]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/xen/interface/xen.h
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / include / xen / interface / xen.h
CommitLineData
a42089dd
JF
1/******************************************************************************
2 * xen.h
3 *
4 * Guest OS interface to Xen.
5 *
bca9b685
JG
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
a42089dd
JF
24 * Copyright (c) 2004, K A Fraser
25 */
26
27#ifndef __XEN_PUBLIC_XEN_H__
28#define __XEN_PUBLIC_XEN_H__
29
30#include <asm/xen/interface.h>
31
32/*
33 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
34 */
35
36/*
37 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
38 * EAX = return value
39 * (argument registers may be clobbered on return)
40 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
41 * RAX = return value
42 * (argument registers not clobbered on return; RCX, R11 are)
43 */
44#define __HYPERVISOR_set_trap_table 0
45#define __HYPERVISOR_mmu_update 1
46#define __HYPERVISOR_set_gdt 2
47#define __HYPERVISOR_stack_switch 3
48#define __HYPERVISOR_set_callbacks 4
49#define __HYPERVISOR_fpu_taskswitch 5
a8b74583 50#define __HYPERVISOR_sched_op_compat 6
cfafae94 51#define __HYPERVISOR_platform_op 7
a42089dd
JF
52#define __HYPERVISOR_set_debugreg 8
53#define __HYPERVISOR_get_debugreg 9
54#define __HYPERVISOR_update_descriptor 10
55#define __HYPERVISOR_memory_op 12
56#define __HYPERVISOR_multicall 13
57#define __HYPERVISOR_update_va_mapping 14
58#define __HYPERVISOR_set_timer_op 15
59#define __HYPERVISOR_event_channel_op_compat 16
60#define __HYPERVISOR_xen_version 17
61#define __HYPERVISOR_console_io 18
62#define __HYPERVISOR_physdev_op_compat 19
63#define __HYPERVISOR_grant_table_op 20
64#define __HYPERVISOR_vm_assist 21
65#define __HYPERVISOR_update_va_mapping_otherdomain 22
66#define __HYPERVISOR_iret 23 /* x86 only */
67#define __HYPERVISOR_vcpu_op 24
68#define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
69#define __HYPERVISOR_mmuext_op 26
16b12d60 70#define __HYPERVISOR_xsm_op 27
a42089dd 71#define __HYPERVISOR_nmi_op 28
a8b74583 72#define __HYPERVISOR_sched_op 29
a42089dd
JF
73#define __HYPERVISOR_callback_op 30
74#define __HYPERVISOR_xenoprof_op 31
75#define __HYPERVISOR_event_channel_op 32
76#define __HYPERVISOR_physdev_op 33
77#define __HYPERVISOR_hvm_op 34
16b12d60
JG
78#define __HYPERVISOR_sysctl 35
79#define __HYPERVISOR_domctl 36
80#define __HYPERVISOR_kexec_op 37
5bc20fc5 81#define __HYPERVISOR_tmem_op 38
16b12d60 82#define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */
5f141548 83#define __HYPERVISOR_xenpmu_op 40
ab520be8 84#define __HYPERVISOR_dm_op 41
a42089dd 85
9a9db275
IY
86/* Architecture-specific hypercall definitions. */
87#define __HYPERVISOR_arch_0 48
88#define __HYPERVISOR_arch_1 49
89#define __HYPERVISOR_arch_2 50
90#define __HYPERVISOR_arch_3 51
91#define __HYPERVISOR_arch_4 52
92#define __HYPERVISOR_arch_5 53
93#define __HYPERVISOR_arch_6 54
94#define __HYPERVISOR_arch_7 55
95
a42089dd
JF
96/*
97 * VIRTUAL INTERRUPTS
98 *
99 * Virtual interrupts that a guest OS may receive from Xen.
bca9b685
JG
100 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
101 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
102 * The latter can be allocated only once per guest: they must initially be
103 * allocated to VCPU0 but can subsequently be re-bound.
