]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - ipc/sem.c
include/linux/sem.h: correctly document sem_ctime
[mirror_ubuntu-bionic-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 57 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
70 */
71
1da177e4
LT
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
1da177e4
LT
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
c59ede7b 80#include <linux/capability.h>
19b4946c 81#include <linux/seq_file.h>
3e148c79 82#include <linux/rwsem.h>
e3893534 83#include <linux/nsproxy.h>
ae5e1b22 84#include <linux/ipc_namespace.h>
84f001e1 85#include <linux/sched/wake_q.h>
5f921ae9 86
7153e402 87#include <linux/uaccess.h>
1da177e4
LT
88#include "util.h"
89
e57940d7
MS
90
91/* One queue for each sleeping process in the system. */
92struct sem_queue {
e57940d7
MS
93 struct list_head list; /* queue of pending operations */
94 struct task_struct *sleeper; /* this process */
95 struct sem_undo *undo; /* undo structure */
96 int pid; /* process id of requesting process */
97 int status; /* completion status of operation */
98 struct sembuf *sops; /* array of pending operations */
ed247b7c 99 struct sembuf *blocking; /* the operation that blocked */
e57940d7 100 int nsops; /* number of operations */
4ce33ec2
DB
101 bool alter; /* does *sops alter the array? */
102 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
103};
104
105/* Each task has a list of undo requests. They are executed automatically
106 * when the process exits.
107 */
108struct sem_undo {
109 struct list_head list_proc; /* per-process list: *
110 * all undos from one process
111 * rcu protected */
112 struct rcu_head rcu; /* rcu struct for sem_undo */
113 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
114 struct list_head list_id; /* per semaphore array list:
115 * all undos for one array */
116 int semid; /* semaphore set identifier */
117 short *semadj; /* array of adjustments */
118 /* one per semaphore */
119};
120
121/* sem_undo_list controls shared access to the list of sem_undo structures
122 * that may be shared among all a CLONE_SYSVSEM task group.
123 */
124struct sem_undo_list {
125 atomic_t refcnt;
126 spinlock_t lock;
127 struct list_head list_proc;
128};
129
130
ed2ddbf8 131#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 132
1b531f21 133#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 134
7748dbfa 135static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 136static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 137#ifdef CONFIG_PROC_FS
19b4946c 138static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
139#endif
140
141#define SEMMSL_FAST 256 /* 512 bytes on stack */
142#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
143
9de5ab8a
MS
144/*
145 * Switching from the mode suitable for simple ops
146 * to the mode for complex ops is costly. Therefore:
147 * use some hysteresis
148 */
149#define USE_GLOBAL_LOCK_HYSTERESIS 10
150
1da177e4 151/*
758a6ba3 152 * Locking:
5864a2fd 153 * a) global sem_lock() for read/write
1da177e4 154 * sem_undo.id_next,
758a6ba3 155 * sem_array.complex_count,
5864a2fd
MS
156 * sem_array.pending{_alter,_const},
157 * sem_array.sem_undo
46c0a8ca 158 *
5864a2fd 159 * b) global or semaphore sem_lock() for read/write:
1a233956 160 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
161 *
162 * c) special:
163 * sem_undo_list.list_proc:
164 * * undo_list->lock for write
165 * * rcu for read
9de5ab8a
MS
166 * use_global_lock:
167 * * global sem_lock() for write
168 * * either local or global sem_lock() for read.
169 *
170 * Memory ordering:
171 * Most ordering is enforced by using spin_lock() and spin_unlock().
172 * The special case is use_global_lock:
173 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
174 * using smp_store_release().
175 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
176 * smp_load_acquire().
177 * Setting it from 0 to non-zero must be ordered with regards to
178 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
179 * is inside a spin_lock() and after a write from 0 to non-zero a
180 * spin_lock()+spin_unlock() is done.
1da177e4
LT
181 */
182
e3893534
KK
183#define sc_semmsl sem_ctls[0]
184#define sc_semmns sem_ctls[1]
185#define sc_semopm sem_ctls[2]
186#define sc_semmni sem_ctls[3]
187
ed2ddbf8 188void sem_init_ns(struct ipc_namespace *ns)
e3893534 189{
e3893534
KK
190 ns->sc_semmsl = SEMMSL;
191 ns->sc_semmns = SEMMNS;
192 ns->sc_semopm = SEMOPM;
193 ns->sc_semmni = SEMMNI;
194 ns->used_sems = 0;
ed2ddbf8 195 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
196}
197
ae5e1b22 198#ifdef CONFIG_IPC_NS
e3893534
KK
199void sem_exit_ns(struct ipc_namespace *ns)
200{
01b8b07a 201 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 202 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 203}
ae5e1b22 204#endif
1da177e4 205
239521f3 206void __init sem_init(void)
1da177e4 207{
ed2ddbf8 208 sem_init_ns(&init_ipc_ns);
19b4946c
MW
209 ipc_init_proc_interface("sysvipc/sem",
210 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 211 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
212}
213
f269f40a
MS
214/**
215 * unmerge_queues - unmerge queues, if possible.
216 * @sma: semaphore array
217 *
218 * The function unmerges the wait queues if complex_count is 0.
219 * It must be called prior to dropping the global semaphore array lock.
220 */
221static void unmerge_queues(struct sem_array *sma)
222{
223 struct sem_queue *q, *tq;
224
225 /* complex operations still around? */
226 if (sma->complex_count)
227 return;
228 /*
229 * We will switch back to simple mode.
230 * Move all pending operation back into the per-semaphore
231 * queues.
232 */
233 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
234 struct sem *curr;
1a233956 235 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
236
237 list_add_tail(&q->list, &curr->pending_alter);
238 }
239 INIT_LIST_HEAD(&sma->pending_alter);
240}
241
242/**
8001c858 243 * merge_queues - merge single semop queues into global queue
f269f40a
MS
244 * @sma: semaphore array
245 *
246 * This function merges all per-semaphore queues into the global queue.
247 * It is necessary to achieve FIFO ordering for the pending single-sop
248 * operations when a multi-semop operation must sleep.
249 * Only the alter operations must be moved, the const operations can stay.
250 */
251static void merge_queues(struct sem_array *sma)
252{
253 int i;
254 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 255 struct sem *sem = &sma->sems[i];
f269f40a
MS
256
257 list_splice_init(&sem->pending_alter, &sma->pending_alter);
258 }
259}
260
53dad6d3
DB
261static void sem_rcu_free(struct rcu_head *head)
262{
dba4cdd3
MS
263 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
264 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3
DB
265
266 security_sem_free(sma);
267 ipc_rcu_free(head);
268}
269
5e9d5275 270/*
5864a2fd 271 * Enter the mode suitable for non-simple operations:
5e9d5275 272 * Caller must own sem_perm.lock.
5e9d5275 273 */
5864a2fd 274static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
275{
276 int i;
277 struct sem *sem;
278
9de5ab8a
MS
279 if (sma->use_global_lock > 0) {
280 /*
281 * We are already in global lock mode.
282 * Nothing to do, just reset the
283 * counter until we return to simple mode.
284 */
285 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
286 return;
287 }
9de5ab8a 288 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 289
5e9d5275 290 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 291 sem = &sma->sems[i];
27d7be18
MS
292 spin_lock(&sem->lock);
293 spin_unlock(&sem->lock);
5e9d5275 294 }
5864a2fd
MS
295}
296
297/*
298 * Try to leave the mode that disallows simple operations:
299 * Caller must own sem_perm.lock.
300 */
301static void complexmode_tryleave(struct sem_array *sma)
302{
303 if (sma->complex_count) {
304 /* Complex ops are sleeping.
305 * We must stay in complex mode
306 */
307 return;
308 }
9de5ab8a
MS
309 if (sma->use_global_lock == 1) {
310 /*
311 * Immediately after setting use_global_lock to 0,
312 * a simple op can start. Thus: all memory writes
313 * performed by the current operation must be visible
314 * before we set use_global_lock to 0.
315 */
316 smp_store_release(&sma->use_global_lock, 0);
317 } else {
318 sma->use_global_lock--;
319 }
5e9d5275
MS
320}
321
5864a2fd 322#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
323/*
324 * If the request contains only one semaphore operation, and there are
325 * no complex transactions pending, lock only the semaphore involved.
326 * Otherwise, lock the entire semaphore array, since we either have
327 * multiple semaphores in our own semops, or we need to look at
328 * semaphores from other pending complex operations.
6062a8dc
RR
329 */
330static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
331 int nsops)
332{
5e9d5275 333 struct sem *sem;
6062a8dc 334
5e9d5275
MS
335 if (nsops != 1) {
336 /* Complex operation - acquire a full lock */
337 ipc_lock_object(&sma->sem_perm);
6062a8dc 338
5864a2fd
MS
339 /* Prevent parallel simple ops */
340 complexmode_enter(sma);
341 return SEM_GLOBAL_LOCK;
5e9d5275
MS
342 }
343
344 /*
345 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
346 * Optimized locking is possible if no complex operation
347 * is either enqueued or processed right now.
