; /* Stored in network byte order */
2370 __u32 local_ip4; /* Stored in network byte order */
2371 __u32 remote_ip6[4]; /* Stored in network byte order */
2372 __u32 local_ip6[4]; /* Stored in network byte order */
2373 __u32 remote_port; /* Stored in network byte order */
2374 __u32 local_port; /* stored in host byte order */
9effc146
DA
2375};
2376
410556ad
SH
2377#define BPF_TAG_SIZE 8
2378
2379struct bpf_prog_info {
2380 __u32 type;
2381 __u32 id;
2382 __u8 tag[BPF_TAG_SIZE];
2383 __u32 jited_prog_len;
2384 __u32 xlated_prog_len;
2385 __aligned_u64 jited_prog_insns;
2386 __aligned_u64 xlated_prog_insns;
1db903de
SH
2387 __u64 load_time; /* ns since boottime */
2388 __u32 created_by_uid;
2389 __u32 nr_map_ids;
2390 __aligned_u64 map_ids;
f53da99a 2391 char name[BPF_OBJ_NAME_LEN];
c0788a09 2392 __u32 ifindex;
fd95ec0e 2393 __u32 gpl_compatible:1;
c0788a09
DA
2394 __u64 netns_dev;
2395 __u64 netns_ino;
57ac202c
DA
2396 __u32 nr_jited_ksyms;
2397 __u32 nr_jited_func_lens;
2398 __aligned_u64 jited_ksyms;
2399 __aligned_u64 jited_func_lens;
410556ad
SH
2400} __attribute__((aligned(8)));
2401
2402struct bpf_map_info {
2403 __u32 type;
2404 __u32 id;
2405 __u32 key_size;
2406 __u32 value_size;
2407 __u32 max_entries;
2408 __u32 map_flags;
f53da99a 2409 char name[BPF_OBJ_NAME_LEN];
07ed8df6 2410 __u32 ifindex;
4be85d57 2411 __u32 :32;
07ed8df6
DA
2412 __u64 netns_dev;
2413 __u64 netns_ino;
4276e652 2414 __u32 btf_id;
57ac202c
DA
2415 __u32 btf_key_type_id;
2416 __u32 btf_value_type_id;
4276e652
DA
2417} __attribute__((aligned(8)));
2418
2419struct bpf_btf_info {
2420 __aligned_u64 btf;
2421 __u32 btf_size;
2422 __u32 id;
410556ad
SH
2423} __attribute__((aligned(8)));
2424
dcf7997b
SH
2425/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2426 * by user and intended to be used by socket (e.g. to bind to, depends on
2427 * attach attach type).
2428 */
2429struct bpf_sock_addr {
2430 __u32 user_family; /* Allows 4-byte read, but no write. */
2431 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
2432 * Stored in network byte order.
2433 */
2434 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write.
2435 * Stored in network byte order.
2436 */
2437 __u32 user_port; /* Allows 4-byte read and write.
2438 * Stored in network byte order
2439 */
2440 __u32 family; /* Allows 4-byte read, but no write */
2441 __u32 type; /* Allows 4-byte read, but no write */
2442 __u32 protocol; /* Allows 4-byte read, but no write */
17678d30
SH
2443 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write.
2444 * Stored in network byte order.
2445 */
2446 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write.
2447 * Stored in network byte order.
2448 */
dcf7997b
SH
2449};
2450
f0b9b795
SH
2451/* User bpf_sock_ops struct to access socket values and specify request ops
2452 * and their replies.
2453 * Some of this fields are in network (bigendian) byte order and may need
2454 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
2455 * New fields can only be added at the end of this structure
2456 */
2457struct bpf_sock_ops {
2458 __u32 op;
2459 union {
07ed8df6
DA
2460 __u32 args[4]; /* Optionally passed to bpf program */
2461 __u32 reply; /* Returned by bpf program */
2462 __u32 replylong[4]; /* Optionally returned by bpf prog */
f0b9b795
SH
2463 };
2464 __u32 family;
2465 __u32 remote_ip4; /* Stored in network byte order */
2466 __u32 local_ip4; /* Stored in network byte order */
2467 __u32 remote_ip6[4]; /* Stored in network byte order */
2468 __u32 local_ip6[4]; /* Stored in network byte order */
2469 __u32 remote_port; /* Stored in network byte order */
2470 __u32 local_port; /* stored in host byte order */
b7f5fd36
SH
2471 __u32 is_fullsock; /* Some TCP fields are only valid if
2472 * there is a full socket. If not, the
2473 * fields read as zero.
2474 */
2475 __u32 snd_cwnd;
2476 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
07ed8df6
DA
2477 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2478 __u32 state;
2479 __u32 rtt_min;
2480 __u32 snd_ssthresh;
2481 __u32 rcv_nxt;
2482 __u32 snd_nxt;
2483 __u32 snd_una;
2484 __u32 mss_cache;
2485 __u32 ecn_flags;
2486 __u32 rate_delivered;
2487 __u32 rate_interval_us;
2488 __u32 packets_out;
2489 __u32 retrans_out;
2490 __u32 total_retrans;
2491 __u32 segs_in;
2492 __u32 data_segs_in;
2493 __u32 segs_out;
2494 __u32 data_segs_out;
2495 __u32 lost_out;
2496 __u32 sacked_out;
2497 __u32 sk_txhash;
2498 __u64 bytes_received;
2499 __u64 bytes_acked;
f0b9b795
SH
2500};
2501
07ed8df6
DA
2502/* Definitions for bpf_sock_ops_cb_flags */
2503#define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0)
2504#define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1)
2505#define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2)
2506#define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently
2507 * supported cb flags
2508 */
2509
f0b9b795
SH
2510/* List of known BPF sock_ops operators.
