]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - ipc/sem.c
Merge tag 'drm-ast-2500-for-v4.11' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 57 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
70 */
71
1da177e4
LT
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
1da177e4
LT
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
c59ede7b 80#include <linux/capability.h>
19b4946c 81#include <linux/seq_file.h>
3e148c79 82#include <linux/rwsem.h>
e3893534 83#include <linux/nsproxy.h>
ae5e1b22 84#include <linux/ipc_namespace.h>
5f921ae9 85
7153e402 86#include <linux/uaccess.h>
1da177e4
LT
87#include "util.h"
88
e57940d7
MS
89/* One semaphore structure for each semaphore in the system. */
90struct sem {
91 int semval; /* current value */
a5f4db87
DB
92 /*
93 * PID of the process that last modified the semaphore. For
94 * Linux, specifically these are:
95 * - semop
96 * - semctl, via SETVAL and SETALL.
97 * - at task exit when performing undo adjustments (see exit_sem).
98 */
99 int sempid;
6062a8dc 100 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
101 struct list_head pending_alter; /* pending single-sop operations */
102 /* that alter the semaphore */
103 struct list_head pending_const; /* pending single-sop operations */
104 /* that do not alter the semaphore*/
d12e1e50 105 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 106} ____cacheline_aligned_in_smp;
e57940d7
MS
107
108/* One queue for each sleeping process in the system. */
109struct sem_queue {
e57940d7
MS
110 struct list_head list; /* queue of pending operations */
111 struct task_struct *sleeper; /* this process */
112 struct sem_undo *undo; /* undo structure */
113 int pid; /* process id of requesting process */
114 int status; /* completion status of operation */
115 struct sembuf *sops; /* array of pending operations */
ed247b7c 116 struct sembuf *blocking; /* the operation that blocked */
e57940d7 117 int nsops; /* number of operations */
4ce33ec2
DB
118 bool alter; /* does *sops alter the array? */
119 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
120};
121
122/* Each task has a list of undo requests. They are executed automatically
123 * when the process exits.
124 */
125struct sem_undo {
126 struct list_head list_proc; /* per-process list: *
127 * all undos from one process
128 * rcu protected */
129 struct rcu_head rcu; /* rcu struct for sem_undo */
130 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
131 struct list_head list_id; /* per semaphore array list:
132 * all undos for one array */
133 int semid; /* semaphore set identifier */
134 short *semadj; /* array of adjustments */
135 /* one per semaphore */
136};
137
138/* sem_undo_list controls shared access to the list of sem_undo structures
139 * that may be shared among all a CLONE_SYSVSEM task group.
140 */
141struct sem_undo_list {
142 atomic_t refcnt;
143 spinlock_t lock;
144 struct list_head list_proc;
145};
146
147
ed2ddbf8 148#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 149
1b531f21 150#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 151
7748dbfa 152static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 153static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 154#ifdef CONFIG_PROC_FS
19b4946c 155static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
156#endif
157
158#define SEMMSL_FAST 256 /* 512 bytes on stack */
159#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
160
9de5ab8a
MS
161/*
162 * Switching from the mode suitable for simple ops
163 * to the mode for complex ops is costly. Therefore:
164 * use some hysteresis
165 */
166#define USE_GLOBAL_LOCK_HYSTERESIS 10
167
1da177e4 168/*
758a6ba3 169 * Locking:
5864a2fd 170 * a) global sem_lock() for read/write
1da177e4 171 * sem_undo.id_next,
758a6ba3 172 * sem_array.complex_count,
5864a2fd
MS
173 * sem_array.pending{_alter,_const},
174 * sem_array.sem_undo
46c0a8ca 175 *
5864a2fd 176 * b) global or semaphore sem_lock() for read/write:
758a6ba3 177 * sem_array.sem_base[i].pending_{const,alter}:
5864a2fd
MS
178 *
179 * c) special:
180 * sem_undo_list.list_proc:
181 * * undo_list->lock for write
182 * * rcu for read
9de5ab8a
MS
183 * use_global_lock:
184 * * global sem_lock() for write
185 * * either local or global sem_lock() for read.
186 *
187 * Memory ordering:
188 * Most ordering is enforced by using spin_lock() and spin_unlock().
189 * The special case is use_global_lock:
190 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
191 * using smp_store_release().
192 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
193 * smp_load_acquire().
194 * Setting it from 0 to non-zero must be ordered with regards to
195 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
196 * is inside a spin_lock() and after a write from 0 to non-zero a
197 * spin_lock()+spin_unlock() is done.
1da177e4
LT
198 */
199
e3893534
KK
200#define sc_semmsl sem_ctls[0]
201#define sc_semmns sem_ctls[1]
202#define sc_semopm sem_ctls[2]
203#define sc_semmni sem_ctls[3]
204
ed2ddbf8 205void sem_init_ns(struct ipc_namespace *ns)
e3893534 206{
e3893534
KK
207 ns->sc_semmsl = SEMMSL;
208 ns->sc_semmns = SEMMNS;
209 ns->sc_semopm = SEMOPM;
210 ns->sc_semmni = SEMMNI;
211 ns->used_sems = 0;
ed2ddbf8 212 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
213}
214
ae5e1b22 215#ifdef CONFIG_IPC_NS
e3893534
KK
216void sem_exit_ns(struct ipc_namespace *ns)
217{
01b8b07a 218 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 219 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 220}
ae5e1b22 221#endif
1da177e4 222
239521f3 223void __init sem_init(void)
1da177e4 224{
ed2ddbf8 225 sem_init_ns(&init_ipc_ns);
19b4946c
MW
226 ipc_init_proc_interface("sysvipc/sem",
227 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 228 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
229}
230
f269f40a
MS
231/**
232 * unmerge_queues - unmerge queues, if possible.
233 * @sma: semaphore array
234 *
235 * The function unmerges the wait queues if complex_count is 0.
236 * It must be called prior to dropping the global semaphore array lock.
237 */
238static void unmerge_queues(struct sem_array *sma)
239{
240 struct sem_queue *q, *tq;
241
242 /* complex operations still around? */
243 if (sma->complex_count)
244 return;
245 /*
246 * We will switch back to simple mode.
247 * Move all pending operation back into the per-semaphore
248 * queues.
249 */
250 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
251 struct sem *curr;
252 curr = &sma->sem_base[q->sops[0].sem_num];
253
254 list_add_tail(&q->list, &curr->pending_alter);
255 }
256 INIT_LIST_HEAD(&sma->pending_alter);
257}
258
259/**
8001c858 260 * merge_queues - merge single semop queues into global queue
f269f40a
MS
261 * @sma: semaphore array
262 *
263 * This function merges all per-semaphore queues into the global queue.
264 * It is necessary to achieve FIFO ordering for the pending single-sop
265 * operations when a multi-semop operation must sleep.
266 * Only the alter operations must be moved, the const operations can stay.
267 */
268static void merge_queues(struct sem_array *sma)
269{
270 int i;
271 for (i = 0; i < sma->sem_nsems; i++) {
272 struct sem *sem = sma->sem_base + i;
273
274 list_splice_init(&sem->pending_alter, &sma->pending_alter);
275 }
276}
277
53dad6d3
DB
278static void sem_rcu_free(struct rcu_head *head)
279{
280 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
281 struct sem_array *sma = ipc_rcu_to_struct(p);
282
283 security_sem_free(sma);
284 ipc_rcu_free(head);
285}
286
5e9d5275 287/*
5864a2fd 288 * Enter the mode suitable for non-simple operations:
5e9d5275 289 * Caller must own sem_perm.lock.
5e9d5275 290 */
5864a2fd 291static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
292{
293 int i;
294 struct sem *sem;
295
9de5ab8a
MS
296 if (sma->use_global_lock > 0) {
297 /*
298 * We are already in global lock mode.
299 * Nothing to do, just reset the
300 * counter until we return to simple mode.
301 */
302 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
303 return;
304 }
9de5ab8a 305 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 306
5e9d5275
MS
307 for (i = 0; i < sma->sem_nsems; i++) {
308 sem = sma->sem_base + i;
27d7be18
MS
309 spin_lock(&sem->lock);
310 spin_unlock(&sem->lock);
5e9d5275 311 }
5864a2fd
MS
312}
313
314/*
315 * Try to leave the mode that disallows simple operations:
316 * Caller must own sem_perm.lock.
317 */
318static void complexmode_tryleave(struct sem_array *sma)
319{
320 if (sma->complex_count) {
321 /* Complex ops are sleeping.
322 * We must stay in complex mode
323 */
324 return;
325 }
9de5ab8a
MS
326 if (sma->use_global_lock == 1) {
327 /*
328 * Immediately after setting use_global_lock to 0,
329 * a simple op can start. Thus: all memory writes
330 * performed by the current operation must be visible
331 * before we set use_global_lock to 0.
332 */
333 smp_store_release(&sma->use_global_lock, 0);
334 } else {
335 sma->use_global_lock--;
336 }
5e9d5275
MS
337}
338
5864a2fd 339#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
340/*
341 * If the request contains only one semaphore operation, and there are
342 * no complex transactions pending, lock only the semaphore involved.
