]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/uapi/linux/hyperv.h
s390: vfio-ap: implement VFIO_DEVICE_GET_INFO ioctl
[mirror_ubuntu-bionic-kernel.git] / include / uapi / linux / hyperv.h
CommitLineData
e2be04c7 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
5267cf02
BIP
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
17 * Place - Suite 330, Boston, MA 02111-1307 USA.
18 *
19 * Authors:
20 * Haiyang Zhang <haiyangz@microsoft.com>
21 * Hank Janssen <hjanssen@microsoft.com>
22 * K. Y. Srinivasan <kys@microsoft.com>
23 *
24 */
25
26#ifndef _UAPI_HYPERV_H
27#define _UAPI_HYPERV_H
28
01325476
S
29#include <linux/uuid.h>
30
5267cf02
BIP
31/*
32 * Framework version for util services.
33 */
34#define UTIL_FW_MINOR 0
35
36#define UTIL_WS2K8_FW_MAJOR 1
37#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38
39#define UTIL_FW_MAJOR 3
40#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
41
42
43/*
44 * Implementation of host controlled snapshot of the guest.
45 */
46
47#define VSS_OP_REGISTER 128
48
cd8dc054
VK
49/*
50 Daemon code with full handshake support.
51 */
52#define VSS_OP_REGISTER1 129
53
5267cf02
BIP
54enum hv_vss_op {
55 VSS_OP_CREATE = 0,
56 VSS_OP_DELETE,
57 VSS_OP_HOT_BACKUP,
58 VSS_OP_GET_DM_INFO,
59 VSS_OP_BU_COMPLETE,
60 /*
61 * Following operations are only supported with IC version >= 5.0
62 */
63 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
64 VSS_OP_THAW, /* Unfreeze the file systems */
65 VSS_OP_AUTO_RECOVER,
66 VSS_OP_COUNT /* Number of operations, must be last */
67};
68
69
70/*
71 * Header for all VSS messages.
72 */
73struct hv_vss_hdr {
74 __u8 operation;
75 __u8 reserved[7];
76} __attribute__((packed));
77
78
79/*
80 * Flag values for the hv_vss_check_feature. Linux supports only
81 * one value.
82 */
83#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
84
85struct hv_vss_check_feature {
86 __u32 flags;
87} __attribute__((packed));
88
89struct hv_vss_check_dm_info {
90 __u32 flags;
91} __attribute__((packed));
92
93struct hv_vss_msg {
94 union {
95 struct hv_vss_hdr vss_hdr;
96 int error;
97 };
98 union {
99 struct hv_vss_check_feature vss_cf;
100 struct hv_vss_check_dm_info dm_info;
101 };
102} __attribute__((packed));
103
01325476
S
104/*
105 * Implementation of a host to guest copy facility.
106 */
107
108#define FCOPY_VERSION_0 0
a4d1ee5b
VK
109#define FCOPY_VERSION_1 1
110#define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
01325476
S
111#define W_MAX_PATH 260
112
113enum hv_fcopy_op {
114 START_FILE_COPY = 0,
115 WRITE_TO_FILE,
116 COMPLETE_FCOPY,
117 CANCEL_FCOPY,
118};
119
120struct hv_fcopy_hdr {
121 __u32 operation;
122 uuid_le service_id0; /* currently unused */
123 uuid_le service_id1; /* currently unused */
124} __attribute__((packed));
125
126#define OVER_WRITE 0x1
127#define CREATE_PATH 0x2
128
129struct hv_start_fcopy {
130 struct hv_fcopy_hdr hdr;
131 __u16 file_name[W_MAX_PATH];
132 __u16 path_name[W_MAX_PATH];
133 __u32 copy_flags;
134 __u64 file_size;
135} __attribute__((packed));
136
137/*
138 * The file is chunked into fragments.
139 */
140#define DATA_FRAGMENT (6 * 1024)
141
142struct hv_do_fcopy {
143 struct hv_fcopy_hdr hdr;
31d4ea1a 144 __u32 pad;
01325476
S
145 __u64 offset;
146 __u32 size;
147 __u8 data[DATA_FRAGMENT];
bc5a5b02 148} __attribute__((packed));
01325476 149
5267cf02
BIP
150/*
151 * An implementation of HyperV key value pair (KVP) functionality for Linux.
