]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - ipc/mqueue.c
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
[mirror_ubuntu-jammy-kernel.git] / ipc / mqueue.c
CommitLineData
1da177e4
LT
1/*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
f66e928b 5 * Michal Wronski (michal.wronski@gmail.com)
1da177e4
LT
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
239521f3 9 * Manfred Spraul (manfred@colorfullife.com)
1da177e4 10 *
20ca73bc
GW
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
1da177e4
LT
13 * This file is released under the GPL.
14 */
15
c59ede7b 16#include <linux/capability.h>
1da177e4
LT
17#include <linux/init.h>
18#include <linux/pagemap.h>
19#include <linux/file.h>
20#include <linux/mount.h>
935c6912 21#include <linux/fs_context.h>
1da177e4
LT
22#include <linux/namei.h>
23#include <linux/sysctl.h>
24#include <linux/poll.h>
25#include <linux/mqueue.h>
26#include <linux/msg.h>
27#include <linux/skbuff.h>
5b5c4d1a 28#include <linux/vmalloc.h>
1da177e4
LT
29#include <linux/netlink.h>
30#include <linux/syscalls.h>
20ca73bc 31#include <linux/audit.h>
7ed20e1a 32#include <linux/signal.h>
5f921ae9 33#include <linux/mutex.h>
b488893a
PE
34#include <linux/nsproxy.h>
35#include <linux/pid.h>
614b84cf 36#include <linux/ipc_namespace.h>
6b550f94 37#include <linux/user_namespace.h>
5a0e3ad6 38#include <linux/slab.h>
84f001e1 39#include <linux/sched/wake_q.h>
3f07c014 40#include <linux/sched/signal.h>
8703e8a4 41#include <linux/sched/user.h>
5f921ae9 42
1da177e4
LT
43#include <net/sock.h>
44#include "util.h"
45
935c6912
DH
46struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48};
49
1da177e4
LT
50#define MQUEUE_MAGIC 0x19800202
51#define DIRENT_SIZE 20
52#define FILENT_SIZE 80
53
54#define SEND 0
55#define RECV 1
56
57#define STATE_NONE 0
fa6004ad 58#define STATE_READY 1
1da177e4 59
d6629859
DL
60struct posix_msg_tree_node {
61 struct rb_node rb_node;
62 struct list_head msg_list;
63 int priority;
64};
65
c5b2cbdb
MS
66/*
67 * Locking:
68 *
69 * Accesses to a message queue are synchronized by acquiring info->lock.
70 *
71 * There are two notable exceptions:
72 * - The actual wakeup of a sleeping task is performed using the wake_q
73 * framework. info->lock is already released when wake_up_q is called.
74 * - The exit codepaths after sleeping check ext_wait_queue->state without
75 * any locks. If it is STATE_READY, then the syscall is completed without
76 * acquiring info->lock.
77 *
78 * MQ_BARRIER:
79 * To achieve proper release/acquire memory barrier pairing, the state is set to
80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
82 *
83 * This prevents the following races:
84 *
85 * 1) With the simple wake_q_add(), the task could be gone already before
86 * the increase of the reference happens
87 * Thread A
88 * Thread B
89 * WRITE_ONCE(wait.state, STATE_NONE);
90 * schedule_hrtimeout()
91 * wake_q_add(A)
92 * if (cmpxchg()) // success
93 * ->state = STATE_READY (reordered)
94 * <timeout returns>
95 * if (wait.state == STATE_READY) return;
96 * sysret to user space
97 * sys_exit()
98 * get_task_struct() // UaF
99 *
100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
101 * the smp_store_release() that does ->state = STATE_READY.
102 *
103 * 2) Without proper _release/_acquire barriers, the woken up task
104 * could read stale data
105 *
106 * Thread A
107 * Thread B
108 * do_mq_timedreceive
109 * WRITE_ONCE(wait.state, STATE_NONE);
110 * schedule_hrtimeout()
111 * state = STATE_READY;
112 * <timeout returns>
113 * if (wait.state == STATE_READY) return;
114 * msg_ptr = wait.msg; // Access to stale data!
115 * receiver->msg = message; (reordered)
116 *
117 * Solution: use _release and _acquire barriers.
118 *
119 * 3) There is intentionally no barrier when setting current->state
120 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
121 * release memory barrier, and the wakeup is triggered when holding
122 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
123 * acquire memory barrier.
124 */
125
1da177e4
LT
126struct ext_wait_queue { /* queue of sleeping tasks */
127 struct task_struct *task;
128 struct list_head list;
129 struct msg_msg *msg; /* ptr of loaded message */
130 int state; /* one of STATE_* values */
131};
132
133struct mqueue_inode_info {
134 spinlock_t lock;
135 struct inode vfs_inode;
136 wait_queue_head_t wait_q;
137
d6629859 138 struct rb_root msg_tree;
a5091fda 139 struct rb_node *msg_tree_rightmost;
ce2d52cc 140 struct posix_msg_tree_node *node_cache;
1da177e4
LT
141 struct mq_attr attr;
142
143 struct sigevent notify;
239521f3 144 struct pid *notify_owner;
b5f20061 145 u32 notify_self_exec_id;
6f9ac6d9 146 struct user_namespace *notify_user_ns;
6e52a9f0 147 struct ucounts *ucounts; /* user who created, for accounting */
1da177e4
LT
148 struct sock *notify_sock;
149 struct sk_buff *notify_cookie;
150
151 /* for tasks waiting for free space and messages, respectively */
152 struct ext_wait_queue e_wait_q[2];
153
154 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
155};
156
935c6912 157static struct file_system_type mqueue_fs_type;
92e1d5be 158static const struct inode_operations mqueue_dir_inode_operations;
9a32144e 159static const struct file_operations mqueue_file_operations;
b87221de 160static const struct super_operations mqueue_super_ops;
935c6912 161static const struct fs_context_operations mqueue_fs_context_ops;
1da177e4
LT
162static void remove_notification(struct mqueue_inode_info *info);
163
e18b890b 164static struct kmem_cache *mqueue_inode_cachep;
1da177e4 165
239521f3 166static struct ctl_table_header *mq_sysctl_table;
1da177e4
LT
167
168static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
169{
170 return container_of(inode, struct mqueue_inode_info, vfs_inode);
171}
172
7eafd7c7
SH
173/*
174 * This routine should be called with the mq_lock held.
175 */
176static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
614b84cf 177{
7eafd7c7 178 return get_ipc_ns(inode->i_sb->s_fs_info);
614b84cf
SH
179}
180
7eafd7c7 181static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
614b84cf 182{
7eafd7c7
SH
183 struct ipc_namespace *ns;
184
185 spin_lock(&mq_lock);
186 ns = __get_ns_from_inode(inode);
187 spin_unlock(&mq_lock);
188 return ns;
614b84cf
SH
189}
190
d6629859
DL
191/* Auxiliary functions to manipulate messages' list */
192static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
193{
194 struct rb_node **p, *parent = NULL;
195 struct posix_msg_tree_node *leaf;
a5091fda 196 bool rightmost = true;
d6629859
DL
197
198 p = &info->msg_tree.rb_node;
199 while (*p) {
200 parent = *p;
201 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
202
203 if (likely(leaf->priority == msg->m_type))
204 goto insert_msg;
a5091fda 205 else if (msg->m_type < leaf->priority) {
d6629859 206 p = &(*p)->rb_left;
a5091fda
DB
207 rightmost = false;
208 } else
d6629859
DL
209 p = &(*p)->rb_right;
210 }
ce2d52cc
DL
211 if (info->node_cache) {
212 leaf = info->node_cache;
213 info->node_cache = NULL;
214 } else {
215 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
216 if (!leaf)
217 return -ENOMEM;
ce2d52cc 218 INIT_LIST_HEAD(&leaf->msg_list);
ce2d52cc 219 }
d6629859 220 leaf->priority = msg->m_type;
a5091fda
DB
221
222 if (rightmost)
223 info->msg_tree_rightmost = &leaf->rb_node;
224
d6629859
DL
225 rb_link_node(&leaf->rb_node, parent, p);
226 rb_insert_color(&leaf->rb_node, &info->msg_tree);
d6629859
DL
227insert_msg:
228 info->attr.mq_curmsgs++;
229 info->qsize += msg->m_ts;
230 list_add_tail(&msg->m_list, &leaf->msg_list);
231 return 0;
232}
233
a5091fda
DB
234static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
235 struct mqueue_inode_info *info)
236{
237 struct rb_node *node = &leaf->rb_node;
238
239 if (info->msg_tree_rightmost == node)
240 info->msg_tree_rightmost = rb_prev(node);
241
242 rb_erase(node, &info->msg_tree);
43afe4d3 243 if (info->node_cache)
a5091fda 244 kfree(leaf);
43afe4d3 245 else
a5091fda 246 info->node_cache = leaf;
a5091fda
DB
247}
248
d6629859
DL
249static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
250{
a5091fda 251 struct rb_node *parent = NULL;
d6629859
DL
252 struct posix_msg_tree_node *leaf;
253 struct msg_msg *msg;
254
255try_again:
a5091fda
DB
256 /*
257 * During insert, low priorities go to the left and high to the
258 * right. On receive, we want the highest priorities first, so
259 * walk all the way to the right.
