]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - ipc/sem.c
[PATCH] sem2mutex: misc static one-file mutexes
[mirror_ubuntu-zesty-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
624dffcb 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4
LT
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64 */
65
66#include <linux/config.h>
67#include <linux/slab.h>
68#include <linux/spinlock.h>
69#include <linux/init.h>
70#include <linux/proc_fs.h>
71#include <linux/time.h>
72#include <linux/smp_lock.h>
73#include <linux/security.h>
74#include <linux/syscalls.h>
75#include <linux/audit.h>
c59ede7b 76#include <linux/capability.h>
19b4946c 77#include <linux/seq_file.h>
1da177e4
LT
78#include <asm/uaccess.h>
79#include "util.h"
80
81
82#define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id))
83#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
84#define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id))
85#define sem_checkid(sma, semid) \
86 ipc_checkid(&sem_ids,&sma->sem_perm,semid)
87#define sem_buildid(id, seq) \
88 ipc_buildid(&sem_ids, id, seq)
89static struct ipc_ids sem_ids;
90
91static int newary (key_t, int, int);
92static void freeary (struct sem_array *sma, int id);
93#ifdef CONFIG_PROC_FS
19b4946c 94static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
95#endif
96
97#define SEMMSL_FAST 256 /* 512 bytes on stack */
98#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
99
100/*
101 * linked list protection:
102 * sem_undo.id_next,
103 * sem_array.sem_pending{,last},
104 * sem_array.sem_undo: sem_lock() for read/write
105 * sem_undo.proc_next: only "current" is allowed to read/write that field.
106 *
107 */
108
109int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};
110#define sc_semmsl (sem_ctls[0])
111#define sc_semmns (sem_ctls[1])
112#define sc_semopm (sem_ctls[2])
113#define sc_semmni (sem_ctls[3])
114
115static int used_sems;
116
117void __init sem_init (void)
118{
119 used_sems = 0;
120 ipc_init_ids(&sem_ids,sc_semmni);
19b4946c
MW
121 ipc_init_proc_interface("sysvipc/sem",
122 " key semid perms nsems uid gid cuid cgid otime ctime\n",
123 &sem_ids,
124 sysvipc_sem_proc_show);
1da177e4
LT
125}
126
127/*
128 * Lockless wakeup algorithm:
129 * Without the check/retry algorithm a lockless wakeup is possible:
130 * - queue.status is initialized to -EINTR before blocking.
131 * - wakeup is performed by
132 * * unlinking the queue entry from sma->sem_pending
133 * * setting queue.status to IN_WAKEUP
134 * This is the notification for the blocked thread that a
135 * result value is imminent.
136 * * call wake_up_process
137 * * set queue.status to the final value.
138 * - the previously blocked thread checks queue.status:
139 * * if it's IN_WAKEUP, then it must wait until the value changes
140 * * if it's not -EINTR, then the operation was completed by
141 * update_queue. semtimedop can return queue.status without
142 * performing any operation on the semaphore array.
143 * * otherwise it must acquire the spinlock and check what's up.
144 *
145 * The two-stage algorithm is necessary to protect against the following
146 * races:
147 * - if queue.status is set after wake_up_process, then the woken up idle
148 * thread could race forward and try (and fail) to acquire sma->lock
149 * before update_queue had a chance to set queue.status
150 * - if queue.status is written before wake_up_process and if the
151 * blocked process is woken up by a signal between writing
152 * queue.status and the wake_up_process, then the woken up
153 * process could return from semtimedop and die by calling
154 * sys_exit before wake_up_process is called. Then wake_up_process
155 * will oops, because the task structure is already invalid.
156 * (yes, this happened on s390 with sysv msg).
