]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - ipc/sem.c
ipc: introduce lockless pre_down ipcctl
[mirror_ubuntu-bionic-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 struct list_head sem_pending; /* pending single-sop operations */
98};
99
100/* One queue for each sleeping process in the system. */
101struct sem_queue {
102 struct list_head simple_list; /* queue of pending operations */
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
111};
112
113/* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
115 */
116struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
127};
128
129/* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
131 */
132struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
136};
137
138
ed2ddbf8 139#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 140
e3893534 141#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
1b531f21 142#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 143
7748dbfa 144static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 145static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 146#ifdef CONFIG_PROC_FS
19b4946c 147static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
148#endif
149
150#define SEMMSL_FAST 256 /* 512 bytes on stack */
151#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
152
153/*
154 * linked list protection:
155 * sem_undo.id_next,
156 * sem_array.sem_pending{,last},
157 * sem_array.sem_undo: sem_lock() for read/write
158 * sem_undo.proc_next: only "current" is allowed to read/write that field.
159 *
160 */
161
e3893534
KK
162#define sc_semmsl sem_ctls[0]
163#define sc_semmns sem_ctls[1]
164#define sc_semopm sem_ctls[2]
165#define sc_semmni sem_ctls[3]
166
ed2ddbf8 167void sem_init_ns(struct ipc_namespace *ns)
e3893534 168{
e3893534
KK
169 ns->sc_semmsl = SEMMSL;
170 ns->sc_semmns = SEMMNS;
171 ns->sc_semopm = SEMOPM;
172 ns->sc_semmni = SEMMNI;
173 ns->used_sems = 0;
ed2ddbf8 174 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
175}
176
ae5e1b22 177#ifdef CONFIG_IPC_NS
e3893534
KK
178void sem_exit_ns(struct ipc_namespace *ns)
179{
01b8b07a 180 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 181 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 182}
ae5e1b22 183#endif
1da177e4
LT
184
185void __init sem_init (void)
186{
ed2ddbf8 187 sem_init_ns(&init_ipc_ns);
19b4946c
MW
188 ipc_init_proc_interface("sysvipc/sem",
189 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 190 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
191}
192
3e148c79
ND
193/*
194 * sem_lock_(check_) routines are called in the paths where the rw_mutex
195 * is not held.
196 */
023a5355
ND
197static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
198{
03f02c76
ND
199 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
200
b1ed88b4
PP
201 if (IS_ERR(ipcp))
202 return (struct sem_array *)ipcp;
203
03f02c76 204 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
205}
206
207static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
208 int id)
209{
03f02c76
ND
210 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
211
b1ed88b4
PP
212 if (IS_ERR(ipcp))
213 return (struct sem_array *)ipcp;
214
03f02c76 215 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
216}
217
6ff37972
PP
218static inline void sem_lock_and_putref(struct sem_array *sma)
219{
220 ipc_lock_by_ptr(&sma->sem_perm);
221 ipc_rcu_putref(sma);
222}
223
224static inline void sem_getref_and_unlock(struct sem_array *sma)
225{
226 ipc_rcu_getref(sma);
227 ipc_unlock(&(sma)->sem_perm);
228}
229
230static inline void sem_putref(struct sem_array *sma)
231{
232 ipc_lock_by_ptr(&sma->sem_perm);
233 ipc_rcu_putref(sma);
234 ipc_unlock(&(sma)->sem_perm);
235}
236
7ca7e564
ND
237static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
238{
239 ipc_rmid(&sem_ids(ns), &s->sem_perm);
240}
241
1da177e4
LT
242/*
243 * Lockless wakeup algorithm:
244 * Without the check/retry algorithm a lockless wakeup is possible:
245 * - queue.status is initialized to -EINTR before blocking.
246 * - wakeup is performed by
247 * * unlinking the queue entry from sma->sem_pending
248 * * setting queue.status to IN_WAKEUP
249 * This is the notification for the blocked thread that a
250 * result value is imminent.
251 * * call wake_up_process
252 * * set queue.status to the final value.
253 * - the previously blocked thread checks queue.status:
254 * * if it's IN_WAKEUP, then it must wait until the value changes
255 * * if it's not -EINTR, then the operation was completed by
256 * update_queue. semtimedop can return queue.status without
5f921ae9 257 * performing any operation on the sem array.
1da177e4
LT
258 * * otherwise it must acquire the spinlock and check what's up.
259 *
260 * The two-stage algorithm is necessary to protect against the following
261 * races:
262 * - if queue.status is set after wake_up_process, then the woken up idle
263 * thread could race forward and try (and fail) to acquire sma->lock
264 * before update_queue had a chance to set queue.status
265 * - if queue.status is written before wake_up_process and if the
266 * blocked process is woken up by a signal between writing
267 * queue.status and the wake_up_process, then the woken up
268 * process could return from semtimedop and die by calling
269 * sys_exit before wake_up_process is called. Then wake_up_process
270 * will oops, because the task structure is already invalid.
271 * (yes, this happened on s390 with sysv msg).