260 */
261 parent = info->msg_tree_rightmost;
d6629859
DL
262 if (!parent) {
263 if (info->attr.mq_curmsgs) {
264 pr_warn_once("Inconsistency in POSIX message queue, "
265 "no tree element, but supposedly messages "
266 "should exist!\n");
267 info->attr.mq_curmsgs = 0;
268 }
269 return NULL;
270 }
271 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
ce2d52cc 272 if (unlikely(list_empty(&leaf->msg_list))) {
d6629859
DL
273 pr_warn_once("Inconsistency in POSIX message queue, "
274 "empty leaf node but we haven't implemented "
275 "lazy leaf delete!\n");
a5091fda 276 msg_tree_erase(leaf, info);
d6629859
DL
277 goto try_again;
278 } else {
279 msg = list_first_entry(&leaf->msg_list,
280 struct msg_msg, m_list);
281 list_del(&msg->m_list);
282 if (list_empty(&leaf->msg_list)) {
a5091fda 283 msg_tree_erase(leaf, info);
d6629859
DL
284 }
285 }
286 info->attr.mq_curmsgs--;
287 info->qsize -= msg->m_ts;
288 return msg;
289}
290
7eafd7c7 291static struct inode *mqueue_get_inode(struct super_block *sb,
1b9d5ff7 292 struct ipc_namespace *ipc_ns, umode_t mode,
7eafd7c7 293 struct mq_attr *attr)
1da177e4
LT
294{
295 struct inode *inode;
d40dcdb0 296 int ret = -ENOMEM;
1da177e4
LT
297
298 inode = new_inode(sb);
04715206
JS
299 if (!inode)
300 goto err;
301
302 inode->i_ino = get_next_ino();
303 inode->i_mode = mode;
304 inode->i_uid = current_fsuid();
305 inode->i_gid = current_fsgid();
078cd827 306 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
04715206
JS
307
308 if (S_ISREG(mode)) {
309 struct mqueue_inode_info *info;
d6629859 310 unsigned long mq_bytes, mq_treesize;
04715206
JS
311
312 inode->i_fop = &mqueue_file_operations;
313 inode->i_size = FILENT_SIZE;
314 /* mqueue specific info */
315 info = MQUEUE_I(inode);
316 spin_lock_init(&info->lock);
317 init_waitqueue_head(&info->wait_q);
318 INIT_LIST_HEAD(&info->e_wait_q[0].list);
319 INIT_LIST_HEAD(&info->e_wait_q[1].list);
320 info->notify_owner = NULL;
6f9ac6d9 321 info->notify_user_ns = NULL;
04715206 322 info->qsize = 0;
6e52a9f0 323 info->ucounts = NULL; /* set when all is ok */
d6629859 324 info->msg_tree = RB_ROOT;
a5091fda 325 info->msg_tree_rightmost = NULL;
ce2d52cc 326 info->node_cache = NULL;
04715206 327 memset(&info->attr, 0, sizeof(info->attr));
cef0184c
KM
328 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
329 ipc_ns->mq_msg_default);
330 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
331 ipc_ns->mq_msgsize_default);
04715206
JS
332 if (attr) {
333 info->attr.mq_maxmsg = attr->mq_maxmsg;
334 info->attr.mq_msgsize = attr->mq_msgsize;
335 }
d6629859
DL
336 /*
337 * We used to allocate a static array of pointers and account
338 * the size of that array as well as one msg_msg struct per
339 * possible message into the queue size. That's no longer
340 * accurate as the queue is now an rbtree and will grow and
341 * shrink depending on usage patterns. We can, however, still
342 * account one msg_msg struct per message, but the nodes are
343 * allocated depending on priority usage, and most programs
344 * only use one, or a handful, of priorities. However, since
345 * this is pinned memory, we need to assume worst case, so
346 * that means the min(mq_maxmsg, max_priorities) * struct
347 * posix_msg_tree_node.
348 */
05c1b290
AV
349
350 ret = -EINVAL;
351 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
352 goto out_inode;
353 if (capable(CAP_SYS_RESOURCE)) {
354 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
355 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
356 goto out_inode;
357 } else {
358 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
359 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
360 goto out_inode;
361 }
362 ret = -EOVERFLOW;
363 /* check for overflow */
364 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
365 goto out_inode;
d6629859
DL
366 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
367 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
368 sizeof(struct posix_msg_tree_node);
05c1b290
AV
369 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
370 if (mq_bytes + mq_treesize < mq_bytes)
371 goto out_inode;
372 mq_bytes += mq_treesize;
6e52a9f0
AG
373 info->ucounts = get_ucounts(current_ucounts());
374 if (info->ucounts) {
375 long msgqueue;
376
377 spin_lock(&mq_lock);
378 msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
379 if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
380 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
381 spin_unlock(&mq_lock);
382 put_ucounts(info->ucounts);
383 info->ucounts = NULL;
384 /* mqueue_evict_inode() releases info->messages */
385 ret = -EMFILE;
386 goto out_inode;
387 }
04715206 388 spin_unlock(&mq_lock);
1da177e4 389 }
04715206
JS
390 } else if (S_ISDIR(mode)) {
391 inc_nlink(inode);
392 /* Some things misbehave if size == 0 on a directory */
393 inode->i_size = 2 * DIRENT_SIZE;
394 inode->i_op = &mqueue_dir_inode_operations;
395 inode->i_fop = &simple_dir_operations;
1da177e4 396 }
04715206 397
1da177e4
LT
398 return inode;
399out_inode:
1da177e4 400 iput(inode);
04715206 401err:
d40dcdb0 402 return ERR_PTR(ret);
1da177e4
LT
403}
404
935c6912 405static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4
LT
406{
407 struct inode *inode;
cfb2f6f6 408 struct ipc_namespace *ns = sb->s_fs_info;
1da177e4 409
a2982cc9 410 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
09cbfeaf
KS
411 sb->s_blocksize = PAGE_SIZE;
412 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
413 sb->s_magic = MQUEUE_MAGIC;
414 sb->s_op = &mqueue_super_ops;
415
48fde701
AV
416 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
417 if (IS_ERR(inode))
418 return PTR_ERR(inode);
1da177e4 419
48fde701
AV
420 sb->s_root = d_make_root(inode);
421 if (!sb->s_root)
422 return -ENOMEM;
423 return 0;
1da177e4
LT
424}
425
935c6912 426static int mqueue_get_tree(struct fs_context *fc)
1da177e4 427{
935c6912
DH
428 struct mqueue_fs_context *ctx = fc->fs_private;
429
533770cc 430 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
935c6912
DH
431}
432
433static void mqueue_fs_context_free(struct fs_context *fc)
434{
435 struct mqueue_fs_context *ctx = fc->fs_private;
436
709a643d 437 put_ipc_ns(ctx->ipc_ns);
935c6912
DH
438 kfree(ctx);
439}
440
441static int mqueue_init_fs_context(struct fs_context *fc)
442{
443 struct mqueue_fs_context *ctx;
444
445 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
446 if (!ctx)
447 return -ENOMEM;
448
449 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
709a643d
AV
450 put_user_ns(fc->user_ns);
451 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
935c6912
DH
452 fc->fs_private = ctx;
453 fc->ops = &mqueue_fs_context_ops;
454 return 0;
455}
456
457static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
458{
459 struct mqueue_fs_context *ctx;
460 struct fs_context *fc;
461 struct vfsmount *mnt;
462
463 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
464 if (IS_ERR(fc))
465 return ERR_CAST(fc);
466
467 ctx = fc->fs_private;
468 put_ipc_ns(ctx->ipc_ns);
469 ctx->ipc_ns = get_ipc_ns(ns);
709a643d
AV
470 put_user_ns(fc->user_ns);
471 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
