]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - ipc/sem.c
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
[mirror_ubuntu-jammy-kernel.git] / ipc / sem.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
1da177e4
LT
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
624dffcb 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 11 * Enforced range limit on SEM_UNDO
046c6884 12 * (c) 2001 Red Hat Inc
1da177e4
LT
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
b1989a3d 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
c5cf6359
MS
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 58 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
71 */
72
b0d17578 73#include <linux/compat.h>
1da177e4
LT
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
1da177e4
LT
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
c59ede7b 82#include <linux/capability.h>
19b4946c 83#include <linux/seq_file.h>
3e148c79 84#include <linux/rwsem.h>
e3893534 85#include <linux/nsproxy.h>
ae5e1b22 86#include <linux/ipc_namespace.h>
84f001e1 87#include <linux/sched/wake_q.h>
ec67aaa4 88#include <linux/nospec.h>
0eb71a9d 89#include <linux/rhashtable.h>
5f921ae9 90
7153e402 91#include <linux/uaccess.h>
1da177e4
LT
92#include "util.h"
93
1a5c1349
EB
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
51d6f263 104 struct pid *sempid;
1a5c1349
EB
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
2a70b787 110 time64_t sem_otime; /* candidate for sem_otime */
1a5c1349
EB
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127} __randomize_layout;
e57940d7
MS
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
e57940d7
MS
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
51d6f263 134 struct pid *pid; /* process id of requesting process */
e57940d7
MS
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
ed247b7c 137 struct sembuf *blocking; /* the operation that blocked */
e57940d7 138 int nsops; /* number of operations */
4ce33ec2
DB
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
f74370b8 163 refcount_t refcnt;
e57940d7
MS
164 spinlock_t lock;
165 struct list_head list_proc;
166};
167
168
ed2ddbf8 169#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 170
7748dbfa 171static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 173#ifdef CONFIG_PROC_FS
19b4946c 174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
175#endif
176
177#define SEMMSL_FAST 256 /* 512 bytes on stack */
178#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
9de5ab8a
MS
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
1da177e4 187/*
758a6ba3 188 * Locking:
5864a2fd 189 * a) global sem_lock() for read/write
1da177e4 190 * sem_undo.id_next,
758a6ba3 191 * sem_array.complex_count,
5864a2fd
MS
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
46c0a8ca 194 *
5864a2fd 195 * b) global or semaphore sem_lock() for read/write:
1a233956 196 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
9de5ab8a
MS
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
8116b54e
MS
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
9de5ab8a 211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
8116b54e
MS
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
9de5ab8a
MS
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
17d056e0
MS
220 * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
221 * READ_ONCE()/WRITE_ONCE() is used.
8116b54e
MS
222 *
223 * 2) queue.status: (SEM_BARRIER_2)
224 * Initialization is done while holding sem_lock(), so no further barrier is
225 * required.
226 * Setting it to a result code is a RELEASE, this is ensured by both a
227 * smp_store_release() (for case a) and while holding sem_lock()
228 * (for case b).
b1989a3d 229 * The ACQUIRE when reading the result code without holding sem_lock() is
8116b54e
MS
230 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
231 * (case a above).
232 * Reading the result code while holding sem_lock() needs no further barriers,
233 * the locks inside sem_lock() enforce ordering (case b above)
234 *
235 * 3) current->state:
236 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
237 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
238 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
239 * when holding sem_lock(), no further barriers are required.
240 *
241 * See also ipc/mqueue.c for more details on the covered races.
1da177e4
LT
242 */
243
e3893534
KK
244#define sc_semmsl sem_ctls[0]
245#define sc_semmns sem_ctls[1]
246#define sc_semopm sem_ctls[2]
247#define sc_semmni sem_ctls[3]
248
eae04d25 249void sem_init_ns(struct ipc_namespace *ns)
e3893534 250{
e3893534
KK
251 ns->sc_semmsl = SEMMSL;
252 ns->sc_semmns = SEMMNS;
253 ns->sc_semopm = SEMOPM;
254 ns->sc_semmni = SEMMNI;
255 ns->used_sems = 0;
eae04d25 256 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
257}
258
ae5e1b22 259#ifdef CONFIG_IPC_NS
e3893534
KK
260void sem_exit_ns(struct ipc_namespace *ns)
261{
01b8b07a 262 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 263 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 264 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 265}
ae5e1b22 266#endif
1da177e4 267
eae04d25 268void __init sem_init(void)
1da177e4 269{
eae04d25 270 sem_init_ns(&init_ipc_ns);
19b4946c
MW
271 ipc_init_proc_interface("sysvipc/sem",
272 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 273 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
274}
275
f269f40a
MS
276/**
277 * unmerge_queues - unmerge queues, if possible.
278 * @sma: semaphore array
279 *
280 * The function unmerges the wait queues if complex_count is 0.
281 * It must be called prior to dropping the global semaphore array lock.
282 */
283static void unmerge_queues(struct sem_array *sma)
284{
285 struct sem_queue *q, *tq;
286
287 /* complex operations still around? */
288 if (sma->complex_count)
289 return;
290 /*
291 * We will switch back to simple mode.
292 * Move all pending operation back into the per-semaphore
293 * queues.
294 */
295 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
296 struct sem *curr;
1a233956 297 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
298
299 list_add_tail(&q->list, &curr->pending_alter);
300 }
301 INIT_LIST_HEAD(&sma->pending_alter);
302}
303
304/**
8001c858 305 * merge_queues - merge single semop queues into global queue
f269f40a
MS
306 * @sma: semaphore array
307 *
308 * This function merges all per-semaphore queues into the global queue.
309 * It is necessary to achieve FIFO ordering for the pending single-sop
310 * operations when a multi-semop operation must sleep.
311 * Only the alter operations must be moved, the const operations can stay.
312 */
313static void merge_queues(struct sem_array *sma)
314{
315 int i;
316 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 317 struct sem *sem = &sma->sems[i];
f269f40a
MS
318
319 list_splice_init(&sem->pending_alter, &sma->pending_alter);
320 }
321}
322
53dad6d3
DB
323static void sem_rcu_free(struct rcu_head *head)
324{
dba4cdd3
MS
325 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
326 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3 327
aefad959 328 security_sem_free(&sma->sem_perm);
e2029dfe 329 kvfree(sma);
53dad6d3
DB
330}
331
5e9d5275 332/*
5864a2fd 333 * Enter the mode suitable for non-simple operations:
5e9d5275 334 * Caller must own sem_perm.lock.
5e9d5275 335 */
5864a2fd 336static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
337{
338 int i;
339 struct sem *sem;
340
9de5ab8a
MS
341 if (sma->use_global_lock > 0) {
342 /*
343 * We are already in global lock mode.
344 * Nothing to do, just reset the
345 * counter until we return to simple mode.
346 */
17d056e0 347 WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
6d07b68c
MS
348 return;
349 }
17d056e0 350 WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
5864a2fd 351
5e9d5275 352 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 353 sem = &sma->sems[i];
27d7be18
MS
354 spin_lock(&sem->lock);
355 spin_unlock(&sem->lock);
5e9d5275 356 }
5864a2fd
MS
357}
358
359/*
360 * Try to leave the mode that disallows simple operations:
361 * Caller must own sem_perm.lock.
362 */
363static void complexmode_tryleave(struct sem_array *sma)
364{
365 if (sma->complex_count) {
366 /* Complex ops are sleeping.
367 * We must stay in complex mode
368 */
369 return;
370 }
9de5ab8a 371 if (sma->use_global_lock == 1) {
8116b54e
MS
372
373 /* See SEM_BARRIER_1 for purpose/pairing */
9de5ab8a
MS
374 smp_store_release(&sma->use_global_lock, 0);
375 } else {
17d056e0
MS
376 WRITE_ONCE(sma->use_global_lock,
377 sma->use_global_lock-1);
9de5ab8a 378 }
5e9d5275
MS
379}
380
5864a2fd 381#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
382/*
383 * If the request contains only one semaphore operation, and there are
384 * no complex transactions pending, lock only the semaphore involved.
385 * Otherwise, lock the entire semaphore array, since we either have
386 * multiple semaphores in our own semops, or we need to look at
387 * semaphores from other pending complex operations.
6062a8dc
RR
388 */
389static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
390 int nsops)
391{
5e9d5275 392 struct sem *sem;
ec67aaa4 393 int idx;
6062a8dc 394
5e9d5275
MS
395 if (nsops != 1) {
396 /* Complex operation - acquire a full lock */
397 ipc_lock_object(&sma->sem_perm);
6062a8dc 398
5864a2fd
MS
399 /* Prevent parallel simple ops */
400 complexmode_enter(sma);
401 return SEM_GLOBAL_LOCK;
5e9d5275
MS
402 }
403
404 /*
405 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
406 * Optimized locking is possible if no complex operation
407 * is either enqueued or processed right now.
408 *
9de5ab8a 409 * Both facts are tracked by use_global_mode.
5e9d5275 410 */
ec67aaa4
DB
411 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
412 sem = &sma->sems[idx];
6062a8dc 413
5864a2fd 414 /*
9de5ab8a 415 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
416 * no locking, no memory barrier.
417 */
17d056e0 418 if (!READ_ONCE(sma->use_global_lock)) {
6062a8dc 419 /*
5e9d5275
MS
420 * It appears that no complex operation is around.
421 * Acquire the per-semaphore lock.
6062a8dc 422 */
5e9d5275
MS
423 spin_lock(&sem->lock);
424
8116b54e 425 /* see SEM_BARRIER_1 for purpose/pairing */
9de5ab8a 426 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
427 /* fast path successful! */
428 return sops->sem_num;
6062a8dc 429 }
5e9d5275
MS
430 spin_unlock(&sem->lock);
431 }
432
433 /* slow path: acquire the full lock */
434 ipc_lock_object(&sma->sem_perm);
6062a8dc 435
9de5ab8a
MS
436 if (sma->use_global_lock == 0) {
437 /*
438 * The use_global_lock mode ended while we waited for
439 * sma->sem_perm.lock. Thus we must switch to locking
440 * with sem->lock.