348 *
9de5ab8a 349 * Both facts are tracked by use_global_mode.
5e9d5275 350 */
1a233956 351 sem = &sma->sems[sops->sem_num];
6062a8dc 352
5864a2fd 353 /*
9de5ab8a 354 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
355 * no locking, no memory barrier.
356 */
9de5ab8a 357 if (!sma->use_global_lock) {
6062a8dc 358 /*
5e9d5275
MS
359 * It appears that no complex operation is around.
360 * Acquire the per-semaphore lock.
6062a8dc 361 */
5e9d5275
MS
362 spin_lock(&sem->lock);
363
9de5ab8a
MS
364 /* pairs with smp_store_release() */
365 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
366 /* fast path successful! */
367 return sops->sem_num;
6062a8dc 368 }
5e9d5275
MS
369 spin_unlock(&sem->lock);
370 }
371
372 /* slow path: acquire the full lock */
373 ipc_lock_object(&sma->sem_perm);
6062a8dc 374
9de5ab8a
MS
375 if (sma->use_global_lock == 0) {
376 /*
377 * The use_global_lock mode ended while we waited for
378 * sma->sem_perm.lock. Thus we must switch to locking
379 * with sem->lock.
380 * Unlike in the fast path, there is no need to recheck
381 * sma->use_global_lock after we have acquired sem->lock:
382 * We own sma->sem_perm.lock, thus use_global_lock cannot
383 * change.
5e9d5275
MS
384 */
385 spin_lock(&sem->lock);
9de5ab8a 386
5e9d5275
MS
387 ipc_unlock_object(&sma->sem_perm);
388 return sops->sem_num;
6062a8dc 389 } else {
9de5ab8a
MS
390 /*
391 * Not a false alarm, thus continue to use the global lock
392 * mode. No need for complexmode_enter(), this was done by
393 * the caller that has set use_global_mode to non-zero.
6062a8dc 394 */
5864a2fd 395 return SEM_GLOBAL_LOCK;
6062a8dc 396 }
6062a8dc
RR
397}
398
399static inline void sem_unlock(struct sem_array *sma, int locknum)
400{
5864a2fd 401 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 402 unmerge_queues(sma);
5864a2fd 403 complexmode_tryleave(sma);
cf9d5d78 404 ipc_unlock_object(&sma->sem_perm);
6062a8dc 405 } else {
1a233956 406 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
407 spin_unlock(&sem->lock);
408 }
6062a8dc
RR
409}
410
3e148c79 411/*
d9a605e4 412 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 413 * is not held.
321310ce
LT
414 *
415 * The caller holds the RCU read lock.
3e148c79 416 */
16df3674
DB
417static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
418{
55b7ae50 419 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
420
421 if (IS_ERR(ipcp))
422 return ERR_CAST(ipcp);
423
424 return container_of(ipcp, struct sem_array, sem_perm);
425}
426
16df3674
DB
427static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
428 int id)
429{
430 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
431
432 if (IS_ERR(ipcp))
433 return ERR_CAST(ipcp);
b1ed88b4 434
03f02c76 435 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
436}
437
6ff37972
PP
438static inline void sem_lock_and_putref(struct sem_array *sma)
439{
6062a8dc 440 sem_lock(sma, NULL, -1);
dba4cdd3 441 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
442}
443
7ca7e564
ND
444static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
445{
446 ipc_rmid(&sem_ids(ns), &s->sem_perm);
447}
448
f4566f04
ND
449/**
450 * newary - Create a new semaphore set
451 * @ns: namespace
452 * @params: ptr to the structure that contains key, semflg and nsems
453 *
d9a605e4 454 * Called with sem_ids.rwsem held (as a writer)
f4566f04 455 */
7748dbfa 456static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
457{
458 int id;
459 int retval;
460 struct sem_array *sma;
461 int size;
7748dbfa
ND
462 key_t key = params->key;
463 int nsems = params->u.nsems;
464 int semflg = params->flg;
b97e820f 465 int i;
1da177e4
LT
466
467 if (!nsems)
468 return -EINVAL;
e3893534 469 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
470 return -ENOSPC;
471
dba4cdd3
MS
472 BUILD_BUG_ON(offsetof(struct sem_array, sem_perm) != 0);
473
1a233956 474 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
dba4cdd3 475 sma = container_of(ipc_rcu_alloc(size), struct sem_array, sem_perm);
3ab08fe2 476 if (!sma)
1da177e4 477 return -ENOMEM;
3ab08fe2 478
1da177e4
LT
479 sma->sem_perm.mode = (semflg & S_IRWXUGO);
480 sma->sem_perm.key = key;
481
482 sma->sem_perm.security = NULL;
483 retval = security_sem_alloc(sma);
484 if (retval) {
dba4cdd3 485 ipc_rcu_putref(&sma->sem_perm, ipc_rcu_free);
1da177e4
LT
486 return retval;
487 }
488
6062a8dc 489 for (i = 0; i < nsems; i++) {
1a233956
MS
490 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
491 INIT_LIST_HEAD(&sma->sems[i].pending_const);
492 spin_lock_init(&sma->sems[i].lock);
6062a8dc 493 }
b97e820f
MS
494
495 sma->complex_count = 0;
9de5ab8a 496 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
497 INIT_LIST_HEAD(&sma->pending_alter);
498 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 499 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
500 sma->sem_nsems = nsems;
501 sma->sem_ctime = get_seconds();
e8577d1f
MS
502
503 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
504 if (id < 0) {
dba4cdd3 505 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
e8577d1f
MS
506 return id;
507 }
508 ns->used_sems += nsems;
509
6062a8dc 510 sem_unlock(sma, -1);
6d49dab8 511 rcu_read_unlock();
1da177e4 512
7ca7e564 513 return sma->sem_perm.id;
1da177e4
LT
514}
515
7748dbfa 516
f4566f04 517/*
d9a605e4 518 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 519 */
03f02c76 520static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 521{
03f02c76
ND
522 struct sem_array *sma;
523
524 sma = container_of(ipcp, struct sem_array, sem_perm);
525 return security_sem_associate(sma, semflg);
7748dbfa
ND
526}
527
f4566f04 528/*
d9a605e4 529 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 530 */
03f02c76
ND
531static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
532 struct ipc_params *params)
7748dbfa 533{
03f02c76
ND
534 struct sem_array *sma;
535
536 sma = container_of(ipcp, struct sem_array, sem_perm);
537 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
538 return -EINVAL;
539
540 return 0;
541}
542
d5460c99 543SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 544{
e3893534 545 struct ipc_namespace *ns;
eb66ec44
MK
546 static const struct ipc_ops sem_ops = {
547 .getnew = newary,
548 .associate = sem_security,
549 .more_checks = sem_more_checks,
550 };
7748dbfa 551 struct ipc_params sem_params;
e3893534
KK
552
553 ns = current->nsproxy->ipc_ns;
1da177e4 554
e3893534 555 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 556 return -EINVAL;
7ca7e564 557
7748dbfa
ND
558 sem_params.key = key;
559 sem_params.flg = semflg;
560 sem_params.u.nsems = nsems;
1da177e4 561
7748dbfa 562 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
563}
564
78f5009c 565/**
4ce33ec2
DB
566 * perform_atomic_semop[_slow] - Attempt to perform semaphore
567 * operations on a given array.
758a6ba3 568 * @sma: semaphore array
d198cd6d 569 * @q: struct sem_queue that describes the operation
758a6ba3 570 *
4ce33ec2
DB
571 * Caller blocking are as follows, based the value
572 * indicated by the semaphore operation (sem_op):
573 *
574 * (1) >0 never blocks.
575 * (2) 0 (wait-for-zero operation): semval is non-zero.
576 * (3) <0 attempting to decrement semval to a value smaller than zero.
577 *
758a6ba3
MS
578 * Returns 0 if the operation was possible.
579 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 580 * Returns <0 for error codes.