157 *
158 */
159#define IN_WAKEUP 1
160
161static int newary (key_t key, int nsems, int semflg)
162{
163 int id;
164 int retval;
165 struct sem_array *sma;
166 int size;
167
168 if (!nsems)
169 return -EINVAL;
170 if (used_sems + nsems > sc_semmns)
171 return -ENOSPC;
172
173 size = sizeof (*sma) + nsems * sizeof (struct sem);
174 sma = ipc_rcu_alloc(size);
175 if (!sma) {
176 return -ENOMEM;
177 }
178 memset (sma, 0, size);
179
180 sma->sem_perm.mode = (semflg & S_IRWXUGO);
181 sma->sem_perm.key = key;
182
183 sma->sem_perm.security = NULL;
184 retval = security_sem_alloc(sma);
185 if (retval) {
186 ipc_rcu_putref(sma);
187 return retval;
188 }
189
190 id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
191 if(id == -1) {
192 security_sem_free(sma);
193 ipc_rcu_putref(sma);
194 return -ENOSPC;
195 }
196 used_sems += nsems;
197
19b4946c 198 sma->sem_id = sem_buildid(id, sma->sem_perm.seq);
1da177e4
LT
199 sma->sem_base = (struct sem *) &sma[1];
200 /* sma->sem_pending = NULL; */
201 sma->sem_pending_last = &sma->sem_pending;
202 /* sma->undo = NULL; */
203 sma->sem_nsems = nsems;
204 sma->sem_ctime = get_seconds();
205 sem_unlock(sma);
206
19b4946c 207 return sma->sem_id;
1da177e4
LT
208}
209
210asmlinkage long sys_semget (key_t key, int nsems, int semflg)
211{
212 int id, err = -EINVAL;
213 struct sem_array *sma;
214
215 if (nsems < 0 || nsems > sc_semmsl)
216 return -EINVAL;
217 down(&sem_ids.sem);
218
219 if (key == IPC_PRIVATE) {
220 err = newary(key, nsems, semflg);
221 } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */
222 if (!(semflg & IPC_CREAT))
223 err = -ENOENT;
224 else
225 err = newary(key, nsems, semflg);
226 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
227 err = -EEXIST;
228 } else {
229 sma = sem_lock(id);
230 if(sma==NULL)
231 BUG();
232 if (nsems > sma->sem_nsems)
233 err = -EINVAL;
234 else if (ipcperms(&sma->sem_perm, semflg))
235 err = -EACCES;
236 else {
237 int semid = sem_buildid(id, sma->sem_perm.seq);
238 err = security_sem_associate(sma, semflg);
239 if (!err)
240 err = semid;
241 }
242 sem_unlock(sma);
243 }
244
245 up(&sem_ids.sem);
246 return err;
247}
248
249/* Manage the doubly linked list sma->sem_pending as a FIFO:
250 * insert new queue elements at the tail sma->sem_pending_last.
251 */
252static inline void append_to_queue (struct sem_array * sma,
253 struct sem_queue * q)
254{
255 *(q->prev = sma->sem_pending_last) = q;
256 *(sma->sem_pending_last = &q->next) = NULL;
257}
258
259static inline void prepend_to_queue (struct sem_array * sma,
260 struct sem_queue * q)
261{
262 q->next = sma->sem_pending;
263 *(q->prev = &sma->sem_pending) = q;
264 if (q->next)
265 q->next->prev = &q->next;
266 else /* sma->sem_pending_last == &sma->sem_pending */
267 sma->sem_pending_last = &q->next;
268}
269
270static inline void remove_from_queue (struct sem_array * sma,
271 struct sem_queue * q)
272{
273 *(q->prev) = q->next;
274 if (q->next)
275 q->next->prev = q->prev;
276 else /* sma->sem_pending_last == &q->next */
277 sma->sem_pending_last = q->prev;
278 q->prev = NULL; /* mark as removed */
279}
280
281/*
282 * Determine whether a sequence of semaphore operations would succeed
283 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
284 */
285
286static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
287 int nsops, struct sem_undo *un, int pid)
288{
289 int result, sem_op;
290 struct sembuf *sop;
291 struct sem * curr;
292
293 for (sop = sops; sop < sops + nsops; sop++) {
294 curr = sma->sem_base + sop->sem_num;
295 sem_op = sop->sem_op;
296 result = curr->semval;
297
298 if (!sem_op && result)
299 goto would_block;
300
301 result += sem_op;
302 if (result < 0)
303 goto would_block;
304 if (result > SEMVMX)
305 goto out_of_range;
306 if (sop->sem_flg & SEM_UNDO) {
307 int undo = un->semadj[sop->sem_num] - sem_op;
308 /*
309 * Exceeding the undo range is an error.
310 */
311 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
312 goto out_of_range;
313 }
314 curr->semval = result;
315 }
316
317 sop--;
318 while (sop >= sops) {
319 sma->sem_base[sop->sem_num].sempid = pid;
320 if (sop->sem_flg & SEM_UNDO)
321 un->semadj[sop->sem_num] -= sop->sem_op;
322 sop--;
323 }
324
325 sma->sem_otime = get_seconds();
326 return 0;
327
328out_of_range:
329 result = -ERANGE;
330 goto undo;
331
332would_block:
333 if (sop->sem_flg & IPC_NOWAIT)
334 result = -EAGAIN;
335 else
336 result = 1;
337
338undo:
339 sop--;
340 while (sop >= sops) {
341 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
342 sop--;
343 }
344
345 return result;
346}
347
348/* Go through the pending queue for the indicated semaphore
349 * looking for tasks that can be completed.
350 */
351static void update_queue (struct sem_array * sma)
352{
353 int error;
354 struct sem_queue * q;
355
356 q = sma->sem_pending;
357 while(q) {
358 error = try_atomic_semop(sma, q->sops, q->nsops,
359 q->undo, q->pid);
360
361 /* Does q->sleeper still need to sleep? */
362 if (error <= 0) {
363 struct sem_queue *n;
364 remove_from_queue(sma,q);
365 q->status = IN_WAKEUP;
366 /*
367 * Continue scanning. The next operation
368 * that must be checked depends on the type of the
369 * completed operation:
370 * - if the operation modified the array, then
371 * restart from the head of the queue and
372 * check for threads that might be waiting
373 * for semaphore values to become 0.