152 *
153 *
154 * Copyright (C) 2010, Novell, Inc.
155 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
156 *
157 */
158
159/*
160 * Maximum value size - used for both key names and value data, and includes
161 * any applicable NULL terminators.
162 *
163 * Note: This limit is somewhat arbitrary, but falls easily within what is
164 * supported for all native guests (back to Win 2000) and what is reasonable
165 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
166 * limited to 255 character key names.
167 *
168 * MSDN recommends not storing data values larger than 2048 bytes in the
169 * registry.
170 *
171 * Note: This value is used in defining the KVP exchange message - this value
172 * cannot be modified without affecting the message size and compatibility.
173 */
174
175/*
176 * bytes, including any null terminators
177 */
178#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
179
180
181/*
182 * Maximum key size - the registry limit for the length of an entry name
183 * is 256 characters, including the null terminator
184 */
185
186#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
187
188/*
189 * In Linux, we implement the KVP functionality in two components:
190 * 1) The kernel component which is packaged as part of the hv_utils driver
191 * is responsible for communicating with the host and responsible for
192 * implementing the host/guest protocol. 2) A user level daemon that is
193 * responsible for data gathering.
194 *
195 * Host/Guest Protocol: The host iterates over an index and expects the guest
196 * to assign a key name to the index and also return the value corresponding to
197 * the key. The host will have atmost one KVP transaction outstanding at any
198 * given point in time. The host side iteration stops when the guest returns
199 * an error. Microsoft has specified the following mapping of key names to
200 * host specified index:
201 *
202 * Index Key Name
203 * 0 FullyQualifiedDomainName
204 * 1 IntegrationServicesVersion
205 * 2 NetworkAddressIPv4
206 * 3 NetworkAddressIPv6
207 * 4 OSBuildNumber
208 * 5 OSName
209 * 6 OSMajorVersion
210 * 7 OSMinorVersion
211 * 8 OSVersion
212 * 9 ProcessorArchitecture
213 *
214 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
215 *
216 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
217 * data gathering functionality in a user mode daemon. The user level daemon
218 * is also responsible for binding the key name to the index as well. The
219 * kernel and user-level daemon communicate using a connector channel.
220 *
221 * The user mode component first registers with the
222 * the kernel component. Subsequently, the kernel component requests, data
223 * for the specified keys. In response to this message the user mode component
224 * fills in the value corresponding to the specified key. We overload the
225 * sequence field in the cn_msg header to define our KVP message types.
226 *
227 *
228 * The kernel component simply acts as a conduit for communication between the
229 * Windows host and the user-level daemon. The kernel component passes up the
230 * index received from the Host to the user-level daemon. If the index is
231 * valid (supported), the corresponding key as well as its
232 * value (both are strings) is returned. If the index is invalid
233 * (not supported), a NULL key string is returned.
234 */
235
236
237/*
238 * Registry value types.
239 */
240
241#define REG_SZ 1
242#define REG_U32 4
243#define REG_U64 8
244
245/*
246 * As we look at expanding the KVP functionality to include
247 * IP injection functionality, we need to maintain binary
248 * compatibility with older daemons.
249 *
250 * The KVP opcodes are defined by the host and it was unfortunate
251 * that I chose to treat the registration operation as part of the
252 * KVP operations defined by the host.
253 * Here is the level of compatibility
254 * (between the user level daemon and the kernel KVP driver) that we
255 * will implement:
256 *
257 * An older daemon will always be supported on a newer driver.
258 * A given user level daemon will require a minimal version of the
259 * kernel driver.
260 * If we cannot handle the version differences, we will fail gracefully
261 * (this can happen when we have a user level daemon that is more
262 * advanced than the KVP driver.
263 *
264 * We will use values used in this handshake for determining if we have
265 * workable user level daemon and the kernel driver. We begin by taking the
266 * registration opcode out of the KVP opcode namespace. We will however,
267 * maintain compatibility with the existing user-level daemon code.
268 */
269
270/*
271 * Daemon code not supporting IP injection (legacy daemon).
272 */
273
274#define KVP_OP_REGISTER 4
275
276/*
277 * Daemon code supporting IP injection.