343 * Otherwise, lock the entire semaphore array, since we either have
344 * multiple semaphores in our own semops, or we need to look at
345 * semaphores from other pending complex operations.
6062a8dc
RR
346 */
347static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
348 int nsops)
349{
5e9d5275 350 struct sem *sem;
6062a8dc 351
5e9d5275
MS
352 if (nsops != 1) {
353 /* Complex operation - acquire a full lock */
354 ipc_lock_object(&sma->sem_perm);
6062a8dc 355
5864a2fd
MS
356 /* Prevent parallel simple ops */
357 complexmode_enter(sma);
358 return SEM_GLOBAL_LOCK;
5e9d5275
MS
359 }
360
361 /*
362 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
363 * Optimized locking is possible if no complex operation
364 * is either enqueued or processed right now.
365 *
9de5ab8a 366 * Both facts are tracked by use_global_mode.
5e9d5275
MS
367 */
368 sem = sma->sem_base + sops->sem_num;
6062a8dc 369
5864a2fd 370 /*
9de5ab8a 371 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
372 * no locking, no memory barrier.
373 */
9de5ab8a 374 if (!sma->use_global_lock) {
6062a8dc 375 /*
5e9d5275
MS
376 * It appears that no complex operation is around.
377 * Acquire the per-semaphore lock.
6062a8dc 378 */
5e9d5275
MS
379 spin_lock(&sem->lock);
380
9de5ab8a
MS
381 /* pairs with smp_store_release() */
382 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
383 /* fast path successful! */
384 return sops->sem_num;
6062a8dc 385 }
5e9d5275
MS
386 spin_unlock(&sem->lock);
387 }
388
389 /* slow path: acquire the full lock */
390 ipc_lock_object(&sma->sem_perm);
6062a8dc 391
9de5ab8a
MS
392 if (sma->use_global_lock == 0) {
393 /*
394 * The use_global_lock mode ended while we waited for
395 * sma->sem_perm.lock. Thus we must switch to locking
396 * with sem->lock.
397 * Unlike in the fast path, there is no need to recheck
398 * sma->use_global_lock after we have acquired sem->lock:
399 * We own sma->sem_perm.lock, thus use_global_lock cannot
400 * change.
5e9d5275
MS
401 */
402 spin_lock(&sem->lock);
9de5ab8a 403
5e9d5275
MS
404 ipc_unlock_object(&sma->sem_perm);
405 return sops->sem_num;
6062a8dc 406 } else {
9de5ab8a
MS
407 /*
408 * Not a false alarm, thus continue to use the global lock
409 * mode. No need for complexmode_enter(), this was done by
410 * the caller that has set use_global_mode to non-zero.
6062a8dc 411 */
5864a2fd 412 return SEM_GLOBAL_LOCK;
6062a8dc 413 }
6062a8dc
RR
414}
415
416static inline void sem_unlock(struct sem_array *sma, int locknum)
417{
5864a2fd 418 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 419 unmerge_queues(sma);
5864a2fd 420 complexmode_tryleave(sma);
cf9d5d78 421 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
422 } else {
423 struct sem *sem = sma->sem_base + locknum;
424 spin_unlock(&sem->lock);
425 }
6062a8dc
RR
426}
427
3e148c79 428/*
d9a605e4 429 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 430 * is not held.
321310ce
LT
431 *
432 * The caller holds the RCU read lock.
3e148c79 433 */
16df3674
DB
434static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
435{
55b7ae50 436 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
437
438 if (IS_ERR(ipcp))
439 return ERR_CAST(ipcp);
440
441 return container_of(ipcp, struct sem_array, sem_perm);
442}
443
16df3674
DB
444static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
445 int id)
446{
447 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
448
449 if (IS_ERR(ipcp))
450 return ERR_CAST(ipcp);
b1ed88b4 451
03f02c76 452 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
453}
454
6ff37972
PP
455static inline void sem_lock_and_putref(struct sem_array *sma)
456{
6062a8dc 457 sem_lock(sma, NULL, -1);
9b24fef9 458 ipc_rcu_putref(sma, sem_rcu_free);
6ff37972
PP
459}
460
7ca7e564
ND
461static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
462{
463 ipc_rmid(&sem_ids(ns), &s->sem_perm);
464}
465
f4566f04
ND
466/**
467 * newary - Create a new semaphore set
468 * @ns: namespace
469 * @params: ptr to the structure that contains key, semflg and nsems
470 *
d9a605e4 471 * Called with sem_ids.rwsem held (as a writer)
f4566f04 472 */
7748dbfa 473static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
474{
475 int id;
476 int retval;
477 struct sem_array *sma;
478 int size;
7748dbfa
ND
479 key_t key = params->key;
480 int nsems = params->u.nsems;
481 int semflg = params->flg;
b97e820f 482 int i;
1da177e4
LT
483
484 if (!nsems)
485 return -EINVAL;
e3893534 486 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
487 return -ENOSPC;
488
239521f3 489 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4 490 sma = ipc_rcu_alloc(size);
3ab08fe2 491 if (!sma)
1da177e4 492 return -ENOMEM;
3ab08fe2 493
239521f3 494 memset(sma, 0, size);
1da177e4
LT
495
496 sma->sem_perm.mode = (semflg & S_IRWXUGO);
497 sma->sem_perm.key = key;
498
499 sma->sem_perm.security = NULL;
500 retval = security_sem_alloc(sma);
501 if (retval) {
53dad6d3 502 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
503 return retval;
504 }
505
1da177e4 506 sma->sem_base = (struct sem *) &sma[1];
b97e820f 507
6062a8dc 508 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
509 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
510 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
511 spin_lock_init(&sma->sem_base[i].lock);
512 }
b97e820f
MS
513
514 sma->complex_count = 0;
9de5ab8a 515 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
516 INIT_LIST_HEAD(&sma->pending_alter);
517 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 518 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
519 sma->sem_nsems = nsems;
520 sma->sem_ctime = get_seconds();
e8577d1f
MS
521
522 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
523 if (id < 0) {
524 ipc_rcu_putref(sma, sem_rcu_free);
525 return id;
526 }
527 ns->used_sems += nsems;
528
6062a8dc 529 sem_unlock(sma, -1);
6d49dab8 530 rcu_read_unlock();
1da177e4 531
7ca7e564 532 return sma->sem_perm.id;
1da177e4
LT
533}
534
7748dbfa 535
f4566f04 536/*
d9a605e4 537 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 538 */
03f02c76 539static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 540{
03f02c76
ND
541 struct sem_array *sma;
542
543 sma = container_of(ipcp, struct sem_array, sem_perm);
544 return security_sem_associate(sma, semflg);
7748dbfa
ND
545}
546
f4566f04 547/*
d9a605e4 548 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 549 */
03f02c76
ND
550static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
551 struct ipc_params *params)
7748dbfa 552{
03f02c76
ND
553 struct sem_array *sma;
554
555 sma = container_of(ipcp, struct sem_array, sem_perm);
556 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
557 return -EINVAL;
558
559 return 0;
560}
561
d5460c99 562SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 563{
e3893534 564 struct ipc_namespace *ns;
eb66ec44
MK
565 static const struct ipc_ops sem_ops = {
566 .getnew = newary,
567 .associate = sem_security,
568 .more_checks = sem_more_checks,
569 };
7748dbfa 570 struct ipc_params sem_params;
e3893534
KK
571
572 ns = current->nsproxy->ipc_ns;
1da177e4 573
e3893534 574 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 575 return -EINVAL;
7ca7e564 576
7748dbfa
ND
577 sem_params.key = key;
578 sem_params.flg = semflg;
579 sem_params.u.nsems = nsems;
1da177e4 580
7748dbfa 581 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
582}
583
78f5009c 584/**
4ce33ec2
DB
585 * perform_atomic_semop[_slow] - Attempt to perform semaphore
586 * operations on a given array.
758a6ba3 587 * @sma: semaphore array
d198cd6d 588 * @q: struct sem_queue that describes the operation
758a6ba3 589 *
4ce33ec2
DB
590 * Caller blocking are as follows, based the value
591 * indicated by the semaphore operation (sem_op):
592 *
593 * (1) >0 never blocks.
594 * (2) 0 (wait-for-zero operation): semval is non-zero.
595 * (3) <0 attempting to decrement semval to a value smaller than zero.
596 *
758a6ba3
MS
597 * Returns 0 if the operation was possible.
598 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 599 * Returns <0 for error codes.