a42089dd 104 */
bca9b685
JG
105#define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */
106#define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */
107#define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */
108#define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */
109#define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */
110#define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */
111#define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */
112#define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */
113#define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */
114#define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occured */
115#define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient */
116#define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */
65d0cf0b 117#define VIRQ_XENPMU 13 /* PMC interrupt */
a42089dd 118
2eb6d5eb
IY
119/* Architecture-specific VIRQ definitions. */
120#define VIRQ_ARCH_0 16
121#define VIRQ_ARCH_1 17
122#define VIRQ_ARCH_2 18
123#define VIRQ_ARCH_3 19
124#define VIRQ_ARCH_4 20
125#define VIRQ_ARCH_5 21
126#define VIRQ_ARCH_6 22
127#define VIRQ_ARCH_7 23
128
129#define NR_VIRQS 24
bca9b685 130
a42089dd 131/*
bca9b685
JG
132 * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
133 * unsigned count, unsigned *done_out,
134 * unsigned foreigndom)
135 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
136 * @count is the length of the above array.
137 * @pdone is an output parameter indicating number of completed operations
138 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
139 * hypercall invocation. Can be DOMID_SELF.
140 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
141 * in this hypercall invocation. The value of this field
142 * (x) encodes the PFD as follows:
143 * x == 0 => PFD == DOMID_SELF
144 * x != 0 => PFD == x - 1
a42089dd 145 *
bca9b685
JG
146 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
147 * -------------
a42089dd 148 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
bca9b685
JG
149 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
150 * and the new table entry is valid/present, the mapped frame must belong to
151 * FD. If attempting to map an I/O page then the caller assumes the privilege
152 * of the FD.
a42089dd
JF
153 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
154 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
155 * ptr[:2] -- Machine address of the page-table entry to modify.
156 * val -- Value to write.
157 *
bca9b685
JG
158 * There also certain implicit requirements when using this hypercall. The
159 * pages that make up a pagetable must be mapped read-only in the guest.
160 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
161 * enforces this, and will disallow any pagetable update which will end up
162 * mapping pagetable page RW, and will disallow using any writable page as a
163 * pagetable. In practice it means that when constructing a page table for a
164 * process, thread, etc, we MUST be very dilligient in following these rules:
165 * 1). Start with top-level page (PGD or in Xen language: L4). Fill out
166 * the entries.
167 * 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
168 * or L2).
169 * 3). Start filling out the PTE table (L1) with the PTE entries. Once
170 * done, make sure to set each of those entries to RO (so writeable bit
171 * is unset). Once that has been completed, set the PMD (L2) for this
172 * PTE table as RO.
173 * 4). When completed with all of the PMD (L2) entries, and all of them have
174 * been set to RO, make sure to set RO the PUD (L3). Do the same
175 * operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
176 * 5). Now before you can use those pages (so setting the cr3), you MUST also
177 * pin them so that the hypervisor can verify the entries. This is done
178 * via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
179 * number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
180 * MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
181 * issued.
182 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
183 * instead use L3.
184 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
185 * hypercall. Also if so desired the OS can also try to write to the PTE
186 * and be trapped by the hypervisor (as the PTE entry is RO).
187 *
188 * To deallocate the pages, the operations are the reverse of the steps
189 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
190 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
191 *
a42089dd
JF
192 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
193 * Updates an entry in the machine->pseudo-physical mapping table.
194 * ptr[:2] -- Machine address within the frame whose mapping to modify.
195 * The frame must belong to the FD, if one is specified.
196 * val -- Value to write into the mapping entry.
e57778a1
JF
197 *
198 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
199 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
200 * with those in @val.
bca9b685
JG
201 *
202 * @val is usually the machine frame number along with some attributes.
203 * The attributes by default follow the architecture defined bits. Meaning that
204 * if this is a X86_64 machine and four page table layout is used, the layout
205 * of val is:
206 * - 63 if set means No execute (NX)
207 * - 46-13 the machine frame number
208 * - 12 available for guest
209 * - 11 available for guest
210 * - 10 available for guest
211 * - 9 available for guest
212 * - 8 global
213 * - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
214 * - 6 dirty
215 * - 5 accessed
216 * - 4 page cached disabled
217 * - 3 page write through
218 * - 2 userspace accessible
219 * - 1 writeable
220 * - 0 present
221 *
222 * The one bits that does not fit with the default layout is the PAGE_PSE
223 * also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
224 * HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
225 * (or 2MB) instead of using the PAGE_PSE bit.
226 *
227 * The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
228 * using it as the Page Attribute Table (PAT) bit - for details on it please
229 * refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
230 * pages instead of using MTRRs.