935c6912
DH
472
473 mnt = fc_mount(fc);
474 put_fs_context(fc);
475 return mnt;
1da177e4
LT
476}
477
51cc5068 478static void init_once(void *foo)
1da177e4
LT
479{
480 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
481
a35afb83 482 inode_init_once(&p->vfs_inode);
1da177e4
LT
483}
484
485static struct inode *mqueue_alloc_inode(struct super_block *sb)
486{
487 struct mqueue_inode_info *ei;
488
e94b1766 489 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
1da177e4
LT
490 if (!ei)
491 return NULL;
492 return &ei->vfs_inode;
493}
494
015d7956 495static void mqueue_free_inode(struct inode *inode)
1da177e4
LT
496{
497 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
498}
499
6d8af64c 500static void mqueue_evict_inode(struct inode *inode)
1da177e4
LT
501{
502 struct mqueue_inode_info *info;
7eafd7c7 503 struct ipc_namespace *ipc_ns;
d6a2946a
LR
504 struct msg_msg *msg, *nmsg;
505 LIST_HEAD(tmp_msg);
1da177e4 506
dbd5768f 507 clear_inode(inode);
6d8af64c
AV
508
509 if (S_ISDIR(inode->i_mode))
1da177e4 510 return;
6d8af64c 511
7eafd7c7 512 ipc_ns = get_ns_from_inode(inode);
1da177e4
LT
513 info = MQUEUE_I(inode);
514 spin_lock(&info->lock);
d6629859 515 while ((msg = msg_get(info)) != NULL)
d6a2946a 516 list_add_tail(&msg->m_list, &tmp_msg);
ce2d52cc 517 kfree(info->node_cache);
1da177e4
LT
518 spin_unlock(&info->lock);
519
d6a2946a
LR
520 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
521 list_del(&msg->m_list);
522 free_msg(msg);
523 }
524
6e52a9f0 525 if (info->ucounts) {
a318f12e
KC
526 unsigned long mq_bytes, mq_treesize;
527
528 /* Total amount of bytes accounted for the mqueue */
529 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
530 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
531 sizeof(struct posix_msg_tree_node);
532
533 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
534 info->attr.mq_msgsize);
535
1da177e4 536 spin_lock(&mq_lock);
6e52a9f0 537 dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
7eafd7c7
SH
538 /*
539 * get_ns_from_inode() ensures that the
540 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
541 * to which we now hold a reference, or it is NULL.
542 * We can't put it here under mq_lock, though.
543 */
544 if (ipc_ns)
545 ipc_ns->mq_queues_count--;
1da177e4 546 spin_unlock(&mq_lock);
6e52a9f0
AG
547 put_ucounts(info->ucounts);
548 info->ucounts = NULL;
1da177e4 549 }
7eafd7c7
SH
550 if (ipc_ns)
551 put_ipc_ns(ipc_ns);
1da177e4
LT
552}
553
eecec19d 554static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
1da177e4 555{
eecec19d 556 struct inode *dir = dentry->d_parent->d_inode;
1da177e4 557 struct inode *inode;
eecec19d 558 struct mq_attr *attr = arg;
1da177e4 559 int error;
7eafd7c7 560 struct ipc_namespace *ipc_ns;
1da177e4
LT
561
562 spin_lock(&mq_lock);
7eafd7c7
SH
563 ipc_ns = __get_ns_from_inode(dir);
564 if (!ipc_ns) {
565 error = -EACCES;
566 goto out_unlock;
567 }
f3713fd9
DB
568
569 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
570 !capable(CAP_SYS_RESOURCE)) {
1da177e4 571 error = -ENOSPC;
614b84cf 572 goto out_unlock;
1da177e4 573 }
614b84cf 574 ipc_ns->mq_queues_count++;
1da177e4
LT
575 spin_unlock(&mq_lock);
576
7eafd7c7 577 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
d40dcdb0
JS
578 if (IS_ERR(inode)) {
579 error = PTR_ERR(inode);
1da177e4 580 spin_lock(&mq_lock);
614b84cf
SH
581 ipc_ns->mq_queues_count--;
582 goto out_unlock;
1da177e4
LT
583 }
584
7eafd7c7 585 put_ipc_ns(ipc_ns);
1da177e4 586 dir->i_size += DIRENT_SIZE;
078cd827 587 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
1da177e4
LT
588
589 d_instantiate(dentry, inode);
590 dget(dentry);
591 return 0;
614b84cf 592out_unlock:
1da177e4 593 spin_unlock(&mq_lock);
7eafd7c7
SH
594 if (ipc_ns)
595 put_ipc_ns(ipc_ns);
1da177e4
LT
596 return error;
597}
598
549c7297
CB
599static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
600 struct dentry *dentry, umode_t mode, bool excl)
eecec19d
AV
601{
602 return mqueue_create_attr(dentry, mode, NULL);
603}
604
1da177e4
LT
605static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
606{
75c3cfa8 607 struct inode *inode = d_inode(dentry);
1da177e4 608
078cd827 609 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
1da177e4 610 dir->i_size -= DIRENT_SIZE;
239521f3
MS
611 drop_nlink(inode);
612 dput(dentry);
613 return 0;
1da177e4
LT
614}
615
616/*
617* This is routine for system read from queue file.
618* To avoid mess with doing here some sort of mq_receive we allow
619* to read only queue size & notification info (the only values
620* that are interesting from user point of view and aren't accessible
621* through std routines)
622*/
623static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
f1a43f93 624 size_t count, loff_t *off)
1da177e4 625{
496ad9aa 626 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
1da177e4 627 char buffer[FILENT_SIZE];
f1a43f93 628 ssize_t ret;
1da177e4
LT
629
630 spin_lock(&info->lock);
631 snprintf(buffer, sizeof(buffer),
632 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
633 info->qsize,
634 info->notify_owner ? info->notify.sigev_notify : 0,
635 (info->notify_owner &&
636 info->notify.sigev_notify == SIGEV_SIGNAL) ?
637 info->notify.sigev_signo : 0,
6c5f3e7b 638 pid_vnr(info->notify_owner));
1da177e4
LT
639 spin_unlock(&info->lock);
640 buffer[sizeof(buffer)-1] = '\0';
1da177e4 641
f1a43f93
AM
642 ret = simple_read_from_buffer(u_data, count, off, buffer,
643 strlen(buffer));
644 if (ret <= 0)
645 return ret;
1da177e4 646
078cd827 647 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
f1a43f93 648 return ret;
1da177e4
LT
649}
650
75e1fcc0 651static int mqueue_flush_file(struct file *filp, fl_owner_t id)
1da177e4 652{
496ad9aa 653 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
1da177e4
LT
654
655 spin_lock(&info->lock);
a03fcb73 656 if (task_tgid(current) == info->notify_owner)
1da177e4
LT
657 remove_notification(info);
658
659 spin_unlock(&info->lock);
660 return 0;
661}
662
9dd95748 663static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
1da177e4 664{
496ad9aa 665 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
9dd95748 666 __poll_t retval = 0;
1da177e4
LT
667
668 poll_wait(filp, &info->wait_q, poll_tab);
669
670 spin_lock(&info->lock);
671 if (info->attr.mq_curmsgs)
a9a08845 672 retval = EPOLLIN | EPOLLRDNORM;
1da177e4
LT
673
674 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
a9a08845 675 retval |= EPOLLOUT | EPOLLWRNORM;
1da177e4
LT
676 spin_unlock(&info->lock);
677
678 return retval;
679}
680
681/* Adds current to info->e_wait_q[sr] before element with smaller prio */
682static void wq_add(struct mqueue_inode_info *info, int sr,
683 struct ext_wait_queue *ewp)
684{
685 struct ext_wait_queue *walk;
686
1da177e4 687 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
68e34f4e 688 if (walk->task->prio <= current->prio) {
1da177e4
LT
689 list_add_tail(&ewp->list, &walk->list);
690 return;
691 }
692 }
693 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
694}
695
696/*
697 * Puts current task to sleep. Caller must hold queue lock. After return
698 * lock isn't held.