1da177e4 600 */
4ce33ec2 601static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 602{
d198cd6d 603 int result, sem_op, nsops, pid;
1da177e4 604 struct sembuf *sop;
239521f3 605 struct sem *curr;
d198cd6d
MS
606 struct sembuf *sops;
607 struct sem_undo *un;
608
609 sops = q->sops;
610 nsops = q->nsops;
611 un = q->undo;
1da177e4
LT
612
613 for (sop = sops; sop < sops + nsops; sop++) {
614 curr = sma->sem_base + sop->sem_num;
615 sem_op = sop->sem_op;
616 result = curr->semval;
78f5009c 617
1da177e4
LT
618 if (!sem_op && result)
619 goto would_block;
620
621 result += sem_op;
622 if (result < 0)
623 goto would_block;
624 if (result > SEMVMX)
625 goto out_of_range;
78f5009c 626
1da177e4
LT
627 if (sop->sem_flg & SEM_UNDO) {
628 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 629 /* Exceeding the undo range is an error. */
1da177e4
LT
630 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
631 goto out_of_range;
78f5009c 632 un->semadj[sop->sem_num] = undo;
1da177e4 633 }
78f5009c 634
1da177e4
LT
635 curr->semval = result;
636 }
637
638 sop--;
d198cd6d 639 pid = q->pid;
1da177e4
LT
640 while (sop >= sops) {
641 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
642 sop--;
643 }
78f5009c 644
1da177e4
LT
645 return 0;
646
647out_of_range:
648 result = -ERANGE;
649 goto undo;
650
651would_block:
ed247b7c
MS
652 q->blocking = sop;
653
1da177e4
LT
654 if (sop->sem_flg & IPC_NOWAIT)
655 result = -EAGAIN;
656 else
657 result = 1;
658
659undo:
660 sop--;
661 while (sop >= sops) {
78f5009c
PM
662 sem_op = sop->sem_op;
663 sma->sem_base[sop->sem_num].semval -= sem_op;
664 if (sop->sem_flg & SEM_UNDO)
665 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
666 sop--;
667 }
668
669 return result;
670}
671
4ce33ec2
DB
672static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
673{
674 int result, sem_op, nsops;
675 struct sembuf *sop;
676 struct sem *curr;
677 struct sembuf *sops;
678 struct sem_undo *un;
679
680 sops = q->sops;
681 nsops = q->nsops;
682 un = q->undo;
683
684 if (unlikely(q->dupsop))
685 return perform_atomic_semop_slow(sma, q);
686
687 /*
688 * We scan the semaphore set twice, first to ensure that the entire
689 * operation can succeed, therefore avoiding any pointless writes
690 * to shared memory and having to undo such changes in order to block
691 * until the operations can go through.
692 */
693 for (sop = sops; sop < sops + nsops; sop++) {
694 curr = sma->sem_base + sop->sem_num;
695 sem_op = sop->sem_op;
696 result = curr->semval;
697
698 if (!sem_op && result)
699 goto would_block; /* wait-for-zero */
700
701 result += sem_op;
702 if (result < 0)
703 goto would_block;
704
705 if (result > SEMVMX)
706 return -ERANGE;
707
708 if (sop->sem_flg & SEM_UNDO) {
709 int undo = un->semadj[sop->sem_num] - sem_op;
710
711 /* Exceeding the undo range is an error. */
712 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
713 return -ERANGE;
714 }
715 }
716
717 for (sop = sops; sop < sops + nsops; sop++) {
718 curr = sma->sem_base + sop->sem_num;
719 sem_op = sop->sem_op;
720 result = curr->semval;
721
722 if (sop->sem_flg & SEM_UNDO) {
723 int undo = un->semadj[sop->sem_num] - sem_op;
724
725 un->semadj[sop->sem_num] = undo;
726 }
727 curr->semval += sem_op;
728 curr->sempid = q->pid;
729 }
730
731 return 0;
732
733would_block:
734 q->blocking = sop;
735 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
736}
737
9ae949fa
DB
738static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
739 struct wake_q_head *wake_q)
0a2b9d4c 740{
9ae949fa
DB
741 wake_q_add(wake_q, q->sleeper);
742 /*
743 * Rely on the above implicit barrier, such that we can
744 * ensure that we hold reference to the task before setting
745 * q->status. Otherwise we could race with do_exit if the
746 * task is awoken by an external event before calling
747 * wake_up_process().
748 */
749 WRITE_ONCE(q->status, error);
d4212093
NP
750}
751
b97e820f
MS
752static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
753{
754 list_del(&q->list);
9f1bc2c9 755 if (q->nsops > 1)
b97e820f
MS
756 sma->complex_count--;
757}
758
fd5db422
MS
759/** check_restart(sma, q)
760 * @sma: semaphore array
761 * @q: the operation that just completed
762 *
763 * update_queue is O(N^2) when it restarts scanning the whole queue of
764 * waiting operations. Therefore this function checks if the restart is
765 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
766 * modified the array.
767 * Note that wait-for-zero operations are handled without restart.
fd5db422 768 */
4663d3e8 769static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 770{
1a82e9e1
MS
771 /* pending complex alter operations are too difficult to analyse */
772 if (!list_empty(&sma->pending_alter))
fd5db422
MS
773 return 1;
774
775 /* we were a sleeping complex operation. Too difficult */
776 if (q->nsops > 1)
777 return 1;
778
1a82e9e1
MS
779 /* It is impossible that someone waits for the new value:
780 * - complex operations always restart.
781 * - wait-for-zero are handled seperately.
782 * - q is a previously sleeping simple operation that
783 * altered the array. It must be a decrement, because
784 * simple increments never sleep.
785 * - If there are older (higher priority) decrements
786 * in the queue, then they have observed the original
787 * semval value and couldn't proceed. The operation
788 * decremented to value - thus they won't proceed either.
789 */
790 return 0;
791}
fd5db422 792
1a82e9e1 793/**
8001c858 794 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
795 * @sma: semaphore array.
796 * @semnum: semaphore that was modified.
9ae949fa 797 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
798 *
799 * wake_const_ops must be called after a semaphore in a semaphore array
800 * was set to 0. If complex const operations are pending, wake_const_ops must
801 * be called with semnum = -1, as well as with the number of each modified
802 * semaphore.
9ae949fa 803 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
804 * is stored in q->pid.
805 * The function returns 1 if at least one operation was completed successfully.
806 */
807static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 808 struct wake_q_head *wake_q)
1a82e9e1 809{
f150f02c 810 struct sem_queue *q, *tmp;
1a82e9e1
MS
811 struct list_head *pending_list;
812 int semop_completed = 0;
813
814 if (semnum == -1)
815 pending_list = &sma->pending_const;
816 else
817 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 818
f150f02c
DB
819 list_for_each_entry_safe(q, tmp, pending_list, list) {
820 int error = perform_atomic_semop(sma, q);
1a82e9e1 821
f150f02c
DB
822 if (error > 0)
823 continue;
824 /* operation completed, remove from queue & wakeup */
825 unlink_queue(sma, q);
1a82e9e1 826
f150f02c
DB
827 wake_up_sem_queue_prepare(q, error, wake_q);
828 if (error == 0)
829 semop_completed = 1;
1a82e9e1 830 }
f150f02c 831
1a82e9e1
MS
832 return semop_completed;
833}
834
835/**
8001c858 836 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
837 * @sma: semaphore array
838 * @sops: operations that were performed
839 * @nsops: number of operations
9ae949fa 840 * @wake_q: lockless wake-queue head
1a82e9e1 841 *
8001c858
DB
842 * Checks all required queue for wait-for-zero operations, based
843 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
844 * The function returns 1 if at least one operation was completed successfully.
845 */
846static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 847 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
848{
849 int i;
850 int semop_completed = 0;
851 int got_zero = 0;
852
853 /* first: the per-semaphore queues, if known */
854 if (sops) {
855 for (i = 0; i < nsops; i++) {
856 int num = sops[i].sem_num;
857
858 if (sma->sem_base[num].semval == 0) {
859 got_zero = 1;
9ae949fa 860 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
861 }
862 }
863 } else {
864 /*
865 * No sops means modified semaphores not known.
866 * Assume all were changed.
fd5db422 867 */
1a82e9e1
MS
868 for (i = 0; i < sma->sem_nsems; i++) {
869 if (sma->sem_base[i].semval == 0) {
870 got_zero = 1;
9ae949fa 871 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
872 }
873 }
fd5db422
MS
874 }
875 /*
1a82e9e1
MS
876 * If one of the modified semaphores got 0,
877 * then check the global queue, too.
fd5db422 878 */
1a82e9e1 879 if (got_zero)
9ae949fa 880 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 881
1a82e9e1 882 return semop_completed;
fd5db422
MS
883}
884
636c6be8
MS
885
886/**
8001c858 887 * update_queue - look for tasks that can be completed.
636c6be8
MS
888 * @sma: semaphore array.
889 * @semnum: semaphore that was modified.
9ae949fa 890 * @wake_q: lockless wake-queue head.
636c6be8
MS
891 *
892 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
893 * was modified. If multiple semaphores were modified, update_queue must
894 * be called with semnum = -1, as well as with the number of each modified
895 * semaphore.
9ae949fa 896 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 897 * is stored in q->pid.
1a82e9e1
MS
898 * The function internally checks if const operations can now succeed.
899 *
0a2b9d4c 900 * The function return 1 if at least one semop was completed successfully.