441 * Unlike in the fast path, there is no need to recheck
442 * sma->use_global_lock after we have acquired sem->lock:
443 * We own sma->sem_perm.lock, thus use_global_lock cannot
444 * change.
5e9d5275
MS
445 */
446 spin_lock(&sem->lock);
9de5ab8a 447
5e9d5275
MS
448 ipc_unlock_object(&sma->sem_perm);
449 return sops->sem_num;
6062a8dc 450 } else {
9de5ab8a
MS
451 /*
452 * Not a false alarm, thus continue to use the global lock
453 * mode. No need for complexmode_enter(), this was done by
454 * the caller that has set use_global_mode to non-zero.
6062a8dc 455 */
5864a2fd 456 return SEM_GLOBAL_LOCK;
6062a8dc 457 }
6062a8dc
RR
458}
459
460static inline void sem_unlock(struct sem_array *sma, int locknum)
461{
5864a2fd 462 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 463 unmerge_queues(sma);
5864a2fd 464 complexmode_tryleave(sma);
cf9d5d78 465 ipc_unlock_object(&sma->sem_perm);
6062a8dc 466 } else {
1a233956 467 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
468 spin_unlock(&sem->lock);
469 }
6062a8dc
RR
470}
471
3e148c79 472/*
d9a605e4 473 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 474 * is not held.
321310ce
LT
475 *
476 * The caller holds the RCU read lock.
3e148c79 477 */
16df3674
DB
478static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
479{
55b7ae50 480 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
481
482 if (IS_ERR(ipcp))
483 return ERR_CAST(ipcp);
484
485 return container_of(ipcp, struct sem_array, sem_perm);
486}
487
16df3674
DB
488static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
489 int id)
490{
491 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
492
493 if (IS_ERR(ipcp))
494 return ERR_CAST(ipcp);
b1ed88b4 495
03f02c76 496 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
497}
498
6ff37972
PP
499static inline void sem_lock_and_putref(struct sem_array *sma)
500{
6062a8dc 501 sem_lock(sma, NULL, -1);
dba4cdd3 502 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
503}
504
7ca7e564
ND
505static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
506{
507 ipc_rmid(&sem_ids(ns), &s->sem_perm);
508}
509
101ede01
KC
510static struct sem_array *sem_alloc(size_t nsems)
511{
512 struct sem_array *sma;
101ede01
KC
513
514 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
515 return NULL;
516
18319498 517 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
101ede01
KC
518 if (unlikely(!sma))
519 return NULL;
520
101ede01
KC
521 return sma;
522}
523
f4566f04
ND
524/**
525 * newary - Create a new semaphore set
526 * @ns: namespace
527 * @params: ptr to the structure that contains key, semflg and nsems
528 *
d9a605e4 529 * Called with sem_ids.rwsem held (as a writer)
f4566f04 530 */
7748dbfa 531static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 532{
1da177e4
LT
533 int retval;
534 struct sem_array *sma;
7748dbfa
ND
535 key_t key = params->key;
536 int nsems = params->u.nsems;
537 int semflg = params->flg;
b97e820f 538 int i;
1da177e4
LT
539
540 if (!nsems)
541 return -EINVAL;
e3893534 542 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
543 return -ENOSPC;
544
101ede01 545 sma = sem_alloc(nsems);
3ab08fe2 546 if (!sma)
1da177e4 547 return -ENOMEM;
3ab08fe2 548
1da177e4
LT
549 sma->sem_perm.mode = (semflg & S_IRWXUGO);
550 sma->sem_perm.key = key;
551
552 sma->sem_perm.security = NULL;
aefad959 553 retval = security_sem_alloc(&sma->sem_perm);
1da177e4 554 if (retval) {
e2029dfe 555 kvfree(sma);
1da177e4
LT
556 return retval;
557 }
558
6062a8dc 559 for (i = 0; i < nsems; i++) {
1a233956
MS
560 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
561 INIT_LIST_HEAD(&sma->sems[i].pending_const);
562 spin_lock_init(&sma->sems[i].lock);
6062a8dc 563 }
b97e820f
MS
564
565 sma->complex_count = 0;
9de5ab8a 566 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
567 INIT_LIST_HEAD(&sma->pending_alter);
568 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 569 INIT_LIST_HEAD(&sma->list_id);
1da177e4 570 sma->sem_nsems = nsems;
e54d02b2 571 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 572
39c96a1b 573 /* ipc_addid() locks sma upon success. */
2ec55f80
MS
574 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
575 if (retval < 0) {
39cfffd7 576 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
2ec55f80 577 return retval;
e8577d1f
MS
578 }
579 ns->used_sems += nsems;
580
6062a8dc 581 sem_unlock(sma, -1);
6d49dab8 582 rcu_read_unlock();
1da177e4 583
7ca7e564 584 return sma->sem_perm.id;
1da177e4
LT
585}
586
7748dbfa 587
f4566f04 588/*
d9a605e4 589 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 590 */
00898e85 591static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
7748dbfa 592{
03f02c76
ND
593 struct sem_array *sma;
594
595 sma = container_of(ipcp, struct sem_array, sem_perm);
596 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
597 return -EINVAL;
598
599 return 0;
600}
601
69894718 602long ksys_semget(key_t key, int nsems, int semflg)
1da177e4 603{
e3893534 604 struct ipc_namespace *ns;
eb66ec44
MK
605 static const struct ipc_ops sem_ops = {
606 .getnew = newary,
50ab44b1 607 .associate = security_sem_associate,
eb66ec44
MK
608 .more_checks = sem_more_checks,
609 };
7748dbfa 610 struct ipc_params sem_params;
e3893534
KK
611
612 ns = current->nsproxy->ipc_ns;
1da177e4 613
e3893534 614 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 615 return -EINVAL;
7ca7e564 616
7748dbfa
ND
617 sem_params.key = key;
618 sem_params.flg = semflg;
619 sem_params.u.nsems = nsems;
1da177e4 620
7748dbfa 621 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
622}
623
69894718
DB
624SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
625{
626 return ksys_semget(key, nsems, semflg);
627}
628
78f5009c 629/**
4ce33ec2
DB
630 * perform_atomic_semop[_slow] - Attempt to perform semaphore
631 * operations on a given array.
758a6ba3 632 * @sma: semaphore array
d198cd6d 633 * @q: struct sem_queue that describes the operation
758a6ba3 634 *
4ce33ec2
DB
635 * Caller blocking are as follows, based the value
636 * indicated by the semaphore operation (sem_op):
637 *
638 * (1) >0 never blocks.
639 * (2) 0 (wait-for-zero operation): semval is non-zero.
640 * (3) <0 attempting to decrement semval to a value smaller than zero.
641 *
758a6ba3
MS
642 * Returns 0 if the operation was possible.
643 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 644 * Returns <0 for error codes.
1da177e4 645 */
4ce33ec2 646static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 647{
51d6f263
EB
648 int result, sem_op, nsops;
649 struct pid *pid;
1da177e4 650 struct sembuf *sop;
239521f3 651 struct sem *curr;
d198cd6d
MS
652 struct sembuf *sops;
653 struct sem_undo *un;
654
655 sops = q->sops;
656 nsops = q->nsops;
657 un = q->undo;
1da177e4
LT
658
659 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
660 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
661 curr = &sma->sems[idx];
1da177e4
LT
662 sem_op = sop->sem_op;
663 result = curr->semval;
78f5009c 664
1da177e4
LT
665 if (!sem_op && result)
666 goto would_block;
667
668 result += sem_op;
669 if (result < 0)
670 goto would_block;
671 if (result > SEMVMX)
672 goto out_of_range;
78f5009c 673
1da177e4
LT
674 if (sop->sem_flg & SEM_UNDO) {
675 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 676 /* Exceeding the undo range is an error. */
1da177e4
LT
677 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
678 goto out_of_range;
78f5009c 679 un->semadj[sop->sem_num] = undo;
1da177e4 680 }
78f5009c 681
1da177e4
LT
682 curr->semval = result;
683 }
684
685 sop--;
d198cd6d 686 pid = q->pid;
1da177e4 687 while (sop >= sops) {
51d6f263 688 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
1da177e4
LT
689 sop--;
690 }
78f5009c 691
1da177e4
LT
692 return 0;
693
694out_of_range:
695 result = -ERANGE;
696 goto undo;
697
698would_block:
ed247b7c
MS
699 q->blocking = sop;
700
1da177e4
LT
701 if (sop->sem_flg & IPC_NOWAIT)
702 result = -EAGAIN;
703 else
704 result = 1;
705
706undo:
707 sop--;
708 while (sop >= sops) {
78f5009c 709 sem_op = sop->sem_op;
1a233956 710 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
711 if (sop->sem_flg & SEM_UNDO)
712 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
713 sop--;
714 }
715
716 return result;
717}
718
4ce33ec2
DB
719static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
720{
721 int result, sem_op, nsops;
722 struct sembuf *sop;
723 struct sem *curr;
724 struct sembuf *sops;
725 struct sem_undo *un;
726
727 sops = q->sops;
728 nsops = q->nsops;
729 un = q->undo;
730
731 if (unlikely(q->dupsop))
732 return perform_atomic_semop_slow(sma, q);
733
734 /*
735 * We scan the semaphore set twice, first to ensure that the entire
736 * operation can succeed, therefore avoiding any pointless writes
737 * to shared memory and having to undo such changes in order to block
738 * until the operations can go through.