374 * - if the operation didn't modify the array,
375 * then just continue.
376 */
377 if (q->alter)
378 n = sma->sem_pending;
379 else
380 n = q->next;
381 wake_up_process(q->sleeper);
382 /* hands-off: q will disappear immediately after
383 * writing q->status.
384 */
1224b375 385 smp_wmb();
1da177e4
LT
386 q->status = error;
387 q = n;
388 } else {
389 q = q->next;
390 }
391 }
392}
393
394/* The following counts are associated to each semaphore:
395 * semncnt number of tasks waiting on semval being nonzero
396 * semzcnt number of tasks waiting on semval being zero
397 * This model assumes that a task waits on exactly one semaphore.
398 * Since semaphore operations are to be performed atomically, tasks actually
399 * wait on a whole sequence of semaphores simultaneously.
400 * The counts we return here are a rough approximation, but still
401 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
402 */
403static int count_semncnt (struct sem_array * sma, ushort semnum)
404{
405 int semncnt;
406 struct sem_queue * q;
407
408 semncnt = 0;
409 for (q = sma->sem_pending; q; q = q->next) {
410 struct sembuf * sops = q->sops;
411 int nsops = q->nsops;
412 int i;
413 for (i = 0; i < nsops; i++)
414 if (sops[i].sem_num == semnum
415 && (sops[i].sem_op < 0)
416 && !(sops[i].sem_flg & IPC_NOWAIT))
417 semncnt++;
418 }
419 return semncnt;
420}
421static int count_semzcnt (struct sem_array * sma, ushort semnum)
422{
423 int semzcnt;
424 struct sem_queue * q;
425
426 semzcnt = 0;
427 for (q = sma->sem_pending; q; q = q->next) {
428 struct sembuf * sops = q->sops;
429 int nsops = q->nsops;
430 int i;
431 for (i = 0; i < nsops; i++)
432 if (sops[i].sem_num == semnum
433 && (sops[i].sem_op == 0)
434 && !(sops[i].sem_flg & IPC_NOWAIT))
435 semzcnt++;
436 }
437 return semzcnt;
438}
439
440/* Free a semaphore set. freeary() is called with sem_ids.sem down and
441 * the spinlock for this semaphore set hold. sem_ids.sem remains locked
442 * on exit.
443 */
444static void freeary (struct sem_array *sma, int id)
445{
446 struct sem_undo *un;
447 struct sem_queue *q;
448 int size;
449
450 /* Invalidate the existing undo structures for this semaphore set.
451 * (They will be freed without any further action in exit_sem()
452 * or during the next semop.)
453 */
454 for (un = sma->undo; un; un = un->id_next)
455 un->semid = -1;
456
457 /* Wake up all pending processes and let them fail with EIDRM. */
458 q = sma->sem_pending;
459 while(q) {
460 struct sem_queue *n;
461 /* lazy remove_from_queue: we are killing the whole queue */
462 q->prev = NULL;
463 n = q->next;
464 q->status = IN_WAKEUP;
465 wake_up_process(q->sleeper); /* doesn't sleep */
6003a93e 466 smp_wmb();
1da177e4
LT
467 q->status = -EIDRM; /* hands-off q */
468 q = n;
469 }
470
471 /* Remove the semaphore set from the ID array*/
472 sma = sem_rmid(id);
473 sem_unlock(sma);
474
475 used_sems -= sma->sem_nsems;
476 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
477 security_sem_free(sma);
478 ipc_rcu_putref(sma);
479}
480
481static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
482{
483 switch(version) {
484 case IPC_64:
485 return copy_to_user(buf, in, sizeof(*in));
486 case IPC_OLD:
487 {
488 struct semid_ds out;
489
490 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
491
492 out.sem_otime = in->sem_otime;
493 out.sem_ctime = in->sem_ctime;
494 out.sem_nsems = in->sem_nsems;
495
496 return copy_to_user(buf, &out, sizeof(out));
497 }
498 default:
499 return -EINVAL;
500 }
501}
502
503static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg)
504{
505 int err = -EINVAL;
506 struct sem_array *sma;
507
508 switch(cmd) {
509 case IPC_INFO:
510 case SEM_INFO:
511 {
512 struct seminfo seminfo;
513 int max_id;
514
515 err = security_sem_semctl(NULL, cmd);
516 if (err)
517 return err;
518
519 memset(&seminfo,0,sizeof(seminfo));
520 seminfo.semmni = sc_semmni;
521 seminfo.semmns = sc_semmns;
522 seminfo.semmsl = sc_semmsl;
523 seminfo.semopm = sc_semopm;
524 seminfo.semvmx = SEMVMX;
525 seminfo.semmnu = SEMMNU;
526 seminfo.semmap = SEMMAP;
527 seminfo.semume = SEMUME;
528 down(&sem_ids.sem);
529 if (cmd == SEM_INFO) {