1da177e4 901 */
9ae949fa 902static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 903{
f150f02c 904 struct sem_queue *q, *tmp;
636c6be8 905 struct list_head *pending_list;
0a2b9d4c 906 int semop_completed = 0;
636c6be8 907
9f1bc2c9 908 if (semnum == -1)
1a82e9e1 909 pending_list = &sma->pending_alter;
9f1bc2c9 910 else
1a82e9e1 911 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
912
913again:
f150f02c 914 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 915 int error, restart;
636c6be8 916
d987f8b2
MS
917 /* If we are scanning the single sop, per-semaphore list of
918 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 919 * necessary to scan further: simple increments
d987f8b2
MS
920 * that affect only one entry succeed immediately and cannot
921 * be in the per semaphore pending queue, and decrements
922 * cannot be successful if the value is already 0.
923 */
1a82e9e1 924 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
925 break;
926
d198cd6d 927 error = perform_atomic_semop(sma, q);
1da177e4
LT
928
929 /* Does q->sleeper still need to sleep? */
9cad200c
NP
930 if (error > 0)
931 continue;
932
b97e820f 933 unlink_queue(sma, q);
9cad200c 934
0a2b9d4c 935 if (error) {
fd5db422 936 restart = 0;
0a2b9d4c
MS
937 } else {
938 semop_completed = 1;
9ae949fa 939 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 940 restart = check_restart(sma, q);
0a2b9d4c 941 }
fd5db422 942
9ae949fa 943 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 944 if (restart)
9cad200c 945 goto again;
1da177e4 946 }
0a2b9d4c 947 return semop_completed;
1da177e4
LT
948}
949
0e8c6656 950/**
8001c858 951 * set_semotime - set sem_otime
0e8c6656
MS
952 * @sma: semaphore array
953 * @sops: operations that modified the array, may be NULL
954 *
955 * sem_otime is replicated to avoid cache line trashing.
956 * This function sets one instance to the current time.
957 */
958static void set_semotime(struct sem_array *sma, struct sembuf *sops)
959{
960 if (sops == NULL) {
961 sma->sem_base[0].sem_otime = get_seconds();
962 } else {
963 sma->sem_base[sops[0].sem_num].sem_otime =
964 get_seconds();
965 }
966}
967
0a2b9d4c 968/**
8001c858 969 * do_smart_update - optimized update_queue
fd5db422
MS
970 * @sma: semaphore array
971 * @sops: operations that were performed
972 * @nsops: number of operations
0a2b9d4c 973 * @otime: force setting otime
9ae949fa 974 * @wake_q: lockless wake-queue head
fd5db422 975 *
1a82e9e1
MS
976 * do_smart_update() does the required calls to update_queue and wakeup_zero,
977 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 978 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 979 * responsible for calling wake_up_q().
0a2b9d4c 980 * It is safe to perform this call after dropping all locks.
fd5db422 981 */
0a2b9d4c 982static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 983 int otime, struct wake_q_head *wake_q)
fd5db422
MS
984{
985 int i;
986
9ae949fa 987 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 988
f269f40a
MS
989 if (!list_empty(&sma->pending_alter)) {
990 /* semaphore array uses the global queue - just process it. */
9ae949fa 991 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
992 } else {
993 if (!sops) {
994 /*
995 * No sops, thus the modified semaphores are not
996 * known. Check all.
997 */
998 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 999 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1000 } else {
1001 /*
1002 * Check the semaphores that were increased:
1003 * - No complex ops, thus all sleeping ops are
1004 * decrease.
1005 * - if we decreased the value, then any sleeping
1006 * semaphore ops wont be able to run: If the
1007 * previous value was too small, then the new
1008 * value will be too small, too.
1009 */
1010 for (i = 0; i < nsops; i++) {
1011 if (sops[i].sem_op > 0) {
1012 otime |= update_queue(sma,
9ae949fa 1013 sops[i].sem_num, wake_q);
f269f40a 1014 }
ab465df9 1015 }
9f1bc2c9 1016 }
fd5db422 1017 }
0e8c6656
MS
1018 if (otime)
1019 set_semotime(sma, sops);
fd5db422
MS
1020}
1021
2f2ed41d 1022/*
b220c57a 1023 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1024 */
1025static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1026 bool count_zero)
1027{
b220c57a 1028 struct sembuf *sop = q->blocking;
2f2ed41d 1029
9b44ee2e
MS
1030 /*
1031 * Linux always (since 0.99.10) reported a task as sleeping on all
1032 * semaphores. This violates SUS, therefore it was changed to the
1033 * standard compliant behavior.
1034 * Give the administrators a chance to notice that an application
1035 * might misbehave because it relies on the Linux behavior.
1036 */
1037 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1038 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1039 current->comm, task_pid_nr(current));
1040
b220c57a
MS
1041 if (sop->sem_num != semnum)
1042 return 0;
2f2ed41d 1043
b220c57a
MS
1044 if (count_zero && sop->sem_op == 0)
1045 return 1;
1046 if (!count_zero && sop->sem_op < 0)
1047 return 1;
1048
1049 return 0;
2f2ed41d
MS
1050}
1051
1da177e4
LT
1052/* The following counts are associated to each semaphore:
1053 * semncnt number of tasks waiting on semval being nonzero
1054 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1055 *
1056 * Per definition, a task waits only on the semaphore of the first semop
1057 * that cannot proceed, even if additional operation would block, too.
1da177e4 1058 */
2f2ed41d
MS
1059static int count_semcnt(struct sem_array *sma, ushort semnum,
1060 bool count_zero)
1da177e4 1061{
2f2ed41d 1062 struct list_head *l;
239521f3 1063 struct sem_queue *q;
2f2ed41d 1064 int semcnt;
1da177e4 1065
2f2ed41d
MS
1066 semcnt = 0;
1067 /* First: check the simple operations. They are easy to evaluate */
1068 if (count_zero)
1069 l = &sma->sem_base[semnum].pending_const;
1070 else
1071 l = &sma->sem_base[semnum].pending_alter;
1da177e4 1072
2f2ed41d
MS
1073 list_for_each_entry(q, l, list) {
1074 /* all task on a per-semaphore list sleep on exactly
1075 * that semaphore
1076 */
1077 semcnt++;
ebc2e5e6
RR
1078 }
1079
2f2ed41d 1080 /* Then: check the complex operations. */
1994862d 1081 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1082 semcnt += check_qop(sma, semnum, q, count_zero);
1083 }
1084 if (count_zero) {
1085 list_for_each_entry(q, &sma->pending_const, list) {
1086 semcnt += check_qop(sma, semnum, q, count_zero);
1087 }
1994862d 1088 }
2f2ed41d 1089 return semcnt;
1da177e4
LT
1090}
1091
d9a605e4
DB
1092/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1093 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1094 * remains locked on exit.
