]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - ipc/sem.c
ipc: standardize code comments
[mirror_ubuntu-zesty-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
d12e1e50 102 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 103} ____cacheline_aligned_in_smp;
e57940d7
MS
104
105/* One queue for each sleeping process in the system. */
106struct sem_queue {
e57940d7
MS
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
758a6ba3 157 * Locking:
1da177e4 158 * sem_undo.id_next,
758a6ba3 159 * sem_array.complex_count,
1a82e9e1 160 * sem_array.pending{_alter,_cont},
758a6ba3 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4
LT
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
758a6ba3
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4 190
239521f3 191void __init sem_init(void)
1da177e4 192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
f269f40a
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
8001c858 228 * merge_queues - merge single semop queues into global queue
f269f40a
MS
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
53dad6d3
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
5e9d5275
MS
255/*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
6d07b68c 260 * that a) sem_perm.lock is free and b) complex_count is 0.
5e9d5275
MS
261 */
262static void sem_wait_array(struct sem_array *sma)
263{
264 int i;
265 struct sem *sem;
266
6d07b68c
MS
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
270 */
271 return;
272 }
273
5e9d5275
MS
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
277 }
278}
279
6062a8dc
RR
280/*
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
6062a8dc
RR
286 */
287static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
289{
5e9d5275 290 struct sem *sem;
6062a8dc 291
5e9d5275
MS
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
6062a8dc 295
5e9d5275
MS
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
6062a8dc 298 */
5e9d5275
MS
299 sem_wait_array(sma);
300 return -1;
301 }
302
303 /*
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
317 */
318 sem = sma->sem_base + sops->sem_num;
6062a8dc 319
5e9d5275 320 if (sma->complex_count == 0) {
6062a8dc 321 /*
5e9d5275
MS
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
6062a8dc 324 */
5e9d5275
MS
325 spin_lock(&sem->lock);
326
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
331
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
335 */
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
339 }
6062a8dc 340 }
5e9d5275
MS
341 spin_unlock(&sem->lock);
342 }
343
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
6062a8dc 346
5e9d5275
MS
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
351 */
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
6062a8dc 355 } else {
5e9d5275
MS
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
6062a8dc 358 */
5e9d5275
MS
359 sem_wait_array(sma);
360 return -1;
6062a8dc 361 }
6062a8dc
RR
362}
363
364static inline void sem_unlock(struct sem_array *sma, int locknum)
365{
366 if (locknum == -1) {
f269f40a 367 unmerge_queues(sma);
cf9d5d78 368 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
372 }
6062a8dc
RR
373}
374
3e148c79 375/*
d9a605e4 376 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 377 * is not held.
321310ce
LT
378 *
379 * The caller holds the RCU read lock.
3e148c79 380 */
6062a8dc
RR
381static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 383{
c460b662
RR
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
03f02c76 386
c460b662 387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
b1ed88b4 390
6062a8dc
RR
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
393
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
396 */
72a8ff2f 397 if (ipc_valid_object(ipcp))
c460b662
RR
398 return container_of(ipcp, struct sem_array, sem_perm);
399
6062a8dc 400 sem_unlock(sma, *locknum);
321310ce 401 return ERR_PTR(-EINVAL);
023a5355
ND
402}
403
16df3674
DB
404static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405{
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
410
411 return container_of(ipcp, struct sem_array, sem_perm);
412}
413
16df3674
DB
414static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
416{
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
b1ed88b4 421
03f02c76 422 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
423}
424
6ff37972
PP
425static inline void sem_lock_and_putref(struct sem_array *sma)
426{
6062a8dc 427 sem_lock(sma, NULL, -1);
53dad6d3 428 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
429}
430
7ca7e564
ND
431static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432{
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
434}
435
1da177e4
LT
436/*
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
1a82e9e1 441 * * unlinking the queue entry from the pending list
1da177e4
LT
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
239521f3
MS
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
1da177e4
LT
453 *
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
466 *
467 */
468#define IN_WAKEUP 1
469
f4566f04
ND
470/**
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
474 *
d9a605e4 475 * Called with sem_ids.rwsem held (as a writer)
f4566f04 476 */
7748dbfa 477static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
478{
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
7748dbfa
ND
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
b97e820f 486 int i;
1da177e4
LT
487
488 if (!nsems)
489 return -EINVAL;
e3893534 490 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
491 return -ENOSPC;
492
239521f3 493 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4
LT
494 sma = ipc_rcu_alloc(size);
495 if (!sma) {
496 return -ENOMEM;
497 }
239521f3 498 memset(sma, 0, size);
1da177e4
LT
499
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
502
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
53dad6d3 506 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
507 return retval;
508 }
509
e3893534 510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 511 if (id < 0) {
53dad6d3 512 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 513 return id;
1da177e4 514 }
e3893534 515 ns->used_sems += nsems;
1da177e4
LT
516
517 sma->sem_base = (struct sem *) &sma[1];
b97e820f 518
6062a8dc 519 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
522 spin_lock_init(&sma->sem_base[i].lock);
523 }
b97e820f
MS
524
525 sma->complex_count = 0;
1a82e9e1
MS
526 INIT_LIST_HEAD(&sma->pending_alter);
527 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 528 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
529 sma->sem_nsems = nsems;
530 sma->sem_ctime = get_seconds();
6062a8dc 531 sem_unlock(sma, -1);
6d49dab8 532 rcu_read_unlock();
1da177e4 533
7ca7e564 534 return sma->sem_perm.id;
1da177e4
LT
535}
536
7748dbfa 537
f4566f04 538/*
d9a605e4 539 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 540 */
03f02c76 541static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 542{
03f02c76
ND
543 struct sem_array *sma;
544
545 sma = container_of(ipcp, struct sem_array, sem_perm);
546 return security_sem_associate(sma, semflg);
7748dbfa
ND
547}
548
f4566f04 549/*
d9a605e4 550 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 551 */
03f02c76
ND
552static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 struct ipc_params *params)
7748dbfa 554{
03f02c76
ND
555 struct sem_array *sma;
556
557 sma = container_of(ipcp, struct sem_array, sem_perm);
558 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
559 return -EINVAL;
560
561 return 0;
562}
563
d5460c99 564SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 565{
e3893534 566 struct ipc_namespace *ns;
7748dbfa
ND
567 struct ipc_ops sem_ops;
568 struct ipc_params sem_params;
e3893534
KK
569
570 ns = current->nsproxy->ipc_ns;
1da177e4 571
e3893534 572 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 573 return -EINVAL;
7ca7e564 574
7748dbfa
ND
575 sem_ops.getnew = newary;
576 sem_ops.associate = sem_security;
577 sem_ops.more_checks = sem_more_checks;
578
579 sem_params.key = key;
580 sem_params.flg = semflg;
581 sem_params.u.nsems = nsems;
1da177e4 582
7748dbfa 583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
584}
585
78f5009c
PM
586/**
587 * perform_atomic_semop - Perform (if possible) a semaphore operation
758a6ba3
MS
588 * @sma: semaphore array
589 * @sops: array with operations that should be checked
78f5009c 590 * @nsops: number of operations
758a6ba3
MS
591 * @un: undo array
592 * @pid: pid that did the change
593 *
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Negative values are error codes.