699 * sr: SEND or RECV
700 */
701static int wq_sleep(struct mqueue_inode_info *info, int sr,
9ca7d8e6 702 ktime_t *timeout, struct ext_wait_queue *ewp)
eac0b1c3 703 __releases(&info->lock)
1da177e4
LT
704{
705 int retval;
706 signed long time;
707
708 wq_add(info, sr, ewp);
709
710 for (;;) {
c5b2cbdb 711 /* memory barrier not required, we hold info->lock */
fa6004ad 712 __set_current_state(TASK_INTERRUPTIBLE);
1da177e4
LT
713
714 spin_unlock(&info->lock);
32ea845d
WG
715 time = schedule_hrtimeout_range_clock(timeout, 0,
716 HRTIMER_MODE_ABS, CLOCK_REALTIME);
1da177e4 717
c5b2cbdb
MS
718 if (READ_ONCE(ewp->state) == STATE_READY) {
719 /* see MQ_BARRIER for purpose/pairing */
720 smp_acquire__after_ctrl_dep();
1da177e4
LT
721 retval = 0;
722 goto out;
723 }
724 spin_lock(&info->lock);
c5b2cbdb
MS
725
726 /* we hold info->lock, so no memory barrier required */
727 if (READ_ONCE(ewp->state) == STATE_READY) {
1da177e4
LT
728 retval = 0;
729 goto out_unlock;
730 }
731 if (signal_pending(current)) {
732 retval = -ERESTARTSYS;
733 break;
734 }
735 if (time == 0) {
736 retval = -ETIMEDOUT;
737 break;
738 }
739 }
740 list_del(&ewp->list);
741out_unlock:
742 spin_unlock(&info->lock);
743out:
744 return retval;
745}
746
747/*
748 * Returns waiting task that should be serviced first or NULL if none exists
749 */
750static struct ext_wait_queue *wq_get_first_waiter(
751 struct mqueue_inode_info *info, int sr)
752{
753 struct list_head *ptr;
754
755 ptr = info->e_wait_q[sr].list.prev;
756 if (ptr == &info->e_wait_q[sr].list)
757 return NULL;
758 return list_entry(ptr, struct ext_wait_queue, list);
759}
760
1da177e4
LT
761
762static inline void set_cookie(struct sk_buff *skb, char code)
763{
239521f3 764 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
1da177e4
LT
765}
766
767/*
768 * The next function is only to split too long sys_mq_timedsend
769 */
770static void __do_notify(struct mqueue_inode_info *info)
771{
772 /* notification
773 * invoked when there is registered process and there isn't process
774 * waiting synchronously for message AND state of queue changed from
775 * empty to not empty. Here we are sure that no one is waiting
776 * synchronously. */
777 if (info->notify_owner &&
778 info->attr.mq_curmsgs == 1) {
1da177e4
LT
779 switch (info->notify.sigev_notify) {
780 case SIGEV_NONE:
781 break;
b5f20061
ON
782 case SIGEV_SIGNAL: {
783 struct kernel_siginfo sig_i;
784 struct task_struct *task;
785
786 /* do_mq_notify() accepts sigev_signo == 0, why?? */
787 if (!info->notify.sigev_signo)
788 break;
1da177e4 789
faf1f22b 790 clear_siginfo(&sig_i);
1da177e4
LT
791 sig_i.si_signo = info->notify.sigev_signo;
792 sig_i.si_errno = 0;
793 sig_i.si_code = SI_MESGQ;
794 sig_i.si_value = info->notify.sigev_value;
6b550f94 795 rcu_read_lock();
b5f20061 796 /* map current pid/uid into info->owner's namespaces */
a6684999
SB
797 sig_i.si_pid = task_tgid_nr_ns(current,
798 ns_of_pid(info->notify_owner));
b5f20061
ON
799 sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
800 current_uid());
801 /*
802 * We can't use kill_pid_info(), this signal should
803 * bypass check_kill_permission(). It is from kernel
804 * but si_fromuser() can't know this.
805 * We do check the self_exec_id, to avoid sending
806 * signals to programs that don't expect them.
807 */
808 task = pid_task(info->notify_owner, PIDTYPE_TGID);
809 if (task && task->self_exec_id ==
810 info->notify_self_exec_id) {
811 do_send_sig_info(info->notify.sigev_signo,
812 &sig_i, task, PIDTYPE_TGID);
813 }
6b550f94 814 rcu_read_unlock();
1da177e4 815 break;
b5f20061 816 }
1da177e4
LT
817 case SIGEV_THREAD:
818 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
7ee015e0 819 netlink_sendskb(info->notify_sock, info->notify_cookie);
1da177e4
LT
820 break;
821 }
822 /* after notification unregisters process */
a03fcb73 823 put_pid(info->notify_owner);
6f9ac6d9 824 put_user_ns(info->notify_user_ns);
a03fcb73 825 info->notify_owner = NULL;
6f9ac6d9 826 info->notify_user_ns = NULL;
1da177e4
LT
827 }
828 wake_up(&info->wait_q);
829}
830
21fc538d 831static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
b9047726 832 struct timespec64 *ts)
1da177e4 833{
b9047726 834 if (get_timespec64(ts, u_abs_timeout))
9ca7d8e6 835 return -EFAULT;
b9047726 836 if (!timespec64_valid(ts))
9ca7d8e6 837 return -EINVAL;
9ca7d8e6 838 return 0;
1da177e4
LT
839}
840
841static void remove_notification(struct mqueue_inode_info *info)
842{
a03fcb73 843 if (info->notify_owner != NULL &&
1da177e4
LT
844 info->notify.sigev_notify == SIGEV_THREAD) {
845 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
7ee015e0 846 netlink_sendskb(info->notify_sock, info->notify_cookie);
1da177e4 847 }
a03fcb73 848 put_pid(info->notify_owner);
6f9ac6d9 849 put_user_ns(info->notify_user_ns);
a03fcb73 850 info->notify_owner = NULL;
6f9ac6d9 851 info->notify_user_ns = NULL;
1da177e4
LT
852}
853
066cc813
AV
854static int prepare_open(struct dentry *dentry, int oflag, int ro,
855 umode_t mode, struct filename *name,
614b84cf 856 struct mq_attr *attr)
1da177e4 857{
745ca247
DH
858 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
859 MAY_READ | MAY_WRITE };
765927b2 860 int acc;
066cc813 861
9b20d7fc
AV
862 if (d_really_is_negative(dentry)) {
863 if (!(oflag & O_CREAT))
066cc813 864 return -ENOENT;
9b20d7fc
AV
865 if (ro)
866 return ro;
867 audit_inode_parent_hidden(name, dentry->d_parent);
868 return vfs_mkobj(dentry, mode & ~current_umask(),
869 mqueue_create_attr, attr);
066cc813 870 }
9b20d7fc
AV
871 /* it already existed */
872 audit_inode(name, dentry, 0);
873 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
874 return -EEXIST;
765927b2 875 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
af4a5372 876 return -EINVAL;
765927b2 877 acc = oflag2acc[oflag & O_ACCMODE];
47291baa 878 return inode_permission(&init_user_ns, d_inode(dentry), acc);
1da177e4
LT
879}
880
0d060606
AV
881static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
882 struct mq_attr *attr)
1da177e4 883{
cfb2f6f6
EB
884 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
885 struct dentry *root = mnt->mnt_root;
91a27b2a 886 struct filename *name;
a713fd7f 887 struct path path;
1da177e4 888 int fd, error;
312b90fb 889 int ro;
1da177e4 890
0d060606 891 audit_mq_open(oflag, mode, attr);
20ca73bc 892
1da177e4
LT
893 if (IS_ERR(name = getname(u_name)))
894 return PTR_ERR(name);
895
269f2134 896 fd = get_unused_fd_flags(O_CLOEXEC);
1da177e4
LT
897 if (fd < 0)
898 goto out_putname;
899
312b90fb 900 ro = mnt_want_write(mnt); /* we'll drop it in any case */
5955102c 901 inode_lock(d_inode(root));
91a27b2a 902 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
765927b2
AV
903 if (IS_ERR(path.dentry)) {
904 error = PTR_ERR(path.dentry);