278 * The KVP opcode field is used to communicate the
279 * registration information; so define a namespace that
280 * will be distinct from the host defined KVP opcode.
281 */
282
283#define KVP_OP_REGISTER1 100
284
285enum hv_kvp_exchg_op {
286 KVP_OP_GET = 0,
287 KVP_OP_SET,
288 KVP_OP_DELETE,
289 KVP_OP_ENUMERATE,
290 KVP_OP_GET_IP_INFO,
291 KVP_OP_SET_IP_INFO,
292 KVP_OP_COUNT /* Number of operations, must be last. */
293};
294
295enum hv_kvp_exchg_pool {
296 KVP_POOL_EXTERNAL = 0,
297 KVP_POOL_GUEST,
298 KVP_POOL_AUTO,
299 KVP_POOL_AUTO_EXTERNAL,
300 KVP_POOL_AUTO_INTERNAL,
301 KVP_POOL_COUNT /* Number of pools, must be last. */
302};
303
304/*
305 * Some Hyper-V status codes.
306 */
307
308#define HV_S_OK 0x00000000
309#define HV_E_FAIL 0x80004005
310#define HV_S_CONT 0x80070103
311#define HV_ERROR_NOT_SUPPORTED 0x80070032
312#define HV_ERROR_MACHINE_LOCKED 0x800704F7
313#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
314#define HV_INVALIDARG 0x80070057
315#define HV_GUID_NOTFOUND 0x80041002
314672a2 316#define HV_ERROR_ALREADY_EXISTS 0x80070050
b4ed5d16 317#define HV_ERROR_DISK_FULL 0x80070070
5267cf02
BIP
318
319#define ADDR_FAMILY_NONE 0x00
320#define ADDR_FAMILY_IPV4 0x01
321#define ADDR_FAMILY_IPV6 0x02
322
323#define MAX_ADAPTER_ID_SIZE 128
324#define MAX_IP_ADDR_SIZE 1024
325#define MAX_GATEWAY_SIZE 512
326
327
328struct hv_kvp_ipaddr_value {
329 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
330 __u8 addr_family;
331 __u8 dhcp_enabled;
332 __u16 ip_addr[MAX_IP_ADDR_SIZE];
333 __u16 sub_net[MAX_IP_ADDR_SIZE];
334 __u16 gate_way[MAX_GATEWAY_SIZE];
335 __u16 dns_addr[MAX_IP_ADDR_SIZE];
336} __attribute__((packed));
337
338
339struct hv_kvp_hdr {
340 __u8 operation;
341 __u8 pool;
342 __u16 pad;
343} __attribute__((packed));
344
345struct hv_kvp_exchg_msg_value {
346 __u32 value_type;
347 __u32 key_size;
348 __u32 value_size;
349 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
350 union {
351 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
352 __u32 value_u32;
353 __u64 value_u64;
354 };
355} __attribute__((packed));
356
357struct hv_kvp_msg_enumerate {
358 __u32 index;
359 struct hv_kvp_exchg_msg_value data;
360} __attribute__((packed));
361
362struct hv_kvp_msg_get {
363 struct hv_kvp_exchg_msg_value data;
364};
365
366struct hv_kvp_msg_set {
367 struct hv_kvp_exchg_msg_value data;
368};
369
370struct hv_kvp_msg_delete {
371 __u32 key_size;
372 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
373};
374
375struct hv_kvp_register {
376 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
377};
378
379struct hv_kvp_msg {
380 union {
381 struct hv_kvp_hdr kvp_hdr;
382 int error;
383 };
384 union {
385 struct hv_kvp_msg_get kvp_get;
386 struct hv_kvp_msg_set kvp_set;
387 struct hv_kvp_msg_delete kvp_delete;
388 struct hv_kvp_msg_enumerate kvp_enum_data;
389 struct hv_kvp_ipaddr_value kvp_ip_val;
390 struct hv_kvp_register kvp_register;
391 } body;
392} __attribute__((packed));
393
394struct hv_kvp_ip_msg {
395 __u8 operation;
396 __u8 pool;
397 struct hv_kvp_ipaddr_value kvp_ip_val;
398} __attribute__((packed));
399
400#endif /* _UAPI_HYPERV_H */