1da177e4 597 */
758a6ba3 598static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
1da177e4
LT
599 int nsops, struct sem_undo *un, int pid)
600{
601 int result, sem_op;
602 struct sembuf *sop;
239521f3 603 struct sem *curr;
1da177e4
LT
604
605 for (sop = sops; sop < sops + nsops; sop++) {
606 curr = sma->sem_base + sop->sem_num;
607 sem_op = sop->sem_op;
608 result = curr->semval;
78f5009c 609
1da177e4
LT
610 if (!sem_op && result)
611 goto would_block;
612
613 result += sem_op;
614 if (result < 0)
615 goto would_block;
616 if (result > SEMVMX)
617 goto out_of_range;
78f5009c 618
1da177e4
LT
619 if (sop->sem_flg & SEM_UNDO) {
620 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 621 /* Exceeding the undo range is an error. */
1da177e4
LT
622 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
623 goto out_of_range;
78f5009c 624 un->semadj[sop->sem_num] = undo;
1da177e4 625 }
78f5009c 626
1da177e4
LT
627 curr->semval = result;
628 }
629
630 sop--;
631 while (sop >= sops) {
632 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
633 sop--;
634 }
78f5009c 635
1da177e4
LT
636 return 0;
637
638out_of_range:
639 result = -ERANGE;
640 goto undo;
641
642would_block:
643 if (sop->sem_flg & IPC_NOWAIT)
644 result = -EAGAIN;
645 else
646 result = 1;
647
648undo:
649 sop--;
650 while (sop >= sops) {
78f5009c
PM
651 sem_op = sop->sem_op;
652 sma->sem_base[sop->sem_num].semval -= sem_op;
653 if (sop->sem_flg & SEM_UNDO)
654 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
655 sop--;
656 }
657
658 return result;
659}
660
0a2b9d4c
MS
661/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
662 * @q: queue entry that must be signaled
663 * @error: Error value for the signal
664 *
665 * Prepare the wake-up of the queue entry q.
d4212093 666 */
0a2b9d4c
MS
667static void wake_up_sem_queue_prepare(struct list_head *pt,
668 struct sem_queue *q, int error)
d4212093 669{
0a2b9d4c
MS
670 if (list_empty(pt)) {
671 /*
672 * Hold preempt off so that we don't get preempted and have the
673 * wakee busy-wait until we're scheduled back on.
674 */
675 preempt_disable();
676 }
d4212093 677 q->status = IN_WAKEUP;
0a2b9d4c
MS
678 q->pid = error;
679
9f1bc2c9 680 list_add_tail(&q->list, pt);
0a2b9d4c
MS
681}
682
683/**
8001c858 684 * wake_up_sem_queue_do - do the actual wake-up
0a2b9d4c
MS
685 * @pt: list of tasks to be woken up
686 *
687 * Do the actual wake-up.
688 * The function is called without any locks held, thus the semaphore array
689 * could be destroyed already and the tasks can disappear as soon as the
690 * status is set to the actual return code.
691 */
692static void wake_up_sem_queue_do(struct list_head *pt)
693{
694 struct sem_queue *q, *t;
695 int did_something;
696
697 did_something = !list_empty(pt);
9f1bc2c9 698 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
699 wake_up_process(q->sleeper);
700 /* q can disappear immediately after writing q->status. */
701 smp_wmb();
702 q->status = q->pid;
703 }
704 if (did_something)
705 preempt_enable();
d4212093
NP
706}
707
b97e820f
MS
708static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
709{
710 list_del(&q->list);
9f1bc2c9 711 if (q->nsops > 1)
b97e820f
MS
712 sma->complex_count--;
713}
714
fd5db422
MS
715/** check_restart(sma, q)
716 * @sma: semaphore array
717 * @q: the operation that just completed
718 *
719 * update_queue is O(N^2) when it restarts scanning the whole queue of
720 * waiting operations. Therefore this function checks if the restart is
721 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
722 * modified the array.
723 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
724 */
725static int check_restart(struct sem_array *sma, struct sem_queue *q)
726{
1a82e9e1
MS
727 /* pending complex alter operations are too difficult to analyse */
728 if (!list_empty(&sma->pending_alter))
fd5db422
MS
729 return 1;
730
731 /* we were a sleeping complex operation. Too difficult */
732 if (q->nsops > 1)
733 return 1;
734
1a82e9e1
MS
735 /* It is impossible that someone waits for the new value:
736 * - complex operations always restart.
737 * - wait-for-zero are handled seperately.
738 * - q is a previously sleeping simple operation that
739 * altered the array. It must be a decrement, because
740 * simple increments never sleep.
741 * - If there are older (higher priority) decrements
742 * in the queue, then they have observed the original
743 * semval value and couldn't proceed. The operation
744 * decremented to value - thus they won't proceed either.
745 */
746 return 0;
747}
fd5db422 748
1a82e9e1 749/**
8001c858 750 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
751 * @sma: semaphore array.
752 * @semnum: semaphore that was modified.
753 * @pt: list head for the tasks that must be woken up.
754 *
755 * wake_const_ops must be called after a semaphore in a semaphore array
756 * was set to 0. If complex const operations are pending, wake_const_ops must
757 * be called with semnum = -1, as well as with the number of each modified
758 * semaphore.
759 * The tasks that must be woken up are added to @pt. The return code
760 * is stored in q->pid.
761 * The function returns 1 if at least one operation was completed successfully.
762 */
763static int wake_const_ops(struct sem_array *sma, int semnum,
764 struct list_head *pt)
765{
766 struct sem_queue *q;
767 struct list_head *walk;
768 struct list_head *pending_list;
769 int semop_completed = 0;
770
771 if (semnum == -1)
772 pending_list = &sma->pending_const;
773 else
774 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 775
1a82e9e1
MS
776 walk = pending_list->next;
777 while (walk != pending_list) {
778 int error;
779
780 q = container_of(walk, struct sem_queue, list);
781 walk = walk->next;
782
758a6ba3
MS
783 error = perform_atomic_semop(sma, q->sops, q->nsops,
784 q->undo, q->pid);
1a82e9e1
MS
785
786 if (error <= 0) {
787 /* operation completed, remove from queue & wakeup */
788
789 unlink_queue(sma, q);
790
791 wake_up_sem_queue_prepare(pt, q, error);
792 if (error == 0)
793 semop_completed = 1;
794 }
795 }
796 return semop_completed;
797}
798
799/**
8001c858 800 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
801 * @sma: semaphore array
802 * @sops: operations that were performed
803 * @nsops: number of operations
804 * @pt: list head of the tasks that must be woken up.
805 *
8001c858
DB
806 * Checks all required queue for wait-for-zero operations, based
807 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
808 * The function returns 1 if at least one operation was completed successfully.
809 */
810static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
811 int nsops, struct list_head *pt)
812{
813 int i;
814 int semop_completed = 0;
815 int got_zero = 0;
816
817 /* first: the per-semaphore queues, if known */
818 if (sops) {
819 for (i = 0; i < nsops; i++) {
820 int num = sops[i].sem_num;
821
822 if (sma->sem_base[num].semval == 0) {
823 got_zero = 1;
824 semop_completed |= wake_const_ops(sma, num, pt);
825 }
826 }
827 } else {
828 /*
829 * No sops means modified semaphores not known.
830 * Assume all were changed.
fd5db422 831 */
1a82e9e1
MS
832 for (i = 0; i < sma->sem_nsems; i++) {
833 if (sma->sem_base[i].semval == 0) {
834 got_zero = 1;
835 semop_completed |= wake_const_ops(sma, i, pt);
836 }
837 }
fd5db422
MS
838 }
839 /*
1a82e9e1
MS
840 * If one of the modified semaphores got 0,
841 * then check the global queue, too.
fd5db422 842 */
1a82e9e1
MS
843 if (got_zero)
844 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 845
1a82e9e1 846 return semop_completed;
fd5db422
MS
847}
848
636c6be8
MS
849
850/**
8001c858 851 * update_queue - look for tasks that can be completed.
636c6be8
MS
852 * @sma: semaphore array.
853 * @semnum: semaphore that was modified.