530 seminfo.semusz = sem_ids.in_use;
531 seminfo.semaem = used_sems;
532 } else {
533 seminfo.semusz = SEMUSZ;
534 seminfo.semaem = SEMAEM;
535 }
536 max_id = sem_ids.max_id;
537 up(&sem_ids.sem);
538 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
539 return -EFAULT;
540 return (max_id < 0) ? 0: max_id;
541 }
542 case SEM_STAT:
543 {
544 struct semid64_ds tbuf;
545 int id;
546
547 if(semid >= sem_ids.entries->size)
548 return -EINVAL;
549
550 memset(&tbuf,0,sizeof(tbuf));
551
552 sma = sem_lock(semid);
553 if(sma == NULL)
554 return -EINVAL;
555
556 err = -EACCES;
557 if (ipcperms (&sma->sem_perm, S_IRUGO))
558 goto out_unlock;
559
560 err = security_sem_semctl(sma, cmd);
561 if (err)
562 goto out_unlock;
563
564 id = sem_buildid(semid, sma->sem_perm.seq);
565
566 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
567 tbuf.sem_otime = sma->sem_otime;
568 tbuf.sem_ctime = sma->sem_ctime;
569 tbuf.sem_nsems = sma->sem_nsems;
570 sem_unlock(sma);
571 if (copy_semid_to_user (arg.buf, &tbuf, version))
572 return -EFAULT;
573 return id;
574 }
575 default:
576 return -EINVAL;
577 }
578 return err;
579out_unlock:
580 sem_unlock(sma);
581 return err;
582}
583
584static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
585{
586 struct sem_array *sma;
587 struct sem* curr;
588 int err;
589 ushort fast_sem_io[SEMMSL_FAST];
590 ushort* sem_io = fast_sem_io;
591 int nsems;
592
593 sma = sem_lock(semid);
594 if(sma==NULL)
595 return -EINVAL;
596
597 nsems = sma->sem_nsems;
598
599 err=-EIDRM;
600 if (sem_checkid(sma,semid))
601 goto out_unlock;
602
603 err = -EACCES;
604 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
605 goto out_unlock;
606
607 err = security_sem_semctl(sma, cmd);
608 if (err)
609 goto out_unlock;
610
611 err = -EACCES;
612 switch (cmd) {
613 case GETALL:
614 {
615 ushort __user *array = arg.array;
616 int i;
617
618 if(nsems > SEMMSL_FAST) {
619 ipc_rcu_getref(sma);
620 sem_unlock(sma);
621
622 sem_io = ipc_alloc(sizeof(ushort)*nsems);
623 if(sem_io == NULL) {
624 ipc_lock_by_ptr(&sma->sem_perm);
625 ipc_rcu_putref(sma);
626 sem_unlock(sma);
627 return -ENOMEM;
628 }
629
630 ipc_lock_by_ptr(&sma->sem_perm);
631 ipc_rcu_putref(sma);
632 if (sma->sem_perm.deleted) {
633 sem_unlock(sma);
634 err = -EIDRM;
635 goto out_free;
636 }
637 }
638
639 for (i = 0; i < sma->sem_nsems; i++)
640 sem_io[i] = sma->sem_base[i].semval;
641 sem_unlock(sma);
642 err = 0;
643 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
644 err = -EFAULT;
645 goto out_free;
646 }
647 case SETALL:
648 {
649 int i;
650 struct sem_undo *un;
651
652 ipc_rcu_getref(sma);
653 sem_unlock(sma);
654
655 if(nsems > SEMMSL_FAST) {
656 sem_io = ipc_alloc(sizeof(ushort)*nsems);
657 if(sem_io == NULL) {
658 ipc_lock_by_ptr(&sma->sem_perm);
659 ipc_rcu_putref(sma);
660 sem_unlock(sma);
661 return -ENOMEM;
662 }
663 }
664
665 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
666 ipc_lock_by_ptr(&sma->sem_perm);
667 ipc_rcu_putref(sma);
668 sem_unlock(sma);
669 err = -EFAULT;
670 goto out_free;
671 }
672
673 for (i = 0; i < nsems; i++) {
674 if (sem_io[i] > SEMVMX) {
675 ipc_lock_by_ptr(&sma->sem_perm);
676 ipc_rcu_putref(sma);
677 sem_unlock(sma);
678 err = -ERANGE;
679 goto out_free;
680 }
681 }
682 ipc_lock_by_ptr(&sma->sem_perm);
683 ipc_rcu_putref(sma);
684 if (sma->sem_perm.deleted) {
685 sem_unlock(sma);
686 err = -EIDRM;
687 goto out_free;
688 }
689
690 for (i = 0; i < nsems; i++)
691 sma->sem_base[i].semval = sem_io[i];
692 for (un = sma->undo; un; un = un->id_next)
693 for (i = 0; i < nsems; i++)
694 un->semadj[i] = 0;
695 sma->sem_ctime = get_seconds();
696 /* maybe some queued-up processes were waiting for this */
697 update_queue(sma);
698 err = 0;
699 goto out_unlock;
700 }
701 case IPC_STAT:
702 {
703 struct semid64_ds tbuf;
704 memset(&tbuf,0,sizeof(tbuf));
705 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
706 tbuf.sem_otime = sma->sem_otime;
707 tbuf.sem_ctime = sma->sem_ctime;
708 tbuf.sem_nsems = sma->sem_nsems;
709 sem_unlock(sma);
710 if (copy_semid_to_user (arg.buf, &tbuf, version))
711 return -EFAULT;
712 return 0;
713 }