1da177e4 581 */
4ce33ec2 582static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 583{
d198cd6d 584 int result, sem_op, nsops, pid;
1da177e4 585 struct sembuf *sop;
239521f3 586 struct sem *curr;
d198cd6d
MS
587 struct sembuf *sops;
588 struct sem_undo *un;
589
590 sops = q->sops;
591 nsops = q->nsops;
592 un = q->undo;
1da177e4
LT
593
594 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 595 curr = &sma->sems[sop->sem_num];
1da177e4
LT
596 sem_op = sop->sem_op;
597 result = curr->semval;
78f5009c 598
1da177e4
LT
599 if (!sem_op && result)
600 goto would_block;
601
602 result += sem_op;
603 if (result < 0)
604 goto would_block;
605 if (result > SEMVMX)
606 goto out_of_range;
78f5009c 607
1da177e4
LT
608 if (sop->sem_flg & SEM_UNDO) {
609 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 610 /* Exceeding the undo range is an error. */
1da177e4
LT
611 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
612 goto out_of_range;
78f5009c 613 un->semadj[sop->sem_num] = undo;
1da177e4 614 }
78f5009c 615
1da177e4
LT
616 curr->semval = result;
617 }
618
619 sop--;
d198cd6d 620 pid = q->pid;
1da177e4 621 while (sop >= sops) {
1a233956 622 sma->sems[sop->sem_num].sempid = pid;
1da177e4
LT
623 sop--;
624 }
78f5009c 625
1da177e4
LT
626 return 0;
627
628out_of_range:
629 result = -ERANGE;
630 goto undo;
631
632would_block:
ed247b7c
MS
633 q->blocking = sop;
634
1da177e4
LT
635 if (sop->sem_flg & IPC_NOWAIT)
636 result = -EAGAIN;
637 else
638 result = 1;
639
640undo:
641 sop--;
642 while (sop >= sops) {
78f5009c 643 sem_op = sop->sem_op;
1a233956 644 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
645 if (sop->sem_flg & SEM_UNDO)
646 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
647 sop--;
648 }
649
650 return result;
651}
652
4ce33ec2
DB
653static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
654{
655 int result, sem_op, nsops;
656 struct sembuf *sop;
657 struct sem *curr;
658 struct sembuf *sops;
659 struct sem_undo *un;
660
661 sops = q->sops;
662 nsops = q->nsops;
663 un = q->undo;
664
665 if (unlikely(q->dupsop))
666 return perform_atomic_semop_slow(sma, q);
667
668 /*
669 * We scan the semaphore set twice, first to ensure that the entire
670 * operation can succeed, therefore avoiding any pointless writes
671 * to shared memory and having to undo such changes in order to block
672 * until the operations can go through.
673 */
674 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 675 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
676 sem_op = sop->sem_op;
677 result = curr->semval;
678
679 if (!sem_op && result)
680 goto would_block; /* wait-for-zero */
681
682 result += sem_op;
683 if (result < 0)
684 goto would_block;
685
686 if (result > SEMVMX)
687 return -ERANGE;
688
689 if (sop->sem_flg & SEM_UNDO) {
690 int undo = un->semadj[sop->sem_num] - sem_op;
691
692 /* Exceeding the undo range is an error. */
693 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
694 return -ERANGE;
695 }
696 }
697
698 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 699 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
700 sem_op = sop->sem_op;
701 result = curr->semval;
702
703 if (sop->sem_flg & SEM_UNDO) {
704 int undo = un->semadj[sop->sem_num] - sem_op;
705
706 un->semadj[sop->sem_num] = undo;
707 }
708 curr->semval += sem_op;
709 curr->sempid = q->pid;
710 }
711
712 return 0;
713
714would_block:
715 q->blocking = sop;
716 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
717}
718
9ae949fa
DB
719static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
720 struct wake_q_head *wake_q)
0a2b9d4c 721{
9ae949fa
DB
722 wake_q_add(wake_q, q->sleeper);
723 /*
724 * Rely on the above implicit barrier, such that we can
725 * ensure that we hold reference to the task before setting
726 * q->status. Otherwise we could race with do_exit if the
727 * task is awoken by an external event before calling
728 * wake_up_process().
729 */
730 WRITE_ONCE(q->status, error);
d4212093
NP
731}
732
b97e820f
MS
733static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
734{
735 list_del(&q->list);
9f1bc2c9 736 if (q->nsops > 1)
b97e820f
MS
737 sma->complex_count--;
738}
739
fd5db422
MS
740/** check_restart(sma, q)
741 * @sma: semaphore array
742 * @q: the operation that just completed
743 *
744 * update_queue is O(N^2) when it restarts scanning the whole queue of
745 * waiting operations. Therefore this function checks if the restart is
746 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
747 * modified the array.
748 * Note that wait-for-zero operations are handled without restart.
fd5db422 749 */
4663d3e8 750static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 751{
1a82e9e1
MS
752 /* pending complex alter operations are too difficult to analyse */
753 if (!list_empty(&sma->pending_alter))
fd5db422
MS
754 return 1;
755
756 /* we were a sleeping complex operation. Too difficult */
757 if (q->nsops > 1)
758 return 1;
759
1a82e9e1
MS
760 /* It is impossible that someone waits for the new value:
761 * - complex operations always restart.
762 * - wait-for-zero are handled seperately.
763 * - q is a previously sleeping simple operation that
764 * altered the array. It must be a decrement, because
765 * simple increments never sleep.
766 * - If there are older (higher priority) decrements
767 * in the queue, then they have observed the original
768 * semval value and couldn't proceed. The operation
769 * decremented to value - thus they won't proceed either.
770 */
771 return 0;
772}
fd5db422 773
1a82e9e1 774/**
8001c858 775 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
776 * @sma: semaphore array.
777 * @semnum: semaphore that was modified.
9ae949fa 778 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
779 *
780 * wake_const_ops must be called after a semaphore in a semaphore array
781 * was set to 0. If complex const operations are pending, wake_const_ops must
782 * be called with semnum = -1, as well as with the number of each modified
783 * semaphore.
9ae949fa 784 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
785 * is stored in q->pid.
786 * The function returns 1 if at least one operation was completed successfully.
787 */
788static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 789 struct wake_q_head *wake_q)
1a82e9e1 790{
f150f02c 791 struct sem_queue *q, *tmp;
1a82e9e1
MS
792 struct list_head *pending_list;
793 int semop_completed = 0;
794
795 if (semnum == -1)
796 pending_list = &sma->pending_const;
797 else
1a233956 798 pending_list = &sma->sems[semnum].pending_const;
fd5db422 799
f150f02c
DB
800 list_for_each_entry_safe(q, tmp, pending_list, list) {
801 int error = perform_atomic_semop(sma, q);
1a82e9e1 802
f150f02c
DB
803 if (error > 0)
804 continue;
805 /* operation completed, remove from queue & wakeup */
806 unlink_queue(sma, q);
1a82e9e1 807
f150f02c
DB
808 wake_up_sem_queue_prepare(q, error, wake_q);
809 if (error == 0)
810 semop_completed = 1;
1a82e9e1 811 }
f150f02c 812
1a82e9e1
MS
813 return semop_completed;
814}
815
816/**
8001c858 817 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
818 * @sma: semaphore array
819 * @sops: operations that were performed
820 * @nsops: number of operations
9ae949fa 821 * @wake_q: lockless wake-queue head
1a82e9e1 822 *
8001c858
DB
823 * Checks all required queue for wait-for-zero operations, based
824 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
825 * The function returns 1 if at least one operation was completed successfully.
826 */
827static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 828 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
829{
830 int i;
831 int semop_completed = 0;
832 int got_zero = 0;
833
834 /* first: the per-semaphore queues, if known */
835 if (sops) {
836 for (i = 0; i < nsops; i++) {
837 int num = sops[i].sem_num;
838
1a233956 839 if (sma->sems[num].semval == 0) {
1a82e9e1 840 got_zero = 1;
9ae949fa 841 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
842 }
843 }
844 } else {
845 /*
846 * No sops means modified semaphores not known.
847 * Assume all were changed.
fd5db422 848 */
1a82e9e1 849 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 850 if (sma->sems[i].semval == 0) {
1a82e9e1 851 got_zero = 1;
9ae949fa 852 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
853 }
854 }
fd5db422
MS
855 }
856 /*
1a82e9e1
MS
857 * If one of the modified semaphores got 0,
858 * then check the global queue, too.
fd5db422 859 */
1a82e9e1 860 if (got_zero)
9ae949fa 861 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 862
1a82e9e1 863 return semop_completed;
fd5db422
MS
864}
865
636c6be8
MS
866
867/**
8001c858 868 * update_queue - look for tasks that can be completed.
636c6be8
MS
869 * @sma: semaphore array.
870 * @semnum: semaphore that was modified.
9ae949fa 871 * @wake_q: lockless wake-queue head.
636c6be8
MS
872 *
873 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
874 * was modified. If multiple semaphores were modified, update_queue must
875 * be called with semnum = -1, as well as with the number of each modified
876 * semaphore.
9ae949fa 877 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 878 * is stored in q->pid.
1a82e9e1
MS
879 * The function internally checks if const operations can now succeed.
880 *
0a2b9d4c 881 * The function return 1 if at least one semop was completed successfully.
1da177e4 882 */
9ae949fa 883static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 884{
f150f02c 885 struct sem_queue *q, *tmp;
636c6be8 886 struct list_head *pending_list;
0a2b9d4c 887 int semop_completed = 0;
636c6be8 888
9f1bc2c9 889 if (semnum == -1)
1a82e9e1 890 pending_list = &sma->pending_alter;
9f1bc2c9 891 else
1a233956 892 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
893
894again:
f150f02c 895 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 896 int error, restart;
636c6be8 897
d987f8b2
MS
898 /* If we are scanning the single sop, per-semaphore list of
899 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 900 * necessary to scan further: simple increments
d987f8b2
MS
901 * that affect only one entry succeed immediately and cannot
902 * be in the per semaphore pending queue, and decrements
903 * cannot be successful if the value is already 0.