739 */
740 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
741 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
742
743 curr = &sma->sems[idx];
4ce33ec2
DB
744 sem_op = sop->sem_op;
745 result = curr->semval;
746
747 if (!sem_op && result)
748 goto would_block; /* wait-for-zero */
749
750 result += sem_op;
751 if (result < 0)
752 goto would_block;
753
754 if (result > SEMVMX)
755 return -ERANGE;
756
757 if (sop->sem_flg & SEM_UNDO) {
758 int undo = un->semadj[sop->sem_num] - sem_op;
759
760 /* Exceeding the undo range is an error. */
761 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
762 return -ERANGE;
763 }
764 }
765
766 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 767 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
768 sem_op = sop->sem_op;
769 result = curr->semval;
770
771 if (sop->sem_flg & SEM_UNDO) {
772 int undo = un->semadj[sop->sem_num] - sem_op;
773
774 un->semadj[sop->sem_num] = undo;
775 }
776 curr->semval += sem_op;
51d6f263 777 ipc_update_pid(&curr->sempid, q->pid);
4ce33ec2
DB
778 }
779
780 return 0;
781
782would_block:
783 q->blocking = sop;
784 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
785}
786
9ae949fa
DB
787static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
788 struct wake_q_head *wake_q)
0a2b9d4c 789{
a11ddb37
VG
790 struct task_struct *sleeper;
791
792 sleeper = get_task_struct(q->sleeper);
8116b54e 793
7497835f 794 /* see SEM_BARRIER_2 for purpose/pairing */
8116b54e
MS
795 smp_store_release(&q->status, error);
796
a11ddb37 797 wake_q_add_safe(wake_q, sleeper);
d4212093
NP
798}
799
b97e820f
MS
800static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
801{
802 list_del(&q->list);
9f1bc2c9 803 if (q->nsops > 1)
b97e820f
MS
804 sma->complex_count--;
805}
806
fd5db422
MS
807/** check_restart(sma, q)
808 * @sma: semaphore array
809 * @q: the operation that just completed
810 *
811 * update_queue is O(N^2) when it restarts scanning the whole queue of
812 * waiting operations. Therefore this function checks if the restart is
813 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
814 * modified the array.
815 * Note that wait-for-zero operations are handled without restart.
fd5db422 816 */
4663d3e8 817static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 818{
1a82e9e1
MS
819 /* pending complex alter operations are too difficult to analyse */
820 if (!list_empty(&sma->pending_alter))
fd5db422
MS
821 return 1;
822
823 /* we were a sleeping complex operation. Too difficult */
824 if (q->nsops > 1)
825 return 1;
826
1a82e9e1
MS
827 /* It is impossible that someone waits for the new value:
828 * - complex operations always restart.
b1989a3d 829 * - wait-for-zero are handled separately.
1a82e9e1
MS
830 * - q is a previously sleeping simple operation that
831 * altered the array. It must be a decrement, because
832 * simple increments never sleep.
833 * - If there are older (higher priority) decrements
834 * in the queue, then they have observed the original
835 * semval value and couldn't proceed. The operation
836 * decremented to value - thus they won't proceed either.
837 */
838 return 0;
839}
fd5db422 840
1a82e9e1 841/**
8001c858 842 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
843 * @sma: semaphore array.
844 * @semnum: semaphore that was modified.
9ae949fa 845 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
846 *
847 * wake_const_ops must be called after a semaphore in a semaphore array
848 * was set to 0. If complex const operations are pending, wake_const_ops must
849 * be called with semnum = -1, as well as with the number of each modified
850 * semaphore.
9ae949fa 851 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
852 * is stored in q->pid.
853 * The function returns 1 if at least one operation was completed successfully.
854 */
855static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 856 struct wake_q_head *wake_q)
1a82e9e1 857{
f150f02c 858 struct sem_queue *q, *tmp;
1a82e9e1
MS
859 struct list_head *pending_list;
860 int semop_completed = 0;
861
862 if (semnum == -1)
863 pending_list = &sma->pending_const;
864 else
1a233956 865 pending_list = &sma->sems[semnum].pending_const;
fd5db422 866
f150f02c
DB
867 list_for_each_entry_safe(q, tmp, pending_list, list) {
868 int error = perform_atomic_semop(sma, q);
1a82e9e1 869
f150f02c
DB
870 if (error > 0)
871 continue;
872 /* operation completed, remove from queue & wakeup */
873 unlink_queue(sma, q);
1a82e9e1 874
f150f02c
DB
875 wake_up_sem_queue_prepare(q, error, wake_q);
876 if (error == 0)
877 semop_completed = 1;
1a82e9e1 878 }
f150f02c 879
1a82e9e1
MS
880 return semop_completed;
881}
882
883/**
8001c858 884 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
885 * @sma: semaphore array
886 * @sops: operations that were performed
887 * @nsops: number of operations
9ae949fa 888 * @wake_q: lockless wake-queue head
1a82e9e1 889 *
8001c858
DB
890 * Checks all required queue for wait-for-zero operations, based
891 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
892 * The function returns 1 if at least one operation was completed successfully.
893 */
894static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 895 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
896{
897 int i;
898 int semop_completed = 0;
899 int got_zero = 0;
900
901 /* first: the per-semaphore queues, if known */
902 if (sops) {
903 for (i = 0; i < nsops; i++) {
904 int num = sops[i].sem_num;
905
1a233956 906 if (sma->sems[num].semval == 0) {
1a82e9e1 907 got_zero = 1;
9ae949fa 908 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
909 }
910 }
911 } else {
912 /*
913 * No sops means modified semaphores not known.
914 * Assume all were changed.
fd5db422 915 */
1a82e9e1 916 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 917 if (sma->sems[i].semval == 0) {
1a82e9e1 918 got_zero = 1;
9ae949fa 919 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
920 }
921 }
fd5db422
MS
922 }
923 /*
1a82e9e1
MS
924 * If one of the modified semaphores got 0,
925 * then check the global queue, too.
fd5db422 926 */
1a82e9e1 927 if (got_zero)
9ae949fa 928 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 929
1a82e9e1 930 return semop_completed;
fd5db422
MS
931}
932
636c6be8
MS
933
934/**
8001c858 935 * update_queue - look for tasks that can be completed.
636c6be8
MS
936 * @sma: semaphore array.
937 * @semnum: semaphore that was modified.
9ae949fa 938 * @wake_q: lockless wake-queue head.
636c6be8
MS
939 *
940 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
941 * was modified. If multiple semaphores were modified, update_queue must
942 * be called with semnum = -1, as well as with the number of each modified
943 * semaphore.
9ae949fa 944 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 945 * is stored in q->pid.
1a82e9e1
MS
946 * The function internally checks if const operations can now succeed.
947 *
0a2b9d4c 948 * The function return 1 if at least one semop was completed successfully.
1da177e4 949 */
9ae949fa 950static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 951{
f150f02c 952 struct sem_queue *q, *tmp;
636c6be8 953 struct list_head *pending_list;
0a2b9d4c 954 int semop_completed = 0;
636c6be8 955
9f1bc2c9 956 if (semnum == -1)
1a82e9e1 957 pending_list = &sma->pending_alter;
9f1bc2c9 958 else
1a233956 959 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
960
961again:
f150f02c 962 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 963 int error, restart;
636c6be8 964
d987f8b2
MS
965 /* If we are scanning the single sop, per-semaphore list of
966 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 967 * necessary to scan further: simple increments
d987f8b2
MS
968 * that affect only one entry succeed immediately and cannot
969 * be in the per semaphore pending queue, and decrements
970 * cannot be successful if the value is already 0.
971 */
1a233956 972 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
973 break;
974
d198cd6d 975 error = perform_atomic_semop(sma, q);
1da177e4
LT
976
977 /* Does q->sleeper still need to sleep? */
9cad200c
NP
978 if (error > 0)
979 continue;
980
b97e820f 981 unlink_queue(sma, q);
9cad200c 982
0a2b9d4c 983 if (error) {
fd5db422 984 restart = 0;
0a2b9d4c
MS
985 } else {
986 semop_completed = 1;
9ae949fa 987 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 988 restart = check_restart(sma, q);
0a2b9d4c 989 }
fd5db422 990
9ae949fa 991 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 992 if (restart)
9cad200c 993 goto again;
1da177e4 994 }
0a2b9d4c 995 return semop_completed;
1da177e4
LT
996}
997
0e8c6656 998/**
8001c858 999 * set_semotime - set sem_otime
0e8c6656
MS
1000 * @sma: semaphore array
1001 * @sops: operations that modified the array, may be NULL
1002 *
1003 * sem_otime is replicated to avoid cache line trashing.
1004 * This function sets one instance to the current time.
1005 */
1006static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1007{
1008 if (sops == NULL) {
2a70b787 1009 sma->sems[0].sem_otime = ktime_get_real_seconds();
0e8c6656 1010 } else {
1a233956 1011 sma->sems[sops[0].sem_num].sem_otime =
2a70b787 1012 ktime_get_real_seconds();
0e8c6656
MS
1013 }
1014}
1015
0a2b9d4c 1016/**
8001c858 1017 * do_smart_update - optimized update_queue
fd5db422
MS
1018 * @sma: semaphore array
1019 * @sops: operations that were performed
1020 * @nsops: number of operations
0a2b9d4c 1021 * @otime: force setting otime
9ae949fa 1022 * @wake_q: lockless wake-queue head
fd5db422 1023 *
1a82e9e1
MS
1024 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1025 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 1026 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 1027 * responsible for calling wake_up_q().
0a2b9d4c 1028 * It is safe to perform this call after dropping all locks.
fd5db422 1029 */
0a2b9d4c 1030static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 1031 int otime, struct wake_q_head *wake_q)
fd5db422
MS
1032{
1033 int i;
1034
9ae949fa 1035 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 1036
f269f40a
MS
1037 if (!list_empty(&sma->pending_alter)) {
1038 /* semaphore array uses the global queue - just process it. */
9ae949fa 1039 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
1040 } else {
1041 if (!sops) {
1042 /*
1043 * No sops, thus the modified semaphores are not
1044 * known. Check all.
1045 */
1046 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1047 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1048 } else {
1049 /*
1050 * Check the semaphores that were increased:
1051 * - No complex ops, thus all sleeping ops are
1052 * decrease.
1053 * - if we decreased the value, then any sleeping
b1989a3d 1054 * semaphore ops won't be able to run: If the
f269f40a
MS
1055 * previous value was too small, then the new
1056 * value will be too small, too.