714 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
715 }
716 err = -EINVAL;
717 if(semnum < 0 || semnum >= nsems)
718 goto out_unlock;
719
720 curr = &sma->sem_base[semnum];
721
722 switch (cmd) {
723 case GETVAL:
724 err = curr->semval;
725 goto out_unlock;
726 case GETPID:
727 err = curr->sempid;
728 goto out_unlock;
729 case GETNCNT:
730 err = count_semncnt(sma,semnum);
731 goto out_unlock;
732 case GETZCNT:
733 err = count_semzcnt(sma,semnum);
734 goto out_unlock;
735 case SETVAL:
736 {
737 int val = arg.val;
738 struct sem_undo *un;
739 err = -ERANGE;
740 if (val > SEMVMX || val < 0)
741 goto out_unlock;
742
743 for (un = sma->undo; un; un = un->id_next)
744 un->semadj[semnum] = 0;
745 curr->semval = val;
746 curr->sempid = current->tgid;
747 sma->sem_ctime = get_seconds();
748 /* maybe some queued-up processes were waiting for this */
749 update_queue(sma);
750 err = 0;
751 goto out_unlock;
752 }
753 }
754out_unlock:
755 sem_unlock(sma);
756out_free:
757 if(sem_io != fast_sem_io)
758 ipc_free(sem_io, sizeof(ushort)*nsems);
759 return err;
760}
761
762struct sem_setbuf {
763 uid_t uid;
764 gid_t gid;
765 mode_t mode;
766};
767
768static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
769{
770 switch(version) {
771 case IPC_64:
772 {
773 struct semid64_ds tbuf;
774
775 if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
776 return -EFAULT;
777
778 out->uid = tbuf.sem_perm.uid;
779 out->gid = tbuf.sem_perm.gid;
780 out->mode = tbuf.sem_perm.mode;
781
782 return 0;
783 }
784 case IPC_OLD:
785 {
786 struct semid_ds tbuf_old;
787
788 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
789 return -EFAULT;
790
791 out->uid = tbuf_old.sem_perm.uid;
792 out->gid = tbuf_old.sem_perm.gid;
793 out->mode = tbuf_old.sem_perm.mode;
794
795 return 0;
796 }
797 default:
798 return -EINVAL;
799 }
800}
801
802static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg)
803{
804 struct sem_array *sma;
805 int err;
806 struct sem_setbuf setbuf;
807 struct kern_ipc_perm *ipcp;
808
809 if(cmd == IPC_SET) {
810 if(copy_semid_from_user (&setbuf, arg.buf, version))
811 return -EFAULT;
1da177e4
LT
812 }
813 sma = sem_lock(semid);
814 if(sma==NULL)
815 return -EINVAL;
816
817 if (sem_checkid(sma,semid)) {
818 err=-EIDRM;
819 goto out_unlock;
820 }
821 ipcp = &sma->sem_perm;
1da177e4
LT
822 if (current->euid != ipcp->cuid &&
823 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
824 err=-EPERM;
825 goto out_unlock;
826 }
827
828 err = security_sem_semctl(sma, cmd);
829 if (err)
830 goto out_unlock;
831
832 switch(cmd){
833 case IPC_RMID:
834 freeary(sma, semid);
835 err = 0;
836 break;
837 case IPC_SET:
8c8570fb
DK
838 if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode, ipcp)))
839 goto out_unlock;
1da177e4
LT
840 ipcp->uid = setbuf.uid;
841 ipcp->gid = setbuf.gid;
842 ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
843 | (setbuf.mode & S_IRWXUGO);
844 sma->sem_ctime = get_seconds();
845 sem_unlock(sma);
846 err = 0;
847 break;
848 default:
849 sem_unlock(sma);
850 err = -EINVAL;
851 break;
852 }
853 return err;
854
855out_unlock:
856 sem_unlock(sma);
857 return err;
858}
859
860asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
861{
862 int err = -EINVAL;
863 int version;
864
865 if (semid < 0)
866 return -EINVAL;
867
868 version = ipc_parse_version(&cmd);
869
870 switch(cmd) {
871 case IPC_INFO:
872 case SEM_INFO:
873 case SEM_STAT:
874 err = semctl_nolock(semid,semnum,cmd,version,arg);
875 return err;
876 case GETALL:
877 case GETVAL:
878 case GETPID:
879 case GETNCNT:
880 case GETZCNT:
881 case IPC_STAT:
882 case SETVAL:
883 case SETALL:
884 err = semctl_main(semid,semnum,cmd,version,arg);
885 return err;
886 case IPC_RMID:
887 case IPC_SET:
888 down(&sem_ids.sem);
889 err = semctl_down(semid,semnum,cmd,version,arg);
890 up(&sem_ids.sem);
891 return err;
892 default:
893 return -EINVAL;
894 }
895}
896
897static inline void lock_semundo(void)
898{
899 struct sem_undo_list *undo_list;
900
901 undo_list = current->sysvsem.undo_list;
00a5dfdb 902 if (undo_list)
1da177e4
LT
903 spin_lock(&undo_list->lock);
904}
905
906/* This code has an interaction with copy_semundo().