272 *
273 */
274#define IN_WAKEUP 1
275
f4566f04
ND
276/**
277 * newary - Create a new semaphore set
278 * @ns: namespace
279 * @params: ptr to the structure that contains key, semflg and nsems
280 *
3e148c79 281 * Called with sem_ids.rw_mutex held (as a writer)
f4566f04
ND
282 */
283
7748dbfa 284static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
285{
286 int id;
287 int retval;
288 struct sem_array *sma;
289 int size;
7748dbfa
ND
290 key_t key = params->key;
291 int nsems = params->u.nsems;
292 int semflg = params->flg;
b97e820f 293 int i;
1da177e4
LT
294
295 if (!nsems)
296 return -EINVAL;
e3893534 297 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
298 return -ENOSPC;
299
300 size = sizeof (*sma) + nsems * sizeof (struct sem);
301 sma = ipc_rcu_alloc(size);
302 if (!sma) {
303 return -ENOMEM;
304 }
305 memset (sma, 0, size);
306
307 sma->sem_perm.mode = (semflg & S_IRWXUGO);
308 sma->sem_perm.key = key;
309
310 sma->sem_perm.security = NULL;
311 retval = security_sem_alloc(sma);
312 if (retval) {
313 ipc_rcu_putref(sma);
314 return retval;
315 }
316
e3893534 317 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 318 if (id < 0) {
1da177e4
LT
319 security_sem_free(sma);
320 ipc_rcu_putref(sma);
283bb7fa 321 return id;
1da177e4 322 }
e3893534 323 ns->used_sems += nsems;
1da177e4
LT
324
325 sma->sem_base = (struct sem *) &sma[1];
b97e820f
MS
326
327 for (i = 0; i < nsems; i++)
328 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
329
330 sma->complex_count = 0;
a1193f8e 331 INIT_LIST_HEAD(&sma->sem_pending);
4daa28f6 332 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
333 sma->sem_nsems = nsems;
334 sma->sem_ctime = get_seconds();
335 sem_unlock(sma);
336
7ca7e564 337 return sma->sem_perm.id;
1da177e4
LT
338}
339
7748dbfa 340
f4566f04 341/*
3e148c79 342 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 343 */
03f02c76 344static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 345{
03f02c76
ND
346 struct sem_array *sma;
347
348 sma = container_of(ipcp, struct sem_array, sem_perm);
349 return security_sem_associate(sma, semflg);
7748dbfa
ND
350}
351
f4566f04 352/*
3e148c79 353 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 354 */
03f02c76
ND
355static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
356 struct ipc_params *params)
7748dbfa 357{
03f02c76
ND
358 struct sem_array *sma;
359
360 sma = container_of(ipcp, struct sem_array, sem_perm);
361 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
362 return -EINVAL;
363
364 return 0;
365}
366
d5460c99 367SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 368{
e3893534 369 struct ipc_namespace *ns;
7748dbfa
ND
370 struct ipc_ops sem_ops;
371 struct ipc_params sem_params;
e3893534
KK
372
373 ns = current->nsproxy->ipc_ns;
1da177e4 374
e3893534 375 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 376 return -EINVAL;
7ca7e564 377
7748dbfa
ND
378 sem_ops.getnew = newary;
379 sem_ops.associate = sem_security;
380 sem_ops.more_checks = sem_more_checks;
381
382 sem_params.key = key;
383 sem_params.flg = semflg;
384 sem_params.u.nsems = nsems;
1da177e4 385
7748dbfa 386 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
387}
388
1da177e4
LT
389/*
390 * Determine whether a sequence of semaphore operations would succeed
391 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
392 */
393
394static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
395 int nsops, struct sem_undo *un, int pid)
396{
397 int result, sem_op;
398 struct sembuf *sop;
399 struct sem * curr;
400
401 for (sop = sops; sop < sops + nsops; sop++) {
402 curr = sma->sem_base + sop->sem_num;
403 sem_op = sop->sem_op;
404 result = curr->semval;
405
406 if (!sem_op && result)
407 goto would_block;
408
409 result += sem_op;
410 if (result < 0)
411 goto would_block;
412 if (result > SEMVMX)
413 goto out_of_range;
414 if (sop->sem_flg & SEM_UNDO) {
415 int undo = un->semadj[sop->sem_num] - sem_op;
416 /*
417 * Exceeding the undo range is an error.
418 */
419 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
420 goto out_of_range;
421 }
422 curr->semval = result;
423 }
424
425 sop--;
426 while (sop >= sops) {
427 sma->sem_base[sop->sem_num].sempid = pid;
428 if (sop->sem_flg & SEM_UNDO)
429 un->semadj[sop->sem_num] -= sop->sem_op;
430 sop--;
431 }
432
1da177e4
LT
433 return 0;
434
435out_of_range:
436 result = -ERANGE;
437 goto undo;
438
439would_block:
440 if (sop->sem_flg & IPC_NOWAIT)
441 result = -EAGAIN;
442 else
443 result = 1;
444
445undo:
446 sop--;
447 while (sop >= sops) {
448 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
449 sop--;
450 }
451
452 return result;
453}
454
0a2b9d4c
MS
455/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
456 * @q: queue entry that must be signaled
457 * @error: Error value for the signal
458 *
459 * Prepare the wake-up of the queue entry q.
d4212093 460 */
0a2b9d4c
MS
461static void wake_up_sem_queue_prepare(struct list_head *pt,
462 struct sem_queue *q, int error)
d4212093 463{
0a2b9d4c
MS
464 if (list_empty(pt)) {
465 /*
466 * Hold preempt off so that we don't get preempted and have the
467 * wakee busy-wait until we're scheduled back on.
468 */
469 preempt_disable();
470 }
d4212093 471 q->status = IN_WAKEUP;
0a2b9d4c
MS
472 q->pid = error;
473
474 list_add_tail(&q->simple_list, pt);
475}
476
477/**
478 * wake_up_sem_queue_do(pt) - do the actual wake-up
479 * @pt: list of tasks to be woken up
480 *
481 * Do the actual wake-up.
482 * The function is called without any locks held, thus the semaphore array
483 * could be destroyed already and the tasks can disappear as soon as the
484 * status is set to the actual return code.
485 */
486static void wake_up_sem_queue_do(struct list_head *pt)
487{
488 struct sem_queue *q, *t;
489 int did_something;
490
491 did_something = !list_empty(pt);
492 list_for_each_entry_safe(q, t, pt, simple_list) {
493 wake_up_process(q->sleeper);
494 /* q can disappear immediately after writing q->status. */
495 smp_wmb();
496 q->status = q->pid;
497 }
498 if (did_something)
499 preempt_enable();
d4212093
NP
500}
501
b97e820f
MS
502static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
503{
504 list_del(&q->list);
505 if (q->nsops == 1)
506 list_del(&q->simple_list);
507 else
508 sma->complex_count--;
509}
510
fd5db422
MS
511/** check_restart(sma, q)
512 * @sma: semaphore array
513 * @q: the operation that just completed
514 *
515 * update_queue is O(N^2) when it restarts scanning the whole queue of
516 * waiting operations. Therefore this function checks if the restart is
517 * really necessary. It is called after a previously waiting operation
518 * was completed.
519 */
520static int check_restart(struct sem_array *sma, struct sem_queue *q)
521{
522 struct sem *curr;
523 struct sem_queue *h;
524
525 /* if the operation didn't modify the array, then no restart */
526 if (q->alter == 0)
527 return 0;
528
529 /* pending complex operations are too difficult to analyse */
530 if (sma->complex_count)
531 return 1;
532
533 /* we were a sleeping complex operation. Too difficult */
534 if (q->nsops > 1)
535 return 1;
536
537 curr = sma->sem_base + q->sops[0].sem_num;
538
539 /* No-one waits on this queue */
540 if (list_empty(&curr->sem_pending))
541 return 0;
542
543 /* the new semaphore value */
544 if (curr->semval) {
545 /* It is impossible that someone waits for the new value:
546 * - q is a previously sleeping simple operation that
547 * altered the array. It must be a decrement, because
548 * simple increments never sleep.
549 * - The value is not 0, thus wait-for-zero won't proceed.
550 * - If there are older (higher priority) decrements
551 * in the queue, then they have observed the original
552 * semval value and couldn't proceed. The operation
553 * decremented to value - thus they won't proceed either.
