]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - ipc/sem.c
ipc/sem.c: make semctl(,,{GETNCNT,GETZCNT}) standard compliant
[mirror_ubuntu-bionic-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
73 */
74
1da177e4
LT
75#include <linux/slab.h>
76#include <linux/spinlock.h>
77#include <linux/init.h>
78#include <linux/proc_fs.h>
79#include <linux/time.h>
1da177e4
LT
80#include <linux/security.h>
81#include <linux/syscalls.h>
82#include <linux/audit.h>
c59ede7b 83#include <linux/capability.h>
19b4946c 84#include <linux/seq_file.h>
3e148c79 85#include <linux/rwsem.h>
e3893534 86#include <linux/nsproxy.h>
ae5e1b22 87#include <linux/ipc_namespace.h>
5f921ae9 88
7153e402 89#include <linux/uaccess.h>
1da177e4
LT
90#include "util.h"
91
e57940d7
MS
92/* One semaphore structure for each semaphore in the system. */
93struct sem {
94 int semval; /* current value */
95 int sempid; /* pid of last operation */
6062a8dc 96 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
97 struct list_head pending_alter; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
d12e1e50 101 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 102} ____cacheline_aligned_in_smp;
e57940d7
MS
103
104/* One queue for each sleeping process in the system. */
105struct sem_queue {
e57940d7
MS
106 struct list_head list; /* queue of pending operations */
107 struct task_struct *sleeper; /* this process */
108 struct sem_undo *undo; /* undo structure */
109 int pid; /* process id of requesting process */
110 int status; /* completion status of operation */
111 struct sembuf *sops; /* array of pending operations */
ed247b7c 112 struct sembuf *blocking; /* the operation that blocked */
e57940d7
MS
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
758a6ba3 157 * Locking:
1da177e4 158 * sem_undo.id_next,
758a6ba3 159 * sem_array.complex_count,
1a82e9e1 160 * sem_array.pending{_alter,_cont},
758a6ba3 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4 162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
46c0a8ca 163 *
758a6ba3
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4 190
239521f3 191void __init sem_init(void)
1da177e4 192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
f269f40a
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
8001c858 228 * merge_queues - merge single semop queues into global queue
f269f40a
MS
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
53dad6d3
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
5e9d5275
MS
255/*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
6d07b68c 260 * that a) sem_perm.lock is free and b) complex_count is 0.
5e9d5275
MS
261 */
262static void sem_wait_array(struct sem_array *sma)
263{
264 int i;
265 struct sem *sem;
266
6d07b68c
MS
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
270 */
271 return;
272 }
273
5e9d5275
MS
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
277 }
278}
279
6062a8dc
RR
280/*
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
6062a8dc
RR
286 */
287static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
289{
5e9d5275 290 struct sem *sem;
6062a8dc 291
5e9d5275
MS
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
6062a8dc 295
5e9d5275
MS
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
6062a8dc 298 */
5e9d5275
MS
299 sem_wait_array(sma);
300 return -1;
301 }
302
303 /*
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
317 */
318 sem = sma->sem_base + sops->sem_num;
6062a8dc 319
5e9d5275 320 if (sma->complex_count == 0) {
6062a8dc 321 /*
5e9d5275
MS
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
6062a8dc 324 */
5e9d5275
MS
325 spin_lock(&sem->lock);
326
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
331
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
335 */
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
339 }
6062a8dc 340 }
5e9d5275
MS
341 spin_unlock(&sem->lock);
342 }
343
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
6062a8dc 346
5e9d5275
MS
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
351 */
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
6062a8dc 355 } else {
5e9d5275
MS
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
6062a8dc 358 */
5e9d5275
MS
359 sem_wait_array(sma);
360 return -1;
6062a8dc 361 }
6062a8dc
RR
362}
363
364static inline void sem_unlock(struct sem_array *sma, int locknum)
365{
366 if (locknum == -1) {
f269f40a 367 unmerge_queues(sma);
cf9d5d78 368 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
372 }
6062a8dc
RR
373}
374
3e148c79 375/*
d9a605e4 376 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 377 * is not held.
321310ce
LT
378 *
379 * The caller holds the RCU read lock.