1da177e4 1095 */
01b8b07a 1096static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1097{
380af1b3
MS
1098 struct sem_undo *un, *tu;
1099 struct sem_queue *q, *tq;
01b8b07a 1100 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1101 int i;
9ae949fa 1102 DEFINE_WAKE_Q(wake_q);
1da177e4 1103
380af1b3 1104 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1105 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1106 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1107 list_del(&un->list_id);
1108 spin_lock(&un->ulp->lock);
1da177e4 1109 un->semid = -1;
380af1b3
MS
1110 list_del_rcu(&un->list_proc);
1111 spin_unlock(&un->ulp->lock);
693a8b6e 1112 kfree_rcu(un, rcu);
380af1b3 1113 }
1da177e4
LT
1114
1115 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1116 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1117 unlink_queue(sma, q);
9ae949fa 1118 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1119 }
1120
1121 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1122 unlink_queue(sma, q);
9ae949fa 1123 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1124 }
9f1bc2c9
RR
1125 for (i = 0; i < sma->sem_nsems; i++) {
1126 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1127 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1128 unlink_queue(sma, q);
9ae949fa 1129 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1130 }
1131 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1132 unlink_queue(sma, q);
9ae949fa 1133 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9
RR
1134 }
1135 }
1da177e4 1136
7ca7e564
ND
1137 /* Remove the semaphore set from the IDR */
1138 sem_rmid(ns, sma);
6062a8dc 1139 sem_unlock(sma, -1);
6d49dab8 1140 rcu_read_unlock();
1da177e4 1141
9ae949fa 1142 wake_up_q(&wake_q);
e3893534 1143 ns->used_sems -= sma->sem_nsems;
53dad6d3 1144 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1145}
1146
1147static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1148{
239521f3 1149 switch (version) {
1da177e4
LT
1150 case IPC_64:
1151 return copy_to_user(buf, in, sizeof(*in));
1152 case IPC_OLD:
1153 {
1154 struct semid_ds out;
1155
982f7c2b
DR
1156 memset(&out, 0, sizeof(out));
1157
1da177e4
LT
1158 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1159
1160 out.sem_otime = in->sem_otime;
1161 out.sem_ctime = in->sem_ctime;
1162 out.sem_nsems = in->sem_nsems;
1163
1164 return copy_to_user(buf, &out, sizeof(out));
1165 }
1166 default:
1167 return -EINVAL;
1168 }
1169}
1170
d12e1e50
MS
1171static time_t get_semotime(struct sem_array *sma)
1172{
1173 int i;
1174 time_t res;
1175
1176 res = sma->sem_base[0].sem_otime;
1177 for (i = 1; i < sma->sem_nsems; i++) {
1178 time_t to = sma->sem_base[i].sem_otime;
1179
1180 if (to > res)
1181 res = to;
1182 }
1183 return res;
1184}
1185
4b9fcb0e 1186static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1187 int cmd, int version, void __user *p)
1da177e4 1188{
e5cc9c7b 1189 int err;
1da177e4
LT
1190 struct sem_array *sma;
1191
239521f3 1192 switch (cmd) {
1da177e4
LT
1193 case IPC_INFO:
1194 case SEM_INFO:
1195 {
1196 struct seminfo seminfo;
1197 int max_id;
1198
1199 err = security_sem_semctl(NULL, cmd);
1200 if (err)
1201 return err;
46c0a8ca 1202
239521f3 1203 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1204 seminfo.semmni = ns->sc_semmni;
1205 seminfo.semmns = ns->sc_semmns;
1206 seminfo.semmsl = ns->sc_semmsl;
1207 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1208 seminfo.semvmx = SEMVMX;
1209 seminfo.semmnu = SEMMNU;
1210 seminfo.semmap = SEMMAP;
1211 seminfo.semume = SEMUME;
d9a605e4 1212 down_read(&sem_ids(ns).rwsem);
1da177e4 1213 if (cmd == SEM_INFO) {
e3893534
KK
1214 seminfo.semusz = sem_ids(ns).in_use;
1215 seminfo.semaem = ns->used_sems;
1da177e4
LT
1216 } else {
1217 seminfo.semusz = SEMUSZ;
1218 seminfo.semaem = SEMAEM;
1219 }
7ca7e564 1220 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1221 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1222 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1223 return -EFAULT;
239521f3 1224 return (max_id < 0) ? 0 : max_id;
1da177e4 1225 }
4b9fcb0e 1226 case IPC_STAT:
1da177e4
LT
1227 case SEM_STAT:
1228 {
1229 struct semid64_ds tbuf;
16df3674
DB
1230 int id = 0;
1231
1232 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1233
941b0304 1234 rcu_read_lock();
4b9fcb0e 1235 if (cmd == SEM_STAT) {
16df3674
DB
1236 sma = sem_obtain_object(ns, semid);
1237 if (IS_ERR(sma)) {
1238 err = PTR_ERR(sma);
1239 goto out_unlock;
1240 }
4b9fcb0e
PP
1241 id = sma->sem_perm.id;
1242 } else {
16df3674
DB
1243 sma = sem_obtain_object_check(ns, semid);
1244 if (IS_ERR(sma)) {
1245 err = PTR_ERR(sma);
1246 goto out_unlock;
1247 }
4b9fcb0e 1248 }
1da177e4
LT
1249
1250 err = -EACCES;
b0e77598 1251 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1252 goto out_unlock;
1253
1254 err = security_sem_semctl(sma, cmd);
1255 if (err)
1256 goto out_unlock;
1257
1da177e4 1258 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1259 tbuf.sem_otime = get_semotime(sma);
1260 tbuf.sem_ctime = sma->sem_ctime;
1261 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1262 rcu_read_unlock();
e1fd1f49 1263 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1264 return -EFAULT;
1265 return id;
1266 }
1267 default:
1268 return -EINVAL;
1269 }
1da177e4 1270out_unlock:
16df3674 1271 rcu_read_unlock();
1da177e4
LT
1272 return err;
1273}
1274
e1fd1f49
AV
1275static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1276 unsigned long arg)
1277{
1278 struct sem_undo *un;
1279 struct sem_array *sma;
239521f3 1280 struct sem *curr;
9ae949fa
DB
1281 int err, val;
1282 DEFINE_WAKE_Q(wake_q);
1283
e1fd1f49
AV
1284#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1285 /* big-endian 64bit */
1286 val = arg >> 32;
1287#else
1288 /* 32bit or little-endian 64bit */
1289 val = arg;
1290#endif
1291
6062a8dc
RR
1292 if (val > SEMVMX || val < 0)
1293 return -ERANGE;
e1fd1f49 1294
6062a8dc
RR
1295 rcu_read_lock();
1296 sma = sem_obtain_object_check(ns, semid);
1297 if (IS_ERR(sma)) {
1298 rcu_read_unlock();
1299 return PTR_ERR(sma);
1300 }
1301
1302 if (semnum < 0 || semnum >= sma->sem_nsems) {
1303 rcu_read_unlock();
1304 return -EINVAL;
1305 }
1306
1307
1308 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1309 rcu_read_unlock();
1310 return -EACCES;
1311 }
e1fd1f49
AV
1312
1313 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1314 if (err) {
1315 rcu_read_unlock();
1316 return -EACCES;
1317 }
e1fd1f49 1318
6062a8dc 1319 sem_lock(sma, NULL, -1);
e1fd1f49 1320
0f3d2b01 1321 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1322 sem_unlock(sma, -1);
1323 rcu_read_unlock();
1324 return -EIDRM;
1325 }
1326
e1fd1f49
AV
1327 curr = &sma->sem_base[semnum];
1328
cf9d5d78 1329 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1330 list_for_each_entry(un, &sma->list_id, list_id)
1331 un->semadj[semnum] = 0;
1332
1333 curr->semval = val;
1334 curr->sempid = task_tgid_vnr(current);
1335 sma->sem_ctime = get_seconds();
1336 /* maybe some queued-up processes were waiting for this */
9ae949fa 1337 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1338 sem_unlock(sma, -1);
6d49dab8 1339 rcu_read_unlock();
9ae949fa 1340 wake_up_q(&wake_q);
6062a8dc 1341 return 0;
e1fd1f49
AV
1342}
1343
e3893534 1344static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1345 int cmd, void __user *p)
1da177e4
LT
1346{
1347 struct sem_array *sma;
239521f3 1348 struct sem *curr;
16df3674 1349 int err, nsems;
1da177e4 1350 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1351 ushort *sem_io = fast_sem_io;
9ae949fa 1352 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1353
1354 rcu_read_lock();
1355 sma = sem_obtain_object_check(ns, semid);
1356 if (IS_ERR(sma)) {
1357 rcu_read_unlock();
023a5355 1358 return PTR_ERR(sma);
16df3674 1359 }
1da177e4
LT
1360
1361 nsems = sma->sem_nsems;
1362
1da177e4 1363 err = -EACCES;
c728b9c8
LT
1364 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1365 goto out_rcu_wakeup;
1da177e4
LT
1366
1367 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1368 if (err)
1369 goto out_rcu_wakeup;
1da177e4
LT
1370
1371 err = -EACCES;
1372 switch (cmd) {
1373 case GETALL:
1374 {
e1fd1f49 1375 ushort __user *array = p;
1da177e4
LT
1376 int i;
1377
ce857229 1378 sem_lock(sma, NULL, -1);
0f3d2b01 1379 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1380 err = -EIDRM;
1381 goto out_unlock;
1382 }
239521f3 1383 if (nsems > SEMMSL_FAST) {
ce857229 1384 if (!ipc_rcu_getref(sma)) {
ce857229 1385 err = -EIDRM;
6e224f94 1386 goto out_unlock;
ce857229
AV
1387 }
1388 sem_unlock(sma, -1);
6d49dab8 1389 rcu_read_unlock();
1da177e4 1390 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1391 if (sem_io == NULL) {
9b24fef9 1392 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1393 return -ENOMEM;
1394 }
1395
4091fd94 1396 rcu_read_lock();
6ff37972 1397 sem_lock_and_putref(sma);
0f3d2b01 1398 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1399 err = -EIDRM;