904 */
1a233956 905 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
906 break;
907
d198cd6d 908 error = perform_atomic_semop(sma, q);
1da177e4
LT
909
910 /* Does q->sleeper still need to sleep? */
9cad200c
NP
911 if (error > 0)
912 continue;
913
b97e820f 914 unlink_queue(sma, q);
9cad200c 915
0a2b9d4c 916 if (error) {
fd5db422 917 restart = 0;
0a2b9d4c
MS
918 } else {
919 semop_completed = 1;
9ae949fa 920 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 921 restart = check_restart(sma, q);
0a2b9d4c 922 }
fd5db422 923
9ae949fa 924 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 925 if (restart)
9cad200c 926 goto again;
1da177e4 927 }
0a2b9d4c 928 return semop_completed;
1da177e4
LT
929}
930
0e8c6656 931/**
8001c858 932 * set_semotime - set sem_otime
0e8c6656
MS
933 * @sma: semaphore array
934 * @sops: operations that modified the array, may be NULL
935 *
936 * sem_otime is replicated to avoid cache line trashing.
937 * This function sets one instance to the current time.
938 */
939static void set_semotime(struct sem_array *sma, struct sembuf *sops)
940{
941 if (sops == NULL) {
1a233956 942 sma->sems[0].sem_otime = get_seconds();
0e8c6656 943 } else {
1a233956 944 sma->sems[sops[0].sem_num].sem_otime =
0e8c6656
MS
945 get_seconds();
946 }
947}
948
0a2b9d4c 949/**
8001c858 950 * do_smart_update - optimized update_queue
fd5db422
MS
951 * @sma: semaphore array
952 * @sops: operations that were performed
953 * @nsops: number of operations
0a2b9d4c 954 * @otime: force setting otime
9ae949fa 955 * @wake_q: lockless wake-queue head
fd5db422 956 *
1a82e9e1
MS
957 * do_smart_update() does the required calls to update_queue and wakeup_zero,
958 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 959 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 960 * responsible for calling wake_up_q().
0a2b9d4c 961 * It is safe to perform this call after dropping all locks.
fd5db422 962 */
0a2b9d4c 963static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 964 int otime, struct wake_q_head *wake_q)
fd5db422
MS
965{
966 int i;
967
9ae949fa 968 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 969
f269f40a
MS
970 if (!list_empty(&sma->pending_alter)) {
971 /* semaphore array uses the global queue - just process it. */
9ae949fa 972 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
973 } else {
974 if (!sops) {
975 /*
976 * No sops, thus the modified semaphores are not
977 * known. Check all.
978 */
979 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 980 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
981 } else {
982 /*
983 * Check the semaphores that were increased:
984 * - No complex ops, thus all sleeping ops are
985 * decrease.
986 * - if we decreased the value, then any sleeping
987 * semaphore ops wont be able to run: If the
988 * previous value was too small, then the new
989 * value will be too small, too.
990 */
991 for (i = 0; i < nsops; i++) {
992 if (sops[i].sem_op > 0) {
993 otime |= update_queue(sma,
9ae949fa 994 sops[i].sem_num, wake_q);
f269f40a 995 }
ab465df9 996 }
9f1bc2c9 997 }
fd5db422 998 }
0e8c6656
MS
999 if (otime)
1000 set_semotime(sma, sops);
fd5db422
MS
1001}
1002
2f2ed41d 1003/*
b220c57a 1004 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1005 */
1006static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1007 bool count_zero)
1008{
b220c57a 1009 struct sembuf *sop = q->blocking;
2f2ed41d 1010
9b44ee2e
MS
1011 /*
1012 * Linux always (since 0.99.10) reported a task as sleeping on all
1013 * semaphores. This violates SUS, therefore it was changed to the
1014 * standard compliant behavior.
1015 * Give the administrators a chance to notice that an application
1016 * might misbehave because it relies on the Linux behavior.
1017 */
1018 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1019 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1020 current->comm, task_pid_nr(current));
1021
b220c57a
MS
1022 if (sop->sem_num != semnum)
1023 return 0;
2f2ed41d 1024
b220c57a
MS
1025 if (count_zero && sop->sem_op == 0)
1026 return 1;
1027 if (!count_zero && sop->sem_op < 0)
1028 return 1;
1029
1030 return 0;
2f2ed41d
MS
1031}
1032
1da177e4
LT
1033/* The following counts are associated to each semaphore:
1034 * semncnt number of tasks waiting on semval being nonzero
1035 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1036 *
1037 * Per definition, a task waits only on the semaphore of the first semop
1038 * that cannot proceed, even if additional operation would block, too.
1da177e4 1039 */
2f2ed41d
MS
1040static int count_semcnt(struct sem_array *sma, ushort semnum,
1041 bool count_zero)
1da177e4 1042{
2f2ed41d 1043 struct list_head *l;
239521f3 1044 struct sem_queue *q;
2f2ed41d 1045 int semcnt;
1da177e4 1046
2f2ed41d
MS
1047 semcnt = 0;
1048 /* First: check the simple operations. They are easy to evaluate */
1049 if (count_zero)
1a233956 1050 l = &sma->sems[semnum].pending_const;
2f2ed41d 1051 else
1a233956 1052 l = &sma->sems[semnum].pending_alter;
1da177e4 1053
2f2ed41d
MS
1054 list_for_each_entry(q, l, list) {
1055 /* all task on a per-semaphore list sleep on exactly
1056 * that semaphore
1057 */
1058 semcnt++;
ebc2e5e6
RR
1059 }
1060
2f2ed41d 1061 /* Then: check the complex operations. */
1994862d 1062 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1063 semcnt += check_qop(sma, semnum, q, count_zero);
1064 }
1065 if (count_zero) {
1066 list_for_each_entry(q, &sma->pending_const, list) {
1067 semcnt += check_qop(sma, semnum, q, count_zero);
1068 }
1994862d 1069 }
2f2ed41d 1070 return semcnt;
1da177e4
LT
1071}
1072
d9a605e4
DB
1073/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1074 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1075 * remains locked on exit.
1da177e4 1076 */
01b8b07a 1077static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1078{
380af1b3
MS
1079 struct sem_undo *un, *tu;
1080 struct sem_queue *q, *tq;
01b8b07a 1081 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1082 int i;
9ae949fa 1083 DEFINE_WAKE_Q(wake_q);
1da177e4 1084
380af1b3 1085 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1086 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1087 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1088 list_del(&un->list_id);
1089 spin_lock(&un->ulp->lock);
1da177e4 1090 un->semid = -1;
380af1b3
MS
1091 list_del_rcu(&un->list_proc);
1092 spin_unlock(&un->ulp->lock);
693a8b6e 1093 kfree_rcu(un, rcu);
380af1b3 1094 }
1da177e4
LT
1095
1096 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1097 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1098 unlink_queue(sma, q);
9ae949fa 1099 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1100 }
1101
1102 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1103 unlink_queue(sma, q);
9ae949fa 1104 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1105 }
9f1bc2c9 1106 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1107 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1108 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1109 unlink_queue(sma, q);
9ae949fa 1110 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1111 }
1112 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1113 unlink_queue(sma, q);
9ae949fa 1114 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9
RR
1115 }
1116 }
1da177e4 1117
7ca7e564
ND
1118 /* Remove the semaphore set from the IDR */
1119 sem_rmid(ns, sma);
6062a8dc 1120 sem_unlock(sma, -1);
6d49dab8 1121 rcu_read_unlock();
1da177e4 1122
9ae949fa 1123 wake_up_q(&wake_q);
e3893534 1124 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1125 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1126}
1127
1128static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1129{
239521f3 1130 switch (version) {
1da177e4
LT
1131 case IPC_64:
1132 return copy_to_user(buf, in, sizeof(*in));
1133 case IPC_OLD:
1134 {
1135 struct semid_ds out;
1136
982f7c2b
DR
1137 memset(&out, 0, sizeof(out));
1138
1da177e4
LT
1139 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1140
1141 out.sem_otime = in->sem_otime;
1142 out.sem_ctime = in->sem_ctime;
1143 out.sem_nsems = in->sem_nsems;
1144
1145 return copy_to_user(buf, &out, sizeof(out));
1146 }
1147 default:
1148 return -EINVAL;
1149 }
1150}
1151
d12e1e50
MS
1152static time_t get_semotime(struct sem_array *sma)
1153{
1154 int i;
1155 time_t res;
1156
1a233956 1157 res = sma->sems[0].sem_otime;
d12e1e50 1158 for (i = 1; i < sma->sem_nsems; i++) {
1a233956 1159 time_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1160
1161 if (to > res)
1162 res = to;
1163 }
1164 return res;
1165}
1166
4b9fcb0e 1167static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1168 int cmd, int version, void __user *p)
1da177e4 1169{
e5cc9c7b 1170 int err;
1da177e4
LT
1171 struct sem_array *sma;
1172
239521f3 1173 switch (cmd) {
1da177e4
LT
1174 case IPC_INFO:
1175 case SEM_INFO:
1176 {
1177 struct seminfo seminfo;
1178 int max_id;
1179
1180 err = security_sem_semctl(NULL, cmd);
1181 if (err)
1182 return err;
46c0a8ca 1183
239521f3 1184 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1185 seminfo.semmni = ns->sc_semmni;
1186 seminfo.semmns = ns->sc_semmns;
1187 seminfo.semmsl = ns->sc_semmsl;
1188 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1189 seminfo.semvmx = SEMVMX;
1190 seminfo.semmnu = SEMMNU;
1191 seminfo.semmap = SEMMAP;
1192 seminfo.semume = SEMUME;