0a2b9d4c 854 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
855 *
856 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
857 * was modified. If multiple semaphores were modified, update_queue must
858 * be called with semnum = -1, as well as with the number of each modified
859 * semaphore.
0a2b9d4c
MS
860 * The tasks that must be woken up are added to @pt. The return code
861 * is stored in q->pid.
1a82e9e1
MS
862 * The function internally checks if const operations can now succeed.
863 *
0a2b9d4c 864 * The function return 1 if at least one semop was completed successfully.
1da177e4 865 */
0a2b9d4c 866static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 867{
636c6be8
MS
868 struct sem_queue *q;
869 struct list_head *walk;
870 struct list_head *pending_list;
0a2b9d4c 871 int semop_completed = 0;
636c6be8 872
9f1bc2c9 873 if (semnum == -1)
1a82e9e1 874 pending_list = &sma->pending_alter;
9f1bc2c9 875 else
1a82e9e1 876 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
877
878again:
636c6be8
MS
879 walk = pending_list->next;
880 while (walk != pending_list) {
fd5db422 881 int error, restart;
636c6be8 882
9f1bc2c9 883 q = container_of(walk, struct sem_queue, list);
636c6be8 884 walk = walk->next;
1da177e4 885
d987f8b2
MS
886 /* If we are scanning the single sop, per-semaphore list of
887 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 888 * necessary to scan further: simple increments
d987f8b2
MS
889 * that affect only one entry succeed immediately and cannot
890 * be in the per semaphore pending queue, and decrements
891 * cannot be successful if the value is already 0.
892 */
1a82e9e1 893 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
894 break;
895
758a6ba3 896 error = perform_atomic_semop(sma, q->sops, q->nsops,
1da177e4
LT
897 q->undo, q->pid);
898
899 /* Does q->sleeper still need to sleep? */
9cad200c
NP
900 if (error > 0)
901 continue;
902
b97e820f 903 unlink_queue(sma, q);
9cad200c 904
0a2b9d4c 905 if (error) {
fd5db422 906 restart = 0;
0a2b9d4c
MS
907 } else {
908 semop_completed = 1;
1a82e9e1 909 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 910 restart = check_restart(sma, q);
0a2b9d4c 911 }
fd5db422 912
0a2b9d4c 913 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 914 if (restart)
9cad200c 915 goto again;
1da177e4 916 }
0a2b9d4c 917 return semop_completed;
1da177e4
LT
918}
919
0e8c6656 920/**
8001c858 921 * set_semotime - set sem_otime
0e8c6656
MS
922 * @sma: semaphore array
923 * @sops: operations that modified the array, may be NULL
924 *
925 * sem_otime is replicated to avoid cache line trashing.
926 * This function sets one instance to the current time.
927 */
928static void set_semotime(struct sem_array *sma, struct sembuf *sops)
929{
930 if (sops == NULL) {
931 sma->sem_base[0].sem_otime = get_seconds();
932 } else {
933 sma->sem_base[sops[0].sem_num].sem_otime =
934 get_seconds();
935 }
936}
937
0a2b9d4c 938/**
8001c858 939 * do_smart_update - optimized update_queue
fd5db422
MS
940 * @sma: semaphore array
941 * @sops: operations that were performed
942 * @nsops: number of operations
0a2b9d4c
MS
943 * @otime: force setting otime
944 * @pt: list head of the tasks that must be woken up.
fd5db422 945 *
1a82e9e1
MS
946 * do_smart_update() does the required calls to update_queue and wakeup_zero,
947 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
948 * Note that the function does not do the actual wake-up: the caller is
949 * responsible for calling wake_up_sem_queue_do(@pt).
950 * It is safe to perform this call after dropping all locks.
fd5db422 951 */
0a2b9d4c
MS
952static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
953 int otime, struct list_head *pt)
fd5db422
MS
954{
955 int i;
956
1a82e9e1
MS
957 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
958
f269f40a
MS
959 if (!list_empty(&sma->pending_alter)) {
960 /* semaphore array uses the global queue - just process it. */
961 otime |= update_queue(sma, -1, pt);
962 } else {
963 if (!sops) {
964 /*
965 * No sops, thus the modified semaphores are not
966 * known. Check all.
967 */
968 for (i = 0; i < sma->sem_nsems; i++)
969 otime |= update_queue(sma, i, pt);
970 } else {
971 /*
972 * Check the semaphores that were increased:
973 * - No complex ops, thus all sleeping ops are
974 * decrease.
975 * - if we decreased the value, then any sleeping
976 * semaphore ops wont be able to run: If the
977 * previous value was too small, then the new
978 * value will be too small, too.
979 */
980 for (i = 0; i < nsops; i++) {
981 if (sops[i].sem_op > 0) {
982 otime |= update_queue(sma,
983 sops[i].sem_num, pt);
984 }
ab465df9 985 }
9f1bc2c9 986 }
fd5db422 987 }
0e8c6656
MS
988 if (otime)
989 set_semotime(sma, sops);
fd5db422
MS
990}
991
1da177e4
LT
992/* The following counts are associated to each semaphore:
993 * semncnt number of tasks waiting on semval being nonzero
994 * semzcnt number of tasks waiting on semval being zero
995 * This model assumes that a task waits on exactly one semaphore.
996 * Since semaphore operations are to be performed atomically, tasks actually
997 * wait on a whole sequence of semaphores simultaneously.
998 * The counts we return here are a rough approximation, but still
999 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1000 */
239521f3 1001static int count_semncnt(struct sem_array *sma, ushort semnum)
1da177e4
LT
1002{
1003 int semncnt;
239521f3 1004 struct sem_queue *q;
1da177e4
LT
1005
1006 semncnt = 0;
1a82e9e1 1007 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
239521f3 1008 struct sembuf *sops = q->sops;
de2657f9
RR
1009 BUG_ON(sops->sem_num != semnum);
1010 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1011 semncnt++;
1012 }
1013
1a82e9e1 1014 list_for_each_entry(q, &sma->pending_alter, list) {
239521f3 1015 struct sembuf *sops = q->sops;
1da177e4
LT
1016 int nsops = q->nsops;
1017 int i;
1018 for (i = 0; i < nsops; i++)
1019 if (sops[i].sem_num == semnum
1020 && (sops[i].sem_op < 0)
1021 && !(sops[i].sem_flg & IPC_NOWAIT))
1022 semncnt++;
1023 }
1024 return semncnt;
1025}
a1193f8e 1026
239521f3 1027static int count_semzcnt(struct sem_array *sma, ushort semnum)
1da177e4
LT
1028{
1029 int semzcnt;
239521f3 1030 struct sem_queue *q;
1da177e4
LT
1031
1032 semzcnt = 0;
1a82e9e1 1033 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
239521f3 1034 struct sembuf *sops = q->sops;
ebc2e5e6
RR
1035 BUG_ON(sops->sem_num != semnum);
1036 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1037 semzcnt++;
1038 }
1039
1a82e9e1 1040 list_for_each_entry(q, &sma->pending_const, list) {
239521f3 1041 struct sembuf *sops = q->sops;
1da177e4
LT
1042 int nsops = q->nsops;
1043 int i;
1044 for (i = 0; i < nsops; i++)
1045 if (sops[i].sem_num == semnum
1046 && (sops[i].sem_op == 0)
1047 && !(sops[i].sem_flg & IPC_NOWAIT))
1048 semzcnt++;
1049 }
1050 return semzcnt;
1051}
1052
d9a605e4
DB
1053/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1054 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1055 * remains locked on exit.