907 * Consider; two tasks are sharing the undo_list. task1
908 * acquires the undo_list lock in lock_semundo(). If task2 now
909 * exits before task1 releases the lock (by calling
910 * unlock_semundo()), then task1 will never call spin_unlock().
911 * This leave the sem_undo_list in a locked state. If task1 now creats task3
912 * and once again shares the sem_undo_list, the sem_undo_list will still be
913 * locked, and future SEM_UNDO operations will deadlock. This case is
914 * dealt with in copy_semundo() by having it reinitialize the spin lock when
915 * the refcnt goes from 1 to 2.
916 */
917static inline void unlock_semundo(void)
918{
919 struct sem_undo_list *undo_list;
920
921 undo_list = current->sysvsem.undo_list;
00a5dfdb 922 if (undo_list)
1da177e4
LT
923 spin_unlock(&undo_list->lock);
924}
925
926
927/* If the task doesn't already have a undo_list, then allocate one
928 * here. We guarantee there is only one thread using this undo list,
929 * and current is THE ONE
930 *
931 * If this allocation and assignment succeeds, but later
932 * portions of this code fail, there is no need to free the sem_undo_list.
933 * Just let it stay associated with the task, and it'll be freed later
934 * at exit time.
935 *
936 * This can block, so callers must hold no locks.
937 */
938static inline int get_undo_list(struct sem_undo_list **undo_listp)
939{
940 struct sem_undo_list *undo_list;
941 int size;
942
943 undo_list = current->sysvsem.undo_list;
944 if (!undo_list) {
945 size = sizeof(struct sem_undo_list);
946 undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL);
947 if (undo_list == NULL)
948 return -ENOMEM;
949 memset(undo_list, 0, size);
00a5dfdb 950 spin_lock_init(&undo_list->lock);
1da177e4
LT
951 atomic_set(&undo_list->refcnt, 1);
952 current->sysvsem.undo_list = undo_list;
953 }
954 *undo_listp = undo_list;
955 return 0;
956}
957
958static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
959{
960 struct sem_undo **last, *un;
961
962 last = &ulp->proc_list;
963 un = *last;
964 while(un != NULL) {
965 if(un->semid==semid)
966 break;
967 if(un->semid==-1) {
968 *last=un->proc_next;
969 kfree(un);
970 } else {
971 last=&un->proc_next;
972 }
973 un=*last;
974 }
975 return un;
976}
977
978static struct sem_undo *find_undo(int semid)
979{
980 struct sem_array *sma;
981 struct sem_undo_list *ulp;
982 struct sem_undo *un, *new;
983 int nsems;
984 int error;
985
986 error = get_undo_list(&ulp);
987 if (error)
988 return ERR_PTR(error);
989
990 lock_semundo();
991 un = lookup_undo(ulp, semid);
992 unlock_semundo();
993 if (likely(un!=NULL))
994 goto out;
995
996 /* no undo structure around - allocate one. */
997 sma = sem_lock(semid);
998 un = ERR_PTR(-EINVAL);
999 if(sma==NULL)
1000 goto out;
1001 un = ERR_PTR(-EIDRM);
1002 if (sem_checkid(sma,semid)) {
1003 sem_unlock(sma);
1004 goto out;
1005 }
1006 nsems = sma->sem_nsems;
1007 ipc_rcu_getref(sma);
1008 sem_unlock(sma);
1009
1010 new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1011 if (!new) {
1012 ipc_lock_by_ptr(&sma->sem_perm);
1013 ipc_rcu_putref(sma);
1014 sem_unlock(sma);
1015 return ERR_PTR(-ENOMEM);
1016 }
1017 memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
1018 new->semadj = (short *) &new[1];
1019 new->semid = semid;
1020
1021 lock_semundo();
1022 un = lookup_undo(ulp, semid);
1023 if (un) {
1024 unlock_semundo();
1025 kfree(new);
1026 ipc_lock_by_ptr(&sma->sem_perm);
1027 ipc_rcu_putref(sma);
1028 sem_unlock(sma);
1029 goto out;
1030 }
1031 ipc_lock_by_ptr(&sma->sem_perm);
1032 ipc_rcu_putref(sma);
1033 if (sma->sem_perm.deleted) {
1034 sem_unlock(sma);
1035 unlock_semundo();
1036 kfree(new);
1037 un = ERR_PTR(-EIDRM);
1038 goto out;
1039 }
1040 new->proc_next = ulp->proc_list;
1041 ulp->proc_list = new;
1042 new->id_next = sma->undo;
1043 sma->undo = new;
1044 sem_unlock(sma);
1045 un = new;
1046 unlock_semundo();
1047out:
1048 return un;
1049}
1050
1051asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1052 unsigned nsops, const struct timespec __user *timeout)
1053{
1054 int error = -EINVAL;
1055 struct sem_array *sma;