1057 */
1058 for (i = 0; i < nsops; i++) {
1059 if (sops[i].sem_op > 0) {
1060 otime |= update_queue(sma,
9ae949fa 1061 sops[i].sem_num, wake_q);
f269f40a 1062 }
ab465df9 1063 }
9f1bc2c9 1064 }
fd5db422 1065 }
0e8c6656
MS
1066 if (otime)
1067 set_semotime(sma, sops);
fd5db422
MS
1068}
1069
2f2ed41d 1070/*
b220c57a 1071 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1072 */
1073static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1074 bool count_zero)
1075{
b220c57a 1076 struct sembuf *sop = q->blocking;
2f2ed41d 1077
9b44ee2e
MS
1078 /*
1079 * Linux always (since 0.99.10) reported a task as sleeping on all
1080 * semaphores. This violates SUS, therefore it was changed to the
1081 * standard compliant behavior.
1082 * Give the administrators a chance to notice that an application
1083 * might misbehave because it relies on the Linux behavior.
1084 */
1085 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1086 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1087 current->comm, task_pid_nr(current));
1088
b220c57a
MS
1089 if (sop->sem_num != semnum)
1090 return 0;
2f2ed41d 1091
b220c57a
MS
1092 if (count_zero && sop->sem_op == 0)
1093 return 1;
1094 if (!count_zero && sop->sem_op < 0)
1095 return 1;
1096
1097 return 0;
2f2ed41d
MS
1098}
1099
1da177e4
LT
1100/* The following counts are associated to each semaphore:
1101 * semncnt number of tasks waiting on semval being nonzero
1102 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1103 *
1104 * Per definition, a task waits only on the semaphore of the first semop
1105 * that cannot proceed, even if additional operation would block, too.
1da177e4 1106 */
2f2ed41d
MS
1107static int count_semcnt(struct sem_array *sma, ushort semnum,
1108 bool count_zero)
1da177e4 1109{
2f2ed41d 1110 struct list_head *l;
239521f3 1111 struct sem_queue *q;
2f2ed41d 1112 int semcnt;
1da177e4 1113
2f2ed41d
MS
1114 semcnt = 0;
1115 /* First: check the simple operations. They are easy to evaluate */
1116 if (count_zero)
1a233956 1117 l = &sma->sems[semnum].pending_const;
2f2ed41d 1118 else
1a233956 1119 l = &sma->sems[semnum].pending_alter;
1da177e4 1120
2f2ed41d
MS
1121 list_for_each_entry(q, l, list) {
1122 /* all task on a per-semaphore list sleep on exactly
1123 * that semaphore
1124 */
1125 semcnt++;
ebc2e5e6
RR
1126 }
1127
2f2ed41d 1128 /* Then: check the complex operations. */
1994862d 1129 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1130 semcnt += check_qop(sma, semnum, q, count_zero);
1131 }
1132 if (count_zero) {
1133 list_for_each_entry(q, &sma->pending_const, list) {
1134 semcnt += check_qop(sma, semnum, q, count_zero);
1135 }
1994862d 1136 }
2f2ed41d 1137 return semcnt;
1da177e4
LT
1138}
1139
d9a605e4
DB
1140/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1141 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1142 * remains locked on exit.
1da177e4 1143 */
01b8b07a 1144static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1145{
380af1b3
MS
1146 struct sem_undo *un, *tu;
1147 struct sem_queue *q, *tq;
01b8b07a 1148 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1149 int i;
9ae949fa 1150 DEFINE_WAKE_Q(wake_q);
1da177e4 1151
380af1b3 1152 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1153 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1154 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1155 list_del(&un->list_id);
1156 spin_lock(&un->ulp->lock);
1da177e4 1157 un->semid = -1;
380af1b3
MS
1158 list_del_rcu(&un->list_proc);
1159 spin_unlock(&un->ulp->lock);
fc37a3b8 1160 kvfree_rcu(un, rcu);
380af1b3 1161 }
1da177e4
LT
1162
1163 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1164 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1165 unlink_queue(sma, q);
9ae949fa 1166 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1167 }
1168
1169 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1170 unlink_queue(sma, q);
9ae949fa 1171 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1172 }
9f1bc2c9 1173 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1174 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1175 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1176 unlink_queue(sma, q);
9ae949fa 1177 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1178 }
1179 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1180 unlink_queue(sma, q);
9ae949fa 1181 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9 1182 }
51d6f263 1183 ipc_update_pid(&sem->sempid, NULL);
9f1bc2c9 1184 }
1da177e4 1185
7ca7e564
ND
1186 /* Remove the semaphore set from the IDR */
1187 sem_rmid(ns, sma);
6062a8dc 1188 sem_unlock(sma, -1);
6d49dab8 1189 rcu_read_unlock();
1da177e4 1190
9ae949fa 1191 wake_up_q(&wake_q);
e3893534 1192 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1193 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1194}
1195
1196static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1197{
239521f3 1198 switch (version) {
1da177e4
LT
1199 case IPC_64:
1200 return copy_to_user(buf, in, sizeof(*in));
1201 case IPC_OLD:
1202 {
1203 struct semid_ds out;
1204
982f7c2b
DR
1205 memset(&out, 0, sizeof(out));
1206
1da177e4
LT
1207 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1208
1209 out.sem_otime = in->sem_otime;
1210 out.sem_ctime = in->sem_ctime;
1211 out.sem_nsems = in->sem_nsems;
1212
1213 return copy_to_user(buf, &out, sizeof(out));
1214 }
1215 default:
1216 return -EINVAL;
1217 }
1218}
1219
e54d02b2 1220static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1221{
1222 int i;
e54d02b2 1223 time64_t res;
d12e1e50 1224
1a233956 1225 res = sma->sems[0].sem_otime;
d12e1e50 1226 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1227 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1228
1229 if (to > res)
1230 res = to;
1231 }
1232 return res;
1233}
1234
45a4a64a
AV
1235static int semctl_stat(struct ipc_namespace *ns, int semid,
1236 int cmd, struct semid64_ds *semid64)
1da177e4 1237{
1da177e4 1238 struct sem_array *sma;
c2ab975c 1239 time64_t semotime;
45a4a64a 1240 int err;
1da177e4 1241
45a4a64a 1242 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1243
45a4a64a 1244 rcu_read_lock();
a280d6dc 1245 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
45a4a64a
AV
1246 sma = sem_obtain_object(ns, semid);
1247 if (IS_ERR(sma)) {
1248 err = PTR_ERR(sma);
1249 goto out_unlock;
1250 }
a280d6dc 1251 } else { /* IPC_STAT */
45a4a64a
AV
1252 sma = sem_obtain_object_check(ns, semid);
1253 if (IS_ERR(sma)) {
1254 err = PTR_ERR(sma);
1255 goto out_unlock;
1da177e4 1256 }
1da177e4 1257 }
1da177e4 1258
a280d6dc
DB
1259 /* see comment for SHM_STAT_ANY */
1260 if (cmd == SEM_STAT_ANY)
1261 audit_ipc_obj(&sma->sem_perm);
1262 else {
1263 err = -EACCES;
1264 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1265 goto out_unlock;
1266 }
1da177e4 1267
aefad959 1268 err = security_sem_semctl(&sma->sem_perm, cmd);
45a4a64a
AV
1269 if (err)
1270 goto out_unlock;
1da177e4 1271
87ad4b0d
PM
1272 ipc_lock_object(&sma->sem_perm);
1273
1274 if (!ipc_valid_object(&sma->sem_perm)) {
1275 ipc_unlock_object(&sma->sem_perm);
1276 err = -EIDRM;
1277 goto out_unlock;
1278 }
1279
45a4a64a 1280 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
c2ab975c
AB
1281 semotime = get_semotime(sma);
1282 semid64->sem_otime = semotime;
45a4a64a 1283 semid64->sem_ctime = sma->sem_ctime;
c2ab975c
AB
1284#ifndef CONFIG_64BIT
1285 semid64->sem_otime_high = semotime >> 32;
1286 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1287#endif
45a4a64a 1288 semid64->sem_nsems = sma->sem_nsems;
87ad4b0d 1289
615c999c
MS
1290 if (cmd == IPC_STAT) {
1291 /*
1292 * As defined in SUS:
1293 * Return 0 on success
1294 */
1295 err = 0;
1296 } else {
1297 /*
1298 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1299 * Return the full id, including the sequence number
1300 */
1301 err = sma->sem_perm.id;
1302 }
87ad4b0d 1303 ipc_unlock_object(&sma->sem_perm);
1da177e4 1304out_unlock:
16df3674 1305 rcu_read_unlock();
1da177e4
LT
1306 return err;
1307}
1308
45a4a64a
AV
1309static int semctl_info(struct ipc_namespace *ns, int semid,
1310 int cmd, void __user *p)
1311{
1312 struct seminfo seminfo;
27c331a1 1313 int max_idx;
45a4a64a
AV
1314 int err;
1315
1316 err = security_sem_semctl(NULL, cmd);
1317 if (err)
1318 return err;
1319
1320 memset(&seminfo, 0, sizeof(seminfo));
1321 seminfo.semmni = ns->sc_semmni;
1322 seminfo.semmns = ns->sc_semmns;