d9a605e4 1193 down_read(&sem_ids(ns).rwsem);
1da177e4 1194 if (cmd == SEM_INFO) {
e3893534
KK
1195 seminfo.semusz = sem_ids(ns).in_use;
1196 seminfo.semaem = ns->used_sems;
1da177e4
LT
1197 } else {
1198 seminfo.semusz = SEMUSZ;
1199 seminfo.semaem = SEMAEM;
1200 }
7ca7e564 1201 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1202 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1203 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1204 return -EFAULT;
239521f3 1205 return (max_id < 0) ? 0 : max_id;
1da177e4 1206 }
4b9fcb0e 1207 case IPC_STAT:
1da177e4
LT
1208 case SEM_STAT:
1209 {
1210 struct semid64_ds tbuf;
16df3674
DB
1211 int id = 0;
1212
1213 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1214
941b0304 1215 rcu_read_lock();
4b9fcb0e 1216 if (cmd == SEM_STAT) {
16df3674
DB
1217 sma = sem_obtain_object(ns, semid);
1218 if (IS_ERR(sma)) {
1219 err = PTR_ERR(sma);
1220 goto out_unlock;
1221 }
4b9fcb0e
PP
1222 id = sma->sem_perm.id;
1223 } else {
16df3674
DB
1224 sma = sem_obtain_object_check(ns, semid);
1225 if (IS_ERR(sma)) {
1226 err = PTR_ERR(sma);
1227 goto out_unlock;
1228 }
4b9fcb0e 1229 }
1da177e4
LT
1230
1231 err = -EACCES;
b0e77598 1232 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1233 goto out_unlock;
1234
1235 err = security_sem_semctl(sma, cmd);
1236 if (err)
1237 goto out_unlock;
1238
1da177e4 1239 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1240 tbuf.sem_otime = get_semotime(sma);
1241 tbuf.sem_ctime = sma->sem_ctime;
1242 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1243 rcu_read_unlock();
e1fd1f49 1244 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1245 return -EFAULT;
1246 return id;
1247 }
1248 default:
1249 return -EINVAL;
1250 }
1da177e4 1251out_unlock:
16df3674 1252 rcu_read_unlock();
1da177e4
LT
1253 return err;
1254}
1255
e1fd1f49
AV
1256static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1257 unsigned long arg)
1258{
1259 struct sem_undo *un;
1260 struct sem_array *sma;
239521f3 1261 struct sem *curr;
9ae949fa
DB
1262 int err, val;
1263 DEFINE_WAKE_Q(wake_q);
1264
e1fd1f49
AV
1265#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1266 /* big-endian 64bit */
1267 val = arg >> 32;
1268#else
1269 /* 32bit or little-endian 64bit */
1270 val = arg;
1271#endif
1272
6062a8dc
RR
1273 if (val > SEMVMX || val < 0)
1274 return -ERANGE;
e1fd1f49 1275
6062a8dc
RR
1276 rcu_read_lock();
1277 sma = sem_obtain_object_check(ns, semid);
1278 if (IS_ERR(sma)) {
1279 rcu_read_unlock();
1280 return PTR_ERR(sma);
1281 }
1282
1283 if (semnum < 0 || semnum >= sma->sem_nsems) {
1284 rcu_read_unlock();
1285 return -EINVAL;
1286 }
1287
1288
1289 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1290 rcu_read_unlock();
1291 return -EACCES;
1292 }
e1fd1f49
AV
1293
1294 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1295 if (err) {
1296 rcu_read_unlock();
1297 return -EACCES;
1298 }
e1fd1f49 1299
6062a8dc 1300 sem_lock(sma, NULL, -1);
e1fd1f49 1301
0f3d2b01 1302 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1303 sem_unlock(sma, -1);
1304 rcu_read_unlock();
1305 return -EIDRM;
1306 }
1307
1a233956 1308 curr = &sma->sems[semnum];
e1fd1f49 1309
cf9d5d78 1310 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1311 list_for_each_entry(un, &sma->list_id, list_id)
1312 un->semadj[semnum] = 0;
1313
1314 curr->semval = val;
1315 curr->sempid = task_tgid_vnr(current);
1316 sma->sem_ctime = get_seconds();
1317 /* maybe some queued-up processes were waiting for this */
9ae949fa 1318 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1319 sem_unlock(sma, -1);
6d49dab8 1320 rcu_read_unlock();
9ae949fa 1321 wake_up_q(&wake_q);
6062a8dc 1322 return 0;
e1fd1f49
AV
1323}
1324
e3893534 1325static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1326 int cmd, void __user *p)
1da177e4
LT
1327{
1328 struct sem_array *sma;
239521f3 1329 struct sem *curr;
16df3674 1330 int err, nsems;
1da177e4 1331 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1332 ushort *sem_io = fast_sem_io;
9ae949fa 1333 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1334
1335 rcu_read_lock();
1336 sma = sem_obtain_object_check(ns, semid);
1337 if (IS_ERR(sma)) {
1338 rcu_read_unlock();
023a5355 1339 return PTR_ERR(sma);
16df3674 1340 }
1da177e4
LT
1341
1342 nsems = sma->sem_nsems;
1343
1da177e4 1344 err = -EACCES;
c728b9c8
LT
1345 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1346 goto out_rcu_wakeup;
1da177e4
LT
1347
1348 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1349 if (err)
1350 goto out_rcu_wakeup;
1da177e4
LT
1351
1352 err = -EACCES;
1353 switch (cmd) {
1354 case GETALL:
1355 {
e1fd1f49 1356 ushort __user *array = p;
1da177e4
LT
1357 int i;
1358
ce857229 1359 sem_lock(sma, NULL, -1);
0f3d2b01 1360 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1361 err = -EIDRM;
1362 goto out_unlock;
1363 }
239521f3 1364 if (nsems > SEMMSL_FAST) {
dba4cdd3 1365 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1366 err = -EIDRM;
6e224f94 1367 goto out_unlock;
ce857229
AV
1368 }
1369 sem_unlock(sma, -1);
6d49dab8 1370 rcu_read_unlock();
1da177e4 1371 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1372 if (sem_io == NULL) {
dba4cdd3 1373 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1374 return -ENOMEM;
1375 }
1376
4091fd94 1377 rcu_read_lock();
6ff37972 1378 sem_lock_and_putref(sma);
0f3d2b01 1379 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1380 err = -EIDRM;
6e224f94 1381 goto out_unlock;
1da177e4 1382 }
ce857229 1383 }
1da177e4 1384 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1385 sem_io[i] = sma->sems[i].semval;
6062a8dc 1386 sem_unlock(sma, -1);
6d49dab8 1387 rcu_read_unlock();
1da177e4 1388 err = 0;
239521f3 1389 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1390 err = -EFAULT;
1391 goto out_free;
1392 }
1393 case SETALL:
1394 {
1395 int i;
1396 struct sem_undo *un;
1397
dba4cdd3 1398 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1399 err = -EIDRM;
1400 goto out_rcu_wakeup;
6062a8dc 1401 }
16df3674 1402 rcu_read_unlock();
1da177e4 1403
239521f3 1404 if (nsems > SEMMSL_FAST) {
1da177e4 1405 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1406 if (sem_io == NULL) {
dba4cdd3 1407 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1408 return -ENOMEM;
1409 }
1410 }
1411
239521f3 1412 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1413 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1414 err = -EFAULT;
1415 goto out_free;
1416 }
1417
1418 for (i = 0; i < nsems; i++) {
1419 if (sem_io[i] > SEMVMX) {
dba4cdd3 1420 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1421 err = -ERANGE;
1422 goto out_free;
1423 }
1424 }
4091fd94 1425 rcu_read_lock();
6ff37972 1426 sem_lock_and_putref(sma);
0f3d2b01 1427 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1428 err = -EIDRM;
6e224f94 1429 goto out_unlock;
1da177e4
LT
1430 }
1431
a5f4db87 1432 for (i = 0; i < nsems; i++) {
1a233956
MS
1433 sma->sems[i].semval = sem_io[i];
1434 sma->sems[i].sempid = task_tgid_vnr(current);
a5f4db87 1435 }
4daa28f6 1436
cf9d5d78 1437 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1438 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1439 for (i = 0; i < nsems; i++)
1440 un->semadj[i] = 0;
4daa28f6 1441 }
1da177e4
LT
1442 sma->sem_ctime = get_seconds();
1443 /* maybe some queued-up processes were waiting for this */
9ae949fa 1444 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1445 err = 0;
1446 goto out_unlock;
1447 }
e1fd1f49 1448 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1449 }
1450 err = -EINVAL;
c728b9c8
LT
1451 if (semnum < 0 || semnum >= nsems)
1452 goto out_rcu_wakeup;
1da177e4 1453
6062a8dc 1454 sem_lock(sma, NULL, -1);
0f3d2b01 1455 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1456 err = -EIDRM;
1457 goto out_unlock;
1458 }
1a233956 1459 curr = &sma->sems[semnum];
1da177e4
LT
1460
1461 switch (cmd) {
1462 case GETVAL:
1463 err = curr->semval;
1464 goto out_unlock;
1465 case GETPID:
1466 err = curr->sempid;
1467 goto out_unlock;
1468 case GETNCNT:
2f2ed41d 1469 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1470 goto out_unlock;
1471 case GETZCNT:
2f2ed41d 1472 err = count_semcnt(sma, semnum, 1);
1da177e4 1473 goto out_unlock;
1da177e4 1474 }
16df3674 1475
1da177e4 1476out_unlock:
6062a8dc 1477 sem_unlock(sma, -1);
c728b9c8 1478out_rcu_wakeup:
6d49dab8 1479 rcu_read_unlock();
9ae949fa 1480 wake_up_q(&wake_q);
1da177e4 1481out_free:
239521f3 1482 if (sem_io != fast_sem_io)
1d5cfdb0 1483 ipc_free(sem_io);
1da177e4
LT
1484 return err;
1485}
1486
016d7132
PP
1487static inline unsigned long
1488copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1489{
239521f3 1490 switch (version) {
1da177e4 1491 case IPC_64:
016d7132 1492 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1493 return -EFAULT;
1da177e4 1494 return 0;
1da177e4
LT
1495 case IPC_OLD:
1496 {
1497 struct semid_ds tbuf_old;
1498
239521f3 1499 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1500 return -EFAULT;
1501
016d7132
PP
1502 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1503 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1504 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1505
1506 return 0;
1507 }
1508 default:
1509 return -EINVAL;
1510 }
1511}
1512
522bb2a2 1513/*
d9a605e4 1514 * This function handles some semctl commands which require the rwsem
522bb2a2 1515 * to be held in write mode.