1056 struct sembuf fast_sops[SEMOPM_FAST];
1057 struct sembuf* sops = fast_sops, *sop;
1058 struct sem_undo *un;
b78755ab 1059 int undos = 0, alter = 0, max;
1da177e4
LT
1060 struct sem_queue queue;
1061 unsigned long jiffies_left = 0;
1062
1063 if (nsops < 1 || semid < 0)
1064 return -EINVAL;
1065 if (nsops > sc_semopm)
1066 return -E2BIG;
1067 if(nsops > SEMOPM_FAST) {
1068 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1069 if(sops==NULL)
1070 return -ENOMEM;
1071 }
1072 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1073 error=-EFAULT;
1074 goto out_free;
1075 }
1076 if (timeout) {
1077 struct timespec _timeout;
1078 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1079 error = -EFAULT;
1080 goto out_free;
1081 }
1082 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1083 _timeout.tv_nsec >= 1000000000L) {
1084 error = -EINVAL;
1085 goto out_free;
1086 }
1087 jiffies_left = timespec_to_jiffies(&_timeout);
1088 }
1089 max = 0;
1090 for (sop = sops; sop < sops + nsops; sop++) {
1091 if (sop->sem_num >= max)
1092 max = sop->sem_num;
1093 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1094 undos = 1;
1095 if (sop->sem_op != 0)
1da177e4
LT
1096 alter = 1;
1097 }
1da177e4
LT
1098
1099retry_undos:
1100 if (undos) {
1101 un = find_undo(semid);
1102 if (IS_ERR(un)) {
1103 error = PTR_ERR(un);
1104 goto out_free;
1105 }
1106 } else
1107 un = NULL;
1108
1109 sma = sem_lock(semid);
1110 error=-EINVAL;
1111 if(sma==NULL)
1112 goto out_free;
1113 error = -EIDRM;
1114 if (sem_checkid(sma,semid))
1115 goto out_unlock_free;
1116 /*
1117 * semid identifies are not unique - find_undo may have
1118 * allocated an undo structure, it was invalidated by an RMID
1119 * and now a new array with received the same id. Check and retry.
1120 */
1121 if (un && un->semid == -1) {
1122 sem_unlock(sma);
1123 goto retry_undos;
1124 }
1125 error = -EFBIG;
1126 if (max >= sma->sem_nsems)
1127 goto out_unlock_free;
1128
1129 error = -EACCES;
1130 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1131 goto out_unlock_free;
1132
1133 error = security_sem_semop(sma, sops, nsops, alter);
1134 if (error)
1135 goto out_unlock_free;
1136
1137 error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1138 if (error <= 0) {
1139 if (alter && error == 0)
1140 update_queue (sma);
1141 goto out_unlock_free;
1142 }
1143
1144 /* We need to sleep on this operation, so we put the current
1145 * task into the pending queue and go to sleep.
1146 */
1147
1148 queue.sma = sma;
1149 queue.sops = sops;
1150 queue.nsops = nsops;
1151 queue.undo = un;
1152 queue.pid = current->tgid;
1153 queue.id = semid;
1154 queue.alter = alter;
1155 if (alter)
1156 append_to_queue(sma ,&queue);
1157 else
1158 prepend_to_queue(sma ,&queue);
1159
1160 queue.status = -EINTR;
1161 queue.sleeper = current;
1162 current->state = TASK_INTERRUPTIBLE;
1163 sem_unlock(sma);
1164
1165 if (timeout)
1166 jiffies_left = schedule_timeout(jiffies_left);
1167 else
1168 schedule();
1169
1170 error = queue.status;
1171 while(unlikely(error == IN_WAKEUP)) {
1172 cpu_relax();
1173 error = queue.status;
1174 }
1175
1176 if (error != -EINTR) {
1177 /* fast path: update_queue already obtained all requested
1178 * resources */
1179 goto out_free;
1180 }
1181
1182 sma = sem_lock(semid);
1183 if(sma==NULL) {
1184 if(queue.prev != NULL)
1185 BUG();
1186 error = -EIDRM;
1187 goto out_free;
1188 }
1189
1190 /*
1191 * If queue.status != -EINTR we are woken up by another process
1192 */
1193 error = queue.status;
1194 if (error != -EINTR) {
1195 goto out_unlock_free;
1196 }
1197
1198 /*
1199 * If an interrupt occurred we have to clean up the queue
1200 */
1201 if (timeout && jiffies_left == 0)
1202 error = -EAGAIN;
1203 remove_from_queue(sma,&queue);
1204 goto out_unlock_free;
1205
1206out_unlock_free:
1207 sem_unlock(sma);
1208out_free:
1209 if(sops != fast_sops)
1210 kfree(sops);
1211 return error;
1212}
1213
1214asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1215{
1216 return sys_semtimedop(semid, tsops, nsops, NULL);
1217}
1218
1219/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1220 * parent and child tasks.