4294a8ee 905 goto out_putfd;
1da177e4 906 }
312b90fb 907 path.mnt = mntget(mnt);
066cc813
AV
908 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
909 if (!error) {
910 struct file *file = dentry_open(&path, oflag, current_cred());
911 if (!IS_ERR(file))
912 fd_install(fd, file);
913 else
914 error = PTR_ERR(file);
7c7dce92 915 }
765927b2 916 path_put(&path);
7c7dce92 917out_putfd:
765927b2
AV
918 if (error) {
919 put_unused_fd(fd);
920 fd = error;
921 }
5955102c 922 inode_unlock(d_inode(root));
38d78e58
VD
923 if (!ro)
924 mnt_drop_write(mnt);
1da177e4
LT
925out_putname:
926 putname(name);
927 return fd;
928}
929
0d060606
AV
930SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
931 struct mq_attr __user *, u_attr)
932{
933 struct mq_attr attr;
934 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
935 return -EFAULT;
936
937 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
938}
939
d5460c99 940SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
1da177e4
LT
941{
942 int err;
91a27b2a 943 struct filename *name;
1da177e4
LT
944 struct dentry *dentry;
945 struct inode *inode = NULL;
7eafd7c7 946 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
312b90fb 947 struct vfsmount *mnt = ipc_ns->mq_mnt;
1da177e4
LT
948
949 name = getname(u_name);
950 if (IS_ERR(name))
951 return PTR_ERR(name);
952
79f6530c 953 audit_inode_parent_hidden(name, mnt->mnt_root);
312b90fb
AV
954 err = mnt_want_write(mnt);
955 if (err)
956 goto out_name;
5955102c 957 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
91a27b2a
JL
958 dentry = lookup_one_len(name->name, mnt->mnt_root,
959 strlen(name->name));
1da177e4
LT
960 if (IS_ERR(dentry)) {
961 err = PTR_ERR(dentry);
962 goto out_unlock;
963 }
964
75c3cfa8 965 inode = d_inode(dentry);
312b90fb
AV
966 if (!inode) {
967 err = -ENOENT;
968 } else {
7de9c6ee 969 ihold(inode);
6521f891
CB
970 err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
971 dentry, NULL);
312b90fb 972 }
1da177e4
LT
973 dput(dentry);
974
975out_unlock:
5955102c 976 inode_unlock(d_inode(mnt->mnt_root));
1da177e4
LT
977 if (inode)
978 iput(inode);
312b90fb
AV
979 mnt_drop_write(mnt);
980out_name:
981 putname(name);
1da177e4
LT
982
983 return err;
984}
985
986/* Pipelined send and receive functions.
987 *
988 * If a receiver finds no waiting message, then it registers itself in the
989 * list of waiting receivers. A sender checks that list before adding the new
990 * message into the message array. If there is a waiting receiver, then it
991 * bypasses the message array and directly hands the message over to the
fa6004ad
DB
992 * receiver. The receiver accepts the message and returns without grabbing the
993 * queue spinlock:
994 *
995 * - Set pointer to message.
996 * - Queue the receiver task for later wakeup (without the info->lock).
997 * - Update its state to STATE_READY. Now the receiver can continue.
998 * - Wake up the process after the lock is dropped. Should the process wake up
999 * before this wakeup (due to a timeout or a signal) it will either see
1000 * STATE_READY and continue or acquire the lock to check the state again.
1da177e4
LT
1001 *
1002 * The same algorithm is used for senders.
1003 */
1004
ed29f171 1005static inline void __pipelined_op(struct wake_q_head *wake_q,
fa6004ad 1006 struct mqueue_inode_info *info,
ed29f171 1007 struct ext_wait_queue *this)
1da177e4 1008{
a11ddb37
VG
1009 struct task_struct *task;
1010
ed29f171 1011 list_del(&this->list);
a11ddb37 1012 task = get_task_struct(this->task);
c5b2cbdb
MS
1013
1014 /* see MQ_BARRIER for purpose/pairing */
1015 smp_store_release(&this->state, STATE_READY);
a11ddb37 1016 wake_q_add_safe(wake_q, task);
ed29f171
DB
1017}
1018
1019/* pipelined_send() - send a message directly to the task waiting in
1020 * sys_mq_timedreceive() (without inserting message into a queue).
1021 */
1022static inline void pipelined_send(struct wake_q_head *wake_q,
1023 struct mqueue_inode_info *info,
1024 struct msg_msg *message,
1025 struct ext_wait_queue *receiver)
1026{
1027 receiver->msg = message;
1028 __pipelined_op(wake_q, info, receiver);
1da177e4
LT
1029}
1030
1031/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1032 * gets its message and put to the queue (we have one free place for sure). */
fa6004ad
DB
1033static inline void pipelined_receive(struct wake_q_head *wake_q,
1034 struct mqueue_inode_info *info)
1da177e4
LT
1035{
1036 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1037
1038 if (!sender) {
1039 /* for poll */
1040 wake_up_interruptible(&info->wait_q);
1041 return;
1042 }
d6629859
DL
1043 if (msg_insert(sender->msg, info))
1044 return;
fa6004ad 1045
ed29f171 1046 __pipelined_op(wake_q, info, sender);
1da177e4
LT
1047}
1048
0d060606
AV
1049static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1050 size_t msg_len, unsigned int msg_prio,
b9047726 1051 struct timespec64 *ts)
1da177e4 1052{
2903ff01 1053 struct fd f;
1da177e4
LT
1054 struct inode *inode;
1055 struct ext_wait_queue wait;
1056 struct ext_wait_queue *receiver;
1057 struct msg_msg *msg_ptr;
1058 struct mqueue_inode_info *info;
9ca7d8e6 1059 ktime_t expires, *timeout = NULL;
ce2d52cc 1060 struct posix_msg_tree_node *new_leaf = NULL;
2903ff01 1061 int ret = 0;
194a6b5b 1062 DEFINE_WAKE_Q(wake_q);
1da177e4
LT
1063
1064 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1065 return -EINVAL;
1066
0d060606 1067 if (ts) {
b9047726 1068 expires = timespec64_to_ktime(*ts);
0d060606
AV
1069 timeout = &expires;
1070 }
1071
1072 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1da177e4 1073
2903ff01
AV
1074 f = fdget(mqdes);
1075 if (unlikely(!f.file)) {
8d8ffefa 1076 ret = -EBADF;
1da177e4 1077 goto out;
8d8ffefa 1078 }
1da177e4 1079
496ad9aa 1080 inode = file_inode(f.file);
2903ff01 1081 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
8d8ffefa 1082 ret = -EBADF;
1da177e4 1083 goto out_fput;
8d8ffefa 1084 }
1da177e4 1085 info = MQUEUE_I(inode);
9f45f5bf 1086 audit_file(f.file);
1da177e4 1087
2903ff01 1088 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
8d8ffefa 1089 ret = -EBADF;
1da177e4 1090 goto out_fput;
8d8ffefa 1091 }
1da177e4
LT
1092
1093 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1094 ret = -EMSGSIZE;
1095 goto out_fput;
1096 }
1097
1098 /* First try to allocate memory, before doing anything with
1099 * existing queues. */
1100 msg_ptr = load_msg(u_msg_ptr, msg_len);
1101 if (IS_ERR(msg_ptr)) {
1102 ret = PTR_ERR(msg_ptr);
1103 goto out_fput;
1104 }
1105 msg_ptr->m_ts = msg_len;
1106 msg_ptr->m_type = msg_prio;
1107
ce2d52cc
DL
1108 /*
1109 * msg_insert really wants us to have a valid, spare node struct so
1110 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1111 * fall back to that if necessary.