231 *
232 * The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
233 * PAT4 PAT0
234 * +-----+-----+----+----+----+-----+----+----+
235 * | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux
236 * +-----+-----+----+----+----+-----+----+----+
237 * | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots)
238 * +-----+-----+----+----+----+-----+----+----+
239 * | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen
240 * +-----+-----+----+----+----+-----+----+----+
241 *
242 * The lookup of this index table translates to looking up
243 * Bit 7, Bit 4, and Bit 3 of val entry:
244 *
245 * PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
246 *
247 * If all bits are off, then we are using PAT0. If bit 3 turned on,
248 * then we are using PAT1, if bit 3 and bit 4, then PAT2..
249 *
250 * As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
251 * that if a guest that follows Linux's PAT setup and would like to set Write
252 * Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
253 * set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
254 * caching as:
255 *
256 * WB = none (so PAT0)
257 * WC = PWT (bit 3 on)
258 * UC = PWT | PCD (bit 3 and 4 are on).
259 *
260 * To make it work with Xen, it needs to translate the WC bit as so:
261 *
262 * PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
263 *
264 * And to translate back it would:
265 *
266 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
a42089dd 267 */
e57778a1
JF
268#define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
269#define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
270#define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
a42089dd
JF
271
272/*
273 * MMU EXTENDED OPERATIONS
274 *
bca9b685
JG
275 * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
276 * unsigned int count,
277 * unsigned int *pdone,
278 * unsigned int foreigndom)
279 */
280/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
a42089dd
JF
281 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
282 * Where the FD has some effect, it is described below.
283 *
284 * cmd: MMUEXT_(UN)PIN_*_TABLE
285 * mfn: Machine frame number to be (un)pinned as a p.t. page.
286 * The frame must belong to the FD, if one is specified.
287 *
288 * cmd: MMUEXT_NEW_BASEPTR
289 * mfn: Machine frame number of new page-table base to install in MMU.
290 *
291 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
292 * mfn: Machine frame number of new page-table base to install in MMU
293 * when in user space.
294 *
295 * cmd: MMUEXT_TLB_FLUSH_LOCAL
296 * No additional arguments. Flushes local TLB.
297 *
298 * cmd: MMUEXT_INVLPG_LOCAL
299 * linear_addr: Linear address to be flushed from the local TLB.
300 *
301 * cmd: MMUEXT_TLB_FLUSH_MULTI
302 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
303 *
304 * cmd: MMUEXT_INVLPG_MULTI
305 * linear_addr: Linear address to be flushed.
306 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
307 *
308 * cmd: MMUEXT_TLB_FLUSH_ALL
309 * No additional arguments. Flushes all VCPUs' TLBs.
310 *
311 * cmd: MMUEXT_INVLPG_ALL
312 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
313 *
314 * cmd: MMUEXT_FLUSH_CACHE
315 * No additional arguments. Writes back and flushes cache contents.
316 *
bca9b685
JG
317 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
318 * No additional arguments. Writes back and flushes cache contents
319 * on all CPUs in the system.
320 *
a42089dd
JF
321 * cmd: MMUEXT_SET_LDT
322 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
323 * nr_ents: Number of entries in LDT.
bca9b685
JG
324 *
325 * cmd: MMUEXT_CLEAR_PAGE
326 * mfn: Machine frame number to be cleared.
327 *
328 * cmd: MMUEXT_COPY_PAGE
329 * mfn: Machine frame number of the destination page.
330 * src_mfn: Machine frame number of the source page.
331 *
332 * cmd: MMUEXT_[UN]MARK_SUPER
333 * mfn: Machine frame number of head of superpage to be [un]marked.