1221 *
1222 * See the notes above unlock_semundo() regarding the spin_lock_init()
1223 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1224 * because of the reasoning in the comment above unlock_semundo.
1225 */
1226
1227int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1228{
1229 struct sem_undo_list *undo_list;
1230 int error;
1231
1232 if (clone_flags & CLONE_SYSVSEM) {
1233 error = get_undo_list(&undo_list);
1234 if (error)
1235 return error;
1da177e4
LT
1236 atomic_inc(&undo_list->refcnt);
1237 tsk->sysvsem.undo_list = undo_list;
1238 } else
1239 tsk->sysvsem.undo_list = NULL;
1240
1241 return 0;
1242}
1243
1244/*
1245 * add semadj values to semaphores, free undo structures.
1246 * undo structures are not freed when semaphore arrays are destroyed
1247 * so some of them may be out of date.
1248 * IMPLEMENTATION NOTE: There is some confusion over whether the
1249 * set of adjustments that needs to be done should be done in an atomic
1250 * manner or not. That is, if we are attempting to decrement the semval
1251 * should we queue up and wait until we can do so legally?
1252 * The original implementation attempted to do this (queue and wait).
1253 * The current implementation does not do so. The POSIX standard
1254 * and SVID should be consulted to determine what behavior is mandated.
1255 */
1256void exit_sem(struct task_struct *tsk)
1257{
1258 struct sem_undo_list *undo_list;
1259 struct sem_undo *u, **up;
1260
1261 undo_list = tsk->sysvsem.undo_list;
1262 if (!undo_list)
1263 return;
1264
1265 if (!atomic_dec_and_test(&undo_list->refcnt))
1266 return;
1267
1268 /* There's no need to hold the semundo list lock, as current
1269 * is the last task exiting for this undo list.
1270 */
1271 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1272 struct sem_array *sma;
1273 int nsems, i;
1274 struct sem_undo *un, **unp;
1275 int semid;
1276
1277 semid = u->semid;
1278
1279 if(semid == -1)
1280 continue;
1281 sma = sem_lock(semid);
1282 if (sma == NULL)
1283 continue;
1284
1285 if (u->semid == -1)
1286 goto next_entry;
1287
1288 BUG_ON(sem_checkid(sma,u->semid));
1289
1290 /* remove u from the sma->undo list */
1291 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1292 if (u == un)
1293 goto found;
1294 }
1295 printk ("exit_sem undo list error id=%d\n", u->semid);
1296 goto next_entry;
1297found:
1298 *unp = un->id_next;
1299 /* perform adjustments registered in u */
1300 nsems = sma->sem_nsems;
1301 for (i = 0; i < nsems; i++) {
1302 struct sem * sem = &sma->sem_base[i];
1303 if (u->semadj[i]) {
1304 sem->semval += u->semadj[i];
1305 /*
1306 * Range checks of the new semaphore value,
1307 * not defined by sus:
1308 * - Some unices ignore the undo entirely
1309 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1310 * - some cap the value (e.g. FreeBSD caps
1311 * at 0, but doesn't enforce SEMVMX)
1312 *
1313 * Linux caps the semaphore value, both at 0
1314 * and at SEMVMX.
1315 *
1316 * Manfred <manfred@colorfullife.com>
1317 */
1318 if (sem->semval < 0)
1319 sem->semval = 0;
1320 if (sem->semval > SEMVMX)
1321 sem->semval = SEMVMX;
1322 sem->sempid = current->tgid;
1323 }
1324 }
1325 sma->sem_otime = get_seconds();
1326 /* maybe some queued-up processes were waiting for this */
1327 update_queue(sma);
1328next_entry:
1329 sem_unlock(sma);
1330 }
1331 kfree(undo_list);
1332}
1333
1334#ifdef CONFIG_PROC_FS
19b4946c 1335static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 1336{
19b4946c
MW
1337 struct sem_array *sma = it;
1338
1339 return seq_printf(s,
1340 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1341 sma->sem_perm.key,
1342 sma->sem_id,
1343 sma->sem_perm.mode,
1344 sma->sem_nsems,
1345 sma->sem_perm.uid,
1346 sma->sem_perm.gid,
1347 sma->sem_perm.cuid,
1348 sma->sem_perm.cgid,
1349 sma->sem_otime,
1350 sma->sem_ctime);
1da177e4
LT
1351}
1352#endif