]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* calibrate.c: default delay calibration |
2 | * | |
3 | * Excised from init/main.c | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
cd354f1a | 7 | #include <linux/jiffies.h> |
1da177e4 LT |
8 | #include <linux/delay.h> |
9 | #include <linux/init.h> | |
941e492b | 10 | #include <linux/timex.h> |
8a9e1b0f | 11 | |
bfe8df3d | 12 | unsigned long preset_lpj; |
1da177e4 LT |
13 | static int __init lpj_setup(char *str) |
14 | { | |
15 | preset_lpj = simple_strtoul(str,NULL,0); | |
16 | return 1; | |
17 | } | |
18 | ||
19 | __setup("lpj=", lpj_setup); | |
20 | ||
8a9e1b0f VP |
21 | #ifdef ARCH_HAS_READ_CURRENT_TIMER |
22 | ||
23 | /* This routine uses the read_current_timer() routine and gets the | |
24 | * loops per jiffy directly, instead of guessing it using delay(). | |
25 | * Also, this code tries to handle non-maskable asynchronous events | |
26 | * (like SMIs) | |
27 | */ | |
28 | #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100)) | |
29 | #define MAX_DIRECT_CALIBRATION_RETRIES 5 | |
30 | ||
31 | static unsigned long __devinit calibrate_delay_direct(void) | |
32 | { | |
33 | unsigned long pre_start, start, post_start; | |
34 | unsigned long pre_end, end, post_end; | |
35 | unsigned long start_jiffies; | |
36 | unsigned long tsc_rate_min, tsc_rate_max; | |
37 | unsigned long good_tsc_sum = 0; | |
38 | unsigned long good_tsc_count = 0; | |
39 | int i; | |
40 | ||
41 | if (read_current_timer(&pre_start) < 0 ) | |
42 | return 0; | |
43 | ||
44 | /* | |
45 | * A simple loop like | |
46 | * while ( jiffies < start_jiffies+1) | |
47 | * start = read_current_timer(); | |
48 | * will not do. As we don't really know whether jiffy switch | |
49 | * happened first or timer_value was read first. And some asynchronous | |
50 | * event can happen between these two events introducing errors in lpj. | |
51 | * | |
52 | * So, we do | |
53 | * 1. pre_start <- When we are sure that jiffy switch hasn't happened | |
54 | * 2. check jiffy switch | |
55 | * 3. start <- timer value before or after jiffy switch | |
56 | * 4. post_start <- When we are sure that jiffy switch has happened | |
57 | * | |
58 | * Note, we don't know anything about order of 2 and 3. | |
59 | * Now, by looking at post_start and pre_start difference, we can | |
60 | * check whether any asynchronous event happened or not | |
61 | */ | |
62 | ||
63 | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { | |
64 | pre_start = 0; | |
65 | read_current_timer(&start); | |
66 | start_jiffies = jiffies; | |
67 | while (jiffies <= (start_jiffies + 1)) { | |
68 | pre_start = start; | |
69 | read_current_timer(&start); | |
70 | } | |
71 | read_current_timer(&post_start); | |
72 | ||
73 | pre_end = 0; | |
74 | end = post_start; | |
75 | while (jiffies <= | |
76 | (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) { | |
77 | pre_end = end; | |
78 | read_current_timer(&end); | |
79 | } | |
80 | read_current_timer(&post_end); | |
81 | ||
82 | tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS; | |
83 | tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS; | |
84 | ||
85 | /* | |
86 | * If the upper limit and lower limit of the tsc_rate is | |
87 | * >= 12.5% apart, redo calibration. | |
88 | */ | |
89 | if (pre_start != 0 && pre_end != 0 && | |
90 | (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) { | |
91 | good_tsc_count++; | |
92 | good_tsc_sum += tsc_rate_max; | |
93 | } | |
94 | } | |
95 | ||
96 | if (good_tsc_count) | |
97 | return (good_tsc_sum/good_tsc_count); | |
98 | ||
99 | printk(KERN_WARNING "calibrate_delay_direct() failed to get a good " | |
100 | "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n"); | |
101 | return 0; | |
102 | } | |
103 | #else | |
104 | static unsigned long __devinit calibrate_delay_direct(void) {return 0;} | |
105 | #endif | |
106 | ||
1da177e4 LT |
107 | /* |
108 | * This is the number of bits of precision for the loops_per_jiffy. Each | |
109 | * bit takes on average 1.5/HZ seconds. This (like the original) is a little | |
110 | * better than 1% | |
111 | */ | |
112 | #define LPS_PREC 8 | |
113 | ||
114 | void __devinit calibrate_delay(void) | |
115 | { | |
116 | unsigned long ticks, loopbit; | |
117 | int lps_precision = LPS_PREC; | |
118 | ||
119 | if (preset_lpj) { | |
120 | loops_per_jiffy = preset_lpj; | |
121 | printk("Calibrating delay loop (skipped)... " | |
122 | "%lu.%02lu BogoMIPS preset\n", | |
123 | loops_per_jiffy/(500000/HZ), | |
124 | (loops_per_jiffy/(5000/HZ)) % 100); | |
8a9e1b0f VP |
125 | } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) { |
126 | printk("Calibrating delay using timer specific routine.. "); | |
127 | printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", | |
128 | loops_per_jiffy/(500000/HZ), | |
129 | (loops_per_jiffy/(5000/HZ)) % 100, | |
130 | loops_per_jiffy); | |
1da177e4 LT |
131 | } else { |
132 | loops_per_jiffy = (1<<12); | |
133 | ||
134 | printk(KERN_DEBUG "Calibrating delay loop... "); | |
135 | while ((loops_per_jiffy <<= 1) != 0) { | |
136 | /* wait for "start of" clock tick */ | |
137 | ticks = jiffies; | |
138 | while (ticks == jiffies) | |
139 | /* nothing */; | |
140 | /* Go .. */ | |
141 | ticks = jiffies; | |
142 | __delay(loops_per_jiffy); | |
143 | ticks = jiffies - ticks; | |
144 | if (ticks) | |
145 | break; | |
146 | } | |
147 | ||
148 | /* | |
149 | * Do a binary approximation to get loops_per_jiffy set to | |
150 | * equal one clock (up to lps_precision bits) | |
151 | */ | |
152 | loops_per_jiffy >>= 1; | |
153 | loopbit = loops_per_jiffy; | |
154 | while (lps_precision-- && (loopbit >>= 1)) { | |
155 | loops_per_jiffy |= loopbit; | |
156 | ticks = jiffies; | |
157 | while (ticks == jiffies) | |
158 | /* nothing */; | |
159 | ticks = jiffies; | |
160 | __delay(loops_per_jiffy); | |
161 | if (jiffies != ticks) /* longer than 1 tick */ | |
162 | loops_per_jiffy &= ~loopbit; | |
163 | } | |
164 | ||
165 | /* Round the value and print it */ | |
166 | printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", | |
167 | loops_per_jiffy/(500000/HZ), | |
168 | (loops_per_jiffy/(5000/HZ)) % 100, | |
169 | loops_per_jiffy); | |
170 | } | |
171 | ||
172 | } |