]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/uapi/linux/perf_event.h
perf/x86: Add support for PEBS Precise Store
[mirror_ubuntu-bionic-kernel.git] / include / uapi / linux / perf_event.h
CommitLineData
607ca46e
DH
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _UAPI_LINUX_PERF_EVENT_H
15#define _UAPI_LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60};
61
62/*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79};
80
81enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87};
88
89enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94};
95
96/*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114};
115
116/*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
133 PERF_SAMPLE_REGS_USER = 1U << 12,
134 PERF_SAMPLE_STACK_USER = 1U << 13,
c3feedf2 135 PERF_SAMPLE_WEIGHT = 1U << 14,
d6be9ad6 136 PERF_SAMPLE_DATA_SRC = 1U << 15,
c3feedf2 137
d6be9ad6 138 PERF_SAMPLE_MAX = 1U << 16, /* non-ABI */
607ca46e
DH
139};
140
141/*
142 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
143 *
144 * If the user does not pass priv level information via branch_sample_type,
145 * the kernel uses the event's priv level. Branch and event priv levels do
146 * not have to match. Branch priv level is checked for permissions.
147 *
148 * The branch types can be combined, however BRANCH_ANY covers all types
149 * of branches and therefore it supersedes all the other types.
150 */
151enum perf_branch_sample_type {
152 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
153 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
154 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
155
156 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
157 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
158 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
159 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
160
161 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */
162};
163
164#define PERF_SAMPLE_BRANCH_PLM_ALL \
165 (PERF_SAMPLE_BRANCH_USER|\
166 PERF_SAMPLE_BRANCH_KERNEL|\
167 PERF_SAMPLE_BRANCH_HV)
168
169/*
170 * Values to determine ABI of the registers dump.
171 */
172enum perf_sample_regs_abi {
173 PERF_SAMPLE_REGS_ABI_NONE = 0,
174 PERF_SAMPLE_REGS_ABI_32 = 1,
175 PERF_SAMPLE_REGS_ABI_64 = 2,
176};
177
178/*
179 * The format of the data returned by read() on a perf event fd,
180 * as specified by attr.read_format:
181 *
182 * struct read_format {
183 * { u64 value;
184 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
185 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
186 * { u64 id; } && PERF_FORMAT_ID
187 * } && !PERF_FORMAT_GROUP
188 *
189 * { u64 nr;
190 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
191 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
192 * { u64 value;
193 * { u64 id; } && PERF_FORMAT_ID
194 * } cntr[nr];
195 * } && PERF_FORMAT_GROUP
196 * };
197 */
198enum perf_event_read_format {
199 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
200 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
201 PERF_FORMAT_ID = 1U << 2,
202 PERF_FORMAT_GROUP = 1U << 3,
203
204 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
205};
206
207#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
208#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
209#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
210#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
211 /* add: sample_stack_user */
212
213/*
214 * Hardware event_id to monitor via a performance monitoring event:
215 */
216struct perf_event_attr {
217
218 /*
219 * Major type: hardware/software/tracepoint/etc.
220 */
221 __u32 type;
222
223 /*
224 * Size of the attr structure, for fwd/bwd compat.
225 */
226 __u32 size;
227
228 /*
229 * Type specific configuration information.