554 */
555 BUG_ON(q->sops[0].sem_op >= 0);
556 return 0;
557 }
558 /*
559 * semval is 0. Check if there are wait-for-zero semops.
560 * They must be the first entries in the per-semaphore simple queue
561 */
562 h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
563 BUG_ON(h->nsops != 1);
564 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
565
566 /* Yes, there is a wait-for-zero semop. Restart */
567 if (h->sops[0].sem_op == 0)
568 return 1;
569
570 /* Again - no-one is waiting for the new value. */
571 return 0;
572}
573
636c6be8
MS
574
575/**
576 * update_queue(sma, semnum): Look for tasks that can be completed.
577 * @sma: semaphore array.
578 * @semnum: semaphore that was modified.
0a2b9d4c 579 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
580 *
581 * update_queue must be called after a semaphore in a semaphore array
582 * was modified. If multiple semaphore were modified, then @semnum
583 * must be set to -1.
0a2b9d4c
MS
584 * The tasks that must be woken up are added to @pt. The return code
585 * is stored in q->pid.
586 * The function return 1 if at least one semop was completed successfully.
1da177e4 587 */
0a2b9d4c 588static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 589{
636c6be8
MS
590 struct sem_queue *q;
591 struct list_head *walk;
592 struct list_head *pending_list;
593 int offset;
0a2b9d4c 594 int semop_completed = 0;
636c6be8
MS
595
596 /* if there are complex operations around, then knowing the semaphore
597 * that was modified doesn't help us. Assume that multiple semaphores
598 * were modified.
599 */
600 if (sma->complex_count)
601 semnum = -1;
602
603 if (semnum == -1) {
604 pending_list = &sma->sem_pending;
605 offset = offsetof(struct sem_queue, list);
606 } else {
607 pending_list = &sma->sem_base[semnum].sem_pending;
608 offset = offsetof(struct sem_queue, simple_list);
609 }
9cad200c
NP
610
611again:
636c6be8
MS
612 walk = pending_list->next;
613 while (walk != pending_list) {
fd5db422 614 int error, restart;
636c6be8
MS
615
616 q = (struct sem_queue *)((char *)walk - offset);
617 walk = walk->next;
1da177e4 618
d987f8b2
MS
619 /* If we are scanning the single sop, per-semaphore list of
620 * one semaphore and that semaphore is 0, then it is not
621 * necessary to scan the "alter" entries: simple increments
622 * that affect only one entry succeed immediately and cannot
623 * be in the per semaphore pending queue, and decrements
624 * cannot be successful if the value is already 0.
625 */
626 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
627 q->alter)
628 break;
629
1da177e4
LT
630 error = try_atomic_semop(sma, q->sops, q->nsops,
631 q->undo, q->pid);
632
633 /* Does q->sleeper still need to sleep? */
9cad200c
NP
634 if (error > 0)
635 continue;
636
b97e820f 637 unlink_queue(sma, q);
9cad200c 638
0a2b9d4c 639 if (error) {
fd5db422 640 restart = 0;
0a2b9d4c
MS
641 } else {
642 semop_completed = 1;
fd5db422 643 restart = check_restart(sma, q);
0a2b9d4c 644 }
fd5db422 645
0a2b9d4c 646 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 647 if (restart)
9cad200c 648 goto again;
1da177e4 649 }
0a2b9d4c 650 return semop_completed;
1da177e4
LT
651}
652
0a2b9d4c
MS
653/**
654 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
655 * @sma: semaphore array
656 * @sops: operations that were performed
657 * @nsops: number of operations
0a2b9d4c
MS
658 * @otime: force setting otime
659 * @pt: list head of the tasks that must be woken up.
fd5db422
MS
660 *
661 * do_smart_update() does the required called to update_queue, based on the
662 * actual changes that were performed on the semaphore array.
0a2b9d4c
MS
663 * Note that the function does not do the actual wake-up: the caller is
664 * responsible for calling wake_up_sem_queue_do(@pt).
665 * It is safe to perform this call after dropping all locks.
fd5db422 666 */
0a2b9d4c
MS
667static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
668 int otime, struct list_head *pt)
fd5db422
MS
669{
670 int i;
671
672 if (sma->complex_count || sops == NULL) {
0a2b9d4c
MS
673 if (update_queue(sma, -1, pt))
674 otime = 1;
675 goto done;
fd5db422
MS
676 }
677
678 for (i = 0; i < nsops; i++) {
679 if (sops[i].sem_op > 0 ||
680 (sops[i].sem_op < 0 &&
681 sma->sem_base[sops[i].sem_num].semval == 0))
0a2b9d4c
MS
682 if (update_queue(sma, sops[i].sem_num, pt))
683 otime = 1;
fd5db422 684 }
0a2b9d4c
MS
685done:
686 if (otime)
687 sma->sem_otime = get_seconds();
fd5db422
MS
688}
689
690
1da177e4
LT
691/* The following counts are associated to each semaphore:
692 * semncnt number of tasks waiting on semval being nonzero
693 * semzcnt number of tasks waiting on semval being zero
694 * This model assumes that a task waits on exactly one semaphore.
695 * Since semaphore operations are to be performed atomically, tasks actually
696 * wait on a whole sequence of semaphores simultaneously.
697 * The counts we return here are a rough approximation, but still
698 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
699 */
700static int count_semncnt (struct sem_array * sma, ushort semnum)
701{
702 int semncnt;
703 struct sem_queue * q;
704
705 semncnt = 0;
a1193f8e 706 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
707 struct sembuf * sops = q->sops;
708 int nsops = q->nsops;
709 int i;
710 for (i = 0; i < nsops; i++)
711 if (sops[i].sem_num == semnum
712 && (sops[i].sem_op < 0)
713 && !(sops[i].sem_flg & IPC_NOWAIT))
714 semncnt++;
715 }
716 return semncnt;
717}
a1193f8e 718
1da177e4
LT
719static int count_semzcnt (struct sem_array * sma, ushort semnum)
720{
721 int semzcnt;
722 struct sem_queue * q;
723
724 semzcnt = 0;
a1193f8e 725 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
726 struct sembuf * sops = q->sops;
727 int nsops = q->nsops;
728 int i;
729 for (i = 0; i < nsops; i++)
730 if (sops[i].sem_num == semnum
731 && (sops[i].sem_op == 0)
732 && !(sops[i].sem_flg & IPC_NOWAIT))
733 semzcnt++;
734 }
735 return semzcnt;
736}
737
3e148c79
ND
738/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
739 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
740 * remains locked on exit.