6e224f94 1400 goto out_unlock;
1da177e4 1401 }
ce857229 1402 }
1da177e4
LT
1403 for (i = 0; i < sma->sem_nsems; i++)
1404 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1405 sem_unlock(sma, -1);
6d49dab8 1406 rcu_read_unlock();
1da177e4 1407 err = 0;
239521f3 1408 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1409 err = -EFAULT;
1410 goto out_free;
1411 }
1412 case SETALL:
1413 {
1414 int i;
1415 struct sem_undo *un;
1416
6062a8dc 1417 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1418 err = -EIDRM;
1419 goto out_rcu_wakeup;
6062a8dc 1420 }
16df3674 1421 rcu_read_unlock();
1da177e4 1422
239521f3 1423 if (nsems > SEMMSL_FAST) {
1da177e4 1424 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1425 if (sem_io == NULL) {
9b24fef9 1426 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1427 return -ENOMEM;
1428 }
1429 }
1430
239521f3 1431 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
9b24fef9 1432 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1433 err = -EFAULT;
1434 goto out_free;
1435 }
1436
1437 for (i = 0; i < nsems; i++) {
1438 if (sem_io[i] > SEMVMX) {
9b24fef9 1439 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1440 err = -ERANGE;
1441 goto out_free;
1442 }
1443 }
4091fd94 1444 rcu_read_lock();
6ff37972 1445 sem_lock_and_putref(sma);
0f3d2b01 1446 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1447 err = -EIDRM;
6e224f94 1448 goto out_unlock;
1da177e4
LT
1449 }
1450
a5f4db87 1451 for (i = 0; i < nsems; i++) {
1da177e4 1452 sma->sem_base[i].semval = sem_io[i];
a5f4db87
DB
1453 sma->sem_base[i].sempid = task_tgid_vnr(current);
1454 }
4daa28f6 1455
cf9d5d78 1456 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1457 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1458 for (i = 0; i < nsems; i++)
1459 un->semadj[i] = 0;
4daa28f6 1460 }
1da177e4
LT
1461 sma->sem_ctime = get_seconds();
1462 /* maybe some queued-up processes were waiting for this */
9ae949fa 1463 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1464 err = 0;
1465 goto out_unlock;
1466 }
e1fd1f49 1467 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1468 }
1469 err = -EINVAL;
c728b9c8
LT
1470 if (semnum < 0 || semnum >= nsems)
1471 goto out_rcu_wakeup;
1da177e4 1472
6062a8dc 1473 sem_lock(sma, NULL, -1);
0f3d2b01 1474 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1475 err = -EIDRM;
1476 goto out_unlock;
1477 }
1da177e4
LT
1478 curr = &sma->sem_base[semnum];
1479
1480 switch (cmd) {
1481 case GETVAL:
1482 err = curr->semval;
1483 goto out_unlock;
1484 case GETPID:
1485 err = curr->sempid;
1486 goto out_unlock;
1487 case GETNCNT:
2f2ed41d 1488 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1489 goto out_unlock;
1490 case GETZCNT:
2f2ed41d 1491 err = count_semcnt(sma, semnum, 1);
1da177e4 1492 goto out_unlock;
1da177e4 1493 }
16df3674 1494
1da177e4 1495out_unlock:
6062a8dc 1496 sem_unlock(sma, -1);
c728b9c8 1497out_rcu_wakeup:
6d49dab8 1498 rcu_read_unlock();
9ae949fa 1499 wake_up_q(&wake_q);
1da177e4 1500out_free:
239521f3 1501 if (sem_io != fast_sem_io)
1d5cfdb0 1502 ipc_free(sem_io);
1da177e4
LT
1503 return err;
1504}
1505
016d7132
PP
1506static inline unsigned long
1507copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1508{
239521f3 1509 switch (version) {
1da177e4 1510 case IPC_64:
016d7132 1511 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1512 return -EFAULT;
1da177e4 1513 return 0;
1da177e4
LT
1514 case IPC_OLD:
1515 {
1516 struct semid_ds tbuf_old;
1517
239521f3 1518 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1519 return -EFAULT;
1520
016d7132
PP
1521 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1522 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1523 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1524
1525 return 0;
1526 }
1527 default:
1528 return -EINVAL;
1529 }
1530}
1531
522bb2a2 1532/*
d9a605e4 1533 * This function handles some semctl commands which require the rwsem
522bb2a2 1534 * to be held in write mode.
d9a605e4 1535 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1536 */
21a4826a 1537static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1538 int cmd, int version, void __user *p)
1da177e4
LT
1539{
1540 struct sem_array *sma;
1541 int err;
016d7132 1542 struct semid64_ds semid64;
1da177e4
LT
1543 struct kern_ipc_perm *ipcp;
1544
239521f3 1545 if (cmd == IPC_SET) {
e1fd1f49 1546 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1547 return -EFAULT;
1da177e4 1548 }
073115d6 1549
d9a605e4 1550 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1551 rcu_read_lock();
1552
16df3674
DB
1553 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1554 &semid64.sem_perm, 0);
7b4cc5d8
DB
1555 if (IS_ERR(ipcp)) {
1556 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1557 goto out_unlock1;
1558 }
073115d6 1559
a5f75e7f 1560 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1561
1562 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1563 if (err)
1564 goto out_unlock1;
1da177e4 1565
7b4cc5d8 1566 switch (cmd) {
1da177e4 1567 case IPC_RMID:
6062a8dc 1568 sem_lock(sma, NULL, -1);
7b4cc5d8 1569 /* freeary unlocks the ipc object and rcu */
01b8b07a 1570 freeary(ns, ipcp);
522bb2a2 1571 goto out_up;
1da177e4 1572 case IPC_SET:
6062a8dc 1573 sem_lock(sma, NULL, -1);
1efdb69b
EB
1574 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1575 if (err)
7b4cc5d8 1576 goto out_unlock0;
1da177e4 1577 sma->sem_ctime = get_seconds();
1da177e4
LT
1578 break;
1579 default:
1da177e4 1580 err = -EINVAL;
7b4cc5d8 1581 goto out_unlock1;
1da177e4 1582 }
1da177e4 1583
7b4cc5d8 1584out_unlock0:
6062a8dc 1585 sem_unlock(sma, -1);
7b4cc5d8 1586out_unlock1:
6d49dab8 1587 rcu_read_unlock();
522bb2a2 1588out_up:
d9a605e4 1589 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1590 return err;
1591}
1592
e1fd1f49 1593SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1594{
1da177e4 1595 int version;
e3893534 1596 struct ipc_namespace *ns;
e1fd1f49 1597 void __user *p = (void __user *)arg;
1da177e4
LT
1598
1599 if (semid < 0)
1600 return -EINVAL;
1601
1602 version = ipc_parse_version(&cmd);
e3893534 1603 ns = current->nsproxy->ipc_ns;
1da177e4 1604
239521f3 1605 switch (cmd) {
1da177e4
LT
1606 case IPC_INFO:
1607 case SEM_INFO:
4b9fcb0e 1608 case IPC_STAT:
1da177e4 1609 case SEM_STAT:
e1fd1f49 1610 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1611 case GETALL:
1612 case GETVAL:
1613 case GETPID:
1614 case GETNCNT:
1615 case GETZCNT:
1da177e4 1616 case SETALL:
e1fd1f49
AV
1617 return semctl_main(ns, semid, semnum, cmd, p);
1618 case SETVAL:
1619 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1620 case IPC_RMID:
1621 case IPC_SET:
e1fd1f49 1622 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1623 default:
1624 return -EINVAL;
1625 }
1626}
1627
1da177e4
LT
1628/* If the task doesn't already have a undo_list, then allocate one
1629 * here. We guarantee there is only one thread using this undo list,
1630 * and current is THE ONE
1631 *
1632 * If this allocation and assignment succeeds, but later
1633 * portions of this code fail, there is no need to free the sem_undo_list.
1634 * Just let it stay associated with the task, and it'll be freed later
1635 * at exit time.
1636 *
1637 * This can block, so callers must hold no locks.
1638 */
1639static inline int get_undo_list(struct sem_undo_list **undo_listp)
1640{
1641 struct sem_undo_list *undo_list;
1da177e4
LT
1642
1643 undo_list = current->sysvsem.undo_list;
1644 if (!undo_list) {
2453a306 1645 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1646 if (undo_list == NULL)
1647 return -ENOMEM;
00a5dfdb 1648 spin_lock_init(&undo_list->lock);
1da177e4 1649 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1650 INIT_LIST_HEAD(&undo_list->list_proc);
1651
1da177e4
LT
1652 current->sysvsem.undo_list = undo_list;
1653 }
1654 *undo_listp = undo_list;
1655 return 0;
1656}
1657
bf17bb71 1658static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1659{
bf17bb71 1660 struct sem_undo *un;
4daa28f6 1661
bf17bb71
NP
1662 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1663 if (un->semid == semid)
1664 return un;
1da177e4 1665 }
4daa28f6 1666 return NULL;
1da177e4
LT
1667}
1668
bf17bb71
NP
1669static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1670{
1671 struct sem_undo *un;
1672
239521f3 1673 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1674
1675 un = __lookup_undo(ulp, semid);
1676 if (un) {
1677 list_del_rcu(&un->list_proc);
1678 list_add_rcu(&un->list_proc, &ulp->list_proc);
1679 }
1680 return un;
1681}
1682
4daa28f6 1683/**
8001c858 1684 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1685 * @ns: namespace
1686 * @semid: semaphore array id
1687 *
1688 * The function looks up (and if not present creates) the undo structure.
1689 * The size of the undo structure depends on the size of the semaphore
1690 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1691 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1692 * performs a rcu_read_lock().