1da177e4 1056 */
01b8b07a 1057static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1058{
380af1b3
MS
1059 struct sem_undo *un, *tu;
1060 struct sem_queue *q, *tq;
01b8b07a 1061 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1062 struct list_head tasks;
9f1bc2c9 1063 int i;
1da177e4 1064
380af1b3 1065 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1066 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1067 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1068 list_del(&un->list_id);
1069 spin_lock(&un->ulp->lock);
1da177e4 1070 un->semid = -1;
380af1b3
MS
1071 list_del_rcu(&un->list_proc);
1072 spin_unlock(&un->ulp->lock);
693a8b6e 1073 kfree_rcu(un, rcu);
380af1b3 1074 }
1da177e4
LT
1075
1076 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1077 INIT_LIST_HEAD(&tasks);
1a82e9e1
MS
1078 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1079 unlink_queue(sma, q);
1080 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1081 }
1082
1083 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1084 unlink_queue(sma, q);
0a2b9d4c 1085 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1086 }
9f1bc2c9
RR
1087 for (i = 0; i < sma->sem_nsems; i++) {
1088 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1089 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1090 unlink_queue(sma, q);
1091 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1092 }
1093 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1094 unlink_queue(sma, q);
1095 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1096 }
1097 }
1da177e4 1098
7ca7e564
ND
1099 /* Remove the semaphore set from the IDR */
1100 sem_rmid(ns, sma);
6062a8dc 1101 sem_unlock(sma, -1);
6d49dab8 1102 rcu_read_unlock();
1da177e4 1103
0a2b9d4c 1104 wake_up_sem_queue_do(&tasks);
e3893534 1105 ns->used_sems -= sma->sem_nsems;
53dad6d3 1106 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1107}
1108
1109static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1110{
239521f3 1111 switch (version) {
1da177e4
LT
1112 case IPC_64:
1113 return copy_to_user(buf, in, sizeof(*in));
1114 case IPC_OLD:
1115 {
1116 struct semid_ds out;
1117
982f7c2b
DR
1118 memset(&out, 0, sizeof(out));
1119
1da177e4
LT
1120 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1121
1122 out.sem_otime = in->sem_otime;
1123 out.sem_ctime = in->sem_ctime;
1124 out.sem_nsems = in->sem_nsems;
1125
1126 return copy_to_user(buf, &out, sizeof(out));
1127 }
1128 default:
1129 return -EINVAL;
1130 }
1131}
1132
d12e1e50
MS
1133static time_t get_semotime(struct sem_array *sma)
1134{
1135 int i;
1136 time_t res;
1137
1138 res = sma->sem_base[0].sem_otime;
1139 for (i = 1; i < sma->sem_nsems; i++) {
1140 time_t to = sma->sem_base[i].sem_otime;
1141
1142 if (to > res)
1143 res = to;
1144 }
1145 return res;
1146}
1147
4b9fcb0e 1148static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1149 int cmd, int version, void __user *p)
1da177e4 1150{
e5cc9c7b 1151 int err;
1da177e4
LT
1152 struct sem_array *sma;
1153
239521f3 1154 switch (cmd) {
1da177e4
LT
1155 case IPC_INFO:
1156 case SEM_INFO:
1157 {
1158 struct seminfo seminfo;
1159 int max_id;
1160
1161 err = security_sem_semctl(NULL, cmd);
1162 if (err)
1163 return err;
1164
239521f3 1165 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1166 seminfo.semmni = ns->sc_semmni;
1167 seminfo.semmns = ns->sc_semmns;
1168 seminfo.semmsl = ns->sc_semmsl;
1169 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1170 seminfo.semvmx = SEMVMX;
1171 seminfo.semmnu = SEMMNU;
1172 seminfo.semmap = SEMMAP;
1173 seminfo.semume = SEMUME;
d9a605e4 1174 down_read(&sem_ids(ns).rwsem);
1da177e4 1175 if (cmd == SEM_INFO) {
e3893534
KK
1176 seminfo.semusz = sem_ids(ns).in_use;
1177 seminfo.semaem = ns->used_sems;
1da177e4
LT
1178 } else {
1179 seminfo.semusz = SEMUSZ;
1180 seminfo.semaem = SEMAEM;
1181 }
7ca7e564 1182 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1183 up_read(&sem_ids(ns).rwsem);
e1fd1f49 1184 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1185 return -EFAULT;
239521f3 1186 return (max_id < 0) ? 0 : max_id;
1da177e4 1187 }
4b9fcb0e 1188 case IPC_STAT:
1da177e4
LT
1189 case SEM_STAT:
1190 {
1191 struct semid64_ds tbuf;
16df3674
DB
1192 int id = 0;
1193
1194 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1195
941b0304 1196 rcu_read_lock();
4b9fcb0e 1197 if (cmd == SEM_STAT) {
16df3674
DB
1198 sma = sem_obtain_object(ns, semid);
1199 if (IS_ERR(sma)) {
1200 err = PTR_ERR(sma);
1201 goto out_unlock;
1202 }
4b9fcb0e
PP
1203 id = sma->sem_perm.id;
1204 } else {
16df3674
DB
1205 sma = sem_obtain_object_check(ns, semid);
1206 if (IS_ERR(sma)) {
1207 err = PTR_ERR(sma);
1208 goto out_unlock;
1209 }
4b9fcb0e 1210 }
1da177e4
LT
1211
1212 err = -EACCES;
b0e77598 1213 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1214 goto out_unlock;
1215
1216 err = security_sem_semctl(sma, cmd);
1217 if (err)
1218 goto out_unlock;
1219
1da177e4 1220 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1221 tbuf.sem_otime = get_semotime(sma);
1222 tbuf.sem_ctime = sma->sem_ctime;
1223 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1224 rcu_read_unlock();
e1fd1f49 1225 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1226 return -EFAULT;
1227 return id;
1228 }
1229 default:
1230 return -EINVAL;
1231 }
1da177e4 1232out_unlock:
16df3674 1233 rcu_read_unlock();
1da177e4
LT
1234 return err;
1235}
1236
e1fd1f49
AV
1237static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1238 unsigned long arg)
1239{
1240 struct sem_undo *un;
1241 struct sem_array *sma;
239521f3 1242 struct sem *curr;
e1fd1f49 1243 int err;
e1fd1f49
AV
1244 struct list_head tasks;
1245 int val;
1246#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1247 /* big-endian 64bit */
1248 val = arg >> 32;
1249#else
1250 /* 32bit or little-endian 64bit */
1251 val = arg;
1252#endif
1253
6062a8dc
RR
1254 if (val > SEMVMX || val < 0)
1255 return -ERANGE;
e1fd1f49
AV
1256
1257 INIT_LIST_HEAD(&tasks);
e1fd1f49 1258
6062a8dc
RR
1259 rcu_read_lock();
1260 sma = sem_obtain_object_check(ns, semid);
1261 if (IS_ERR(sma)) {
1262 rcu_read_unlock();
1263 return PTR_ERR(sma);
1264 }
1265
1266 if (semnum < 0 || semnum >= sma->sem_nsems) {
1267 rcu_read_unlock();
1268 return -EINVAL;
1269 }
1270
1271
1272 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1273 rcu_read_unlock();
1274 return -EACCES;
1275 }
e1fd1f49
AV
1276
1277 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1278 if (err) {
1279 rcu_read_unlock();