1da177e4 741 */
01b8b07a 742static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 743{
380af1b3
MS
744 struct sem_undo *un, *tu;
745 struct sem_queue *q, *tq;
01b8b07a 746 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 747 struct list_head tasks;
1da177e4 748
380af1b3 749 /* Free the existing undo structures for this semaphore set. */
4daa28f6 750 assert_spin_locked(&sma->sem_perm.lock);
380af1b3
MS
751 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
752 list_del(&un->list_id);
753 spin_lock(&un->ulp->lock);
1da177e4 754 un->semid = -1;
380af1b3
MS
755 list_del_rcu(&un->list_proc);
756 spin_unlock(&un->ulp->lock);
693a8b6e 757 kfree_rcu(un, rcu);
380af1b3 758 }
1da177e4
LT
759
760 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 761 INIT_LIST_HEAD(&tasks);
380af1b3 762 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
b97e820f 763 unlink_queue(sma, q);
0a2b9d4c 764 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4
LT
765 }
766
7ca7e564
ND
767 /* Remove the semaphore set from the IDR */
768 sem_rmid(ns, sma);
1da177e4
LT
769 sem_unlock(sma);
770
0a2b9d4c 771 wake_up_sem_queue_do(&tasks);
e3893534 772 ns->used_sems -= sma->sem_nsems;
1da177e4
LT
773 security_sem_free(sma);
774 ipc_rcu_putref(sma);
775}
776
777static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
778{
779 switch(version) {
780 case IPC_64:
781 return copy_to_user(buf, in, sizeof(*in));
782 case IPC_OLD:
783 {
784 struct semid_ds out;
785
982f7c2b
DR
786 memset(&out, 0, sizeof(out));
787
1da177e4
LT
788 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
789
790 out.sem_otime = in->sem_otime;
791 out.sem_ctime = in->sem_ctime;
792 out.sem_nsems = in->sem_nsems;
793
794 return copy_to_user(buf, &out, sizeof(out));
795 }
796 default:
797 return -EINVAL;
798 }
799}
800
4b9fcb0e 801static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 802 int cmd, int version, void __user *p)
1da177e4 803{
e5cc9c7b 804 int err;
1da177e4
LT
805 struct sem_array *sma;
806
807 switch(cmd) {
808 case IPC_INFO:
809 case SEM_INFO:
810 {
811 struct seminfo seminfo;
812 int max_id;
813
814 err = security_sem_semctl(NULL, cmd);
815 if (err)
816 return err;
817
818 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
819 seminfo.semmni = ns->sc_semmni;
820 seminfo.semmns = ns->sc_semmns;
821 seminfo.semmsl = ns->sc_semmsl;
822 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
823 seminfo.semvmx = SEMVMX;
824 seminfo.semmnu = SEMMNU;
825 seminfo.semmap = SEMMAP;
826 seminfo.semume = SEMUME;
3e148c79 827 down_read(&sem_ids(ns).rw_mutex);
1da177e4 828 if (cmd == SEM_INFO) {
e3893534
KK
829 seminfo.semusz = sem_ids(ns).in_use;
830 seminfo.semaem = ns->used_sems;
1da177e4
LT
831 } else {
832 seminfo.semusz = SEMUSZ;
833 seminfo.semaem = SEMAEM;
834 }
7ca7e564 835 max_id = ipc_get_maxid(&sem_ids(ns));
3e148c79 836 up_read(&sem_ids(ns).rw_mutex);
e1fd1f49 837 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
838 return -EFAULT;
839 return (max_id < 0) ? 0: max_id;
840 }
4b9fcb0e 841 case IPC_STAT:
1da177e4
LT
842 case SEM_STAT:
843 {
844 struct semid64_ds tbuf;
845 int id;
846
4b9fcb0e
PP
847 if (cmd == SEM_STAT) {
848 sma = sem_lock(ns, semid);
849 if (IS_ERR(sma))
850 return PTR_ERR(sma);
851 id = sma->sem_perm.id;
852 } else {
853 sma = sem_lock_check(ns, semid);
854 if (IS_ERR(sma))
855 return PTR_ERR(sma);
856 id = 0;
857 }
1da177e4
LT
858
859 err = -EACCES;
b0e77598 860 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
861 goto out_unlock;
862
863 err = security_sem_semctl(sma, cmd);
864 if (err)
865 goto out_unlock;
866
023a5355
ND
867 memset(&tbuf, 0, sizeof(tbuf));
868
1da177e4
LT
869 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
870 tbuf.sem_otime = sma->sem_otime;
871 tbuf.sem_ctime = sma->sem_ctime;
872 tbuf.sem_nsems = sma->sem_nsems;
873 sem_unlock(sma);
e1fd1f49 874 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
875 return -EFAULT;
876 return id;
877 }
878 default:
879 return -EINVAL;
880 }
1da177e4
LT
881out_unlock:
882 sem_unlock(sma);
883 return err;
884}
885
e1fd1f49
AV
886static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
887 unsigned long arg)
888{
889 struct sem_undo *un;
890 struct sem_array *sma;
891 struct sem* curr;
892 int err;
893 int nsems;
894 struct list_head tasks;
895 int val;
896#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
897 /* big-endian 64bit */
898 val = arg >> 32;
899#else
900 /* 32bit or little-endian 64bit */
901 val = arg;
902#endif
903
904 sma = sem_lock_check(ns, semid);
905 if (IS_ERR(sma))
906 return PTR_ERR(sma);
907
908 INIT_LIST_HEAD(&tasks);
909 nsems = sma->sem_nsems;
910
911 err = -EACCES;
912 if (ipcperms(ns, &sma->sem_perm, S_IWUGO))
913 goto out_unlock;
914
915 err = security_sem_semctl(sma, SETVAL);
916 if (err)
917 goto out_unlock;
918
919 err = -EINVAL;
920 if(semnum < 0 || semnum >= nsems)
921 goto out_unlock;
922
923 curr = &sma->sem_base[semnum];
924
925 err = -ERANGE;
926 if (val > SEMVMX || val < 0)
927 goto out_unlock;
928
929 assert_spin_locked(&sma->sem_perm.lock);
930 list_for_each_entry(un, &sma->list_id, list_id)
931 un->semadj[semnum] = 0;
932
933 curr->semval = val;
934 curr->sempid = task_tgid_vnr(current);
935 sma->sem_ctime = get_seconds();
936 /* maybe some queued-up processes were waiting for this */
937 do_smart_update(sma, NULL, 0, 0, &tasks);
938 err = 0;
939out_unlock:
940 sem_unlock(sma);
941 wake_up_sem_queue_do(&tasks);
942 return err;
943}
944
e3893534 945static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 946 int cmd, void __user *p)
1da177e4
LT
947{
948 struct sem_array *sma;
949 struct sem* curr;
950 int err;
951 ushort fast_sem_io[SEMMSL_FAST];
952 ushort* sem_io = fast_sem_io;
953 int nsems;
0a2b9d4c 954 struct list_head tasks;
1da177e4 955
023a5355
ND
956 sma = sem_lock_check(ns, semid);
957 if (IS_ERR(sma))
958 return PTR_ERR(sma);
1da177e4 959
0a2b9d4c 960 INIT_LIST_HEAD(&tasks);
1da177e4
LT
961 nsems = sma->sem_nsems;
962
1da177e4 963 err = -EACCES;
b0e77598 964 if (ipcperms(ns, &sma->sem_perm,
e1fd1f49 965 cmd == SETALL ? S_IWUGO : S_IRUGO))
1da177e4
LT
966 goto out_unlock;
967
968 err = security_sem_semctl(sma, cmd);
969 if (err)
970 goto out_unlock;
971
972 err = -EACCES;