230 */
231 __u64 config;
232
233 union {
234 __u64 sample_period;
235 __u64 sample_freq;
236 };
237
238 __u64 sample_type;
239 __u64 read_format;
240
241 __u64 disabled : 1, /* off by default */
242 inherit : 1, /* children inherit it */
243 pinned : 1, /* must always be on PMU */
244 exclusive : 1, /* only group on PMU */
245 exclude_user : 1, /* don't count user */
246 exclude_kernel : 1, /* ditto kernel */
247 exclude_hv : 1, /* ditto hypervisor */
248 exclude_idle : 1, /* don't count when idle */
249 mmap : 1, /* include mmap data */
250 comm : 1, /* include comm data */
251 freq : 1, /* use freq, not period */
252 inherit_stat : 1, /* per task counts */
253 enable_on_exec : 1, /* next exec enables */
254 task : 1, /* trace fork/exit */
255 watermark : 1, /* wakeup_watermark */
256 /*
257 * precise_ip:
258 *
259 * 0 - SAMPLE_IP can have arbitrary skid
260 * 1 - SAMPLE_IP must have constant skid
261 * 2 - SAMPLE_IP requested to have 0 skid
262 * 3 - SAMPLE_IP must have 0 skid
263 *
264 * See also PERF_RECORD_MISC_EXACT_IP
265 */
266 precise_ip : 2, /* skid constraint */
267 mmap_data : 1, /* non-exec mmap data */
268 sample_id_all : 1, /* sample_type all events */
269
270 exclude_host : 1, /* don't count in host */
271 exclude_guest : 1, /* don't count in guest */
272
273 exclude_callchain_kernel : 1, /* exclude kernel callchains */
274 exclude_callchain_user : 1, /* exclude user callchains */
275
276 __reserved_1 : 41;
277
278 union {
279 __u32 wakeup_events; /* wakeup every n events */
280 __u32 wakeup_watermark; /* bytes before wakeup */
281 };
282
283 __u32 bp_type;
284 union {
285 __u64 bp_addr;
286 __u64 config1; /* extension of config */
287 };
288 union {
289 __u64 bp_len;
290 __u64 config2; /* extension of config1 */
291 };
292 __u64 branch_sample_type; /* enum perf_branch_sample_type */
293
294 /*
295 * Defines set of user regs to dump on samples.
296 * See asm/perf_regs.h for details.
297 */
298 __u64 sample_regs_user;
299
300 /*
301 * Defines size of the user stack to dump on samples.
302 */
303 __u32 sample_stack_user;
304
305 /* Align to u64. */
306 __u32 __reserved_2;
307};
308
309#define perf_flags(attr) (*(&(attr)->read_format + 1))
310
311/*
312 * Ioctls that can be done on a perf event fd:
313 */
314#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
315#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
316#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
317#define PERF_EVENT_IOC_RESET _IO ('$', 3)
318#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
319#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
320#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
321
322enum perf_event_ioc_flags {
323 PERF_IOC_FLAG_GROUP = 1U << 0,
324};
325
326/*
327 * Structure of the page that can be mapped via mmap
328 */
329struct perf_event_mmap_page {
330 __u32 version; /* version number of this structure */
331 __u32 compat_version; /* lowest version this is compat with */
332
333 /*
334 * Bits needed to read the hw events in user-space.
335 *
336 * u32 seq, time_mult, time_shift, idx, width;
337 * u64 count, enabled, running;
338 * u64 cyc, time_offset;
339 * s64 pmc = 0;
340 *
341 * do {
342 * seq = pc->lock;
343 * barrier()
344 *
345 * enabled = pc->time_enabled;
346 * running = pc->time_running;
347 *
348 * if (pc->cap_usr_time && enabled != running) {
349 * cyc = rdtsc();
350 * time_offset = pc->time_offset;
351 * time_mult = pc->time_mult;
352 * time_shift = pc->time_shift;
353 * }
354 *
355 * idx = pc->index;
356 * count = pc->offset;
357 * if (pc->cap_usr_rdpmc && idx) {
358 * width = pc->pmc_width;
359 * pmc = rdpmc(idx - 1);
360 * }
361 *
362 * barrier();
363 * } while (pc->lock != seq);
364 *
365 * NOTE: for obvious reason this only works on self-monitoring
366 * processes.
367 */
368 __u32 lock; /* seqlock for synchronization */
369 __u32 index; /* hardware event identifier */
370 __s64 offset; /* add to hardware event value */
371 __u64 time_enabled; /* time event active */
372 __u64 time_running; /* time event on cpu */
373 union {
374 __u64 capabilities;
375 __u64 cap_usr_time : 1,
376 cap_usr_rdpmc : 1,
377 cap_____res : 62;
378 };
379
380 /*
381 * If cap_usr_rdpmc this field provides the bit-width of the value
382 * read using the rdpmc() or equivalent instruction. This can be used
383 * to sign extend the result like:
384 *
385 * pmc <<= 64 - width;
386 * pmc >>= 64 - width; // signed shift right
387 * count += pmc;
388 */
389 __u16 pmc_width;
390
391 /*
392 * If cap_usr_time the below fields can be used to compute the time
393 * delta since time_enabled (in ns) using rdtsc or similar.