1112 */
1113 if (!info->node_cache)
1114 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1115
1da177e4
LT
1116 spin_lock(&info->lock);
1117
ce2d52cc
DL
1118 if (!info->node_cache && new_leaf) {
1119 /* Save our speculative allocation into the cache */
ce2d52cc
DL
1120 INIT_LIST_HEAD(&new_leaf->msg_list);
1121 info->node_cache = new_leaf;
ce2d52cc
DL
1122 new_leaf = NULL;
1123 } else {
1124 kfree(new_leaf);
1125 }
1126
1da177e4 1127 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
2903ff01 1128 if (f.file->f_flags & O_NONBLOCK) {
1da177e4 1129 ret = -EAGAIN;
1da177e4
LT
1130 } else {
1131 wait.task = current;
1132 wait.msg = (void *) msg_ptr;
c5b2cbdb
MS
1133
1134 /* memory barrier not required, we hold info->lock */
1135 WRITE_ONCE(wait.state, STATE_NONE);
1da177e4 1136 ret = wq_sleep(info, SEND, timeout, &wait);
ce2d52cc
DL
1137 /*
1138 * wq_sleep must be called with info->lock held, and
1139 * returns with the lock released
1140 */
1141 goto out_free;
1da177e4 1142 }
1da177e4
LT
1143 } else {
1144 receiver = wq_get_first_waiter(info, RECV);
1145 if (receiver) {
fa6004ad 1146 pipelined_send(&wake_q, info, msg_ptr, receiver);
1da177e4
LT
1147 } else {
1148 /* adds message to the queue */
ce2d52cc
DL
1149 ret = msg_insert(msg_ptr, info);
1150 if (ret)
1151 goto out_unlock;
1da177e4
LT
1152 __do_notify(info);
1153 }
1154 inode->i_atime = inode->i_mtime = inode->i_ctime =
078cd827 1155 current_time(inode);
1da177e4 1156 }
ce2d52cc
DL
1157out_unlock:
1158 spin_unlock(&info->lock);
fa6004ad 1159 wake_up_q(&wake_q);
ce2d52cc
DL
1160out_free:
1161 if (ret)
1162 free_msg(msg_ptr);
1da177e4 1163out_fput:
2903ff01 1164 fdput(f);
1da177e4
LT
1165out:
1166 return ret;
1167}
1168
0d060606
AV
1169static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1170 size_t msg_len, unsigned int __user *u_msg_prio,
b9047726 1171 struct timespec64 *ts)
1da177e4 1172{
1da177e4
LT
1173 ssize_t ret;
1174 struct msg_msg *msg_ptr;
2903ff01 1175 struct fd f;
1da177e4
LT
1176 struct inode *inode;
1177 struct mqueue_inode_info *info;
1178 struct ext_wait_queue wait;
9ca7d8e6 1179 ktime_t expires, *timeout = NULL;
ce2d52cc 1180 struct posix_msg_tree_node *new_leaf = NULL;
1da177e4 1181
0d060606 1182 if (ts) {
b9047726 1183 expires = timespec64_to_ktime(*ts);
9ca7d8e6 1184 timeout = &expires;
c32c8af4 1185 }
20ca73bc 1186
0d060606 1187 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1da177e4 1188
2903ff01
AV
1189 f = fdget(mqdes);
1190 if (unlikely(!f.file)) {
8d8ffefa 1191 ret = -EBADF;
1da177e4 1192 goto out;
8d8ffefa 1193 }
1da177e4 1194
496ad9aa 1195 inode = file_inode(f.file);
2903ff01 1196 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
8d8ffefa 1197 ret = -EBADF;
1da177e4 1198 goto out_fput;
8d8ffefa 1199 }
1da177e4 1200 info = MQUEUE_I(inode);
9f45f5bf 1201 audit_file(f.file);
1da177e4 1202
2903ff01 1203 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
8d8ffefa 1204 ret = -EBADF;
1da177e4 1205 goto out_fput;
8d8ffefa 1206 }
1da177e4
LT
1207
1208 /* checks if buffer is big enough */
1209 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1210 ret = -EMSGSIZE;
1211 goto out_fput;
1212 }
1213
ce2d52cc
DL
1214 /*
1215 * msg_insert really wants us to have a valid, spare node struct so
1216 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1217 * fall back to that if necessary.
1218 */
1219 if (!info->node_cache)
1220 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1221
1da177e4 1222 spin_lock(&info->lock);
ce2d52cc
DL
1223
1224 if (!info->node_cache && new_leaf) {
1225 /* Save our speculative allocation into the cache */
ce2d52cc
DL
1226 INIT_LIST_HEAD(&new_leaf->msg_list);
1227 info->node_cache = new_leaf;
ce2d52cc
DL
1228 } else {
1229 kfree(new_leaf);
1230 }
1231
1da177e4 1232 if (info->attr.mq_curmsgs == 0) {
2903ff01 1233 if (f.file->f_flags & O_NONBLOCK) {
1da177e4
LT
1234 spin_unlock(&info->lock);
1235 ret = -EAGAIN;
1da177e4
LT
1236 } else {
1237 wait.task = current;
c5b2cbdb
MS
1238
1239 /* memory barrier not required, we hold info->lock */
1240 WRITE_ONCE(wait.state, STATE_NONE);
1da177e4
LT
1241 ret = wq_sleep(info, RECV, timeout, &wait);
1242 msg_ptr = wait.msg;
1243 }
1244 } else {
194a6b5b 1245 DEFINE_WAKE_Q(wake_q);
fa6004ad 1246
1da177e4
LT
1247 msg_ptr = msg_get(info);
1248
1249 inode->i_atime = inode->i_mtime = inode->i_ctime =
078cd827 1250 current_time(inode);
1da177e4
LT
1251
1252 /* There is now free space in queue. */
fa6004ad 1253 pipelined_receive(&wake_q, info);
1da177e4 1254 spin_unlock(&info->lock);
fa6004ad 1255 wake_up_q(&wake_q);
1da177e4
LT
1256 ret = 0;
1257 }
1258 if (ret == 0) {
1259 ret = msg_ptr->m_ts;
1260
1261 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1262 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1263 ret = -EFAULT;
1264 }
1265 free_msg(msg_ptr);
1266 }
1267out_fput:
2903ff01 1268 fdput(f);
1da177e4
LT
1269out:
1270 return ret;
1271}
1272
0d060606
AV
1273SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1274 size_t, msg_len, unsigned int, msg_prio,
21fc538d 1275 const struct __kernel_timespec __user *, u_abs_timeout)
0d060606 1276{
b9047726 1277 struct timespec64 ts, *p = NULL;
0d060606
AV
1278 if (u_abs_timeout) {
1279 int res = prepare_timeout(u_abs_timeout, &ts);
1280 if (res)
1281 return res;
1282 p = &ts;
1283 }
1284 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1285}
1286
1287SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1288 size_t, msg_len, unsigned int __user *, u_msg_prio,
21fc538d 1289 const struct __kernel_timespec __user *, u_abs_timeout)
0d060606 1290{
b9047726 1291 struct timespec64 ts, *p = NULL;
0d060606
AV
1292 if (u_abs_timeout) {
1293 int res = prepare_timeout(u_abs_timeout, &ts);
1294 if (res)
1295 return res;
1296 p = &ts;
1297 }
1298 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1299}
1300
1da177e4
LT
1301/*
1302 * Notes: the case when user wants us to deregister (with NULL as pointer)
1303 * and he isn't currently owner of notification, will be silently discarded.
1304 * It isn't explicitly defined in the POSIX.