973 switch (cmd) {
974 case GETALL:
975 {
e1fd1f49 976 ushort __user *array = p;
1da177e4
LT
977 int i;
978
979 if(nsems > SEMMSL_FAST) {
6ff37972 980 sem_getref_and_unlock(sma);
1da177e4
LT
981
982 sem_io = ipc_alloc(sizeof(ushort)*nsems);
983 if(sem_io == NULL) {
6ff37972 984 sem_putref(sma);
1da177e4
LT
985 return -ENOMEM;
986 }
987
6ff37972 988 sem_lock_and_putref(sma);
1da177e4
LT
989 if (sma->sem_perm.deleted) {
990 sem_unlock(sma);
991 err = -EIDRM;
992 goto out_free;
993 }
994 }
995
996 for (i = 0; i < sma->sem_nsems; i++)
997 sem_io[i] = sma->sem_base[i].semval;
998 sem_unlock(sma);
999 err = 0;
1000 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1001 err = -EFAULT;
1002 goto out_free;
1003 }
1004 case SETALL:
1005 {
1006 int i;
1007 struct sem_undo *un;
1008
6ff37972 1009 sem_getref_and_unlock(sma);
1da177e4
LT
1010
1011 if(nsems > SEMMSL_FAST) {
1012 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1013 if(sem_io == NULL) {
6ff37972 1014 sem_putref(sma);
1da177e4
LT
1015 return -ENOMEM;
1016 }
1017 }
1018
e1fd1f49 1019 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
6ff37972 1020 sem_putref(sma);
1da177e4
LT
1021 err = -EFAULT;
1022 goto out_free;
1023 }
1024
1025 for (i = 0; i < nsems; i++) {
1026 if (sem_io[i] > SEMVMX) {
6ff37972 1027 sem_putref(sma);
1da177e4
LT
1028 err = -ERANGE;
1029 goto out_free;
1030 }
1031 }
6ff37972 1032 sem_lock_and_putref(sma);
1da177e4
LT
1033 if (sma->sem_perm.deleted) {
1034 sem_unlock(sma);
1035 err = -EIDRM;
1036 goto out_free;
1037 }
1038
1039 for (i = 0; i < nsems; i++)
1040 sma->sem_base[i].semval = sem_io[i];
4daa28f6
MS
1041
1042 assert_spin_locked(&sma->sem_perm.lock);
1043 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1044 for (i = 0; i < nsems; i++)
1045 un->semadj[i] = 0;
4daa28f6 1046 }
1da177e4
LT
1047 sma->sem_ctime = get_seconds();
1048 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1049 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1050 err = 0;
1051 goto out_unlock;
1052 }
e1fd1f49 1053 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1054 }
1055 err = -EINVAL;
1056 if(semnum < 0 || semnum >= nsems)
1057 goto out_unlock;
1058
1059 curr = &sma->sem_base[semnum];
1060
1061 switch (cmd) {
1062 case GETVAL:
1063 err = curr->semval;
1064 goto out_unlock;
1065 case GETPID:
1066 err = curr->sempid;
1067 goto out_unlock;
1068 case GETNCNT:
1069 err = count_semncnt(sma,semnum);
1070 goto out_unlock;
1071 case GETZCNT:
1072 err = count_semzcnt(sma,semnum);
1073 goto out_unlock;
1da177e4
LT
1074 }
1075out_unlock:
1076 sem_unlock(sma);
0a2b9d4c
MS
1077 wake_up_sem_queue_do(&tasks);
1078
1da177e4
LT
1079out_free:
1080 if(sem_io != fast_sem_io)
1081 ipc_free(sem_io, sizeof(ushort)*nsems);
1082 return err;
1083}
1084
016d7132
PP
1085static inline unsigned long
1086copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1087{
1088 switch(version) {
1089 case IPC_64:
016d7132 1090 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1091 return -EFAULT;
1da177e4 1092 return 0;
1da177e4
LT
1093 case IPC_OLD:
1094 {
1095 struct semid_ds tbuf_old;
1096
1097 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1098 return -EFAULT;
1099
016d7132
PP
1100 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1101 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1102 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1103
1104 return 0;
1105 }
1106 default:
1107 return -EINVAL;
1108 }
1109}
1110
522bb2a2
PP
1111/*
1112 * This function handles some semctl commands which require the rw_mutex
1113 * to be held in write mode.
1114 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1115 */
21a4826a 1116static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1117 int cmd, int version, void __user *p)
1da177e4
LT
1118{
1119 struct sem_array *sma;
1120 int err;
016d7132 1121 struct semid64_ds semid64;
1da177e4
LT
1122 struct kern_ipc_perm *ipcp;
1123
1124 if(cmd == IPC_SET) {
e1fd1f49 1125 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1126 return -EFAULT;
1da177e4 1127 }
073115d6 1128
b0e77598
SH
1129 ipcp = ipcctl_pre_down(ns, &sem_ids(ns), semid, cmd,
1130 &semid64.sem_perm, 0);
a5f75e7f
PP
1131 if (IS_ERR(ipcp))
1132 return PTR_ERR(ipcp);
073115d6 1133
a5f75e7f 1134 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1135
1136 err = security_sem_semctl(sma, cmd);
1137 if (err)
1138 goto out_unlock;
1139
1140 switch(cmd){
1141 case IPC_RMID:
01b8b07a 1142 freeary(ns, ipcp);
522bb2a2 1143 goto out_up;
1da177e4 1144 case IPC_SET:
1efdb69b
EB
1145 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1146 if (err)
1147 goto out_unlock;
1da177e4 1148 sma->sem_ctime = get_seconds();
1da177e4
LT
1149 break;
1150 default:
1da177e4 1151 err = -EINVAL;
1da177e4 1152 }
1da177e4
LT
1153
1154out_unlock:
1155 sem_unlock(sma);
522bb2a2
PP
1156out_up:
1157 up_write(&sem_ids(ns).rw_mutex);
1da177e4
LT
1158 return err;
1159}
1160
e1fd1f49 1161SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1162{
1da177e4 1163 int version;
e3893534 1164 struct ipc_namespace *ns;
e1fd1f49 1165 void __user *p = (void __user *)arg;
1da177e4
LT
1166
1167 if (semid < 0)
1168 return -EINVAL;
1169
1170 version = ipc_parse_version(&cmd);
e3893534 1171 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1172
1173 switch(cmd) {
1174 case IPC_INFO:
1175 case SEM_INFO:
4b9fcb0e 1176 case IPC_STAT:
1da177e4 1177 case SEM_STAT:
e1fd1f49 1178 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1179 case GETALL:
1180 case GETVAL:
1181 case GETPID:
1182 case GETNCNT:
1183 case GETZCNT:
1da177e4 1184 case SETALL:
e1fd1f49
AV
1185 return semctl_main(ns, semid, semnum, cmd, p);
1186 case SETVAL:
1187 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1188 case IPC_RMID:
1189 case IPC_SET:
e1fd1f49 1190 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1191 default:
1192 return -EINVAL;
1193 }
1194}
1195
1da177e4
LT
1196/* If the task doesn't already have a undo_list, then allocate one
1197 * here. We guarantee there is only one thread using this undo list,
1198 * and current is THE ONE
1199 *
1200 * If this allocation and assignment succeeds, but later
1201 * portions of this code fail, there is no need to free the sem_undo_list.