1323 seminfo.semmsl = ns->sc_semmsl;
1324 seminfo.semopm = ns->sc_semopm;
1325 seminfo.semvmx = SEMVMX;
1326 seminfo.semmnu = SEMMNU;
1327 seminfo.semmap = SEMMAP;
1328 seminfo.semume = SEMUME;
1329 down_read(&sem_ids(ns).rwsem);
1330 if (cmd == SEM_INFO) {
1331 seminfo.semusz = sem_ids(ns).in_use;
1332 seminfo.semaem = ns->used_sems;
1333 } else {
1334 seminfo.semusz = SEMUSZ;
1335 seminfo.semaem = SEMAEM;
1336 }
27c331a1 1337 max_idx = ipc_get_maxidx(&sem_ids(ns));
45a4a64a
AV
1338 up_read(&sem_ids(ns).rwsem);
1339 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1340 return -EFAULT;
27c331a1 1341 return (max_idx < 0) ? 0 : max_idx;
45a4a64a
AV
1342}
1343
e1fd1f49 1344static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1345 int val)
e1fd1f49
AV
1346{
1347 struct sem_undo *un;
1348 struct sem_array *sma;
239521f3 1349 struct sem *curr;
45a4a64a 1350 int err;
9ae949fa
DB
1351 DEFINE_WAKE_Q(wake_q);
1352
6062a8dc
RR
1353 if (val > SEMVMX || val < 0)
1354 return -ERANGE;
e1fd1f49 1355
6062a8dc
RR
1356 rcu_read_lock();
1357 sma = sem_obtain_object_check(ns, semid);
1358 if (IS_ERR(sma)) {
1359 rcu_read_unlock();
1360 return PTR_ERR(sma);
1361 }
1362
1363 if (semnum < 0 || semnum >= sma->sem_nsems) {
1364 rcu_read_unlock();
1365 return -EINVAL;
1366 }
1367
1368
1369 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1370 rcu_read_unlock();
1371 return -EACCES;
1372 }
e1fd1f49 1373
aefad959 1374 err = security_sem_semctl(&sma->sem_perm, SETVAL);
6062a8dc
RR
1375 if (err) {
1376 rcu_read_unlock();
1377 return -EACCES;
1378 }
e1fd1f49 1379
6062a8dc 1380 sem_lock(sma, NULL, -1);
e1fd1f49 1381
0f3d2b01 1382 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1383 sem_unlock(sma, -1);
1384 rcu_read_unlock();
1385 return -EIDRM;
1386 }
1387
ec67aaa4 1388 semnum = array_index_nospec(semnum, sma->sem_nsems);
1a233956 1389 curr = &sma->sems[semnum];
e1fd1f49 1390
cf9d5d78 1391 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1392 list_for_each_entry(un, &sma->list_id, list_id)
1393 un->semadj[semnum] = 0;
1394
1395 curr->semval = val;
51d6f263 1396 ipc_update_pid(&curr->sempid, task_tgid(current));
e54d02b2 1397 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1398 /* maybe some queued-up processes were waiting for this */
9ae949fa 1399 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1400 sem_unlock(sma, -1);
6d49dab8 1401 rcu_read_unlock();
9ae949fa 1402 wake_up_q(&wake_q);
6062a8dc 1403 return 0;
e1fd1f49
AV
1404}
1405
e3893534 1406static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1407 int cmd, void __user *p)
1da177e4
LT
1408{
1409 struct sem_array *sma;
239521f3 1410 struct sem *curr;
16df3674 1411 int err, nsems;
1da177e4 1412 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1413 ushort *sem_io = fast_sem_io;
9ae949fa 1414 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1415
1416 rcu_read_lock();
1417 sma = sem_obtain_object_check(ns, semid);
1418 if (IS_ERR(sma)) {
1419 rcu_read_unlock();
023a5355 1420 return PTR_ERR(sma);
16df3674 1421 }
1da177e4
LT
1422
1423 nsems = sma->sem_nsems;
1424
1da177e4 1425 err = -EACCES;
c728b9c8
LT
1426 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1427 goto out_rcu_wakeup;
1da177e4 1428
aefad959 1429 err = security_sem_semctl(&sma->sem_perm, cmd);
c728b9c8
LT
1430 if (err)
1431 goto out_rcu_wakeup;
1da177e4
LT
1432
1433 err = -EACCES;
1434 switch (cmd) {
1435 case GETALL:
1436 {
e1fd1f49 1437 ushort __user *array = p;
1da177e4
LT
1438 int i;
1439
ce857229 1440 sem_lock(sma, NULL, -1);
0f3d2b01 1441 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1442 err = -EIDRM;
1443 goto out_unlock;
1444 }
239521f3 1445 if (nsems > SEMMSL_FAST) {
dba4cdd3 1446 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1447 err = -EIDRM;
6e224f94 1448 goto out_unlock;
ce857229
AV
1449 }
1450 sem_unlock(sma, -1);
6d49dab8 1451 rcu_read_unlock();
f8dbe8d2
KC
1452 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1453 GFP_KERNEL);
239521f3 1454 if (sem_io == NULL) {
dba4cdd3 1455 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1456 return -ENOMEM;
1457 }
1458
4091fd94 1459 rcu_read_lock();
6ff37972 1460 sem_lock_and_putref(sma);
0f3d2b01 1461 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1462 err = -EIDRM;
6e224f94 1463 goto out_unlock;
1da177e4 1464 }
ce857229 1465 }
1da177e4 1466 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1467 sem_io[i] = sma->sems[i].semval;
6062a8dc 1468 sem_unlock(sma, -1);
6d49dab8 1469 rcu_read_unlock();
1da177e4 1470 err = 0;
239521f3 1471 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1472 err = -EFAULT;
1473 goto out_free;
1474 }
1475 case SETALL:
1476 {
1477 int i;
1478 struct sem_undo *un;
1479
dba4cdd3 1480 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1481 err = -EIDRM;
1482 goto out_rcu_wakeup;
6062a8dc 1483 }
16df3674 1484 rcu_read_unlock();
1da177e4 1485
239521f3 1486 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1487 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1488 GFP_KERNEL);
239521f3 1489 if (sem_io == NULL) {
dba4cdd3 1490 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1491 return -ENOMEM;
1492 }
1493 }
1494
239521f3 1495 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1496 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1497 err = -EFAULT;
1498 goto out_free;
1499 }
1500
1501 for (i = 0; i < nsems; i++) {
1502 if (sem_io[i] > SEMVMX) {
dba4cdd3 1503 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1504 err = -ERANGE;
1505 goto out_free;
1506 }
1507 }
4091fd94 1508 rcu_read_lock();
6ff37972 1509 sem_lock_and_putref(sma);
0f3d2b01 1510 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1511 err = -EIDRM;
6e224f94 1512 goto out_unlock;
1da177e4
LT
1513 }
1514
a5f4db87 1515 for (i = 0; i < nsems; i++) {
1a233956 1516 sma->sems[i].semval = sem_io[i];
51d6f263 1517 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
a5f4db87 1518 }
4daa28f6 1519
cf9d5d78 1520 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1521 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1522 for (i = 0; i < nsems; i++)
1523 un->semadj[i] = 0;
4daa28f6 1524 }
e54d02b2 1525 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1526 /* maybe some queued-up processes were waiting for this */
9ae949fa 1527 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1528 err = 0;
1529 goto out_unlock;
1530 }
e1fd1f49 1531 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1532 }
1533 err = -EINVAL;
c728b9c8
LT
1534 if (semnum < 0 || semnum >= nsems)
1535 goto out_rcu_wakeup;
1da177e4 1536
6062a8dc 1537 sem_lock(sma, NULL, -1);
0f3d2b01 1538 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1539 err = -EIDRM;
1540 goto out_unlock;
1541 }
ec67aaa4
DB
1542
1543 semnum = array_index_nospec(semnum, nsems);
1a233956 1544 curr = &sma->sems[semnum];
1da177e4
LT
1545
1546 switch (cmd) {
1547 case GETVAL:
1548 err = curr->semval;
1549 goto out_unlock;
1550 case GETPID:
51d6f263 1551 err = pid_vnr(curr->sempid);
1da177e4
LT
1552 goto out_unlock;
1553 case GETNCNT:
2f2ed41d 1554 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1555 goto out_unlock;
1556 case GETZCNT:
2f2ed41d 1557 err = count_semcnt(sma, semnum, 1);
1da177e4 1558 goto out_unlock;
1da177e4 1559 }
16df3674 1560
1da177e4 1561out_unlock:
6062a8dc 1562 sem_unlock(sma, -1);
c728b9c8 1563out_rcu_wakeup:
6d49dab8 1564 rcu_read_unlock();
9ae949fa 1565 wake_up_q(&wake_q);
1da177e4 1566out_free:
239521f3 1567 if (sem_io != fast_sem_io)
f8dbe8d2 1568 kvfree(sem_io);
1da177e4
LT
1569 return err;
1570}
1571
016d7132
PP
1572static inline unsigned long
1573copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1574{
239521f3 1575 switch (version) {
1da177e4 1576 case IPC_64:
016d7132 1577 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1578 return -EFAULT;
1da177e4 1579 return 0;
1da177e4
LT
1580 case IPC_OLD:
1581 {
1582 struct semid_ds tbuf_old;
1583
239521f3 1584 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1585 return -EFAULT;
1586
016d7132
PP
1587 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1588 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1589 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1590
1591 return 0;
1592 }
1593 default:
1594 return -EINVAL;
1595 }
1596}
1597
522bb2a2 1598/*
d9a605e4 1599 * This function handles some semctl commands which require the rwsem
522bb2a2 1600 * to be held in write mode.