1305 */
0d060606 1306static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1da177e4 1307{
2903ff01
AV
1308 int ret;
1309 struct fd f;
1da177e4
LT
1310 struct sock *sock;
1311 struct inode *inode;
1da177e4
LT
1312 struct mqueue_inode_info *info;
1313 struct sk_buff *nc;
1314
0d060606 1315 audit_mq_notify(mqdes, notification);
1da177e4 1316
20114f71
AV
1317 nc = NULL;
1318 sock = NULL;
0d060606
AV
1319 if (notification != NULL) {
1320 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1321 notification->sigev_notify != SIGEV_SIGNAL &&
1322 notification->sigev_notify != SIGEV_THREAD))
1da177e4 1323 return -EINVAL;
0d060606
AV
1324 if (notification->sigev_notify == SIGEV_SIGNAL &&
1325 !valid_signal(notification->sigev_signo)) {
1da177e4
LT
1326 return -EINVAL;
1327 }
0d060606 1328 if (notification->sigev_notify == SIGEV_THREAD) {
c3d8d1e3
PM
1329 long timeo;
1330
1da177e4
LT
1331 /* create the notify skb */
1332 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
c231740d
ME
1333 if (!nc)
1334 return -ENOMEM;
1335
1da177e4 1336 if (copy_from_user(nc->data,
0d060606 1337 notification->sigev_value.sival_ptr,
1da177e4 1338 NOTIFY_COOKIE_LEN)) {
8d8ffefa 1339 ret = -EFAULT;
c231740d 1340 goto free_skb;
1da177e4
LT
1341 }
1342
1343 /* TODO: add a header? */
1344 skb_put(nc, NOTIFY_COOKIE_LEN);
1345 /* and attach it to the socket */
1346retry:
0d060606 1347 f = fdget(notification->sigev_signo);
2903ff01 1348 if (!f.file) {
8d8ffefa 1349 ret = -EBADF;
1da177e4 1350 goto out;
8d8ffefa 1351 }
2903ff01
AV
1352 sock = netlink_getsockbyfilp(f.file);
1353 fdput(f);
1da177e4
LT
1354 if (IS_ERR(sock)) {
1355 ret = PTR_ERR(sock);
c231740d 1356 goto free_skb;
1da177e4
LT
1357 }
1358
c3d8d1e3 1359 timeo = MAX_SCHEDULE_TIMEOUT;
9457afee 1360 ret = netlink_attachskb(sock, nc, &timeo, NULL);
f991af3d
CW
1361 if (ret == 1) {
1362 sock = NULL;
8d8ffefa 1363 goto retry;
f991af3d 1364 }
c231740d
ME
1365 if (ret)
1366 return ret;
1da177e4
LT
1367 }
1368 }
1369
2903ff01
AV
1370 f = fdget(mqdes);
1371 if (!f.file) {
8d8ffefa 1372 ret = -EBADF;
1da177e4 1373 goto out;
8d8ffefa 1374 }
1da177e4 1375
496ad9aa 1376 inode = file_inode(f.file);
2903ff01 1377 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
8d8ffefa 1378 ret = -EBADF;
1da177e4 1379 goto out_fput;
8d8ffefa 1380 }
1da177e4
LT
1381 info = MQUEUE_I(inode);
1382
1383 ret = 0;
1384 spin_lock(&info->lock);
0d060606 1385 if (notification == NULL) {
a03fcb73 1386 if (info->notify_owner == task_tgid(current)) {
1da177e4 1387 remove_notification(info);
078cd827 1388 inode->i_atime = inode->i_ctime = current_time(inode);
1da177e4 1389 }
a03fcb73 1390 } else if (info->notify_owner != NULL) {
1da177e4
LT
1391 ret = -EBUSY;
1392 } else {
0d060606 1393 switch (notification->sigev_notify) {
1da177e4
LT
1394 case SIGEV_NONE:
1395 info->notify.sigev_notify = SIGEV_NONE;
1396 break;
1397 case SIGEV_THREAD:
1398 info->notify_sock = sock;
1399 info->notify_cookie = nc;
1400 sock = NULL;
1401 nc = NULL;
1402 info->notify.sigev_notify = SIGEV_THREAD;
1403 break;
1404 case SIGEV_SIGNAL:
0d060606
AV
1405 info->notify.sigev_signo = notification->sigev_signo;
1406 info->notify.sigev_value = notification->sigev_value;
1da177e4 1407 info->notify.sigev_notify = SIGEV_SIGNAL;
b5f20061 1408 info->notify_self_exec_id = current->self_exec_id;
1da177e4
LT
1409 break;
1410 }
a03fcb73
CLG
1411
1412 info->notify_owner = get_pid(task_tgid(current));
6f9ac6d9 1413 info->notify_user_ns = get_user_ns(current_user_ns());
078cd827 1414 inode->i_atime = inode->i_ctime = current_time(inode);
1da177e4
LT
1415 }
1416 spin_unlock(&info->lock);
1417out_fput:
2903ff01 1418 fdput(f);
1da177e4 1419out:
3ab08fe2 1420 if (sock)
1da177e4 1421 netlink_detachskb(sock, nc);
97b0b1ad 1422 else
c231740d 1423free_skb:
1da177e4 1424 dev_kfree_skb(nc);
3ab08fe2 1425
1da177e4
LT
1426 return ret;
1427}
1428
0d060606
AV
1429SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1430 const struct sigevent __user *, u_notification)
1431{
1432 struct sigevent n, *p = NULL;
1433 if (u_notification) {
1434 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1435 return -EFAULT;
1436 p = &n;
1437 }
1438 return do_mq_notify(mqdes, p);
1439}
1440
1441static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1da177e4 1442{
2903ff01 1443 struct fd f;
1da177e4
LT
1444 struct inode *inode;
1445 struct mqueue_inode_info *info;
1446
0d060606
AV
1447 if (new && (new->mq_flags & (~O_NONBLOCK)))
1448 return -EINVAL;
1da177e4 1449
2903ff01 1450 f = fdget(mqdes);
0d060606
AV
1451 if (!f.file)
1452 return -EBADF;
1da177e4 1453
2903ff01 1454 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
0d060606
AV
1455 fdput(f);
1456 return -EBADF;
8d8ffefa 1457 }
0d060606
AV
1458
1459 inode = file_inode(f.file);
1da177e4
LT
1460 info = MQUEUE_I(inode);
1461
1462 spin_lock(&info->lock);
1463
0d060606
AV
1464 if (old) {
1465 *old = info->attr;
1466 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1467 }
1468 if (new) {
1469 audit_mq_getsetattr(mqdes, new);
2903ff01 1470 spin_lock(&f.file->f_lock);
0d060606 1471 if (new->mq_flags & O_NONBLOCK)
2903ff01 1472 f.file->f_flags |= O_NONBLOCK;
1da177e4 1473 else
2903ff01
AV
1474 f.file->f_flags &= ~O_NONBLOCK;
1475 spin_unlock(&f.file->f_lock);
1da177e4 1476
078cd827 1477 inode->i_atime = inode->i_ctime = current_time(inode);
1da177e4
LT
1478 }
1479
1480 spin_unlock(&info->lock);
0d060606
AV
1481 fdput(f);
1482 return 0;
1483}
1da177e4 1484
0d060606
AV
1485SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1486 const struct mq_attr __user *, u_mqstat,
1487 struct mq_attr __user *, u_omqstat)
1488{
1489 int ret;
1490 struct mq_attr mqstat, omqstat;
1491 struct mq_attr *new = NULL, *old = NULL;
1da177e4 1492
0d060606
AV
1493 if (u_mqstat) {
1494 new = &mqstat;
1495 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1496 return -EFAULT;
1497 }
1498 if (u_omqstat)
1499 old = &omqstat;
1500
1501 ret = do_mq_getsetattr(mqdes, new, old);
1502 if (ret || !old)
1503 return ret;
1504
1505 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1506 return -EFAULT;
1507 return 0;
1508}
1509
1510#ifdef CONFIG_COMPAT
1511
1512struct compat_mq_attr {
1513 compat_long_t mq_flags; /* message queue flags */
1514 compat_long_t mq_maxmsg; /* maximum number of messages */
1515 compat_long_t mq_msgsize; /* maximum message size */
1516 compat_long_t mq_curmsgs; /* number of messages currently queued */
1517 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1518};
1519
1520static inline int get_compat_mq_attr(struct mq_attr *attr,
1521 const struct compat_mq_attr __user *uattr)