394 *
395 * u64 quot, rem;
396 * u64 delta;
397 *
398 * quot = (cyc >> time_shift);
399 * rem = cyc & ((1 << time_shift) - 1);
400 * delta = time_offset + quot * time_mult +
401 * ((rem * time_mult) >> time_shift);
402 *
403 * Where time_offset,time_mult,time_shift and cyc are read in the
404 * seqcount loop described above. This delta can then be added to
405 * enabled and possible running (if idx), improving the scaling:
406 *
407 * enabled += delta;
408 * if (idx)
409 * running += delta;
410 *
411 * quot = count / running;
412 * rem = count % running;
413 * count = quot * enabled + (rem * enabled) / running;
414 */
415 __u16 time_shift;
416 __u32 time_mult;
417 __u64 time_offset;
418
419 /*
420 * Hole for extension of the self monitor capabilities
421 */
422
423 __u64 __reserved[120]; /* align to 1k */
424
425 /*
426 * Control data for the mmap() data buffer.
427 *
428 * User-space reading the @data_head value should issue an rmb(), on
429 * SMP capable platforms, after reading this value -- see
430 * perf_event_wakeup().
431 *
432 * When the mapping is PROT_WRITE the @data_tail value should be
433 * written by userspace to reflect the last read data. In this case
434 * the kernel will not over-write unread data.
435 */
436 __u64 data_head; /* head in the data section */
437 __u64 data_tail; /* user-space written tail */
438};
439
440#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
441#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
442#define PERF_RECORD_MISC_KERNEL (1 << 0)
443#define PERF_RECORD_MISC_USER (2 << 0)
444#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
445#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
446#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
447
448/*
449 * Indicates that the content of PERF_SAMPLE_IP points to
450 * the actual instruction that triggered the event. See also
451 * perf_event_attr::precise_ip.
452 */
453#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
454/*
455 * Reserve the last bit to indicate some extended misc field
456 */
457#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
458
459struct perf_event_header {
460 __u32 type;
461 __u16 misc;
462 __u16 size;
463};
464
465enum perf_event_type {
466
467 /*
468 * If perf_event_attr.sample_id_all is set then all event types will
469 * have the sample_type selected fields related to where/when
470 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
471 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
472 * the perf_event_header and the fields already present for the existing
473 * fields, i.e. at the end of the payload. That way a newer perf.data
474 * file will be supported by older perf tools, with these new optional
475 * fields being ignored.
476 *
477 * The MMAP events record the PROT_EXEC mappings so that we can
478 * correlate userspace IPs to code. They have the following structure:
479 *
480 * struct {
481 * struct perf_event_header header;
482 *
483 * u32 pid, tid;
484 * u64 addr;
485 * u64 len;
486 * u64 pgoff;
487 * char filename[];
488 * };
489 */
490 PERF_RECORD_MMAP = 1,
491
492 /*
493 * struct {
494 * struct perf_event_header header;
495 * u64 id;
496 * u64 lost;
497 * };
498 */
499 PERF_RECORD_LOST = 2,
500
501 /*
502 * struct {
503 * struct perf_event_header header;
504 *
505 * u32 pid, tid;
506 * char comm[];
507 * };
508 */
509 PERF_RECORD_COMM = 3,
510
511 /*
512 * struct {
513 * struct perf_event_header header;
514 * u32 pid, ppid;
515 * u32 tid, ptid;
516 * u64 time;
517 * };
518 */
519 PERF_RECORD_EXIT = 4,
520
521 /*
522 * struct {
523 * struct perf_event_header header;
524 * u64 time;
525 * u64 id;
526 * u64 stream_id;
527 * };
528 */
529 PERF_RECORD_THROTTLE = 5,
530 PERF_RECORD_UNTHROTTLE = 6,
531
532 /*
533 * struct {
534 * struct perf_event_header header;
535 * u32 pid, ppid;
536 * u32 tid, ptid;
537 * u64 time;
538 * };
539 */
540 PERF_RECORD_FORK = 7,
541
542 /*
543 * struct {
544 * struct perf_event_header header;
545 * u32 pid, tid;
546 *
547 * struct read_format values;
548 * };
549 */
550 PERF_RECORD_READ = 8,
551
552 /*
553 * struct {
554 * struct perf_event_header header;
555 *
556 * { u64 ip; } && PERF_SAMPLE_IP
557 * { u32 pid, tid; } && PERF_SAMPLE_TID
558 * { u64 time; } && PERF_SAMPLE_TIME
559 * { u64 addr; } && PERF_SAMPLE_ADDR
560 * { u64 id; } && PERF_SAMPLE_ID
561 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
562 * { u32 cpu, res; } && PERF_SAMPLE_CPU
563 * { u64 period; } && PERF_SAMPLE_PERIOD
564 *
565 * { struct read_format values; } && PERF_SAMPLE_READ
566 *
567 * { u64 nr,
568 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
569 *
570 * #
571 * # The RAW record below is opaque data wrt the ABI
572 * #
573 * # That is, the ABI doesn't make any promises wrt to
574 * # the stability of its content, it may vary depending
575 * # on event, hardware, kernel version and phase of
576 * # the moon.