d9a605e4 1601 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1602 */
21a4826a 1603static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1604 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1605{
1606 struct sem_array *sma;
1607 int err;
1da177e4
LT
1608 struct kern_ipc_perm *ipcp;
1609
d9a605e4 1610 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1611 rcu_read_lock();
1612
4241c1a3 1613 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1614 &semid64->sem_perm, 0);
7b4cc5d8
DB
1615 if (IS_ERR(ipcp)) {
1616 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1617 goto out_unlock1;
1618 }
073115d6 1619
a5f75e7f 1620 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 1621
aefad959 1622 err = security_sem_semctl(&sma->sem_perm, cmd);
7b4cc5d8
DB
1623 if (err)
1624 goto out_unlock1;
1da177e4 1625
7b4cc5d8 1626 switch (cmd) {
1da177e4 1627 case IPC_RMID:
6062a8dc 1628 sem_lock(sma, NULL, -1);
7b4cc5d8 1629 /* freeary unlocks the ipc object and rcu */
01b8b07a 1630 freeary(ns, ipcp);
522bb2a2 1631 goto out_up;
1da177e4 1632 case IPC_SET:
6062a8dc 1633 sem_lock(sma, NULL, -1);
45a4a64a 1634 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1635 if (err)
7b4cc5d8 1636 goto out_unlock0;
e54d02b2 1637 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1638 break;
1639 default:
1da177e4 1640 err = -EINVAL;
7b4cc5d8 1641 goto out_unlock1;
1da177e4 1642 }
1da177e4 1643
7b4cc5d8 1644out_unlock0:
6062a8dc 1645 sem_unlock(sma, -1);
7b4cc5d8 1646out_unlock1:
6d49dab8 1647 rcu_read_unlock();
522bb2a2 1648out_up:
d9a605e4 1649 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1650 return err;
1651}
1652
275f2214 1653static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1da177e4 1654{
e3893534 1655 struct ipc_namespace *ns;
e1fd1f49 1656 void __user *p = (void __user *)arg;
45a4a64a
AV
1657 struct semid64_ds semid64;
1658 int err;
1da177e4
LT
1659
1660 if (semid < 0)
1661 return -EINVAL;
1662
e3893534 1663 ns = current->nsproxy->ipc_ns;
1da177e4 1664
239521f3 1665 switch (cmd) {
1da177e4
LT
1666 case IPC_INFO:
1667 case SEM_INFO:
45a4a64a 1668 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1669 case IPC_STAT:
1da177e4 1670 case SEM_STAT:
a280d6dc 1671 case SEM_STAT_ANY:
45a4a64a
AV
1672 err = semctl_stat(ns, semid, cmd, &semid64);
1673 if (err < 0)
1674 return err;
1675 if (copy_semid_to_user(p, &semid64, version))
1676 err = -EFAULT;
1677 return err;
1da177e4
LT
1678 case GETALL:
1679 case GETVAL:
1680 case GETPID:
1681 case GETNCNT:
1682 case GETZCNT:
1da177e4 1683 case SETALL:
e1fd1f49 1684 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1685 case SETVAL: {
1686 int val;
1687#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1688 /* big-endian 64bit */
1689 val = arg >> 32;
1690#else
1691 /* 32bit or little-endian 64bit */
1692 val = arg;
1693#endif
1694 return semctl_setval(ns, semid, semnum, val);
1695 }
1da177e4 1696 case IPC_SET:
45a4a64a
AV
1697 if (copy_semid_from_user(&semid64, p, version))
1698 return -EFAULT;
df561f66 1699 fallthrough;
45a4a64a
AV
1700 case IPC_RMID:
1701 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1702 default:
1703 return -EINVAL;
1704 }
1705}
1706
d969c6fa
DB
1707SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1708{
275f2214 1709 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa
DB
1710}
1711
275f2214
AB
1712#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1713long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1714{
1715 int version = ipc_parse_version(&cmd);
1716
1717 return ksys_semctl(semid, semnum, cmd, arg, version);
1718}
1719
1720SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1721{
1722 return ksys_old_semctl(semid, semnum, cmd, arg);
1723}
1724#endif
1725
c0ebccb6
AV
1726#ifdef CONFIG_COMPAT
1727
1728struct compat_semid_ds {
1729 struct compat_ipc_perm sem_perm;
9afc5eee
AB
1730 old_time32_t sem_otime;
1731 old_time32_t sem_ctime;
c0ebccb6
AV
1732 compat_uptr_t sem_base;
1733 compat_uptr_t sem_pending;
1734 compat_uptr_t sem_pending_last;
1735 compat_uptr_t undo;
1736 unsigned short sem_nsems;
1737};
1738
1739static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1740 int version)
1741{
1742 memset(out, 0, sizeof(*out));
1743 if (version == IPC_64) {
6aa211e8 1744 struct compat_semid64_ds __user *p = buf;
c0ebccb6
AV
1745 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1746 } else {
6aa211e8 1747 struct compat_semid_ds __user *p = buf;
c0ebccb6
AV
1748 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1749 }
1750}
1751
1752static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1753 int version)
1754{
1755 if (version == IPC_64) {
1756 struct compat_semid64_ds v;
1757 memset(&v, 0, sizeof(v));
1758 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
c2ab975c
AB
1759 v.sem_otime = lower_32_bits(in->sem_otime);
1760 v.sem_otime_high = upper_32_bits(in->sem_otime);
1761 v.sem_ctime = lower_32_bits(in->sem_ctime);
1762 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
c0ebccb6
AV
1763 v.sem_nsems = in->sem_nsems;
1764 return copy_to_user(buf, &v, sizeof(v));
1765 } else {
1766 struct compat_semid_ds v;
1767 memset(&v, 0, sizeof(v));
1768 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1769 v.sem_otime = in->sem_otime;
1770 v.sem_ctime = in->sem_ctime;
1771 v.sem_nsems = in->sem_nsems;
1772 return copy_to_user(buf, &v, sizeof(v));
1773 }
1774}
1775
275f2214 1776static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
c0ebccb6
AV
1777{
1778 void __user *p = compat_ptr(arg);
1779 struct ipc_namespace *ns;
1780 struct semid64_ds semid64;
c0ebccb6
AV
1781 int err;
1782
1783 ns = current->nsproxy->ipc_ns;
1784
1785 if (semid < 0)
1786 return -EINVAL;
1787
1788 switch (cmd & (~IPC_64)) {
1789 case IPC_INFO:
1790 case SEM_INFO:
1791 return semctl_info(ns, semid, cmd, p);
1792 case IPC_STAT:
1793 case SEM_STAT:
a280d6dc 1794 case SEM_STAT_ANY:
c0ebccb6
AV
1795 err = semctl_stat(ns, semid, cmd, &semid64);
1796 if (err < 0)
1797 return err;
1798 if (copy_compat_semid_to_user(p, &semid64, version))
1799 err = -EFAULT;
1800 return err;
1801 case GETVAL:
1802 case GETPID:
1803 case GETNCNT:
1804 case GETZCNT:
1805 case GETALL:
1da177e4 1806 case SETALL:
e1fd1f49
AV
1807 return semctl_main(ns, semid, semnum, cmd, p);
1808 case SETVAL:
1809 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1810 case IPC_SET:
c0ebccb6
AV
1811 if (copy_compat_semid_from_user(&semid64, p, version))
1812 return -EFAULT;
df561f66 1813 fallthrough;
c0ebccb6
AV
1814 case IPC_RMID:
1815 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1816 default:
1817 return -EINVAL;
1818 }
1819}
d969c6fa
DB
1820
1821COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1822{
275f2214 1823 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa 1824}
275f2214
AB
1825
1826#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1827long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1828{
1829 int version = compat_ipc_parse_version(&cmd);
1830
1831 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1832}
1833
1834COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1835{
1836 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1837}
1838#endif
c0ebccb6 1839#endif
1da177e4 1840
1da177e4
LT
1841/* If the task doesn't already have a undo_list, then allocate one
1842 * here. We guarantee there is only one thread using this undo list,
1843 * and current is THE ONE
1844 *
1845 * If this allocation and assignment succeeds, but later
1846 * portions of this code fail, there is no need to free the sem_undo_list.
1847 * Just let it stay associated with the task, and it'll be freed later
1848 * at exit time.
1849 *
1850 * This can block, so callers must hold no locks.
1851 */
1852static inline int get_undo_list(struct sem_undo_list **undo_listp)
1853{
1854 struct sem_undo_list *undo_list;
1da177e4
LT
1855
1856 undo_list = current->sysvsem.undo_list;
1857 if (!undo_list) {
18319498 1858 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1da177e4
LT
1859 if (undo_list == NULL)
1860 return -ENOMEM;
00a5dfdb 1861 spin_lock_init(&undo_list->lock);
f74370b8 1862 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1863 INIT_LIST_HEAD(&undo_list->list_proc);
1864
1da177e4
LT
1865 current->sysvsem.undo_list = undo_list;
1866 }
1867 *undo_listp = undo_list;
1868 return 0;
1869}
1870
bf17bb71 1871static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1872{
bf17bb71 1873 struct sem_undo *un;
4daa28f6 1874
984035ad
JFG
1875 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1876 spin_is_locked(&ulp->lock)) {
bf17bb71
NP
1877 if (un->semid == semid)
1878 return un;
1da177e4 1879 }
4daa28f6 1880 return NULL;
1da177e4
LT
1881}
1882
bf17bb71
NP
1883static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1884{
1885 struct sem_undo *un;
1886
239521f3 1887 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1888
1889 un = __lookup_undo(ulp, semid);
1890 if (un) {
1891 list_del_rcu(&un->list_proc);
1892 list_add_rcu(&un->list_proc, &ulp->list_proc);
1893 }
1894 return un;
1895}
1896
4daa28f6 1897/**
8001c858 1898 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1899 * @ns: namespace
1900 * @semid: semaphore array id
1901 *
1902 * The function looks up (and if not present creates) the undo structure.
1903 * The size of the undo structure depends on the size of the semaphore
1904 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1905 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1906 * performs a rcu_read_lock().
4daa28f6
MS
1907 */
1908static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1909{
1910 struct sem_array *sma;
1911 struct sem_undo_list *ulp;
1912 struct sem_undo *un, *new;
6062a8dc 1913 int nsems, error;
1da177e4
LT
1914
1915 error = get_undo_list(&ulp);
1916 if (error)
1917 return ERR_PTR(error);
1918
380af1b3 1919 rcu_read_lock();
c530c6ac 1920 spin_lock(&ulp->lock);
1da177e4 1921 un = lookup_undo(ulp, semid);
c530c6ac 1922 spin_unlock(&ulp->lock);
239521f3 1923 if (likely(un != NULL))
1da177e4
LT
1924 goto out;
1925
1926 /* no undo structure around - allocate one. */
4daa28f6 1927 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1928 sma = sem_obtain_object_check(ns, semid);
1929 if (IS_ERR(sma)) {
1930 rcu_read_unlock();
4de85cd6 1931 return ERR_CAST(sma);
16df3674 1932 }
023a5355 1933
1da177e4 1934 nsems = sma->sem_nsems;
dba4cdd3 1935 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1936 rcu_read_unlock();
1937 un = ERR_PTR(-EIDRM);
1938 goto out;
1939 }
16df3674 1940 rcu_read_unlock();
1da177e4 1941
4daa28f6 1942 /* step 2: allocate new undo structure */
fc37a3b8 1943 new = kvzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems,
18319498 1944 GFP_KERNEL_ACCOUNT);
1da177e4 1945 if (!new) {
dba4cdd3 1946 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1947 return ERR_PTR(-ENOMEM);
1948 }
1da177e4 1949
380af1b3 1950 /* step 3: Acquire the lock on semaphore array */
4091fd94 1951 rcu_read_lock();
6ff37972 1952 sem_lock_and_putref(sma);
0f3d2b01 1953 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1954 sem_unlock(sma, -1);
6d49dab8 1955 rcu_read_unlock();
fc37a3b8 1956 kvfree(new);
1da177e4
LT
1957 un = ERR_PTR(-EIDRM);
1958 goto out;
1959 }
380af1b3
MS
1960 spin_lock(&ulp->lock);
1961
1962 /*
1963 * step 4: check for races: did someone else allocate the undo struct?