1280 return -EACCES;
1281 }
e1fd1f49 1282
6062a8dc 1283 sem_lock(sma, NULL, -1);
e1fd1f49 1284
0f3d2b01 1285 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1286 sem_unlock(sma, -1);
1287 rcu_read_unlock();
1288 return -EIDRM;
1289 }
1290
e1fd1f49
AV
1291 curr = &sma->sem_base[semnum];
1292
cf9d5d78 1293 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1294 list_for_each_entry(un, &sma->list_id, list_id)
1295 un->semadj[semnum] = 0;
1296
1297 curr->semval = val;
1298 curr->sempid = task_tgid_vnr(current);
1299 sma->sem_ctime = get_seconds();
1300 /* maybe some queued-up processes were waiting for this */
1301 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1302 sem_unlock(sma, -1);
6d49dab8 1303 rcu_read_unlock();
e1fd1f49 1304 wake_up_sem_queue_do(&tasks);
6062a8dc 1305 return 0;
e1fd1f49
AV
1306}
1307
e3893534 1308static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1309 int cmd, void __user *p)
1da177e4
LT
1310{
1311 struct sem_array *sma;
239521f3 1312 struct sem *curr;
16df3674 1313 int err, nsems;
1da177e4 1314 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1315 ushort *sem_io = fast_sem_io;
0a2b9d4c 1316 struct list_head tasks;
1da177e4 1317
16df3674
DB
1318 INIT_LIST_HEAD(&tasks);
1319
1320 rcu_read_lock();
1321 sma = sem_obtain_object_check(ns, semid);
1322 if (IS_ERR(sma)) {
1323 rcu_read_unlock();
023a5355 1324 return PTR_ERR(sma);
16df3674 1325 }
1da177e4
LT
1326
1327 nsems = sma->sem_nsems;
1328
1da177e4 1329 err = -EACCES;
c728b9c8
LT
1330 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1331 goto out_rcu_wakeup;
1da177e4
LT
1332
1333 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1334 if (err)
1335 goto out_rcu_wakeup;
1da177e4
LT
1336
1337 err = -EACCES;
1338 switch (cmd) {
1339 case GETALL:
1340 {
e1fd1f49 1341 ushort __user *array = p;
1da177e4
LT
1342 int i;
1343
ce857229 1344 sem_lock(sma, NULL, -1);
0f3d2b01 1345 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1346 err = -EIDRM;
1347 goto out_unlock;
1348 }
239521f3 1349 if (nsems > SEMMSL_FAST) {
ce857229 1350 if (!ipc_rcu_getref(sma)) {
ce857229 1351 err = -EIDRM;
6e224f94 1352 goto out_unlock;
ce857229
AV
1353 }
1354 sem_unlock(sma, -1);
6d49dab8 1355 rcu_read_unlock();
1da177e4 1356 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1357 if (sem_io == NULL) {
53dad6d3 1358 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1359 return -ENOMEM;
1360 }
1361
4091fd94 1362 rcu_read_lock();
6ff37972 1363 sem_lock_and_putref(sma);
0f3d2b01 1364 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1365 err = -EIDRM;
6e224f94 1366 goto out_unlock;
1da177e4 1367 }
ce857229 1368 }
1da177e4
LT
1369 for (i = 0; i < sma->sem_nsems; i++)
1370 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1371 sem_unlock(sma, -1);
6d49dab8 1372 rcu_read_unlock();
1da177e4 1373 err = 0;
239521f3 1374 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1375 err = -EFAULT;
1376 goto out_free;
1377 }
1378 case SETALL:
1379 {
1380 int i;
1381 struct sem_undo *un;
1382
6062a8dc 1383 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1384 err = -EIDRM;
1385 goto out_rcu_wakeup;
6062a8dc 1386 }
16df3674 1387 rcu_read_unlock();
1da177e4 1388
239521f3 1389 if (nsems > SEMMSL_FAST) {
1da177e4 1390 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1391 if (sem_io == NULL) {
53dad6d3 1392 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1393 return -ENOMEM;
1394 }
1395 }
1396
239521f3 1397 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
53dad6d3 1398 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1399 err = -EFAULT;
1400 goto out_free;
1401 }
1402
1403 for (i = 0; i < nsems; i++) {
1404 if (sem_io[i] > SEMVMX) {
53dad6d3 1405 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1406 err = -ERANGE;
1407 goto out_free;
1408 }
1409 }
4091fd94 1410 rcu_read_lock();
6ff37972 1411 sem_lock_and_putref(sma);
0f3d2b01 1412 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1413 err = -EIDRM;
6e224f94 1414 goto out_unlock;
1da177e4
LT
1415 }
1416
1417 for (i = 0; i < nsems; i++)
1418 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1419
cf9d5d78 1420 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1421 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1422 for (i = 0; i < nsems; i++)
1423 un->semadj[i] = 0;
4daa28f6 1424 }
1da177e4
LT
1425 sma->sem_ctime = get_seconds();
1426 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1427 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1428 err = 0;
1429 goto out_unlock;
1430 }
e1fd1f49 1431 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1432 }
1433 err = -EINVAL;
c728b9c8
LT
1434 if (semnum < 0 || semnum >= nsems)
1435 goto out_rcu_wakeup;
1da177e4 1436
6062a8dc 1437 sem_lock(sma, NULL, -1);
0f3d2b01 1438 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1439 err = -EIDRM;
1440 goto out_unlock;
1441 }
1da177e4
LT
1442 curr = &sma->sem_base[semnum];
1443
1444 switch (cmd) {
1445 case GETVAL:
1446 err = curr->semval;
1447 goto out_unlock;
1448 case GETPID:
1449 err = curr->sempid;
1450 goto out_unlock;
1451 case GETNCNT:
239521f3 1452 err = count_semncnt(sma, semnum);
1da177e4
LT
1453 goto out_unlock;
1454 case GETZCNT:
239521f3 1455 err = count_semzcnt(sma, semnum);
1da177e4 1456 goto out_unlock;
1da177e4 1457 }
16df3674 1458
1da177e4 1459out_unlock:
6062a8dc 1460 sem_unlock(sma, -1);
c728b9c8 1461out_rcu_wakeup:
6d49dab8 1462 rcu_read_unlock();
0a2b9d4c 1463 wake_up_sem_queue_do(&tasks);
1da177e4 1464out_free:
239521f3 1465 if (sem_io != fast_sem_io)
1da177e4
LT
1466 ipc_free(sem_io, sizeof(ushort)*nsems);
1467 return err;
1468}
1469
016d7132
PP
1470static inline unsigned long
1471copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1472{
239521f3 1473 switch (version) {
1da177e4 1474 case IPC_64:
016d7132 1475 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1476 return -EFAULT;
1da177e4 1477 return 0;
1da177e4
LT
1478 case IPC_OLD:
1479 {
1480 struct semid_ds tbuf_old;
1481
239521f3 1482 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1483 return -EFAULT;
1484
016d7132
PP
1485 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1486 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1487 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1488
1489 return 0;
1490 }
1491 default:
1492 return -EINVAL;
1493 }
1494}
1495
522bb2a2 1496/*
d9a605e4 1497 * This function handles some semctl commands which require the rwsem
522bb2a2 1498 * to be held in write mode.