4daa28f6
MS
1693 */
1694static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1695{
1696 struct sem_array *sma;
1697 struct sem_undo_list *ulp;
1698 struct sem_undo *un, *new;
6062a8dc 1699 int nsems, error;
1da177e4
LT
1700
1701 error = get_undo_list(&ulp);
1702 if (error)
1703 return ERR_PTR(error);
1704
380af1b3 1705 rcu_read_lock();
c530c6ac 1706 spin_lock(&ulp->lock);
1da177e4 1707 un = lookup_undo(ulp, semid);
c530c6ac 1708 spin_unlock(&ulp->lock);
239521f3 1709 if (likely(un != NULL))
1da177e4
LT
1710 goto out;
1711
1712 /* no undo structure around - allocate one. */
4daa28f6 1713 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1714 sma = sem_obtain_object_check(ns, semid);
1715 if (IS_ERR(sma)) {
1716 rcu_read_unlock();
4de85cd6 1717 return ERR_CAST(sma);
16df3674 1718 }
023a5355 1719
1da177e4 1720 nsems = sma->sem_nsems;
6062a8dc
RR
1721 if (!ipc_rcu_getref(sma)) {
1722 rcu_read_unlock();
1723 un = ERR_PTR(-EIDRM);
1724 goto out;
1725 }
16df3674 1726 rcu_read_unlock();
1da177e4 1727
4daa28f6 1728 /* step 2: allocate new undo structure */
4668edc3 1729 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1730 if (!new) {
9b24fef9 1731 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1732 return ERR_PTR(-ENOMEM);
1733 }
1da177e4 1734
380af1b3 1735 /* step 3: Acquire the lock on semaphore array */
4091fd94 1736 rcu_read_lock();
6ff37972 1737 sem_lock_and_putref(sma);
0f3d2b01 1738 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1739 sem_unlock(sma, -1);
6d49dab8 1740 rcu_read_unlock();
1da177e4
LT
1741 kfree(new);
1742 un = ERR_PTR(-EIDRM);
1743 goto out;
1744 }
380af1b3
MS
1745 spin_lock(&ulp->lock);
1746
1747 /*
1748 * step 4: check for races: did someone else allocate the undo struct?
1749 */
1750 un = lookup_undo(ulp, semid);
1751 if (un) {
1752 kfree(new);
1753 goto success;
1754 }
4daa28f6
MS
1755 /* step 5: initialize & link new undo structure */
1756 new->semadj = (short *) &new[1];
380af1b3 1757 new->ulp = ulp;
4daa28f6
MS
1758 new->semid = semid;
1759 assert_spin_locked(&ulp->lock);
380af1b3 1760 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1761 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1762 list_add(&new->list_id, &sma->list_id);
380af1b3 1763 un = new;
4daa28f6 1764
380af1b3 1765success:
c530c6ac 1766 spin_unlock(&ulp->lock);
6062a8dc 1767 sem_unlock(sma, -1);
1da177e4
LT
1768out:
1769 return un;
1770}
1771
d5460c99
HC
1772SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1773 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1774{
1775 int error = -EINVAL;
1776 struct sem_array *sma;
1777 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1778 struct sembuf *sops = fast_sops, *sop;
1da177e4 1779 struct sem_undo *un;
4ce33ec2
DB
1780 int max, locknum;
1781 bool undos = false, alter = false, dupsop = false;
1da177e4 1782 struct sem_queue queue;
4ce33ec2 1783 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1784 struct ipc_namespace *ns;
1785
1786 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1787
1788 if (nsops < 1 || semid < 0)
1789 return -EINVAL;
e3893534 1790 if (nsops > ns->sc_semopm)
1da177e4 1791 return -E2BIG;
239521f3
MS
1792 if (nsops > SEMOPM_FAST) {
1793 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1794 if (sops == NULL)
1da177e4
LT
1795 return -ENOMEM;
1796 }
4ce33ec2 1797
239521f3
MS
1798 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1799 error = -EFAULT;
1da177e4
LT
1800 goto out_free;
1801 }
4ce33ec2 1802
1da177e4
LT
1803 if (timeout) {
1804 struct timespec _timeout;
1805 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1806 error = -EFAULT;
1807 goto out_free;
1808 }
1809 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1810 _timeout.tv_nsec >= 1000000000L) {
1811 error = -EINVAL;
1812 goto out_free;
1813 }
1814 jiffies_left = timespec_to_jiffies(&_timeout);
1815 }
4ce33ec2 1816
1da177e4
LT
1817 max = 0;
1818 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1819 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1820
1da177e4
LT
1821 if (sop->sem_num >= max)
1822 max = sop->sem_num;
1823 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1824 undos = true;
1825 if (dup & mask) {
1826 /*
1827 * There was a previous alter access that appears
1828 * to have accessed the same semaphore, thus use
1829 * the dupsop logic. "appears", because the detection
1830 * can only check % BITS_PER_LONG.
1831 */
1832 dupsop = true;
1833 }
1834 if (sop->sem_op != 0) {
1835 alter = true;
1836 dup |= mask;
1837 }
1da177e4 1838 }
1da177e4 1839
1da177e4 1840 if (undos) {
6062a8dc 1841 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1842 un = find_alloc_undo(ns, semid);
1da177e4
LT
1843 if (IS_ERR(un)) {
1844 error = PTR_ERR(un);
1845 goto out_free;
1846 }
6062a8dc 1847 } else {
1da177e4 1848 un = NULL;
6062a8dc
RR
1849 rcu_read_lock();
1850 }
1da177e4 1851
16df3674 1852 sma = sem_obtain_object_check(ns, semid);
023a5355 1853 if (IS_ERR(sma)) {
6062a8dc 1854 rcu_read_unlock();
023a5355 1855 error = PTR_ERR(sma);
1da177e4 1856 goto out_free;
023a5355
ND
1857 }
1858
16df3674 1859 error = -EFBIG;
248e7357
DB
1860 if (max >= sma->sem_nsems) {
1861 rcu_read_unlock();
1862 goto out_free;
1863 }
16df3674
DB
1864
1865 error = -EACCES;
248e7357
DB
1866 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1867 rcu_read_unlock();
1868 goto out_free;
1869 }
16df3674
DB
1870
1871 error = security_sem_semop(sma, sops, nsops, alter);
248e7357
DB
1872 if (error) {
1873 rcu_read_unlock();
1874 goto out_free;
1875 }
16df3674 1876
6e224f94
MS
1877 error = -EIDRM;
1878 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1879 /*
1880 * We eventually might perform the following check in a lockless
1881 * fashion, considering ipc_valid_object() locking constraints.
1882 * If nsops == 1 and there is no contention for sem_perm.lock, then
1883 * only a per-semaphore lock is held and it's OK to proceed with the
1884 * check below. More details on the fine grained locking scheme
1885 * entangled here and why it's RMID race safe on comments at sem_lock()
1886 */
1887 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1888 goto out_unlock_free;
1da177e4 1889 /*
4daa28f6 1890 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1891 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1892 * and now a new array with received the same id. Check and fail.
25985edc 1893 * This case can be detected checking un->semid. The existence of
380af1b3 1894 * "un" itself is guaranteed by rcu.
1da177e4 1895 */
6062a8dc
RR
1896 if (un && un->semid == -1)
1897 goto out_unlock_free;
4daa28f6 1898
d198cd6d
MS
1899 queue.sops = sops;
1900 queue.nsops = nsops;
1901 queue.undo = un;
1902 queue.pid = task_tgid_vnr(current);
1903 queue.alter = alter;
4ce33ec2 1904 queue.dupsop = dupsop;
d198cd6d
MS
1905
1906 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
1907 if (error == 0) { /* non-blocking succesfull path */
1908 DEFINE_WAKE_Q(wake_q);
1909
1910 /*
1911 * If the operation was successful, then do
0e8c6656
MS
1912 * the required updates.
1913 */
1914 if (alter)
9ae949fa 1915 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
1916 else
1917 set_semotime(sma, sops);
9ae949fa
DB
1918
1919 sem_unlock(sma, locknum);
1920 rcu_read_unlock();
1921 wake_up_q(&wake_q);
1922
1923 goto out_free;
1da177e4 1924 }
9ae949fa 1925 if (error < 0) /* non-blocking error path */
0e8c6656 1926 goto out_unlock_free;
1da177e4 1927
9ae949fa
DB
1928 /*
1929 * We need to sleep on this operation, so we put the current
1da177e4
LT
1930 * task into the pending queue and go to sleep.
1931 */
b97e820f
MS
1932 if (nsops == 1) {
1933 struct sem *curr;
1934 curr = &sma->sem_base[sops->sem_num];
1935
f269f40a
MS
1936 if (alter) {
1937 if (sma->complex_count) {
1938 list_add_tail(&queue.list,
1939 &sma->pending_alter);
1940 } else {
1941
1942 list_add_tail(&queue.list,
1943 &curr->pending_alter);
1944 }
1945 } else {
1a82e9e1 1946 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1947 }
b97e820f 1948 } else {
f269f40a
MS
1949 if (!sma->complex_count)
1950 merge_queues(sma);
1951
9f1bc2c9 1952 if (alter)
1a82e9e1 1953 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1954 else
1a82e9e1
MS
1955 list_add_tail(&queue.list, &sma->pending_const);
1956
b97e820f
MS
1957 sma->complex_count++;
1958 }
1959
b5fa01a2
DB
1960 do {
1961 queue.status = -EINTR;
1962 queue.sleeper = current;
0b0577f6 1963
b5fa01a2
DB
1964 __set_current_state(TASK_INTERRUPTIBLE);
1965 sem_unlock(sma, locknum);
1966 rcu_read_unlock();
1da177e4 1967
b5fa01a2
DB
1968 if (timeout)
1969 jiffies_left = schedule_timeout(jiffies_left);
1970 else
1971 schedule();
1da177e4 1972
9ae949fa 1973 /*
b5fa01a2
DB
1974 * fastpath: the semop has completed, either successfully or
1975 * not, from the syscall pov, is quite irrelevant to us at this
1976 * point; we're done.