1522{
1523 struct compat_mq_attr v;
1524
1525 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1526 return -EFAULT;
1527
1528 memset(attr, 0, sizeof(*attr));
1529 attr->mq_flags = v.mq_flags;
1530 attr->mq_maxmsg = v.mq_maxmsg;
1531 attr->mq_msgsize = v.mq_msgsize;
1532 attr->mq_curmsgs = v.mq_curmsgs;
1533 return 0;
1534}
1535
1536static inline int put_compat_mq_attr(const struct mq_attr *attr,
1537 struct compat_mq_attr __user *uattr)
1538{
1539 struct compat_mq_attr v;
1540
1541 memset(&v, 0, sizeof(v));
1542 v.mq_flags = attr->mq_flags;
1543 v.mq_maxmsg = attr->mq_maxmsg;
1544 v.mq_msgsize = attr->mq_msgsize;
1545 v.mq_curmsgs = attr->mq_curmsgs;
1546 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1547 return -EFAULT;
1548 return 0;
1549}
1550
1551COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1552 int, oflag, compat_mode_t, mode,
1553 struct compat_mq_attr __user *, u_attr)
1554{
1555 struct mq_attr attr, *p = NULL;
1556 if (u_attr && oflag & O_CREAT) {
1557 p = &attr;
1558 if (get_compat_mq_attr(&attr, u_attr))
1559 return -EFAULT;
1560 }
1561 return do_mq_open(u_name, oflag, mode, p);
1562}
1563
b0d17578
AB
1564COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1565 const struct compat_sigevent __user *, u_notification)
1566{
1567 struct sigevent n, *p = NULL;
1568 if (u_notification) {
1569 if (get_compat_sigevent(&n, u_notification))
1570 return -EFAULT;
1571 if (n.sigev_notify == SIGEV_THREAD)
1572 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1573 p = &n;
1574 }
1575 return do_mq_notify(mqdes, p);
1576}
1577
1578COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1579 const struct compat_mq_attr __user *, u_mqstat,
1580 struct compat_mq_attr __user *, u_omqstat)
1581{
1582 int ret;
1583 struct mq_attr mqstat, omqstat;
1584 struct mq_attr *new = NULL, *old = NULL;
1585
1586 if (u_mqstat) {
1587 new = &mqstat;
1588 if (get_compat_mq_attr(new, u_mqstat))
1589 return -EFAULT;
1590 }
1591 if (u_omqstat)
1592 old = &omqstat;
1593
1594 ret = do_mq_getsetattr(mqdes, new, old);
1595 if (ret || !old)
1596 return ret;
1597
1598 if (put_compat_mq_attr(old, u_omqstat))
1599 return -EFAULT;
1600 return 0;
1601}
1602#endif
1603
1604#ifdef CONFIG_COMPAT_32BIT_TIME
9afc5eee 1605static int compat_prepare_timeout(const struct old_timespec32 __user *p,
b9047726 1606 struct timespec64 *ts)
0d060606 1607{
9afc5eee 1608 if (get_old_timespec32(ts, p))
0d060606 1609 return -EFAULT;
b9047726 1610 if (!timespec64_valid(ts))
0d060606
AV
1611 return -EINVAL;
1612 return 0;
1613}
1614
8dabe724
AB
1615SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1616 const char __user *, u_msg_ptr,
1617 unsigned int, msg_len, unsigned int, msg_prio,
1618 const struct old_timespec32 __user *, u_abs_timeout)
0d060606 1619{
b9047726 1620 struct timespec64 ts, *p = NULL;
0d060606
AV
1621 if (u_abs_timeout) {
1622 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1623 if (res)
1624 return res;
1625 p = &ts;
1626 }
1627 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1628}
1629
8dabe724
AB
1630SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1631 char __user *, u_msg_ptr,
1632 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1633 const struct old_timespec32 __user *, u_abs_timeout)
0d060606 1634{
b9047726 1635 struct timespec64 ts, *p = NULL;
0d060606
AV
1636 if (u_abs_timeout) {
1637 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1638 if (res)
1639 return res;
1640 p = &ts;
1641 }
1642 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1643}
0d060606 1644#endif
1da177e4 1645
92e1d5be 1646static const struct inode_operations mqueue_dir_inode_operations = {
1da177e4
LT
1647 .lookup = simple_lookup,
1648 .create = mqueue_create,
1649 .unlink = mqueue_unlink,
1650};
1651
9a32144e 1652static const struct file_operations mqueue_file_operations = {
1da177e4
LT
1653 .flush = mqueue_flush_file,
1654 .poll = mqueue_poll_file,
1655 .read = mqueue_read_file,
6038f373 1656 .llseek = default_llseek,
1da177e4
LT
1657};
1658
b87221de 1659static const struct super_operations mqueue_super_ops = {
1da177e4 1660 .alloc_inode = mqueue_alloc_inode,
015d7956 1661 .free_inode = mqueue_free_inode,
6d8af64c 1662 .evict_inode = mqueue_evict_inode,
1da177e4 1663 .statfs = simple_statfs,
1da177e4
LT
1664};
1665
935c6912
DH
1666static const struct fs_context_operations mqueue_fs_context_ops = {
1667 .free = mqueue_fs_context_free,
1668 .get_tree = mqueue_get_tree,
1669};
1670
1da177e4 1671static struct file_system_type mqueue_fs_type = {
935c6912
DH
1672 .name = "mqueue",
1673 .init_fs_context = mqueue_init_fs_context,
1674 .kill_sb = kill_litter_super,
1675 .fs_flags = FS_USERNS_MOUNT,
1da177e4
LT
1676};
1677
7eafd7c7
SH
1678int mq_init_ns(struct ipc_namespace *ns)
1679{
935c6912
DH
1680 struct vfsmount *m;
1681
7eafd7c7
SH
1682 ns->mq_queues_count = 0;
1683 ns->mq_queues_max = DFLT_QUEUESMAX;
1684 ns->mq_msg_max = DFLT_MSGMAX;
1685 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
cef0184c
KM
1686 ns->mq_msg_default = DFLT_MSG;
1687 ns->mq_msgsize_default = DFLT_MSGSIZE;
7eafd7c7 1688
935c6912
DH
1689 m = mq_create_mount(ns);
1690 if (IS_ERR(m))
1691 return PTR_ERR(m);
1692 ns->mq_mnt = m;
7eafd7c7
SH
1693 return 0;
1694}
1695
1696void mq_clear_sbinfo(struct ipc_namespace *ns)
1697{
cfb2f6f6 1698 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
7eafd7c7
SH
1699}
1700
1701void mq_put_mnt(struct ipc_namespace *ns)
1702{
cfb2f6f6 1703 kern_unmount(ns->mq_mnt);
7eafd7c7
SH
1704}
1705
1da177e4
LT
1706static int __init init_mqueue_fs(void)
1707{
1708 int error;
1709
1710 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1711 sizeof(struct mqueue_inode_info), 0,
5d097056 1712 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1da177e4
LT
1713 if (mqueue_inode_cachep == NULL)
1714 return -ENOMEM;
1715
2329e392 1716 /* ignore failures - they are not fatal */
bdc8e5f8 1717 mq_sysctl_table = mq_register_sysctl_table();
1da177e4
LT
1718
1719 error = register_filesystem(&mqueue_fs_type);
1720 if (error)
1721 goto out_sysctl;
1722
7eafd7c7
SH
1723 spin_lock_init(&mq_lock);
1724
6f686574
AV
1725 error = mq_init_ns(&init_ipc_ns);
1726 if (error)
1da177e4 1727 goto out_filesystem;
1da177e4 1728
1da177e4
LT
1729 return 0;
1730
1731out_filesystem:
1732 unregister_filesystem(&mqueue_fs_type);
1733out_sysctl:
1734 if (mq_sysctl_table)
1735 unregister_sysctl_table(mq_sysctl_table);
1a1d92c1 1736 kmem_cache_destroy(mqueue_inode_cachep);
1da177e4
LT
1737 return error;
1738}
1739
6d08a256 1740device_initcall(init_mqueue_fs);