d9a605e4 1499 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1500 */
21a4826a 1501static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1502 int cmd, int version, void __user *p)
1da177e4
LT
1503{
1504 struct sem_array *sma;
1505 int err;
016d7132 1506 struct semid64_ds semid64;
1da177e4
LT
1507 struct kern_ipc_perm *ipcp;
1508
239521f3 1509 if (cmd == IPC_SET) {
e1fd1f49 1510 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1511 return -EFAULT;
1da177e4 1512 }
073115d6 1513
d9a605e4 1514 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1515 rcu_read_lock();
1516
16df3674
DB
1517 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1518 &semid64.sem_perm, 0);
7b4cc5d8
DB
1519 if (IS_ERR(ipcp)) {
1520 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1521 goto out_unlock1;
1522 }
073115d6 1523
a5f75e7f 1524 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1525
1526 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1527 if (err)
1528 goto out_unlock1;
1da177e4 1529
7b4cc5d8 1530 switch (cmd) {
1da177e4 1531 case IPC_RMID:
6062a8dc 1532 sem_lock(sma, NULL, -1);
7b4cc5d8 1533 /* freeary unlocks the ipc object and rcu */
01b8b07a 1534 freeary(ns, ipcp);
522bb2a2 1535 goto out_up;
1da177e4 1536 case IPC_SET:
6062a8dc 1537 sem_lock(sma, NULL, -1);
1efdb69b
EB
1538 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1539 if (err)
7b4cc5d8 1540 goto out_unlock0;
1da177e4 1541 sma->sem_ctime = get_seconds();
1da177e4
LT
1542 break;
1543 default:
1da177e4 1544 err = -EINVAL;
7b4cc5d8 1545 goto out_unlock1;
1da177e4 1546 }
1da177e4 1547
7b4cc5d8 1548out_unlock0:
6062a8dc 1549 sem_unlock(sma, -1);
7b4cc5d8 1550out_unlock1:
6d49dab8 1551 rcu_read_unlock();
522bb2a2 1552out_up:
d9a605e4 1553 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1554 return err;
1555}
1556
e1fd1f49 1557SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1558{
1da177e4 1559 int version;
e3893534 1560 struct ipc_namespace *ns;
e1fd1f49 1561 void __user *p = (void __user *)arg;
1da177e4
LT
1562
1563 if (semid < 0)
1564 return -EINVAL;
1565
1566 version = ipc_parse_version(&cmd);
e3893534 1567 ns = current->nsproxy->ipc_ns;
1da177e4 1568
239521f3 1569 switch (cmd) {
1da177e4
LT
1570 case IPC_INFO:
1571 case SEM_INFO:
4b9fcb0e 1572 case IPC_STAT:
1da177e4 1573 case SEM_STAT:
e1fd1f49 1574 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1575 case GETALL:
1576 case GETVAL:
1577 case GETPID:
1578 case GETNCNT:
1579 case GETZCNT:
1da177e4 1580 case SETALL:
e1fd1f49
AV
1581 return semctl_main(ns, semid, semnum, cmd, p);
1582 case SETVAL:
1583 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1584 case IPC_RMID:
1585 case IPC_SET:
e1fd1f49 1586 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1587 default:
1588 return -EINVAL;
1589 }
1590}
1591
1da177e4
LT
1592/* If the task doesn't already have a undo_list, then allocate one
1593 * here. We guarantee there is only one thread using this undo list,
1594 * and current is THE ONE
1595 *
1596 * If this allocation and assignment succeeds, but later
1597 * portions of this code fail, there is no need to free the sem_undo_list.
1598 * Just let it stay associated with the task, and it'll be freed later
1599 * at exit time.
1600 *
1601 * This can block, so callers must hold no locks.
1602 */
1603static inline int get_undo_list(struct sem_undo_list **undo_listp)
1604{
1605 struct sem_undo_list *undo_list;
1da177e4
LT
1606
1607 undo_list = current->sysvsem.undo_list;
1608 if (!undo_list) {
2453a306 1609 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1610 if (undo_list == NULL)
1611 return -ENOMEM;
00a5dfdb 1612 spin_lock_init(&undo_list->lock);
1da177e4 1613 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1614 INIT_LIST_HEAD(&undo_list->list_proc);
1615
1da177e4
LT
1616 current->sysvsem.undo_list = undo_list;
1617 }
1618 *undo_listp = undo_list;
1619 return 0;
1620}
1621
bf17bb71 1622static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1623{
bf17bb71 1624 struct sem_undo *un;
4daa28f6 1625
bf17bb71
NP
1626 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1627 if (un->semid == semid)
1628 return un;
1da177e4 1629 }
4daa28f6 1630 return NULL;
1da177e4
LT
1631}
1632
bf17bb71
NP
1633static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1634{
1635 struct sem_undo *un;
1636
239521f3 1637 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1638
1639 un = __lookup_undo(ulp, semid);
1640 if (un) {
1641 list_del_rcu(&un->list_proc);
1642 list_add_rcu(&un->list_proc, &ulp->list_proc);
1643 }
1644 return un;
1645}
1646
4daa28f6 1647/**
8001c858 1648 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1649 * @ns: namespace
1650 * @semid: semaphore array id
1651 *
1652 * The function looks up (and if not present creates) the undo structure.
1653 * The size of the undo structure depends on the size of the semaphore
1654 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1655 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1656 * performs a rcu_read_lock().
4daa28f6
MS
1657 */
1658static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1659{
1660 struct sem_array *sma;
1661 struct sem_undo_list *ulp;
1662 struct sem_undo *un, *new;
6062a8dc 1663 int nsems, error;
1da177e4
LT
1664
1665 error = get_undo_list(&ulp);
1666 if (error)
1667 return ERR_PTR(error);
1668
380af1b3 1669 rcu_read_lock();
c530c6ac 1670 spin_lock(&ulp->lock);
1da177e4 1671 un = lookup_undo(ulp, semid);
c530c6ac 1672 spin_unlock(&ulp->lock);
239521f3 1673 if (likely(un != NULL))
1da177e4
LT
1674 goto out;
1675
1676 /* no undo structure around - allocate one. */
4daa28f6 1677 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1678 sma = sem_obtain_object_check(ns, semid);
1679 if (IS_ERR(sma)) {
1680 rcu_read_unlock();
4de85cd6 1681 return ERR_CAST(sma);
16df3674 1682 }
023a5355 1683
1da177e4 1684 nsems = sma->sem_nsems;
6062a8dc
RR
1685 if (!ipc_rcu_getref(sma)) {
1686 rcu_read_unlock();
1687 un = ERR_PTR(-EIDRM);
1688 goto out;
1689 }
16df3674 1690 rcu_read_unlock();
1da177e4 1691
4daa28f6 1692 /* step 2: allocate new undo structure */
4668edc3 1693 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1694 if (!new) {
53dad6d3 1695 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1696 return ERR_PTR(-ENOMEM);
1697 }
1da177e4 1698
380af1b3 1699 /* step 3: Acquire the lock on semaphore array */
4091fd94 1700 rcu_read_lock();
6ff37972 1701 sem_lock_and_putref(sma);
0f3d2b01 1702 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1703 sem_unlock(sma, -1);
6d49dab8 1704 rcu_read_unlock();
1da177e4
LT
1705 kfree(new);
1706 un = ERR_PTR(-EIDRM);
1707 goto out;
1708 }
380af1b3
MS
1709 spin_lock(&ulp->lock);
1710
1711 /*
1712 * step 4: check for races: did someone else allocate the undo struct?
1713 */
1714 un = lookup_undo(ulp, semid);
1715 if (un) {
1716 kfree(new);
1717 goto success;
1718 }
4daa28f6
MS
1719 /* step 5: initialize & link new undo structure */
1720 new->semadj = (short *) &new[1];
380af1b3 1721 new->ulp = ulp;
4daa28f6
MS
1722 new->semid = semid;
1723 assert_spin_locked(&ulp->lock);
380af1b3 1724 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1725 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1726 list_add(&new->list_id, &sma->list_id);
380af1b3 1727 un = new;
4daa28f6 1728
380af1b3 1729success:
c530c6ac 1730 spin_unlock(&ulp->lock);
6062a8dc 1731 sem_unlock(sma, -1);
1da177e4
LT
1732out:
1733 return un;
1734}
1735
c61284e9
MS
1736
1737/**
8001c858 1738 * get_queue_result - retrieve the result code from sem_queue
c61284e9
MS
1739 * @q: Pointer to queue structure
1740 *
1741 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1742 * q->status, then we must loop until the value is replaced with the final
1743 * value: This may happen if a task is woken up by an unrelated event (e.g.