a42089dd
JF
334 */
335#define MMUEXT_PIN_L1_TABLE 0
336#define MMUEXT_PIN_L2_TABLE 1
337#define MMUEXT_PIN_L3_TABLE 2
338#define MMUEXT_PIN_L4_TABLE 3
339#define MMUEXT_UNPIN_TABLE 4
340#define MMUEXT_NEW_BASEPTR 5
341#define MMUEXT_TLB_FLUSH_LOCAL 6
342#define MMUEXT_INVLPG_LOCAL 7
343#define MMUEXT_TLB_FLUSH_MULTI 8
344#define MMUEXT_INVLPG_MULTI 9
345#define MMUEXT_TLB_FLUSH_ALL 10
346#define MMUEXT_INVLPG_ALL 11
347#define MMUEXT_FLUSH_CACHE 12
348#define MMUEXT_SET_LDT 13
349#define MMUEXT_NEW_USER_BASEPTR 15
bca9b685
JG
350#define MMUEXT_CLEAR_PAGE 16
351#define MMUEXT_COPY_PAGE 17
352#define MMUEXT_FLUSH_CACHE_GLOBAL 18
353#define MMUEXT_MARK_SUPER 19
354#define MMUEXT_UNMARK_SUPER 20
a42089dd
JF
355
356#ifndef __ASSEMBLY__
357struct mmuext_op {
358 unsigned int cmd;
359 union {
bca9b685
JG
360 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
361 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
bd3f79b7 362 xen_pfn_t mfn;
a42089dd
JF
363 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
364 unsigned long linear_addr;
365 } arg1;
366 union {
367 /* SET_LDT */
368 unsigned int nr_ents;
369 /* TLB_FLUSH_MULTI, INVLPG_MULTI */
370 void *vcpumask;
bca9b685
JG
371 /* COPY_PAGE */
372 xen_pfn_t src_mfn;
a42089dd
JF
373 } arg2;
374};
375DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
376#endif
377
378/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
379/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */
380/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */
381#define UVMF_NONE (0UL<<0) /* No flushing at all. */
382#define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */
383#define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */
384#define UVMF_FLUSHTYPE_MASK (3UL<<0)
385#define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */
386#define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */
387#define UVMF_ALL (1UL<<2) /* Flush all TLBs. */
388
389/*
390 * Commands to HYPERVISOR_console_io().
391 */
392#define CONSOLEIO_write 0
393#define CONSOLEIO_read 1
394
395/*
396 * Commands to HYPERVISOR_vm_assist().
397 */
398#define VMASST_CMD_enable 0
399#define VMASST_CMD_disable 1
bca9b685
JG
400
401/* x86/32 guests: simulate full 4GB segment limits. */
a42089dd 402#define VMASST_TYPE_4gb_segments 0
bca9b685
JG
403
404/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
a42089dd 405#define VMASST_TYPE_4gb_segments_notify 1
bca9b685
JG
406
407/*
408 * x86 guests: support writes to bottom-level PTEs.
409 * NB1. Page-directory entries cannot be written.
410 * NB2. Guest must continue to remove all writable mappings of PTEs.
411 */
a42089dd 412#define VMASST_TYPE_writable_pagetables 2
bca9b685
JG
413
414/* x86/PAE guests: support PDPTs above 4GB. */
a42089dd 415#define VMASST_TYPE_pae_extended_cr3 3
bca9b685 416
7ba8dba9
JG
417/*
418 * x86 guests: Sane behaviour for virtual iopl
419 * - virtual iopl updated from do_iret() hypercalls.
420 * - virtual iopl reported in bounce frames.
421 * - guest kernels assumed to be level 0 for the purpose of iopl checks.
422 */
423#define VMASST_TYPE_architectural_iopl 4
424
425/*
426 * All guests: activate update indicator in vcpu_runstate_info
427 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
428 * vcpu_runstate_info during updates of the runstate information.
429 */
430#define VMASST_TYPE_runstate_update_flag 5
431
432#define MAX_VMASST_TYPE 5
a42089dd
JF
433
434#ifndef __ASSEMBLY__
435
436typedef uint16_t domid_t;
437
438/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
439#define DOMID_FIRST_RESERVED (0x7FF0U)
440
441/* DOMID_SELF is used in certain contexts to refer to oneself. */
442#define DOMID_SELF (0x7FF0U)
443
444/*
445 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
446 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
447 * is useful to ensure that no mappings to the OS's own heap are accidentally
448 * installed. (e.g., in Linux this could cause havoc as reference counts
449 * aren't adjusted on the I/O-mapping code path).
450 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
451 * be specified by any calling domain.
452 */
453#define DOMID_IO (0x7FF1U)
454
455/*
456 * DOMID_XEN is used to allow privileged domains to map restricted parts of
457 * Xen's heap space (e.g., the machine_to_phys table).
458 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
459 * the caller is privileged.