1977 *
1978 * We _do_ care, nonetheless, about being awoken by a signal or
1979 * spuriously. The queue.status is checked again in the
1980 * slowpath (aka after taking sem_lock), such that we can detect
1981 * scenarios where we were awakened externally, during the
1982 * window between wake_q_add() and wake_up_q().
c61284e9 1983 */
b5fa01a2
DB
1984 error = READ_ONCE(queue.status);
1985 if (error != -EINTR) {
1986 /*
1987 * User space could assume that semop() is a memory
1988 * barrier: Without the mb(), the cpu could
1989 * speculatively read in userspace stale data that was
1990 * overwritten by the previous owner of the semaphore.
1991 */
1992 smp_mb();
1993 goto out_free;
1994 }
d694ad62 1995
b5fa01a2 1996 rcu_read_lock();
c626bc46 1997 locknum = sem_lock(sma, sops, nsops);
1da177e4 1998
370b262c
DB
1999 if (!ipc_valid_object(&sma->sem_perm))
2000 goto out_unlock_free;
2001
2002 error = READ_ONCE(queue.status);
1da177e4 2003
b5fa01a2
DB
2004 /*
2005 * If queue.status != -EINTR we are woken up by another process.
2006 * Leave without unlink_queue(), but with sem_unlock().
2007 */
2008 if (error != -EINTR)
2009 goto out_unlock_free;
0b0577f6 2010
b5fa01a2
DB
2011 /*
2012 * If an interrupt occurred we have to clean up the queue.
2013 */
2014 if (timeout && jiffies_left == 0)
2015 error = -EAGAIN;
2016 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2017
b97e820f 2018 unlink_queue(sma, &queue);
1da177e4
LT
2019
2020out_unlock_free:
6062a8dc 2021 sem_unlock(sma, locknum);
6d49dab8 2022 rcu_read_unlock();
1da177e4 2023out_free:
239521f3 2024 if (sops != fast_sops)
1da177e4
LT
2025 kfree(sops);
2026 return error;
2027}
2028
d5460c99
HC
2029SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2030 unsigned, nsops)
1da177e4
LT
2031{
2032 return sys_semtimedop(semid, tsops, nsops, NULL);
2033}
2034
2035/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2036 * parent and child tasks.
1da177e4
LT
2037 */
2038
2039int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2040{
2041 struct sem_undo_list *undo_list;
2042 int error;
2043
2044 if (clone_flags & CLONE_SYSVSEM) {
2045 error = get_undo_list(&undo_list);
2046 if (error)
2047 return error;
1da177e4
LT
2048 atomic_inc(&undo_list->refcnt);
2049 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2050 } else
1da177e4
LT
2051 tsk->sysvsem.undo_list = NULL;
2052
2053 return 0;
2054}
2055
2056/*
2057 * add semadj values to semaphores, free undo structures.
2058 * undo structures are not freed when semaphore arrays are destroyed
2059 * so some of them may be out of date.
2060 * IMPLEMENTATION NOTE: There is some confusion over whether the
2061 * set of adjustments that needs to be done should be done in an atomic
2062 * manner or not. That is, if we are attempting to decrement the semval
2063 * should we queue up and wait until we can do so legally?
2064 * The original implementation attempted to do this (queue and wait).
2065 * The current implementation does not do so. The POSIX standard
2066 * and SVID should be consulted to determine what behavior is mandated.
2067 */
2068void exit_sem(struct task_struct *tsk)
2069{
4daa28f6 2070 struct sem_undo_list *ulp;
1da177e4 2071
4daa28f6
MS
2072 ulp = tsk->sysvsem.undo_list;
2073 if (!ulp)
1da177e4 2074 return;
9edff4ab 2075 tsk->sysvsem.undo_list = NULL;
1da177e4 2076
4daa28f6 2077 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2078 return;
2079
380af1b3 2080 for (;;) {
1da177e4 2081 struct sem_array *sma;
380af1b3 2082 struct sem_undo *un;
6062a8dc 2083 int semid, i;
9ae949fa 2084 DEFINE_WAKE_Q(wake_q);
4daa28f6 2085
2a1613a5
NB
2086 cond_resched();
2087
380af1b3 2088 rcu_read_lock();
05725f7e
JP
2089 un = list_entry_rcu(ulp->list_proc.next,
2090 struct sem_undo, list_proc);
602b8593
HK
2091 if (&un->list_proc == &ulp->list_proc) {
2092 /*
2093 * We must wait for freeary() before freeing this ulp,
2094 * in case we raced with last sem_undo. There is a small
2095 * possibility where we exit while freeary() didn't
2096 * finish unlocking sem_undo_list.
2097 */
2098 spin_unlock_wait(&ulp->lock);
2099 rcu_read_unlock();
2100 break;
2101 }
2102 spin_lock(&ulp->lock);
2103 semid = un->semid;
2104 spin_unlock(&ulp->lock);
4daa28f6 2105
602b8593 2106 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2107 if (semid == -1) {
2108 rcu_read_unlock();
602b8593 2109 continue;
6062a8dc 2110 }
1da177e4 2111
602b8593 2112 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2113 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2114 if (IS_ERR(sma)) {
2115 rcu_read_unlock();
380af1b3 2116 continue;
6062a8dc 2117 }
1da177e4 2118
6062a8dc 2119 sem_lock(sma, NULL, -1);
6e224f94 2120 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2121 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2122 sem_unlock(sma, -1);
2123 rcu_read_unlock();
2124 continue;
2125 }
bf17bb71 2126 un = __lookup_undo(ulp, semid);
380af1b3
MS
2127 if (un == NULL) {
2128 /* exit_sem raced with IPC_RMID+semget() that created
2129 * exactly the same semid. Nothing to do.
2130 */
6062a8dc 2131 sem_unlock(sma, -1);
6d49dab8 2132 rcu_read_unlock();
380af1b3
MS
2133 continue;
2134 }
2135
2136 /* remove un from the linked lists */
cf9d5d78 2137 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2138 list_del(&un->list_id);
2139
a9795584
HK
2140 /* we are the last process using this ulp, acquiring ulp->lock
2141 * isn't required. Besides that, we are also protected against
2142 * IPC_RMID as we hold sma->sem_perm lock now
2143 */
380af1b3 2144 list_del_rcu(&un->list_proc);
380af1b3 2145
4daa28f6
MS
2146 /* perform adjustments registered in un */
2147 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2148 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2149 if (un->semadj[i]) {
2150 semaphore->semval += un->semadj[i];
1da177e4
LT
2151 /*
2152 * Range checks of the new semaphore value,
2153 * not defined by sus:
2154 * - Some unices ignore the undo entirely
2155 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2156 * - some cap the value (e.g. FreeBSD caps
2157 * at 0, but doesn't enforce SEMVMX)
2158 *
2159 * Linux caps the semaphore value, both at 0
2160 * and at SEMVMX.
2161 *
239521f3 2162 * Manfred <manfred@colorfullife.com>
1da177e4 2163 */
5f921ae9
IM
2164 if (semaphore->semval < 0)
2165 semaphore->semval = 0;
2166 if (semaphore->semval > SEMVMX)
2167 semaphore->semval = SEMVMX;
b488893a 2168 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2169 }
2170 }
1da177e4 2171 /* maybe some queued-up processes were waiting for this */
9ae949fa 2172 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2173 sem_unlock(sma, -1);
6d49dab8 2174 rcu_read_unlock();
9ae949fa 2175 wake_up_q(&wake_q);
380af1b3 2176
693a8b6e 2177 kfree_rcu(un, rcu);
1da177e4 2178 }
4daa28f6 2179 kfree(ulp);
1da177e4
LT
2180}
2181
2182#ifdef CONFIG_PROC_FS
19b4946c 2183static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2184{
1efdb69b 2185 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2186 struct sem_array *sma = it;
d12e1e50
MS
2187 time_t sem_otime;
2188
d8c63376
MS
2189 /*
2190 * The proc interface isn't aware of sem_lock(), it calls
2191 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2192 * In order to stay compatible with sem_lock(), we must
2193 * enter / leave complex_mode.
d8c63376 2194 */
5864a2fd 2195 complexmode_enter(sma);
d8c63376 2196
d12e1e50 2197 sem_otime = get_semotime(sma);
19b4946c 2198
7f032d6e
JP
2199 seq_printf(s,
2200 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2201 sma->sem_perm.key,
2202 sma->sem_perm.id,
2203 sma->sem_perm.mode,
2204 sma->sem_nsems,
2205 from_kuid_munged(user_ns, sma->sem_perm.uid),
2206 from_kgid_munged(user_ns, sma->sem_perm.gid),
2207 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2208 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2209 sem_otime,
2210 sma->sem_ctime);
2211
5864a2fd
MS
2212 complexmode_tryleave(sma);
2213
7f032d6e 2214 return 0;
1da177e4
LT
2215}
2216#endif