1744 * signal) and in parallel the task is woken up by another task because it got
1745 * the requested semaphores.
1746 *
1747 * The function can be called with or without holding the semaphore spinlock.
1748 */
1749static int get_queue_result(struct sem_queue *q)
1750{
1751 int error;
1752
1753 error = q->status;
1754 while (unlikely(error == IN_WAKEUP)) {
1755 cpu_relax();
1756 error = q->status;
1757 }
1758
1759 return error;
1760}
1761
d5460c99
HC
1762SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1763 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1764{
1765 int error = -EINVAL;
1766 struct sem_array *sma;
1767 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1768 struct sembuf *sops = fast_sops, *sop;
1da177e4 1769 struct sem_undo *un;
6062a8dc 1770 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1771 struct sem_queue queue;
1772 unsigned long jiffies_left = 0;
e3893534 1773 struct ipc_namespace *ns;
0a2b9d4c 1774 struct list_head tasks;
e3893534
KK
1775
1776 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1777
1778 if (nsops < 1 || semid < 0)
1779 return -EINVAL;
e3893534 1780 if (nsops > ns->sc_semopm)
1da177e4 1781 return -E2BIG;
239521f3
MS
1782 if (nsops > SEMOPM_FAST) {
1783 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1784 if (sops == NULL)
1da177e4
LT
1785 return -ENOMEM;
1786 }
239521f3
MS
1787 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1788 error = -EFAULT;
1da177e4
LT
1789 goto out_free;
1790 }
1791 if (timeout) {
1792 struct timespec _timeout;
1793 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1794 error = -EFAULT;
1795 goto out_free;
1796 }
1797 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1798 _timeout.tv_nsec >= 1000000000L) {
1799 error = -EINVAL;
1800 goto out_free;
1801 }
1802 jiffies_left = timespec_to_jiffies(&_timeout);
1803 }
1804 max = 0;
1805 for (sop = sops; sop < sops + nsops; sop++) {
1806 if (sop->sem_num >= max)
1807 max = sop->sem_num;
1808 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1809 undos = 1;
1810 if (sop->sem_op != 0)
1da177e4
LT
1811 alter = 1;
1812 }
1da177e4 1813
6062a8dc
RR
1814 INIT_LIST_HEAD(&tasks);
1815
1da177e4 1816 if (undos) {
6062a8dc 1817 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1818 un = find_alloc_undo(ns, semid);
1da177e4
LT
1819 if (IS_ERR(un)) {
1820 error = PTR_ERR(un);
1821 goto out_free;
1822 }
6062a8dc 1823 } else {
1da177e4 1824 un = NULL;
6062a8dc
RR
1825 rcu_read_lock();
1826 }
1da177e4 1827
16df3674 1828 sma = sem_obtain_object_check(ns, semid);
023a5355 1829 if (IS_ERR(sma)) {
6062a8dc 1830 rcu_read_unlock();
023a5355 1831 error = PTR_ERR(sma);
1da177e4 1832 goto out_free;
023a5355
ND
1833 }
1834
16df3674 1835 error = -EFBIG;
c728b9c8
LT
1836 if (max >= sma->sem_nsems)
1837 goto out_rcu_wakeup;
16df3674
DB
1838
1839 error = -EACCES;
c728b9c8
LT
1840 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1841 goto out_rcu_wakeup;
16df3674
DB
1842
1843 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1844 if (error)
1845 goto out_rcu_wakeup;
16df3674 1846
6e224f94
MS
1847 error = -EIDRM;
1848 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1849 /*
1850 * We eventually might perform the following check in a lockless
1851 * fashion, considering ipc_valid_object() locking constraints.
1852 * If nsops == 1 and there is no contention for sem_perm.lock, then
1853 * only a per-semaphore lock is held and it's OK to proceed with the
1854 * check below. More details on the fine grained locking scheme
1855 * entangled here and why it's RMID race safe on comments at sem_lock()
1856 */
1857 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1858 goto out_unlock_free;
1da177e4 1859 /*
4daa28f6 1860 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1861 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1862 * and now a new array with received the same id. Check and fail.
25985edc 1863 * This case can be detected checking un->semid. The existence of
380af1b3 1864 * "un" itself is guaranteed by rcu.
1da177e4 1865 */
6062a8dc
RR
1866 if (un && un->semid == -1)
1867 goto out_unlock_free;
4daa28f6 1868
758a6ba3
MS
1869 error = perform_atomic_semop(sma, sops, nsops, un,
1870 task_tgid_vnr(current));
0e8c6656
MS
1871 if (error == 0) {
1872 /* If the operation was successful, then do
1873 * the required updates.
1874 */
1875 if (alter)
0a2b9d4c 1876 do_smart_update(sma, sops, nsops, 1, &tasks);
0e8c6656
MS
1877 else
1878 set_semotime(sma, sops);
1da177e4 1879 }
0e8c6656
MS
1880 if (error <= 0)
1881 goto out_unlock_free;
1da177e4
LT
1882
1883 /* We need to sleep on this operation, so we put the current
1884 * task into the pending queue and go to sleep.
1885 */
1886
1da177e4
LT
1887 queue.sops = sops;
1888 queue.nsops = nsops;
1889 queue.undo = un;
b488893a 1890 queue.pid = task_tgid_vnr(current);
1da177e4 1891 queue.alter = alter;
1da177e4 1892
b97e820f
MS
1893 if (nsops == 1) {
1894 struct sem *curr;
1895 curr = &sma->sem_base[sops->sem_num];
1896
f269f40a
MS
1897 if (alter) {
1898 if (sma->complex_count) {
1899 list_add_tail(&queue.list,
1900 &sma->pending_alter);
1901 } else {
1902
1903 list_add_tail(&queue.list,
1904 &curr->pending_alter);
1905 }
1906 } else {
1a82e9e1 1907 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1908 }
b97e820f 1909 } else {
f269f40a
MS
1910 if (!sma->complex_count)
1911 merge_queues(sma);
1912
9f1bc2c9 1913 if (alter)
1a82e9e1 1914 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1915 else
1a82e9e1
MS
1916 list_add_tail(&queue.list, &sma->pending_const);
1917
b97e820f
MS
1918 sma->complex_count++;
1919 }
1920
1da177e4
LT
1921 queue.status = -EINTR;
1922 queue.sleeper = current;
0b0577f6
MS
1923
1924sleep_again:
1da177e4 1925 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1926 sem_unlock(sma, locknum);
6d49dab8 1927 rcu_read_unlock();
1da177e4
LT
1928
1929 if (timeout)
1930 jiffies_left = schedule_timeout(jiffies_left);
1931 else
1932 schedule();
1933
c61284e9 1934 error = get_queue_result(&queue);
1da177e4
LT
1935
1936 if (error != -EINTR) {
1937 /* fast path: update_queue already obtained all requested
c61284e9
MS
1938 * resources.
1939 * Perform a smp_mb(): User space could assume that semop()
1940 * is a memory barrier: Without the mb(), the cpu could
1941 * speculatively read in user space stale data that was
1942 * overwritten by the previous owner of the semaphore.
1943 */
1944 smp_mb();
1945
1da177e4
LT
1946 goto out_free;
1947 }
1948
321310ce 1949 rcu_read_lock();
6062a8dc 1950 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1951
1952 /*
1953 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1954 */
1955 error = get_queue_result(&queue);
1956
1957 /*
1958 * Array removed? If yes, leave without sem_unlock().