d9a605e4 1516 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1517 */
21a4826a 1518static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1519 int cmd, int version, void __user *p)
1da177e4
LT
1520{
1521 struct sem_array *sma;
1522 int err;
016d7132 1523 struct semid64_ds semid64;
1da177e4
LT
1524 struct kern_ipc_perm *ipcp;
1525
239521f3 1526 if (cmd == IPC_SET) {
e1fd1f49 1527 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1528 return -EFAULT;
1da177e4 1529 }
073115d6 1530
d9a605e4 1531 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1532 rcu_read_lock();
1533
16df3674
DB
1534 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1535 &semid64.sem_perm, 0);
7b4cc5d8
DB
1536 if (IS_ERR(ipcp)) {
1537 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1538 goto out_unlock1;
1539 }
073115d6 1540
a5f75e7f 1541 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1542
1543 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1544 if (err)
1545 goto out_unlock1;
1da177e4 1546
7b4cc5d8 1547 switch (cmd) {
1da177e4 1548 case IPC_RMID:
6062a8dc 1549 sem_lock(sma, NULL, -1);
7b4cc5d8 1550 /* freeary unlocks the ipc object and rcu */
01b8b07a 1551 freeary(ns, ipcp);
522bb2a2 1552 goto out_up;
1da177e4 1553 case IPC_SET:
6062a8dc 1554 sem_lock(sma, NULL, -1);
1efdb69b
EB
1555 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1556 if (err)
7b4cc5d8 1557 goto out_unlock0;
1da177e4 1558 sma->sem_ctime = get_seconds();
1da177e4
LT
1559 break;
1560 default:
1da177e4 1561 err = -EINVAL;
7b4cc5d8 1562 goto out_unlock1;
1da177e4 1563 }
1da177e4 1564
7b4cc5d8 1565out_unlock0:
6062a8dc 1566 sem_unlock(sma, -1);
7b4cc5d8 1567out_unlock1:
6d49dab8 1568 rcu_read_unlock();
522bb2a2 1569out_up:
d9a605e4 1570 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1571 return err;
1572}
1573
e1fd1f49 1574SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1575{
1da177e4 1576 int version;
e3893534 1577 struct ipc_namespace *ns;
e1fd1f49 1578 void __user *p = (void __user *)arg;
1da177e4
LT
1579
1580 if (semid < 0)
1581 return -EINVAL;
1582
1583 version = ipc_parse_version(&cmd);
e3893534 1584 ns = current->nsproxy->ipc_ns;
1da177e4 1585
239521f3 1586 switch (cmd) {
1da177e4
LT
1587 case IPC_INFO:
1588 case SEM_INFO:
4b9fcb0e 1589 case IPC_STAT:
1da177e4 1590 case SEM_STAT:
e1fd1f49 1591 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1592 case GETALL:
1593 case GETVAL:
1594 case GETPID:
1595 case GETNCNT:
1596 case GETZCNT:
1da177e4 1597 case SETALL:
e1fd1f49
AV
1598 return semctl_main(ns, semid, semnum, cmd, p);
1599 case SETVAL:
1600 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1601 case IPC_RMID:
1602 case IPC_SET:
e1fd1f49 1603 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1604 default:
1605 return -EINVAL;
1606 }
1607}
1608
1da177e4
LT
1609/* If the task doesn't already have a undo_list, then allocate one
1610 * here. We guarantee there is only one thread using this undo list,
1611 * and current is THE ONE
1612 *
1613 * If this allocation and assignment succeeds, but later
1614 * portions of this code fail, there is no need to free the sem_undo_list.
1615 * Just let it stay associated with the task, and it'll be freed later
1616 * at exit time.
1617 *
1618 * This can block, so callers must hold no locks.
1619 */
1620static inline int get_undo_list(struct sem_undo_list **undo_listp)
1621{
1622 struct sem_undo_list *undo_list;
1da177e4
LT
1623
1624 undo_list = current->sysvsem.undo_list;
1625 if (!undo_list) {
2453a306 1626 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1627 if (undo_list == NULL)
1628 return -ENOMEM;
00a5dfdb 1629 spin_lock_init(&undo_list->lock);
1da177e4 1630 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1631 INIT_LIST_HEAD(&undo_list->list_proc);
1632
1da177e4
LT
1633 current->sysvsem.undo_list = undo_list;
1634 }
1635 *undo_listp = undo_list;
1636 return 0;
1637}
1638
bf17bb71 1639static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1640{
bf17bb71 1641 struct sem_undo *un;
4daa28f6 1642
bf17bb71
NP
1643 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1644 if (un->semid == semid)
1645 return un;
1da177e4 1646 }
4daa28f6 1647 return NULL;
1da177e4
LT
1648}
1649
bf17bb71
NP
1650static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1651{
1652 struct sem_undo *un;
1653
239521f3 1654 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1655
1656 un = __lookup_undo(ulp, semid);
1657 if (un) {
1658 list_del_rcu(&un->list_proc);
1659 list_add_rcu(&un->list_proc, &ulp->list_proc);
1660 }
1661 return un;
1662}
1663
4daa28f6 1664/**
8001c858 1665 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1666 * @ns: namespace
1667 * @semid: semaphore array id
1668 *
1669 * The function looks up (and if not present creates) the undo structure.
1670 * The size of the undo structure depends on the size of the semaphore
1671 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1672 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1673 * performs a rcu_read_lock().