460 */
461#define DOMID_XEN (0x7FF2U)
462
bca9b685
JG
463/* DOMID_COW is used as the owner of sharable pages */
464#define DOMID_COW (0x7FF3U)
465
466/* DOMID_INVALID is used to identify pages with unknown owner. */
467#define DOMID_INVALID (0x7FF4U)
468
469/* Idle domain. */
470#define DOMID_IDLE (0x7FFFU)
471
a42089dd
JF
472/*
473 * Send an array of these to HYPERVISOR_mmu_update().
474 * NB. The fields are natural pointer/address size for this architecture.
475 */
476struct mmu_update {
477 uint64_t ptr; /* Machine address of PTE. */
478 uint64_t val; /* New contents of PTE. */
479};
480DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
481
482/*
483 * Send an array of these to HYPERVISOR_multicall().
bca9b685
JG
484 * NB. The fields are logically the natural register size for this
485 * architecture. In cases where xen_ulong_t is larger than this then
486 * any unused bits in the upper portion must be zero.
a42089dd
JF
487 */
488struct multicall_entry {
5e40704e
IC
489 xen_ulong_t op;
490 xen_long_t result;
491 xen_ulong_t args[6];
a42089dd
JF
492};
493DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
494
a42089dd
JF
495struct vcpu_time_info {
496 /*
497 * Updates to the following values are preceded and followed
498 * by an increment of 'version'. The guest can therefore
499 * detect updates by looking for changes to 'version'. If the
500 * least-significant bit of the version number is set then an
501 * update is in progress and the guest must wait to read a
502 * consistent set of values. The correct way to interact with
503 * the version number is similar to Linux's seqlock: see the
504 * implementations of read_seqbegin/read_seqretry.
505 */
506 uint32_t version;
507 uint32_t pad0;
508 uint64_t tsc_timestamp; /* TSC at last update of time vals. */
509 uint64_t system_time; /* Time, in nanosecs, since boot. */
510 /*
511 * Current system time:
512 * system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
513 * CPU frequency (Hz):
514 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
515 */
516 uint32_t tsc_to_system_mul;
517 int8_t tsc_shift;
518 int8_t pad1[3];
519}; /* 32 bytes */
520
521struct vcpu_info {
522 /*
523 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
524 * a pending notification for a particular VCPU. It is then cleared
525 * by the guest OS /before/ checking for pending work, thus avoiding
526 * a set-and-check race. Note that the mask is only accessed by Xen
527 * on the CPU that is currently hosting the VCPU. This means that the
528 * pending and mask flags can be updated by the guest without special
529 * synchronisation (i.e., no need for the x86 LOCK prefix).
530 * This may seem suboptimal because if the pending flag is set by
531 * a different CPU then an IPI may be scheduled even when the mask
532 * is set. However, note:
533 * 1. The task of 'interrupt holdoff' is covered by the per-event-
534 * channel mask bits. A 'noisy' event that is continually being
535 * triggered can be masked at source at this very precise
536 * granularity.
537 * 2. The main purpose of the per-VCPU mask is therefore to restrict
538 * reentrant execution: whether for concurrency control, or to
539 * prevent unbounded stack usage. Whatever the purpose, we expect
540 * that the mask will be asserted only for short periods at a time,
541 * and so the likelihood of a 'spurious' IPI is suitably small.
542 * The mask is read before making an event upcall to the guest: a
543 * non-zero mask therefore guarantees that the VCPU will not receive
544 * an upcall activation. The mask is cleared when the VCPU requests
545 * to block: this avoids wakeup-waiting races.
546 */
547 uint8_t evtchn_upcall_pending;
548 uint8_t evtchn_upcall_mask;
c81611c4 549 xen_ulong_t evtchn_pending_sel;
a42089dd 550 struct arch_vcpu_info arch;
1c7b67f7 551 struct pvclock_vcpu_time_info time;
a42089dd
JF
552}; /* 64 bytes (x86) */
553
554/*
555 * Xen/kernel shared data -- pointer provided in start_info.
556 * NB. We expect that this struct is smaller than a page.
557 */
558struct shared_info {
559 struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
560
561 /*
562 * A domain can create "event channels" on which it can send and receive
563 * asynchronous event notifications. There are three classes of event that
564 * are delivered by this mechanism:
565 * 1. Bi-directional inter- and intra-domain connections. Domains must
566 * arrange out-of-band to set up a connection (usually by allocating
567 * an unbound 'listener' port and avertising that via a storage service
568 * such as xenstore).