2511 * New entries can only be added at the end
2512 */
2513enum {
2514 BPF_SOCK_OPS_VOID,
2515 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
2516 * -1 if default value should be used
2517 */
2518 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
2519 * window (in packets) or -1 if default
2520 * value should be used
2521 */
2522 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
2523 * active connection is initialized
2524 */
2525 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
2526 * active connection is
2527 * established
2528 */
2529 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
2530 * passive connection is
2531 * established
2532 */
2533 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
2534 * needs ECN
2535 */
fa19d6bc
SH
2536 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
2537 * based on the path and may be
2538 * dependent on the congestion control
2539 * algorithm. In general it indicates
2540 * a congestion threshold. RTTs above
2541 * this indicate congestion
2542 */
07ed8df6
DA
2543 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
2544 * Arg1: value of icsk_retransmits
2545 * Arg2: value of icsk_rto
2546 * Arg3: whether RTO has expired
2547 */
2548 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
2549 * Arg1: sequence number of 1st byte
2550 * Arg2: # segments
2551 * Arg3: return value of
2552 * tcp_transmit_skb (0 => success)
2553 */
2554 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
2555 * Arg1: old_state
2556 * Arg2: new_state
2557 */
2558};
2559
2560/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
2561 * changes between the TCP and BPF versions. Ideally this should never happen.
2562 * If it does, we need to add code to convert them before calling
2563 * the BPF sock_ops function.
2564 */
2565enum {
2566 BPF_TCP_ESTABLISHED = 1,
2567 BPF_TCP_SYN_SENT,
2568 BPF_TCP_SYN_RECV,
2569 BPF_TCP_FIN_WAIT1,
2570 BPF_TCP_FIN_WAIT2,
2571 BPF_TCP_TIME_WAIT,
2572 BPF_TCP_CLOSE,
2573 BPF_TCP_CLOSE_WAIT,
2574 BPF_TCP_LAST_ACK,
2575 BPF_TCP_LISTEN,
2576 BPF_TCP_CLOSING, /* Now a valid state */
2577 BPF_TCP_NEW_SYN_RECV,
2578
2579 BPF_TCP_MAX_STATES /* Leave at the end! */
f0b9b795
SH
2580};
2581
2582#define TCP_BPF_IW 1001 /* Set TCP initial congestion window */
2583#define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */
2584
f53da99a
SH
2585struct bpf_perf_event_value {
2586 __u64 counter;
2587 __u64 enabled;
2588 __u64 running;
2589};
2590
665ef5a5
SH
2591#define BPF_DEVCG_ACC_MKNOD (1ULL << 0)
2592#define BPF_DEVCG_ACC_READ (1ULL << 1)
2593#define BPF_DEVCG_ACC_WRITE (1ULL << 2)
2594
2595#define BPF_DEVCG_DEV_BLOCK (1ULL << 0)
2596#define BPF_DEVCG_DEV_CHAR (1ULL << 1)
2597
2598struct bpf_cgroup_dev_ctx {
c0788a09
DA
2599 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
2600 __u32 access_type;
665ef5a5
SH
2601 __u32 major;
2602 __u32 minor;
2603};
2604
dcf7997b
SH
2605struct bpf_raw_tracepoint_args {
2606 __u64 args[0];
2607};
2608
4276e652
DA
2609/* DIRECT: Skip the FIB rules and go to FIB table associated with device
2610 * OUTPUT: Do lookup from egress perspective; default is ingress
2611 */
2612#define BPF_FIB_LOOKUP_DIRECT BIT(0)
2613#define BPF_FIB_LOOKUP_OUTPUT BIT(1)
2614
2615struct bpf_fib_lookup {
17678d30
SH
2616 /* input: network family for lookup (AF_INET, AF_INET6)
2617 * output: network family of egress nexthop
2618 */
2619 __u8 family;
4276e652
DA
2620
2621 /* set if lookup is to consider L4 data - e.g., FIB rules */
2622 __u8 l4_protocol;
2623 __be16 sport;
2624 __be16 dport;
2625
2626 /* total length of packet from network header - used for MTU check */
2627 __u16 tot_len;
2628 __u32 ifindex; /* L3 device index for lookup */
2629
2630 union {
2631 /* inputs to lookup */
2632 __u8 tos; /* AF_INET */
17678d30 2633 __be32 flowinfo; /* AF_INET6, flow_label + priority */
4276e652 2634
17678d30
SH
2635 /* output: metric of fib result (IPv4/IPv6 only) */
2636 __u32 rt_metric;
4276e652
DA
2637 };
2638
2639 union {
4276e652
DA
2640 __be32 ipv4_src;
2641 __u32 ipv6_src[4]; /* in6_addr; network order */
2642 };
2643
17678d30
SH
2644 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
2645 * network header. output: bpf_fib_lookup sets to gateway address
2646 * if FIB lookup returns gateway route
4276e652
DA
2647 */
2648 union {
4276e652
DA
2649 __be32 ipv4_dst;
2650 __u32 ipv6_dst[4]; /* in6_addr; network order */
2651 };
2652
2653 /* output */
2654 __be16 h_vlan_proto;
2655 __be16 h_vlan_TCI;
2656 __u8 smac[6]; /* ETH_ALEN */
2657 __u8 dmac[6]; /* ETH_ALEN */
2658};
2659
57ac202c
DA
2660enum bpf_task_fd_type {
2661 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
2662 BPF_FD_TYPE_TRACEPOINT, /* tp name */
2663 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
2664 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
2665 BPF_FD_TYPE_UPROBE, /* filename + offset */
2666 BPF_FD_TYPE_URETPROBE, /* filename + offset */
2667};
2668
b54ac87e 2669#endif /* __LINUX_BPF_H__ */