577 * #
578 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
579 * #
580 *
581 * { u32 size;
582 * char data[size];}&& PERF_SAMPLE_RAW
583 *
b878e7fb
VW
584 * { u64 nr;
585 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
607ca46e
DH
586 *
587 * { u64 abi; # enum perf_sample_regs_abi
588 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
589 *
590 * { u64 size;
591 * char data[size];
592 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
c3feedf2
AK
593 *
594 * { u64 weight; } && PERF_SAMPLE_WEIGHT
d6be9ad6 595 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
607ca46e
DH
596 * };
597 */
598 PERF_RECORD_SAMPLE = 9,
599
600 PERF_RECORD_MAX, /* non-ABI */
601};
602
603#define PERF_MAX_STACK_DEPTH 127
604
605enum perf_callchain_context {
606 PERF_CONTEXT_HV = (__u64)-32,
607 PERF_CONTEXT_KERNEL = (__u64)-128,
608 PERF_CONTEXT_USER = (__u64)-512,
609
610 PERF_CONTEXT_GUEST = (__u64)-2048,
611 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
612 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
613
614 PERF_CONTEXT_MAX = (__u64)-4095,
615};
616
617#define PERF_FLAG_FD_NO_GROUP (1U << 0)
618#define PERF_FLAG_FD_OUTPUT (1U << 1)
619#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
620
d6be9ad6
SE
621union perf_mem_data_src {
622 __u64 val;
623 struct {
624 __u64 mem_op:5, /* type of opcode */
625 mem_lvl:14, /* memory hierarchy level */
626 mem_snoop:5, /* snoop mode */
627 mem_lock:2, /* lock instr */
628 mem_dtlb:7, /* tlb access */
629 mem_rsvd:31;
630 };
631};
632
633/* type of opcode (load/store/prefetch,code) */
634#define PERF_MEM_OP_NA 0x01 /* not available */
635#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
636#define PERF_MEM_OP_STORE 0x04 /* store instruction */
637#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
638#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
639#define PERF_MEM_OP_SHIFT 0
640
641/* memory hierarchy (memory level, hit or miss) */
642#define PERF_MEM_LVL_NA 0x01 /* not available */
643#define PERF_MEM_LVL_HIT 0x02 /* hit level */
644#define PERF_MEM_LVL_MISS 0x04 /* miss level */
645#define PERF_MEM_LVL_L1 0x08 /* L1 */
646#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
647#define PERF_MEM_LVL_L2 0x20 /* L2 hit */
648#define PERF_MEM_LVL_L3 0x40 /* L3 hit */
649#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
650#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
651#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
652#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
653#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
654#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
655#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
656#define PERF_MEM_LVL_SHIFT 5
657
658/* snoop mode */
659#define PERF_MEM_SNOOP_NA 0x01 /* not available */
660#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
661#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
662#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
663#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
664#define PERF_MEM_SNOOP_SHIFT 19
665
666/* locked instruction */
667#define PERF_MEM_LOCK_NA 0x01 /* not available */
668#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
669#define PERF_MEM_LOCK_SHIFT 24
670
671/* TLB access */
672#define PERF_MEM_TLB_NA 0x01 /* not available */
673#define PERF_MEM_TLB_HIT 0x02 /* hit level */
674#define PERF_MEM_TLB_MISS 0x04 /* miss level */
675#define PERF_MEM_TLB_L1 0x08 /* L1 */
676#define PERF_MEM_TLB_L2 0x10 /* L2 */
677#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
678#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
679#define PERF_MEM_TLB_SHIFT 26
680
681#define PERF_MEM_S(a, s) \
682 (((u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
683
607ca46e 684#endif /* _UAPI_LINUX_PERF_EVENT_H */