569 * 2. Physical interrupts. A domain with suitable hardware-access
570 * privileges can bind an event-channel port to a physical interrupt
571 * source.
572 * 3. Virtual interrupts ('events'). A domain can bind an event-channel
573 * port to a virtual interrupt source, such as the virtual-timer
574 * device or the emergency console.
575 *
576 * Event channels are addressed by a "port index". Each channel is
577 * associated with two bits of information:
578 * 1. PENDING -- notifies the domain that there is a pending notification
579 * to be processed. This bit is cleared by the guest.
580 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
581 * will cause an asynchronous upcall to be scheduled. This bit is only
582 * updated by the guest. It is read-only within Xen. If a channel
583 * becomes pending while the channel is masked then the 'edge' is lost
584 * (i.e., when the channel is unmasked, the guest must manually handle
585 * pending notifications as no upcall will be scheduled by Xen).
586 *
587 * To expedite scanning of pending notifications, any 0->1 pending
588 * transition on an unmasked channel causes a corresponding bit in a
589 * per-vcpu selector word to be set. Each bit in the selector covers a
590 * 'C long' in the PENDING bitfield array.
591 */
c81611c4
IC
592 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
593 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
a42089dd
JF
594
595 /*
596 * Wallclock time: updated only by control software. Guests should base
597 * their gettimeofday() syscall on this wallclock-base value.
598 */
1c7b67f7 599 struct pvclock_wall_clock wc;
a42089dd
JF
600
601 struct arch_shared_info arch;
602
603};
604
605/*
17fb46b1
JG
606 * Start-of-day memory layout
607 *
a42089dd
JF
608 * 1. The domain is started within contiguous virtual-memory region.
609 * 2. The contiguous region begins and ends on an aligned 4MB boundary.
17fb46b1 610 * 3. This the order of bootstrap elements in the initial virtual region:
a42089dd
JF
611 * a. relocated kernel image
612 * b. initial ram disk [mod_start, mod_len]
17fb46b1 613 * (may be omitted)
a42089dd 614 * c. list of allocated page frames [mfn_list, nr_pages]
17fb46b1 615 * (unless relocated due to XEN_ELFNOTE_INIT_P2M)
a42089dd 616 * d. start_info_t structure [register ESI (x86)]
17fb46b1
JG
617 * in case of dom0 this page contains the console info, too
618 * e. unless dom0: xenstore ring page
619 * f. unless dom0: console ring page
620 * g. bootstrap page tables [pt_base, CR3 (x86)]
621 * h. bootstrap stack [register ESP (x86)]
622 * 4. Bootstrap elements are packed together, but each is 4kB-aligned.
623 * 5. The list of page frames forms a contiguous 'pseudo-physical' memory
a42089dd
JF
624 * layout for the domain. In particular, the bootstrap virtual-memory
625 * region is a 1:1 mapping to the first section of the pseudo-physical map.
17fb46b1 626 * 6. All bootstrap elements are mapped read-writable for the guest OS. The
a42089dd 627 * only exception is the bootstrap page table, which is mapped read-only.
17fb46b1 628 * 7. There is guaranteed to be at least 512kB padding after the final
a42089dd
JF
629 * bootstrap element. If necessary, the bootstrap virtual region is
630 * extended by an extra 4MB to ensure this.
631 */
632
633#define MAX_GUEST_CMDLINE 1024
634struct start_info {
635 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
636 char magic[32]; /* "xen-<version>-<platform>". */
637 unsigned long nr_pages; /* Total pages allocated to this domain. */
638 unsigned long shared_info; /* MACHINE address of shared info struct. */
639 uint32_t flags; /* SIF_xxx flags. */
bd3f79b7 640 xen_pfn_t store_mfn; /* MACHINE page number of shared page. */
a42089dd
JF
641 uint32_t store_evtchn; /* Event channel for store communication. */
642 union {
643 struct {
bd3f79b7 644 xen_pfn_t mfn; /* MACHINE page number of console page. */
a42089dd
JF
645 uint32_t evtchn; /* Event channel for console page. */
646 } domU;
647 struct {
648 uint32_t info_off; /* Offset of console_info struct. */
649 uint32_t info_size; /* Size of console_info struct from start.*/
650 } dom0;
651 } console;
652 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
653 unsigned long pt_base; /* VIRTUAL address of page directory. */
654 unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */
655 unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
656 unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */
657 unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
658 int8_t cmd_line[MAX_GUEST_CMDLINE];
bca9b685
JG
659 /* The pfn range here covers both page table and p->m table frames. */
660 unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */
661 unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */
a42089dd
JF
662};
663
bca9b685 664/* These flags are passed in the 'flags' field of start_info_t. */
17fb46b1
JG
665#define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
666#define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
667#define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */
668#define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */
669#define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
670 /* P->M making the 3 level tree obsolete? */
bca9b685
JG
671#define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
672
673/*
674 * A multiboot module is a package containing modules very similar to a
675 * multiboot module array. The only differences are:
676 * - the array of module descriptors is by convention simply at the beginning
677 * of the multiboot module,
678 * - addresses in the module descriptors are based on the beginning of the
679 * multiboot module,
680 * - the number of modules is determined by a termination descriptor that has
681 * mod_start == 0.