1202 * Just let it stay associated with the task, and it'll be freed later
1203 * at exit time.
1204 *
1205 * This can block, so callers must hold no locks.
1206 */
1207static inline int get_undo_list(struct sem_undo_list **undo_listp)
1208{
1209 struct sem_undo_list *undo_list;
1da177e4
LT
1210
1211 undo_list = current->sysvsem.undo_list;
1212 if (!undo_list) {
2453a306 1213 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1214 if (undo_list == NULL)
1215 return -ENOMEM;
00a5dfdb 1216 spin_lock_init(&undo_list->lock);
1da177e4 1217 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1218 INIT_LIST_HEAD(&undo_list->list_proc);
1219
1da177e4
LT
1220 current->sysvsem.undo_list = undo_list;
1221 }
1222 *undo_listp = undo_list;
1223 return 0;
1224}
1225
bf17bb71 1226static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1227{
bf17bb71 1228 struct sem_undo *un;
4daa28f6 1229
bf17bb71
NP
1230 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1231 if (un->semid == semid)
1232 return un;
1da177e4 1233 }
4daa28f6 1234 return NULL;
1da177e4
LT
1235}
1236
bf17bb71
NP
1237static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1238{
1239 struct sem_undo *un;
1240
1241 assert_spin_locked(&ulp->lock);
1242
1243 un = __lookup_undo(ulp, semid);
1244 if (un) {
1245 list_del_rcu(&un->list_proc);
1246 list_add_rcu(&un->list_proc, &ulp->list_proc);
1247 }
1248 return un;
1249}
1250
4daa28f6
MS
1251/**
1252 * find_alloc_undo - Lookup (and if not present create) undo array
1253 * @ns: namespace
1254 * @semid: semaphore array id
1255 *
1256 * The function looks up (and if not present creates) the undo structure.
1257 * The size of the undo structure depends on the size of the semaphore
1258 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1259 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1260 * performs a rcu_read_lock().
4daa28f6
MS
1261 */
1262static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1263{
1264 struct sem_array *sma;
1265 struct sem_undo_list *ulp;
1266 struct sem_undo *un, *new;
1267 int nsems;
1268 int error;
1269
1270 error = get_undo_list(&ulp);
1271 if (error)
1272 return ERR_PTR(error);
1273
380af1b3 1274 rcu_read_lock();
c530c6ac 1275 spin_lock(&ulp->lock);
1da177e4 1276 un = lookup_undo(ulp, semid);
c530c6ac 1277 spin_unlock(&ulp->lock);
1da177e4
LT
1278 if (likely(un!=NULL))
1279 goto out;
380af1b3 1280 rcu_read_unlock();
1da177e4
LT
1281
1282 /* no undo structure around - allocate one. */
4daa28f6 1283 /* step 1: figure out the size of the semaphore array */
023a5355
ND
1284 sma = sem_lock_check(ns, semid);
1285 if (IS_ERR(sma))
4de85cd6 1286 return ERR_CAST(sma);
023a5355 1287
1da177e4 1288 nsems = sma->sem_nsems;
6ff37972 1289 sem_getref_and_unlock(sma);
1da177e4 1290
4daa28f6 1291 /* step 2: allocate new undo structure */
4668edc3 1292 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1293 if (!new) {
6ff37972 1294 sem_putref(sma);
1da177e4
LT
1295 return ERR_PTR(-ENOMEM);
1296 }
1da177e4 1297
380af1b3 1298 /* step 3: Acquire the lock on semaphore array */
6ff37972 1299 sem_lock_and_putref(sma);
1da177e4
LT
1300 if (sma->sem_perm.deleted) {
1301 sem_unlock(sma);
1da177e4
LT
1302 kfree(new);
1303 un = ERR_PTR(-EIDRM);
1304 goto out;
1305 }
380af1b3
MS
1306 spin_lock(&ulp->lock);
1307
1308 /*
1309 * step 4: check for races: did someone else allocate the undo struct?
1310 */
1311 un = lookup_undo(ulp, semid);
1312 if (un) {
1313 kfree(new);
1314 goto success;
1315 }
4daa28f6
MS
1316 /* step 5: initialize & link new undo structure */
1317 new->semadj = (short *) &new[1];
380af1b3 1318 new->ulp = ulp;
4daa28f6
MS
1319 new->semid = semid;
1320 assert_spin_locked(&ulp->lock);
380af1b3 1321 list_add_rcu(&new->list_proc, &ulp->list_proc);
4daa28f6
MS
1322 assert_spin_locked(&sma->sem_perm.lock);
1323 list_add(&new->list_id, &sma->list_id);
380af1b3 1324 un = new;
4daa28f6 1325
380af1b3 1326success:
c530c6ac 1327 spin_unlock(&ulp->lock);
380af1b3
MS
1328 rcu_read_lock();
1329 sem_unlock(sma);
1da177e4
LT
1330out:
1331 return un;
1332}
1333
c61284e9
MS
1334
1335/**
1336 * get_queue_result - Retrieve the result code from sem_queue
1337 * @q: Pointer to queue structure
1338 *
1339 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1340 * q->status, then we must loop until the value is replaced with the final
1341 * value: This may happen if a task is woken up by an unrelated event (e.g.
1342 * signal) and in parallel the task is woken up by another task because it got
1343 * the requested semaphores.