1964 */
1965 un = lookup_undo(ulp, semid);
1966 if (un) {
a0b9a1fa 1967 spin_unlock(&ulp->lock);
fc37a3b8 1968 kvfree(new);
380af1b3
MS
1969 goto success;
1970 }
4daa28f6
MS
1971 /* step 5: initialize & link new undo structure */
1972 new->semadj = (short *) &new[1];
380af1b3 1973 new->ulp = ulp;
4daa28f6
MS
1974 new->semid = semid;
1975 assert_spin_locked(&ulp->lock);
380af1b3 1976 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1977 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1978 list_add(&new->list_id, &sma->list_id);
380af1b3 1979 un = new;
c530c6ac 1980 spin_unlock(&ulp->lock);
a0b9a1fa 1981success:
6062a8dc 1982 sem_unlock(sma, -1);
1da177e4
LT
1983out:
1984 return un;
1985}
1986
bdec0145
AB
1987long __do_semtimedop(int semid, struct sembuf *sops,
1988 unsigned nsops, const struct timespec64 *timeout,
1989 struct ipc_namespace *ns)
1da177e4
LT
1990{
1991 int error = -EINVAL;
1992 struct sem_array *sma;
bdec0145 1993 struct sembuf *sop;
1da177e4 1994 struct sem_undo *un;
4ce33ec2
DB
1995 int max, locknum;
1996 bool undos = false, alter = false, dupsop = false;
1da177e4 1997 struct sem_queue queue;
4ce33ec2 1998 unsigned long dup = 0, jiffies_left = 0;
1da177e4
LT
1999
2000 if (nsops < 1 || semid < 0)
2001 return -EINVAL;
e3893534 2002 if (nsops > ns->sc_semopm)
1da177e4 2003 return -E2BIG;
4ce33ec2 2004
1da177e4 2005 if (timeout) {
44ee4546
AV
2006 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2007 timeout->tv_nsec >= 1000000000L) {
1da177e4 2008 error = -EINVAL;
bdec0145 2009 goto out;
1da177e4 2010 }
3ef56dc2 2011 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 2012 }
4ce33ec2 2013
bdec0145 2014
1da177e4
LT
2015 max = 0;
2016 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
2017 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2018
1da177e4
LT
2019 if (sop->sem_num >= max)
2020 max = sop->sem_num;
2021 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
2022 undos = true;
2023 if (dup & mask) {
2024 /*
2025 * There was a previous alter access that appears
2026 * to have accessed the same semaphore, thus use
2027 * the dupsop logic. "appears", because the detection
2028 * can only check % BITS_PER_LONG.
2029 */
2030 dupsop = true;
2031 }
2032 if (sop->sem_op != 0) {
2033 alter = true;
2034 dup |= mask;
2035 }
1da177e4 2036 }
1da177e4 2037
1da177e4 2038 if (undos) {
6062a8dc 2039 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 2040 un = find_alloc_undo(ns, semid);
1da177e4
LT
2041 if (IS_ERR(un)) {
2042 error = PTR_ERR(un);
bdec0145 2043 goto out;
1da177e4 2044 }
6062a8dc 2045 } else {
1da177e4 2046 un = NULL;
6062a8dc
RR
2047 rcu_read_lock();
2048 }
1da177e4 2049
16df3674 2050 sma = sem_obtain_object_check(ns, semid);
023a5355 2051 if (IS_ERR(sma)) {
6062a8dc 2052 rcu_read_unlock();
023a5355 2053 error = PTR_ERR(sma);
bdec0145 2054 goto out;
023a5355
ND
2055 }
2056
16df3674 2057 error = -EFBIG;
248e7357
DB
2058 if (max >= sma->sem_nsems) {
2059 rcu_read_unlock();
bdec0145 2060 goto out;
248e7357 2061 }
16df3674
DB
2062
2063 error = -EACCES;
248e7357
DB
2064 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2065 rcu_read_unlock();
bdec0145 2066 goto out;
248e7357 2067 }
16df3674 2068
aefad959 2069 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
248e7357
DB
2070 if (error) {
2071 rcu_read_unlock();
bdec0145 2072 goto out;
248e7357 2073 }
16df3674 2074
6e224f94
MS
2075 error = -EIDRM;
2076 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
2077 /*
2078 * We eventually might perform the following check in a lockless
2079 * fashion, considering ipc_valid_object() locking constraints.
2080 * If nsops == 1 and there is no contention for sem_perm.lock, then
2081 * only a per-semaphore lock is held and it's OK to proceed with the
2082 * check below. More details on the fine grained locking scheme
2083 * entangled here and why it's RMID race safe on comments at sem_lock()
2084 */
2085 if (!ipc_valid_object(&sma->sem_perm))
bdec0145 2086 goto out_unlock;
1da177e4 2087 /*
4daa28f6 2088 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 2089 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 2090 * and now a new array with received the same id. Check and fail.
25985edc 2091 * This case can be detected checking un->semid. The existence of
380af1b3 2092 * "un" itself is guaranteed by rcu.
1da177e4 2093 */
6062a8dc 2094 if (un && un->semid == -1)
bdec0145 2095 goto out_unlock;
4daa28f6 2096
d198cd6d
MS
2097 queue.sops = sops;
2098 queue.nsops = nsops;
2099 queue.undo = un;
51d6f263 2100 queue.pid = task_tgid(current);
d198cd6d 2101 queue.alter = alter;
4ce33ec2 2102 queue.dupsop = dupsop;
d198cd6d
MS
2103
2104 error = perform_atomic_semop(sma, &queue);
b1989a3d 2105 if (error == 0) { /* non-blocking successful path */
9ae949fa
DB
2106 DEFINE_WAKE_Q(wake_q);
2107
2108 /*
2109 * If the operation was successful, then do
0e8c6656
MS
2110 * the required updates.
2111 */
2112 if (alter)
9ae949fa 2113 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
2114 else
2115 set_semotime(sma, sops);
9ae949fa
DB
2116
2117 sem_unlock(sma, locknum);
2118 rcu_read_unlock();
2119 wake_up_q(&wake_q);
2120
bdec0145 2121 goto out;
1da177e4 2122 }
9ae949fa 2123 if (error < 0) /* non-blocking error path */
bdec0145 2124 goto out_unlock;
1da177e4 2125
9ae949fa
DB
2126 /*
2127 * We need to sleep on this operation, so we put the current
1da177e4
LT
2128 * task into the pending queue and go to sleep.
2129 */
b97e820f
MS
2130 if (nsops == 1) {
2131 struct sem *curr;
ec67aaa4
DB
2132 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2133 curr = &sma->sems[idx];
b97e820f 2134
f269f40a
MS
2135 if (alter) {
2136 if (sma->complex_count) {
2137 list_add_tail(&queue.list,
2138 &sma->pending_alter);
2139 } else {
2140
2141 list_add_tail(&queue.list,
2142 &curr->pending_alter);
2143 }
2144 } else {
1a82e9e1 2145 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2146 }
b97e820f 2147 } else {
f269f40a
MS
2148 if (!sma->complex_count)
2149 merge_queues(sma);
2150
9f1bc2c9 2151 if (alter)
1a82e9e1 2152 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2153 else
1a82e9e1
MS
2154 list_add_tail(&queue.list, &sma->pending_const);
2155
b97e820f
MS
2156 sma->complex_count++;
2157 }
2158
b5fa01a2 2159 do {
8116b54e 2160 /* memory ordering ensured by the lock in sem_lock() */
f075faa3 2161 WRITE_ONCE(queue.status, -EINTR);
b5fa01a2 2162 queue.sleeper = current;
0b0577f6 2163
8116b54e 2164 /* memory ordering is ensured by the lock in sem_lock() */
b5fa01a2
DB
2165 __set_current_state(TASK_INTERRUPTIBLE);
2166 sem_unlock(sma, locknum);
2167 rcu_read_unlock();
1da177e4 2168
b5fa01a2
DB
2169 if (timeout)
2170 jiffies_left = schedule_timeout(jiffies_left);
2171 else
2172 schedule();
1da177e4 2173
9ae949fa 2174 /*
b5fa01a2
DB
2175 * fastpath: the semop has completed, either successfully or
2176 * not, from the syscall pov, is quite irrelevant to us at this
2177 * point; we're done.
2178 *
2179 * We _do_ care, nonetheless, about being awoken by a signal or
2180 * spuriously. The queue.status is checked again in the
2181 * slowpath (aka after taking sem_lock), such that we can detect
2182 * scenarios where we were awakened externally, during the
2183 * window between wake_q_add() and wake_up_q().
c61284e9 2184 */
b5fa01a2
DB
2185 error = READ_ONCE(queue.status);
2186 if (error != -EINTR) {
8116b54e
MS
2187 /* see SEM_BARRIER_2 for purpose/pairing */
2188 smp_acquire__after_ctrl_dep();
bdec0145 2189 goto out;
b5fa01a2 2190 }
d694ad62 2191
b5fa01a2 2192 rcu_read_lock();
c626bc46 2193 locknum = sem_lock(sma, sops, nsops);
1da177e4 2194
370b262c 2195 if (!ipc_valid_object(&sma->sem_perm))
bdec0145 2196 goto out_unlock;
370b262c 2197
8116b54e
MS
2198 /*
2199 * No necessity for any barrier: We are protect by sem_lock()
2200 */
370b262c 2201 error = READ_ONCE(queue.status);
1da177e4 2202
b5fa01a2
DB
2203 /*
2204 * If queue.status != -EINTR we are woken up by another process.
2205 * Leave without unlink_queue(), but with sem_unlock().
2206 */
2207 if (error != -EINTR)
bdec0145 2208 goto out_unlock;
0b0577f6 2209
b5fa01a2
DB
2210 /*
2211 * If an interrupt occurred we have to clean up the queue.