3e148c79 380 */
6062a8dc
RR
381static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 383{
c460b662
RR
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
03f02c76 386
c460b662 387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
b1ed88b4 390
6062a8dc
RR
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
393
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
396 */
72a8ff2f 397 if (ipc_valid_object(ipcp))
c460b662
RR
398 return container_of(ipcp, struct sem_array, sem_perm);
399
6062a8dc 400 sem_unlock(sma, *locknum);
321310ce 401 return ERR_PTR(-EINVAL);
023a5355
ND
402}
403
16df3674
DB
404static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405{
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
410
411 return container_of(ipcp, struct sem_array, sem_perm);
412}
413
16df3674
DB
414static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
416{
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
b1ed88b4 421
03f02c76 422 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
423}
424
6ff37972
PP
425static inline void sem_lock_and_putref(struct sem_array *sma)
426{
6062a8dc 427 sem_lock(sma, NULL, -1);
53dad6d3 428 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
429}
430
7ca7e564
ND
431static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432{
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
434}
435
1da177e4
LT
436/*
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
1a82e9e1 441 * * unlinking the queue entry from the pending list
1da177e4
LT
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
239521f3
MS
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
1da177e4
LT
453 *
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
466 *
467 */
468#define IN_WAKEUP 1
469
f4566f04
ND
470/**
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
474 *
d9a605e4 475 * Called with sem_ids.rwsem held (as a writer)
f4566f04 476 */
7748dbfa 477static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
478{
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
7748dbfa
ND
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
b97e820f 486 int i;
1da177e4
LT
487
488 if (!nsems)
489 return -EINVAL;
e3893534 490 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
491 return -ENOSPC;
492
239521f3 493 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4 494 sma = ipc_rcu_alloc(size);
3ab08fe2 495 if (!sma)
1da177e4 496 return -ENOMEM;
3ab08fe2 497
239521f3 498 memset(sma, 0, size);
1da177e4
LT
499
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
502
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
53dad6d3 506 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
507 return retval;
508 }
509
e3893534 510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 511 if (id < 0) {
53dad6d3 512 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 513 return id;
1da177e4 514 }
e3893534 515 ns->used_sems += nsems;
1da177e4
LT
516
517 sma->sem_base = (struct sem *) &sma[1];
b97e820f 518
6062a8dc 519 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
522 spin_lock_init(&sma->sem_base[i].lock);
523 }
b97e820f
MS
524
525 sma->complex_count = 0;
1a82e9e1
MS
526 INIT_LIST_HEAD(&sma->pending_alter);
527 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 528 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
529 sma->sem_nsems = nsems;
530 sma->sem_ctime = get_seconds();
6062a8dc 531 sem_unlock(sma, -1);
6d49dab8 532 rcu_read_unlock();
1da177e4 533
7ca7e564 534 return sma->sem_perm.id;
1da177e4
LT
535}
536
7748dbfa 537
f4566f04 538/*
d9a605e4 539 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 540 */
03f02c76 541static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 542{
03f02c76
ND
543 struct sem_array *sma;
544
545 sma = container_of(ipcp, struct sem_array, sem_perm);
546 return security_sem_associate(sma, semflg);
7748dbfa
ND
547}
548
f4566f04 549/*
d9a605e4 550 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 551 */
03f02c76
ND
552static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 struct ipc_params *params)
7748dbfa 554{
03f02c76
ND
555 struct sem_array *sma;
556
557 sma = container_of(ipcp, struct sem_array, sem_perm);
558 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
559 return -EINVAL;
560
561 return 0;
562}
563
d5460c99 564SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 565{
e3893534 566 struct ipc_namespace *ns;
eb66ec44
MK
567 static const struct ipc_ops sem_ops = {
568 .getnew = newary,
569 .associate = sem_security,
570 .more_checks = sem_more_checks,
571 };
7748dbfa 572 struct ipc_params sem_params;
e3893534
KK
573
574 ns = current->nsproxy->ipc_ns;
1da177e4 575
e3893534 576 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 577 return -EINVAL;
7ca7e564 578
7748dbfa
ND
579 sem_params.key = key;
580 sem_params.flg = semflg;
581 sem_params.u.nsems = nsems;
1da177e4 582
7748dbfa 583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
584}
585
78f5009c
PM
586/**
587 * perform_atomic_semop - Perform (if possible) a semaphore operation
758a6ba3 588 * @sma: semaphore array
d198cd6d 589 * @q: struct sem_queue that describes the operation
758a6ba3
MS
590 *
591 * Returns 0 if the operation was possible.