4daa28f6
MS
1674 */
1675static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1676{
1677 struct sem_array *sma;
1678 struct sem_undo_list *ulp;
1679 struct sem_undo *un, *new;
6062a8dc 1680 int nsems, error;
1da177e4
LT
1681
1682 error = get_undo_list(&ulp);
1683 if (error)
1684 return ERR_PTR(error);
1685
380af1b3 1686 rcu_read_lock();
c530c6ac 1687 spin_lock(&ulp->lock);
1da177e4 1688 un = lookup_undo(ulp, semid);
c530c6ac 1689 spin_unlock(&ulp->lock);
239521f3 1690 if (likely(un != NULL))
1da177e4
LT
1691 goto out;
1692
1693 /* no undo structure around - allocate one. */
4daa28f6 1694 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1695 sma = sem_obtain_object_check(ns, semid);
1696 if (IS_ERR(sma)) {
1697 rcu_read_unlock();
4de85cd6 1698 return ERR_CAST(sma);
16df3674 1699 }
023a5355 1700
1da177e4 1701 nsems = sma->sem_nsems;
dba4cdd3 1702 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1703 rcu_read_unlock();
1704 un = ERR_PTR(-EIDRM);
1705 goto out;
1706 }
16df3674 1707 rcu_read_unlock();
1da177e4 1708
4daa28f6 1709 /* step 2: allocate new undo structure */
4668edc3 1710 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1711 if (!new) {
dba4cdd3 1712 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1713 return ERR_PTR(-ENOMEM);
1714 }
1da177e4 1715
380af1b3 1716 /* step 3: Acquire the lock on semaphore array */
4091fd94 1717 rcu_read_lock();
6ff37972 1718 sem_lock_and_putref(sma);
0f3d2b01 1719 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1720 sem_unlock(sma, -1);
6d49dab8 1721 rcu_read_unlock();
1da177e4
LT
1722 kfree(new);
1723 un = ERR_PTR(-EIDRM);
1724 goto out;
1725 }
380af1b3
MS
1726 spin_lock(&ulp->lock);
1727
1728 /*
1729 * step 4: check for races: did someone else allocate the undo struct?
1730 */
1731 un = lookup_undo(ulp, semid);
1732 if (un) {
1733 kfree(new);
1734 goto success;
1735 }
4daa28f6
MS
1736 /* step 5: initialize & link new undo structure */
1737 new->semadj = (short *) &new[1];
380af1b3 1738 new->ulp = ulp;
4daa28f6
MS
1739 new->semid = semid;
1740 assert_spin_locked(&ulp->lock);
380af1b3 1741 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1742 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1743 list_add(&new->list_id, &sma->list_id);
380af1b3 1744 un = new;
4daa28f6 1745
380af1b3 1746success:
c530c6ac 1747 spin_unlock(&ulp->lock);
6062a8dc 1748 sem_unlock(sma, -1);
1da177e4
LT
1749out:
1750 return un;
1751}
1752
d5460c99
HC
1753SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1754 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1755{
1756 int error = -EINVAL;
1757 struct sem_array *sma;
1758 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1759 struct sembuf *sops = fast_sops, *sop;
1da177e4 1760 struct sem_undo *un;
4ce33ec2
DB
1761 int max, locknum;
1762 bool undos = false, alter = false, dupsop = false;
1da177e4 1763 struct sem_queue queue;
4ce33ec2 1764 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1765 struct ipc_namespace *ns;
1766
1767 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1768
1769 if (nsops < 1 || semid < 0)
1770 return -EINVAL;
e3893534 1771 if (nsops > ns->sc_semopm)
1da177e4 1772 return -E2BIG;
239521f3
MS
1773 if (nsops > SEMOPM_FAST) {
1774 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1775 if (sops == NULL)
1da177e4
LT
1776 return -ENOMEM;
1777 }
4ce33ec2 1778
239521f3
MS
1779 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1780 error = -EFAULT;
1da177e4
LT
1781 goto out_free;
1782 }
4ce33ec2 1783
1da177e4
LT
1784 if (timeout) {
1785 struct timespec _timeout;
1786 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1787 error = -EFAULT;
1788 goto out_free;
1789 }
1790 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1791 _timeout.tv_nsec >= 1000000000L) {
1792 error = -EINVAL;
1793 goto out_free;
1794 }
1795 jiffies_left = timespec_to_jiffies(&_timeout);
1796 }
4ce33ec2 1797
1da177e4
LT
1798 max = 0;
1799 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1800 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1801
1da177e4
LT
1802 if (sop->sem_num >= max)
1803 max = sop->sem_num;
1804 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1805 undos = true;
1806 if (dup & mask) {
1807 /*
1808 * There was a previous alter access that appears
1809 * to have accessed the same semaphore, thus use
1810 * the dupsop logic. "appears", because the detection
1811 * can only check % BITS_PER_LONG.
1812 */
1813 dupsop = true;
1814 }
1815 if (sop->sem_op != 0) {
1816 alter = true;
1817 dup |= mask;
1818 }
1da177e4 1819 }
1da177e4 1820
1da177e4 1821 if (undos) {
6062a8dc 1822 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1823 un = find_alloc_undo(ns, semid);
1da177e4
LT
1824 if (IS_ERR(un)) {
1825 error = PTR_ERR(un);
1826 goto out_free;
1827 }
6062a8dc 1828 } else {
1da177e4 1829 un = NULL;
6062a8dc
RR
1830 rcu_read_lock();
1831 }
1da177e4 1832
16df3674 1833 sma = sem_obtain_object_check(ns, semid);
023a5355 1834 if (IS_ERR(sma)) {
6062a8dc 1835 rcu_read_unlock();
023a5355 1836 error = PTR_ERR(sma);
1da177e4 1837 goto out_free;
023a5355
ND
1838 }
1839
16df3674 1840 error = -EFBIG;
248e7357
DB
1841 if (max >= sma->sem_nsems) {
1842 rcu_read_unlock();
1843 goto out_free;
1844 }
16df3674
DB
1845
1846 error = -EACCES;
248e7357
DB
1847 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1848 rcu_read_unlock();
1849 goto out_free;
1850 }
16df3674
DB
1851
1852 error = security_sem_semop(sma, sops, nsops, alter);
248e7357
DB
1853 if (error) {
1854 rcu_read_unlock();
1855 goto out_free;
1856 }
16df3674 1857
6e224f94
MS
1858 error = -EIDRM;
1859 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1860 /*
1861 * We eventually might perform the following check in a lockless
1862 * fashion, considering ipc_valid_object() locking constraints.
1863 * If nsops == 1 and there is no contention for sem_perm.lock, then
1864 * only a per-semaphore lock is held and it's OK to proceed with the
1865 * check below. More details on the fine grained locking scheme
1866 * entangled here and why it's RMID race safe on comments at sem_lock()
1867 */
1868 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1869 goto out_unlock_free;
1da177e4 1870 /*
4daa28f6 1871 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1872 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1873 * and now a new array with received the same id. Check and fail.
25985edc 1874 * This case can be detected checking un->semid. The existence of
380af1b3 1875 * "un" itself is guaranteed by rcu.
1da177e4 1876 */
6062a8dc
RR
1877 if (un && un->semid == -1)
1878 goto out_unlock_free;
4daa28f6 1879
d198cd6d
MS
1880 queue.sops = sops;
1881 queue.nsops = nsops;
1882 queue.undo = un;
1883 queue.pid = task_tgid_vnr(current);
1884 queue.alter = alter;
4ce33ec2 1885 queue.dupsop = dupsop;
d198cd6d
MS
1886
1887 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
1888 if (error == 0) { /* non-blocking succesfull path */
1889 DEFINE_WAKE_Q(wake_q);
1890
1891 /*
1892 * If the operation was successful, then do
0e8c6656
MS
1893 * the required updates.
1894 */
1895 if (alter)
9ae949fa 1896 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
1897 else
1898 set_semotime(sma, sops);
9ae949fa
DB
1899
1900 sem_unlock(sma, locknum);
1901 rcu_read_unlock();
1902 wake_up_q(&wake_q);
1903
1904 goto out_free;
1da177e4 1905 }
9ae949fa 1906 if (error < 0) /* non-blocking error path */
0e8c6656 1907 goto out_unlock_free;
1da177e4 1908
9ae949fa
DB
1909 /*
1910 * We need to sleep on this operation, so we put the current
1da177e4
LT
1911 * task into the pending queue and go to sleep.
1912 */
b97e820f
MS
1913 if (nsops == 1) {
1914 struct sem *curr;
1a233956 1915 curr = &sma->sems[sops->sem_num];
b97e820f 1916
f269f40a
MS
1917 if (alter) {
1918 if (sma->complex_count) {
1919 list_add_tail(&queue.list,
1920 &sma->pending_alter);
1921 } else {
1922
1923 list_add_tail(&queue.list,
1924 &curr->pending_alter);
1925 }
1926 } else {
1a82e9e1 1927 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1928 }
b97e820f 1929 } else {
f269f40a
MS
1930 if (!sma->complex_count)
1931 merge_queues(sma);
1932
9f1bc2c9 1933 if (alter)
1a82e9e1 1934 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1935 else
1a82e9e1
MS
1936 list_add_tail(&queue.list, &sma->pending_const);
1937
b97e820f
MS
1938 sma->complex_count++;
1939 }
1940
b5fa01a2
DB
1941 do {
1942 queue.status = -EINTR;
1943 queue.sleeper = current;
0b0577f6 1944
b5fa01a2
DB
1945 __set_current_state(TASK_INTERRUPTIBLE);
1946 sem_unlock(sma, locknum);
1947 rcu_read_unlock();
1da177e4 1948
b5fa01a2
DB
1949 if (timeout)
1950 jiffies_left = schedule_timeout(jiffies_left);
1951 else
1952 schedule();
1da177e4 1953
9ae949fa 1954 /*
b5fa01a2
DB
1955 * fastpath: the semop has completed, either successfully or
1956 * not, from the syscall pov, is quite irrelevant to us at this
1957 * point; we're done.