682 *
683 * This permits to both build it statically and reference it in a configuration
684 * file, and let the PV guest easily rebase the addresses to virtual addresses
685 * and at the same time count the number of modules.
686 */
687struct xen_multiboot_mod_list {
688 /* Address of first byte of the module */
689 uint32_t mod_start;
690 /* Address of last byte of the module (inclusive) */
691 uint32_t mod_end;
692 /* Address of zero-terminated command line */
693 uint32_t cmdline;
694 /* Unused, must be zero */
695 uint32_t pad;
696};
697/*
698 * The console structure in start_info.console.dom0
699 *
700 * This structure includes a variety of information required to
701 * have a working VGA/VESA console.
702 */
c2419b4a
JF
703struct dom0_vga_console_info {
704 uint8_t video_type;
705#define XEN_VGATYPE_TEXT_MODE_3 0x03
706#define XEN_VGATYPE_VESA_LFB 0x23
aa387d63 707#define XEN_VGATYPE_EFI_LFB 0x70
c2419b4a
JF
708
709 union {
710 struct {
711 /* Font height, in pixels. */
712 uint16_t font_height;
713 /* Cursor location (column, row). */
714 uint16_t cursor_x, cursor_y;
715 /* Number of rows and columns (dimensions in characters). */
716 uint16_t rows, columns;
717 } text_mode_3;
718
719 struct {
720 /* Width and height, in pixels. */
721 uint16_t width, height;
722 /* Bytes per scan line. */
723 uint16_t bytes_per_line;
724 /* Bits per pixel. */
725 uint16_t bits_per_pixel;
726 /* LFB physical address, and size (in units of 64kB). */
727 uint32_t lfb_base;
728 uint32_t lfb_size;
729 /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
730 uint8_t red_pos, red_size;
731 uint8_t green_pos, green_size;
732 uint8_t blue_pos, blue_size;
733 uint8_t rsvd_pos, rsvd_size;
734
735 /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
736 uint32_t gbl_caps;
737 /* Mode attributes (offset 0x0, VESA command 0x4f01). */
738 uint16_t mode_attrs;
739 } vesa_lfb;
740 } u;
741};
742
a42089dd
JF
743typedef uint64_t cpumap_t;
744
745typedef uint8_t xen_domain_handle_t[16];
746
747/* Turn a plain number into a C unsigned long constant. */
748#define __mk_unsigned_long(x) x ## UL
749#define mk_unsigned_long(x) __mk_unsigned_long(x)
750
5bc20fc5
DM
751#define TMEM_SPEC_VERSION 1
752
753struct tmem_op {
754 uint32_t cmd;
755 int32_t pool_id;
756 union {
757 struct { /* for cmd == TMEM_NEW_POOL */
758 uint64_t uuid[2];
759 uint32_t flags;
760 } new;
761 struct {
762 uint64_t oid[3];
763 uint32_t index;
764 uint32_t tmem_offset;
765 uint32_t pfn_offset;
766 uint32_t len;
767 GUEST_HANDLE(void) gmfn; /* guest machine page frame */
768 } gen;
769 } u;
770};
771
0f9f5a95
AL
772DEFINE_GUEST_HANDLE(u64);
773
a42089dd
JF
774#else /* __ASSEMBLY__ */
775
776/* In assembly code we cannot use C numeric constant suffixes. */
777#define mk_unsigned_long(x) x
778
779#endif /* !__ASSEMBLY__ */
780
781#endif /* __XEN_PUBLIC_XEN_H__ */