1344 *
1345 * The function can be called with or without holding the semaphore spinlock.
1346 */
1347static int get_queue_result(struct sem_queue *q)
1348{
1349 int error;
1350
1351 error = q->status;
1352 while (unlikely(error == IN_WAKEUP)) {
1353 cpu_relax();
1354 error = q->status;
1355 }
1356
1357 return error;
1358}
1359
1360
d5460c99
HC
1361SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1362 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1363{
1364 int error = -EINVAL;
1365 struct sem_array *sma;
1366 struct sembuf fast_sops[SEMOPM_FAST];
1367 struct sembuf* sops = fast_sops, *sop;
1368 struct sem_undo *un;
b78755ab 1369 int undos = 0, alter = 0, max;
1da177e4
LT
1370 struct sem_queue queue;
1371 unsigned long jiffies_left = 0;
e3893534 1372 struct ipc_namespace *ns;
0a2b9d4c 1373 struct list_head tasks;
e3893534
KK
1374
1375 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1376
1377 if (nsops < 1 || semid < 0)
1378 return -EINVAL;
e3893534 1379 if (nsops > ns->sc_semopm)
1da177e4
LT
1380 return -E2BIG;
1381 if(nsops > SEMOPM_FAST) {
1382 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1383 if(sops==NULL)
1384 return -ENOMEM;
1385 }
1386 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1387 error=-EFAULT;
1388 goto out_free;
1389 }
1390 if (timeout) {
1391 struct timespec _timeout;
1392 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1393 error = -EFAULT;
1394 goto out_free;
1395 }
1396 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1397 _timeout.tv_nsec >= 1000000000L) {
1398 error = -EINVAL;
1399 goto out_free;
1400 }
1401 jiffies_left = timespec_to_jiffies(&_timeout);
1402 }
1403 max = 0;
1404 for (sop = sops; sop < sops + nsops; sop++) {
1405 if (sop->sem_num >= max)
1406 max = sop->sem_num;
1407 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1408 undos = 1;
1409 if (sop->sem_op != 0)
1da177e4
LT
1410 alter = 1;
1411 }
1da177e4 1412
1da177e4 1413 if (undos) {
4daa28f6 1414 un = find_alloc_undo(ns, semid);
1da177e4
LT
1415 if (IS_ERR(un)) {
1416 error = PTR_ERR(un);
1417 goto out_free;
1418 }
1419 } else
1420 un = NULL;
1421
0a2b9d4c
MS
1422 INIT_LIST_HEAD(&tasks);
1423
023a5355
ND
1424 sma = sem_lock_check(ns, semid);
1425 if (IS_ERR(sma)) {
380af1b3
MS
1426 if (un)
1427 rcu_read_unlock();
023a5355 1428 error = PTR_ERR(sma);
1da177e4 1429 goto out_free;
023a5355
ND
1430 }
1431
1da177e4 1432 /*
4daa28f6 1433 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1434 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1435 * and now a new array with received the same id. Check and fail.
25985edc 1436 * This case can be detected checking un->semid. The existence of
380af1b3 1437 * "un" itself is guaranteed by rcu.
1da177e4 1438 */
4daa28f6 1439 error = -EIDRM;
380af1b3
MS
1440 if (un) {
1441 if (un->semid == -1) {
1442 rcu_read_unlock();
1443 goto out_unlock_free;
1444 } else {
1445 /*
1446 * rcu lock can be released, "un" cannot disappear:
1447 * - sem_lock is acquired, thus IPC_RMID is
1448 * impossible.
1449 * - exit_sem is impossible, it always operates on
1450 * current (or a dead task).
1451 */
1452
1453 rcu_read_unlock();
1454 }
1455 }
4daa28f6 1456
1da177e4
LT
1457 error = -EFBIG;
1458 if (max >= sma->sem_nsems)
1459 goto out_unlock_free;
1460
1461 error = -EACCES;
b0e77598 1462 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1da177e4
LT
1463 goto out_unlock_free;
1464
1465 error = security_sem_semop(sma, sops, nsops, alter);
1466 if (error)
1467 goto out_unlock_free;
1468
b488893a 1469 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1da177e4
LT
1470 if (error <= 0) {
1471 if (alter && error == 0)
0a2b9d4c 1472 do_smart_update(sma, sops, nsops, 1, &tasks);
636c6be8 1473
1da177e4
LT
1474 goto out_unlock_free;
1475 }
1476
1477 /* We need to sleep on this operation, so we put the current
1478 * task into the pending queue and go to sleep.
1479 */
1480
1da177e4
LT
1481 queue.sops = sops;
1482 queue.nsops = nsops;
1483 queue.undo = un;
b488893a 1484 queue.pid = task_tgid_vnr(current);
1da177e4
LT
1485 queue.alter = alter;
1486 if (alter)
a1193f8e 1487 list_add_tail(&queue.list, &sma->sem_pending);
1da177e4 1488 else
a1193f8e 1489 list_add(&queue.list, &sma->sem_pending);
1da177e4 1490
b97e820f
MS
1491 if (nsops == 1) {
1492 struct sem *curr;
1493 curr = &sma->sem_base[sops->sem_num];
1494
1495 if (alter)
1496 list_add_tail(&queue.simple_list, &curr->sem_pending);
1497 else
1498 list_add(&queue.simple_list, &curr->sem_pending);
1499 } else {
1500 INIT_LIST_HEAD(&queue.simple_list);
1501 sma->complex_count++;
1502 }
1503
1da177e4
LT
1504 queue.status = -EINTR;
1505 queue.sleeper = current;
0b0577f6
MS
1506
1507sleep_again:
1da177e4
LT
1508 current->state = TASK_INTERRUPTIBLE;
1509 sem_unlock(sma);
1510
1511 if (timeout)
1512 jiffies_left = schedule_timeout(jiffies_left);
1513 else
1514 schedule();
1515
c61284e9 1516 error = get_queue_result(&queue);
1da177e4
LT
1517
1518 if (error != -EINTR) {
1519 /* fast path: update_queue already obtained all requested
c61284e9
MS
1520 * resources.
1521 * Perform a smp_mb(): User space could assume that semop()
1522 * is a memory barrier: Without the mb(), the cpu could
1523 * speculatively read in user space stale data that was
1524 * overwritten by the previous owner of the semaphore.
1525 */
1526 smp_mb();
1527
1da177e4
LT
1528 goto out_free;
1529 }
1530
e3893534 1531 sma = sem_lock(ns, semid);
d694ad62
MS
1532
1533 /*
1534 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1535 */
1536 error = get_queue_result(&queue);
1537
1538 /*
1539 * Array removed? If yes, leave without sem_unlock().