1958 *
1959 * We _do_ care, nonetheless, about being awoken by a signal or
1960 * spuriously. The queue.status is checked again in the
1961 * slowpath (aka after taking sem_lock), such that we can detect
1962 * scenarios where we were awakened externally, during the
1963 * window between wake_q_add() and wake_up_q().
c61284e9 1964 */
b5fa01a2
DB
1965 error = READ_ONCE(queue.status);
1966 if (error != -EINTR) {
1967 /*
1968 * User space could assume that semop() is a memory
1969 * barrier: Without the mb(), the cpu could
1970 * speculatively read in userspace stale data that was
1971 * overwritten by the previous owner of the semaphore.
1972 */
1973 smp_mb();
1974 goto out_free;
1975 }
d694ad62 1976
b5fa01a2 1977 rcu_read_lock();
c626bc46 1978 locknum = sem_lock(sma, sops, nsops);
1da177e4 1979
370b262c
DB
1980 if (!ipc_valid_object(&sma->sem_perm))
1981 goto out_unlock_free;
1982
1983 error = READ_ONCE(queue.status);
1da177e4 1984
b5fa01a2
DB
1985 /*
1986 * If queue.status != -EINTR we are woken up by another process.
1987 * Leave without unlink_queue(), but with sem_unlock().
1988 */
1989 if (error != -EINTR)
1990 goto out_unlock_free;
0b0577f6 1991
b5fa01a2
DB
1992 /*
1993 * If an interrupt occurred we have to clean up the queue.
1994 */
1995 if (timeout && jiffies_left == 0)
1996 error = -EAGAIN;
1997 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 1998
b97e820f 1999 unlink_queue(sma, &queue);
1da177e4
LT
2000
2001out_unlock_free:
6062a8dc 2002 sem_unlock(sma, locknum);
6d49dab8 2003 rcu_read_unlock();
1da177e4 2004out_free:
239521f3 2005 if (sops != fast_sops)
1da177e4
LT
2006 kfree(sops);
2007 return error;
2008}
2009
d5460c99
HC
2010SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2011 unsigned, nsops)
1da177e4
LT
2012{
2013 return sys_semtimedop(semid, tsops, nsops, NULL);
2014}
2015
2016/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2017 * parent and child tasks.
1da177e4
LT
2018 */
2019
2020int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2021{
2022 struct sem_undo_list *undo_list;
2023 int error;
2024
2025 if (clone_flags & CLONE_SYSVSEM) {
2026 error = get_undo_list(&undo_list);
2027 if (error)
2028 return error;
1da177e4
LT
2029 atomic_inc(&undo_list->refcnt);
2030 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2031 } else
1da177e4
LT
2032 tsk->sysvsem.undo_list = NULL;
2033
2034 return 0;
2035}
2036
2037/*
2038 * add semadj values to semaphores, free undo structures.
2039 * undo structures are not freed when semaphore arrays are destroyed
2040 * so some of them may be out of date.
2041 * IMPLEMENTATION NOTE: There is some confusion over whether the
2042 * set of adjustments that needs to be done should be done in an atomic
2043 * manner or not. That is, if we are attempting to decrement the semval
2044 * should we queue up and wait until we can do so legally?
2045 * The original implementation attempted to do this (queue and wait).
2046 * The current implementation does not do so. The POSIX standard
2047 * and SVID should be consulted to determine what behavior is mandated.
2048 */
2049void exit_sem(struct task_struct *tsk)
2050{
4daa28f6 2051 struct sem_undo_list *ulp;
1da177e4 2052
4daa28f6
MS
2053 ulp = tsk->sysvsem.undo_list;
2054 if (!ulp)
1da177e4 2055 return;
9edff4ab 2056 tsk->sysvsem.undo_list = NULL;
1da177e4 2057
4daa28f6 2058 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2059 return;
2060
380af1b3 2061 for (;;) {
1da177e4 2062 struct sem_array *sma;
380af1b3 2063 struct sem_undo *un;
6062a8dc 2064 int semid, i;
9ae949fa 2065 DEFINE_WAKE_Q(wake_q);
4daa28f6 2066
2a1613a5
NB
2067 cond_resched();
2068
380af1b3 2069 rcu_read_lock();
05725f7e
JP
2070 un = list_entry_rcu(ulp->list_proc.next,
2071 struct sem_undo, list_proc);
602b8593
HK
2072 if (&un->list_proc == &ulp->list_proc) {
2073 /*
2074 * We must wait for freeary() before freeing this ulp,
2075 * in case we raced with last sem_undo. There is a small
2076 * possibility where we exit while freeary() didn't
2077 * finish unlocking sem_undo_list.
2078 */
2079 spin_unlock_wait(&ulp->lock);
2080 rcu_read_unlock();
2081 break;
2082 }
2083 spin_lock(&ulp->lock);
2084 semid = un->semid;
2085 spin_unlock(&ulp->lock);
4daa28f6 2086
602b8593 2087 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2088 if (semid == -1) {
2089 rcu_read_unlock();
602b8593 2090 continue;
6062a8dc 2091 }
1da177e4 2092
602b8593 2093 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2094 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2095 if (IS_ERR(sma)) {
2096 rcu_read_unlock();
380af1b3 2097 continue;
6062a8dc 2098 }
1da177e4 2099
6062a8dc 2100 sem_lock(sma, NULL, -1);
6e224f94 2101 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2102 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2103 sem_unlock(sma, -1);
2104 rcu_read_unlock();
2105 continue;
2106 }
bf17bb71 2107 un = __lookup_undo(ulp, semid);
380af1b3
MS
2108 if (un == NULL) {
2109 /* exit_sem raced with IPC_RMID+semget() that created
2110 * exactly the same semid. Nothing to do.
2111 */
6062a8dc 2112 sem_unlock(sma, -1);
6d49dab8 2113 rcu_read_unlock();
380af1b3
MS
2114 continue;
2115 }
2116
2117 /* remove un from the linked lists */
cf9d5d78 2118 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2119 list_del(&un->list_id);
2120
a9795584
HK
2121 /* we are the last process using this ulp, acquiring ulp->lock
2122 * isn't required. Besides that, we are also protected against
2123 * IPC_RMID as we hold sma->sem_perm lock now
2124 */
380af1b3 2125 list_del_rcu(&un->list_proc);
380af1b3 2126
4daa28f6
MS
2127 /* perform adjustments registered in un */
2128 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2129 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2130 if (un->semadj[i]) {
2131 semaphore->semval += un->semadj[i];
1da177e4
LT
2132 /*
2133 * Range checks of the new semaphore value,
2134 * not defined by sus:
2135 * - Some unices ignore the undo entirely
2136 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2137 * - some cap the value (e.g. FreeBSD caps
2138 * at 0, but doesn't enforce SEMVMX)
2139 *
2140 * Linux caps the semaphore value, both at 0
2141 * and at SEMVMX.
2142 *
239521f3 2143 * Manfred <manfred@colorfullife.com>
1da177e4 2144 */
5f921ae9
IM
2145 if (semaphore->semval < 0)
2146 semaphore->semval = 0;
2147 if (semaphore->semval > SEMVMX)
2148 semaphore->semval = SEMVMX;
b488893a 2149 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2150 }
2151 }
1da177e4 2152 /* maybe some queued-up processes were waiting for this */
9ae949fa 2153 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2154 sem_unlock(sma, -1);
6d49dab8 2155 rcu_read_unlock();
9ae949fa 2156 wake_up_q(&wake_q);
380af1b3 2157
693a8b6e 2158 kfree_rcu(un, rcu);
1da177e4 2159 }
4daa28f6 2160 kfree(ulp);
1da177e4
LT
2161}
2162
2163#ifdef CONFIG_PROC_FS
19b4946c 2164static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2165{
1efdb69b 2166 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2167 struct sem_array *sma = it;
d12e1e50
MS
2168 time_t sem_otime;
2169
d8c63376
MS
2170 /*
2171 * The proc interface isn't aware of sem_lock(), it calls
2172 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2173 * In order to stay compatible with sem_lock(), we must
2174 * enter / leave complex_mode.
d8c63376 2175 */
5864a2fd 2176 complexmode_enter(sma);
d8c63376 2177
d12e1e50 2178 sem_otime = get_semotime(sma);
19b4946c 2179
7f032d6e
JP
2180 seq_printf(s,
2181 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2182 sma->sem_perm.key,
2183 sma->sem_perm.id,
2184 sma->sem_perm.mode,
2185 sma->sem_nsems,
2186 from_kuid_munged(user_ns, sma->sem_perm.uid),
2187 from_kgid_munged(user_ns, sma->sem_perm.gid),
2188 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2189 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2190 sem_otime,
2191 sma->sem_ctime);
2192
5864a2fd
MS
2193 complexmode_tryleave(sma);
2194
7f032d6e 2195 return 0;
1da177e4
LT
2196}
2197#endif