2212 */
2213 if (timeout && jiffies_left == 0)
2214 error = -EAGAIN;
2215 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2216
b97e820f 2217 unlink_queue(sma, &queue);
1da177e4 2218
bdec0145 2219out_unlock:
6062a8dc 2220 sem_unlock(sma, locknum);
6d49dab8 2221 rcu_read_unlock();
bdec0145
AB
2222out:
2223 return error;
2224}
2225
2226static long do_semtimedop(int semid, struct sembuf __user *tsops,
2227 unsigned nsops, const struct timespec64 *timeout)
2228{
2229 struct sembuf fast_sops[SEMOPM_FAST];
2230 struct sembuf *sops = fast_sops;
2231 struct ipc_namespace *ns;
2232 int ret;
2233
2234 ns = current->nsproxy->ipc_ns;
2235 if (nsops > ns->sc_semopm)
2236 return -E2BIG;
2237 if (nsops < 1)
2238 return -EINVAL;
2239
2240 if (nsops > SEMOPM_FAST) {
6a4746ba 2241 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
bdec0145
AB
2242 if (sops == NULL)
2243 return -ENOMEM;
2244 }
2245
2246 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2247 ret = -EFAULT;
2248 goto out_free;
2249 }
2250
2251 ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2252
1da177e4 2253out_free:
239521f3 2254 if (sops != fast_sops)
e4243b80 2255 kvfree(sops);
bdec0145
AB
2256
2257 return ret;
1da177e4
LT
2258}
2259
41f4f0e2 2260long ksys_semtimedop(int semid, struct sembuf __user *tsops,
21fc538d 2261 unsigned int nsops, const struct __kernel_timespec __user *timeout)
44ee4546
AV
2262{
2263 if (timeout) {
3ef56dc2
DD
2264 struct timespec64 ts;
2265 if (get_timespec64(&ts, timeout))
44ee4546
AV
2266 return -EFAULT;
2267 return do_semtimedop(semid, tsops, nsops, &ts);
2268 }
2269 return do_semtimedop(semid, tsops, nsops, NULL);
2270}
2271
41f4f0e2 2272SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
21fc538d 2273 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
41f4f0e2
DB
2274{
2275 return ksys_semtimedop(semid, tsops, nsops, timeout);
2276}
2277
b0d17578 2278#ifdef CONFIG_COMPAT_32BIT_TIME
41f4f0e2
DB
2279long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2280 unsigned int nsops,
9afc5eee 2281 const struct old_timespec32 __user *timeout)
44ee4546
AV
2282{
2283 if (timeout) {
3ef56dc2 2284 struct timespec64 ts;
9afc5eee 2285 if (get_old_timespec32(&ts, timeout))
44ee4546
AV
2286 return -EFAULT;
2287 return do_semtimedop(semid, tsems, nsops, &ts);
2288 }
2289 return do_semtimedop(semid, tsems, nsops, NULL);
2290}
41f4f0e2 2291
8dabe724 2292SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
41f4f0e2 2293 unsigned int, nsops,
9afc5eee 2294 const struct old_timespec32 __user *, timeout)
41f4f0e2
DB
2295{
2296 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2297}
44ee4546
AV
2298#endif
2299
d5460c99
HC
2300SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2301 unsigned, nsops)
1da177e4 2302{
44ee4546 2303 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2304}
2305
2306/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2307 * parent and child tasks.
1da177e4
LT
2308 */
2309
2310int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2311{
2312 struct sem_undo_list *undo_list;
2313 int error;
2314
2315 if (clone_flags & CLONE_SYSVSEM) {
2316 error = get_undo_list(&undo_list);
2317 if (error)
2318 return error;
f74370b8 2319 refcount_inc(&undo_list->refcnt);
1da177e4 2320 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2321 } else
1da177e4
LT
2322 tsk->sysvsem.undo_list = NULL;
2323
2324 return 0;
2325}
2326
2327/*
2328 * add semadj values to semaphores, free undo structures.
2329 * undo structures are not freed when semaphore arrays are destroyed
2330 * so some of them may be out of date.
2331 * IMPLEMENTATION NOTE: There is some confusion over whether the
2332 * set of adjustments that needs to be done should be done in an atomic
2333 * manner or not. That is, if we are attempting to decrement the semval
2334 * should we queue up and wait until we can do so legally?
2335 * The original implementation attempted to do this (queue and wait).
2336 * The current implementation does not do so. The POSIX standard
2337 * and SVID should be consulted to determine what behavior is mandated.
2338 */
2339void exit_sem(struct task_struct *tsk)
2340{
4daa28f6 2341 struct sem_undo_list *ulp;
1da177e4 2342
4daa28f6
MS
2343 ulp = tsk->sysvsem.undo_list;
2344 if (!ulp)
1da177e4 2345 return;
9edff4ab 2346 tsk->sysvsem.undo_list = NULL;
1da177e4 2347
f74370b8 2348 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2349 return;
2350
380af1b3 2351 for (;;) {
1da177e4 2352 struct sem_array *sma;
380af1b3 2353 struct sem_undo *un;
6062a8dc 2354 int semid, i;
9ae949fa 2355 DEFINE_WAKE_Q(wake_q);
4daa28f6 2356
2a1613a5
NB
2357 cond_resched();
2358
380af1b3 2359 rcu_read_lock();
05725f7e
JP
2360 un = list_entry_rcu(ulp->list_proc.next,
2361 struct sem_undo, list_proc);
602b8593
HK
2362 if (&un->list_proc == &ulp->list_proc) {
2363 /*
2364 * We must wait for freeary() before freeing this ulp,
2365 * in case we raced with last sem_undo. There is a small
2366 * possibility where we exit while freeary() didn't
2367 * finish unlocking sem_undo_list.
2368 */
e0892e08
PM
2369 spin_lock(&ulp->lock);
2370 spin_unlock(&ulp->lock);
602b8593
HK
2371 rcu_read_unlock();
2372 break;
2373 }
2374 spin_lock(&ulp->lock);
2375 semid = un->semid;
2376 spin_unlock(&ulp->lock);
4daa28f6 2377
602b8593 2378 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2379 if (semid == -1) {
2380 rcu_read_unlock();
602b8593 2381 continue;
6062a8dc 2382 }
1da177e4 2383
602b8593 2384 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2385 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2386 if (IS_ERR(sma)) {
2387 rcu_read_unlock();
380af1b3 2388 continue;
6062a8dc 2389 }
1da177e4 2390
6062a8dc 2391 sem_lock(sma, NULL, -1);
6e224f94 2392 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2393 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2394 sem_unlock(sma, -1);
2395 rcu_read_unlock();
2396 continue;
2397 }
bf17bb71 2398 un = __lookup_undo(ulp, semid);
380af1b3
MS
2399 if (un == NULL) {
2400 /* exit_sem raced with IPC_RMID+semget() that created
2401 * exactly the same semid. Nothing to do.
2402 */
6062a8dc 2403 sem_unlock(sma, -1);
6d49dab8 2404 rcu_read_unlock();
380af1b3
MS
2405 continue;
2406 }
2407
2408 /* remove un from the linked lists */
cf9d5d78 2409 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2410 list_del(&un->list_id);
2411
edf28f40 2412 spin_lock(&ulp->lock);
380af1b3 2413 list_del_rcu(&un->list_proc);
edf28f40 2414 spin_unlock(&ulp->lock);
380af1b3 2415
4daa28f6
MS
2416 /* perform adjustments registered in un */
2417 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2418 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2419 if (un->semadj[i]) {
2420 semaphore->semval += un->semadj[i];
1da177e4
LT
2421 /*
2422 * Range checks of the new semaphore value,
2423 * not defined by sus:
2424 * - Some unices ignore the undo entirely
2425 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2426 * - some cap the value (e.g. FreeBSD caps
2427 * at 0, but doesn't enforce SEMVMX)
2428 *
2429 * Linux caps the semaphore value, both at 0
2430 * and at SEMVMX.
2431 *
239521f3 2432 * Manfred <manfred@colorfullife.com>
1da177e4 2433 */
5f921ae9
IM
2434 if (semaphore->semval < 0)
2435 semaphore->semval = 0;
2436 if (semaphore->semval > SEMVMX)
2437 semaphore->semval = SEMVMX;
51d6f263 2438 ipc_update_pid(&semaphore->sempid, task_tgid(current));
1da177e4
LT
2439 }
2440 }
1da177e4 2441 /* maybe some queued-up processes were waiting for this */
9ae949fa 2442 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2443 sem_unlock(sma, -1);
6d49dab8 2444 rcu_read_unlock();
9ae949fa 2445 wake_up_q(&wake_q);
380af1b3 2446
fc37a3b8 2447 kvfree_rcu(un, rcu);
1da177e4 2448 }
4daa28f6 2449 kfree(ulp);
1da177e4
LT
2450}
2451
2452#ifdef CONFIG_PROC_FS
19b4946c 2453static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2454{
1efdb69b 2455 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2456 struct kern_ipc_perm *ipcp = it;
2457 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2458 time64_t sem_otime;
d12e1e50 2459
d8c63376
MS
2460 /*
2461 * The proc interface isn't aware of sem_lock(), it calls
17d056e0
MS
2462 * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2463 * (in sysvipc_find_ipc)
5864a2fd
MS
2464 * In order to stay compatible with sem_lock(), we must
2465 * enter / leave complex_mode.
d8c63376 2466 */
5864a2fd 2467 complexmode_enter(sma);
d8c63376 2468
d12e1e50 2469 sem_otime = get_semotime(sma);
19b4946c 2470
7f032d6e 2471 seq_printf(s,
e54d02b2 2472 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2473 sma->sem_perm.key,
2474 sma->sem_perm.id,
2475 sma->sem_perm.mode,
2476 sma->sem_nsems,
2477 from_kuid_munged(user_ns, sma->sem_perm.uid),
2478 from_kgid_munged(user_ns, sma->sem_perm.gid),
2479 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2480 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2481 sem_otime,
2482 sma->sem_ctime);
2483
5864a2fd
MS
2484 complexmode_tryleave(sma);
2485
7f032d6e 2486 return 0;
1da177e4
LT
2487}
2488#endif