1540 */
023a5355 1541 if (IS_ERR(sma)) {
1da177e4
LT
1542 goto out_free;
1543 }
1544
c61284e9 1545
1da177e4 1546 /*
d694ad62
MS
1547 * If queue.status != -EINTR we are woken up by another process.
1548 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1549 */
c61284e9 1550
1da177e4
LT
1551 if (error != -EINTR) {
1552 goto out_unlock_free;
1553 }
1554
1555 /*
1556 * If an interrupt occurred we have to clean up the queue
1557 */
1558 if (timeout && jiffies_left == 0)
1559 error = -EAGAIN;
0b0577f6
MS
1560
1561 /*
1562 * If the wakeup was spurious, just retry
1563 */
1564 if (error == -EINTR && !signal_pending(current))
1565 goto sleep_again;
1566
b97e820f 1567 unlink_queue(sma, &queue);
1da177e4
LT
1568
1569out_unlock_free:
1570 sem_unlock(sma);
0a2b9d4c
MS
1571
1572 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1573out_free:
1574 if(sops != fast_sops)
1575 kfree(sops);
1576 return error;
1577}
1578
d5460c99
HC
1579SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1580 unsigned, nsops)
1da177e4
LT
1581{
1582 return sys_semtimedop(semid, tsops, nsops, NULL);
1583}
1584
1585/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1586 * parent and child tasks.
1da177e4
LT
1587 */
1588
1589int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1590{
1591 struct sem_undo_list *undo_list;
1592 int error;
1593
1594 if (clone_flags & CLONE_SYSVSEM) {
1595 error = get_undo_list(&undo_list);
1596 if (error)
1597 return error;
1da177e4
LT
1598 atomic_inc(&undo_list->refcnt);
1599 tsk->sysvsem.undo_list = undo_list;
1600 } else
1601 tsk->sysvsem.undo_list = NULL;
1602
1603 return 0;
1604}
1605
1606/*
1607 * add semadj values to semaphores, free undo structures.
1608 * undo structures are not freed when semaphore arrays are destroyed
1609 * so some of them may be out of date.
1610 * IMPLEMENTATION NOTE: There is some confusion over whether the
1611 * set of adjustments that needs to be done should be done in an atomic
1612 * manner or not. That is, if we are attempting to decrement the semval
1613 * should we queue up and wait until we can do so legally?
1614 * The original implementation attempted to do this (queue and wait).
1615 * The current implementation does not do so. The POSIX standard
1616 * and SVID should be consulted to determine what behavior is mandated.
1617 */
1618void exit_sem(struct task_struct *tsk)
1619{
4daa28f6 1620 struct sem_undo_list *ulp;
1da177e4 1621
4daa28f6
MS
1622 ulp = tsk->sysvsem.undo_list;
1623 if (!ulp)
1da177e4 1624 return;
9edff4ab 1625 tsk->sysvsem.undo_list = NULL;
1da177e4 1626
4daa28f6 1627 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
1628 return;
1629
380af1b3 1630 for (;;) {
1da177e4 1631 struct sem_array *sma;
380af1b3 1632 struct sem_undo *un;
0a2b9d4c 1633 struct list_head tasks;
380af1b3 1634 int semid;
4daa28f6
MS
1635 int i;
1636
380af1b3 1637 rcu_read_lock();
05725f7e
JP
1638 un = list_entry_rcu(ulp->list_proc.next,
1639 struct sem_undo, list_proc);
380af1b3
MS
1640 if (&un->list_proc == &ulp->list_proc)
1641 semid = -1;
1642 else
1643 semid = un->semid;
1644 rcu_read_unlock();
4daa28f6 1645
380af1b3
MS
1646 if (semid == -1)
1647 break;
1da177e4 1648
380af1b3 1649 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1da177e4 1650
380af1b3
MS
1651 /* exit_sem raced with IPC_RMID, nothing to do */
1652 if (IS_ERR(sma))
1653 continue;
1da177e4 1654
bf17bb71 1655 un = __lookup_undo(ulp, semid);
380af1b3
MS
1656 if (un == NULL) {
1657 /* exit_sem raced with IPC_RMID+semget() that created
1658 * exactly the same semid. Nothing to do.
1659 */
1660 sem_unlock(sma);
1661 continue;
1662 }
1663
1664 /* remove un from the linked lists */
4daa28f6
MS
1665 assert_spin_locked(&sma->sem_perm.lock);
1666 list_del(&un->list_id);
1667
380af1b3
MS
1668 spin_lock(&ulp->lock);
1669 list_del_rcu(&un->list_proc);
1670 spin_unlock(&ulp->lock);
1671
4daa28f6
MS
1672 /* perform adjustments registered in un */
1673 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 1674 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
1675 if (un->semadj[i]) {
1676 semaphore->semval += un->semadj[i];
1da177e4
LT
1677 /*
1678 * Range checks of the new semaphore value,
1679 * not defined by sus:
1680 * - Some unices ignore the undo entirely
1681 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1682 * - some cap the value (e.g. FreeBSD caps
1683 * at 0, but doesn't enforce SEMVMX)
1684 *
1685 * Linux caps the semaphore value, both at 0
1686 * and at SEMVMX.
1687 *
1688 * Manfred <manfred@colorfullife.com>
1689 */
5f921ae9
IM
1690 if (semaphore->semval < 0)
1691 semaphore->semval = 0;
1692 if (semaphore->semval > SEMVMX)
1693 semaphore->semval = SEMVMX;
b488893a 1694 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
1695 }
1696 }
1da177e4 1697 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
1698 INIT_LIST_HEAD(&tasks);
1699 do_smart_update(sma, NULL, 0, 1, &tasks);
1da177e4 1700 sem_unlock(sma);
0a2b9d4c 1701 wake_up_sem_queue_do(&tasks);
380af1b3 1702
693a8b6e 1703 kfree_rcu(un, rcu);
1da177e4 1704 }
4daa28f6 1705 kfree(ulp);
1da177e4
LT
1706}
1707
1708#ifdef CONFIG_PROC_FS
19b4946c 1709static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 1710{
1efdb69b 1711 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c
MW
1712 struct sem_array *sma = it;
1713
1714 return seq_printf(s,
b97e820f 1715 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 1716 sma->sem_perm.key,
7ca7e564 1717 sma->sem_perm.id,
19b4946c
MW
1718 sma->sem_perm.mode,
1719 sma->sem_nsems,
1efdb69b
EB
1720 from_kuid_munged(user_ns, sma->sem_perm.uid),
1721 from_kgid_munged(user_ns, sma->sem_perm.gid),
1722 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1723 from_kgid_munged(user_ns, sma->sem_perm.cgid),
19b4946c
MW
1724 sma->sem_otime,
1725 sma->sem_ctime);
1da177e4
LT
1726}
1727#endif