1959 */
023a5355 1960 if (IS_ERR(sma)) {
321310ce 1961 rcu_read_unlock();
1da177e4
LT
1962 goto out_free;
1963 }
1964
c61284e9 1965
1da177e4 1966 /*
d694ad62
MS
1967 * If queue.status != -EINTR we are woken up by another process.
1968 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1969 */
c61284e9 1970
1da177e4
LT
1971 if (error != -EINTR) {
1972 goto out_unlock_free;
1973 }
1974
1975 /*
1976 * If an interrupt occurred we have to clean up the queue
1977 */
1978 if (timeout && jiffies_left == 0)
1979 error = -EAGAIN;
0b0577f6
MS
1980
1981 /*
1982 * If the wakeup was spurious, just retry
1983 */
1984 if (error == -EINTR && !signal_pending(current))
1985 goto sleep_again;
1986
b97e820f 1987 unlink_queue(sma, &queue);
1da177e4
LT
1988
1989out_unlock_free:
6062a8dc 1990 sem_unlock(sma, locknum);
c728b9c8 1991out_rcu_wakeup:
6d49dab8 1992 rcu_read_unlock();
0a2b9d4c 1993 wake_up_sem_queue_do(&tasks);
1da177e4 1994out_free:
239521f3 1995 if (sops != fast_sops)
1da177e4
LT
1996 kfree(sops);
1997 return error;
1998}
1999
d5460c99
HC
2000SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2001 unsigned, nsops)
1da177e4
LT
2002{
2003 return sys_semtimedop(semid, tsops, nsops, NULL);
2004}
2005
2006/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2007 * parent and child tasks.
1da177e4
LT
2008 */
2009
2010int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2011{
2012 struct sem_undo_list *undo_list;
2013 int error;
2014
2015 if (clone_flags & CLONE_SYSVSEM) {
2016 error = get_undo_list(&undo_list);
2017 if (error)
2018 return error;
1da177e4
LT
2019 atomic_inc(&undo_list->refcnt);
2020 tsk->sysvsem.undo_list = undo_list;
2021 } else
2022 tsk->sysvsem.undo_list = NULL;
2023
2024 return 0;
2025}
2026
2027/*
2028 * add semadj values to semaphores, free undo structures.
2029 * undo structures are not freed when semaphore arrays are destroyed
2030 * so some of them may be out of date.
2031 * IMPLEMENTATION NOTE: There is some confusion over whether the
2032 * set of adjustments that needs to be done should be done in an atomic
2033 * manner or not. That is, if we are attempting to decrement the semval
2034 * should we queue up and wait until we can do so legally?
2035 * The original implementation attempted to do this (queue and wait).
2036 * The current implementation does not do so. The POSIX standard
2037 * and SVID should be consulted to determine what behavior is mandated.
2038 */
2039void exit_sem(struct task_struct *tsk)
2040{
4daa28f6 2041 struct sem_undo_list *ulp;
1da177e4 2042
4daa28f6
MS
2043 ulp = tsk->sysvsem.undo_list;
2044 if (!ulp)
1da177e4 2045 return;
9edff4ab 2046 tsk->sysvsem.undo_list = NULL;
1da177e4 2047
4daa28f6 2048 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2049 return;
2050
380af1b3 2051 for (;;) {
1da177e4 2052 struct sem_array *sma;
380af1b3 2053 struct sem_undo *un;
0a2b9d4c 2054 struct list_head tasks;
6062a8dc 2055 int semid, i;
4daa28f6 2056
380af1b3 2057 rcu_read_lock();
05725f7e
JP
2058 un = list_entry_rcu(ulp->list_proc.next,
2059 struct sem_undo, list_proc);
380af1b3
MS
2060 if (&un->list_proc == &ulp->list_proc)
2061 semid = -1;
2062 else
2063 semid = un->semid;
4daa28f6 2064
6062a8dc
RR
2065 if (semid == -1) {
2066 rcu_read_unlock();
380af1b3 2067 break;
6062a8dc 2068 }
1da177e4 2069
6062a8dc 2070 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 2071 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2072 if (IS_ERR(sma)) {
2073 rcu_read_unlock();
380af1b3 2074 continue;
6062a8dc 2075 }
1da177e4 2076
6062a8dc 2077 sem_lock(sma, NULL, -1);
6e224f94 2078 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2079 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2080 sem_unlock(sma, -1);
2081 rcu_read_unlock();
2082 continue;
2083 }
bf17bb71 2084 un = __lookup_undo(ulp, semid);
380af1b3
MS
2085 if (un == NULL) {
2086 /* exit_sem raced with IPC_RMID+semget() that created
2087 * exactly the same semid. Nothing to do.
2088 */
6062a8dc 2089 sem_unlock(sma, -1);
6d49dab8 2090 rcu_read_unlock();
380af1b3
MS
2091 continue;
2092 }
2093
2094 /* remove un from the linked lists */
cf9d5d78 2095 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2096 list_del(&un->list_id);
2097
380af1b3
MS
2098 spin_lock(&ulp->lock);
2099 list_del_rcu(&un->list_proc);
2100 spin_unlock(&ulp->lock);
2101
4daa28f6
MS
2102 /* perform adjustments registered in un */
2103 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2104 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2105 if (un->semadj[i]) {
2106 semaphore->semval += un->semadj[i];
1da177e4
LT
2107 /*
2108 * Range checks of the new semaphore value,
2109 * not defined by sus:
2110 * - Some unices ignore the undo entirely
2111 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2112 * - some cap the value (e.g. FreeBSD caps
2113 * at 0, but doesn't enforce SEMVMX)
2114 *
2115 * Linux caps the semaphore value, both at 0
2116 * and at SEMVMX.
2117 *
239521f3 2118 * Manfred <manfred@colorfullife.com>
1da177e4 2119 */
5f921ae9
IM
2120 if (semaphore->semval < 0)
2121 semaphore->semval = 0;
2122 if (semaphore->semval > SEMVMX)
2123 semaphore->semval = SEMVMX;
b488893a 2124 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2125 }
2126 }
1da177e4 2127 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2128 INIT_LIST_HEAD(&tasks);
2129 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2130 sem_unlock(sma, -1);
6d49dab8 2131 rcu_read_unlock();
0a2b9d4c 2132 wake_up_sem_queue_do(&tasks);
380af1b3 2133
693a8b6e 2134 kfree_rcu(un, rcu);
1da177e4 2135 }
4daa28f6 2136 kfree(ulp);
1da177e4
LT
2137}
2138
2139#ifdef CONFIG_PROC_FS
19b4946c 2140static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2141{
1efdb69b 2142 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2143 struct sem_array *sma = it;
d12e1e50
MS
2144 time_t sem_otime;
2145
d8c63376
MS
2146 /*
2147 * The proc interface isn't aware of sem_lock(), it calls
2148 * ipc_lock_object() directly (in sysvipc_find_ipc).
2149 * In order to stay compatible with sem_lock(), we must wait until
2150 * all simple semop() calls have left their critical regions.
2151 */
2152 sem_wait_array(sma);
2153
d12e1e50 2154 sem_otime = get_semotime(sma);
19b4946c
MW
2155
2156 return seq_printf(s,
b97e820f 2157 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2158 sma->sem_perm.key,
7ca7e564 2159 sma->sem_perm.id,
19b4946c
MW
2160 sma->sem_perm.mode,
2161 sma->sem_nsems,
1efdb69b
EB
2162 from_kuid_munged(user_ns, sma->sem_perm.uid),
2163 from_kgid_munged(user_ns, sma->sem_perm.gid),
2164 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2165 from_kgid_munged(user_ns, sma->sem_perm.cgid),
d12e1e50 2166 sem_otime,
19b4946c 2167 sma->sem_ctime);
1da177e4
LT
2168}
2169#endif