592 * Returns 1 if the operation is impossible, the caller must sleep.
593 * Negative values are error codes.
1da177e4 594 */
d198cd6d 595static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
1da177e4 596{
d198cd6d 597 int result, sem_op, nsops, pid;
1da177e4 598 struct sembuf *sop;
239521f3 599 struct sem *curr;
d198cd6d
MS
600 struct sembuf *sops;
601 struct sem_undo *un;
602
603 sops = q->sops;
604 nsops = q->nsops;
605 un = q->undo;
1da177e4
LT
606
607 for (sop = sops; sop < sops + nsops; sop++) {
608 curr = sma->sem_base + sop->sem_num;
609 sem_op = sop->sem_op;
610 result = curr->semval;
78f5009c 611
1da177e4
LT
612 if (!sem_op && result)
613 goto would_block;
614
615 result += sem_op;
616 if (result < 0)
617 goto would_block;
618 if (result > SEMVMX)
619 goto out_of_range;
78f5009c 620
1da177e4
LT
621 if (sop->sem_flg & SEM_UNDO) {
622 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 623 /* Exceeding the undo range is an error. */
1da177e4
LT
624 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
625 goto out_of_range;
78f5009c 626 un->semadj[sop->sem_num] = undo;
1da177e4 627 }
78f5009c 628
1da177e4
LT
629 curr->semval = result;
630 }
631
632 sop--;
d198cd6d 633 pid = q->pid;
1da177e4
LT
634 while (sop >= sops) {
635 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
636 sop--;
637 }
78f5009c 638
1da177e4
LT
639 return 0;
640
641out_of_range:
642 result = -ERANGE;
643 goto undo;
644
645would_block:
ed247b7c
MS
646 q->blocking = sop;
647
1da177e4
LT
648 if (sop->sem_flg & IPC_NOWAIT)
649 result = -EAGAIN;
650 else
651 result = 1;
652
653undo:
654 sop--;
655 while (sop >= sops) {
78f5009c
PM
656 sem_op = sop->sem_op;
657 sma->sem_base[sop->sem_num].semval -= sem_op;
658 if (sop->sem_flg & SEM_UNDO)
659 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
660 sop--;
661 }
662
663 return result;
664}
665
0a2b9d4c
MS
666/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
667 * @q: queue entry that must be signaled
668 * @error: Error value for the signal
669 *
670 * Prepare the wake-up of the queue entry q.
d4212093 671 */
0a2b9d4c
MS
672static void wake_up_sem_queue_prepare(struct list_head *pt,
673 struct sem_queue *q, int error)
d4212093 674{
0a2b9d4c
MS
675 if (list_empty(pt)) {
676 /*
677 * Hold preempt off so that we don't get preempted and have the
678 * wakee busy-wait until we're scheduled back on.
679 */
680 preempt_disable();
681 }
d4212093 682 q->status = IN_WAKEUP;
0a2b9d4c
MS
683 q->pid = error;
684
9f1bc2c9 685 list_add_tail(&q->list, pt);
0a2b9d4c
MS
686}
687
688/**
8001c858 689 * wake_up_sem_queue_do - do the actual wake-up
0a2b9d4c
MS
690 * @pt: list of tasks to be woken up
691 *
692 * Do the actual wake-up.
693 * The function is called without any locks held, thus the semaphore array
694 * could be destroyed already and the tasks can disappear as soon as the
695 * status is set to the actual return code.
696 */
697static void wake_up_sem_queue_do(struct list_head *pt)
698{
699 struct sem_queue *q, *t;
700 int did_something;
701
702 did_something = !list_empty(pt);
9f1bc2c9 703 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
704 wake_up_process(q->sleeper);
705 /* q can disappear immediately after writing q->status. */
706 smp_wmb();
707 q->status = q->pid;
708 }
709 if (did_something)
710 preempt_enable();
d4212093
NP
711}
712
b97e820f
MS
713static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
714{
715 list_del(&q->list);
9f1bc2c9 716 if (q->nsops > 1)
b97e820f
MS
717 sma->complex_count--;
718}
719
fd5db422
MS
720/** check_restart(sma, q)
721 * @sma: semaphore array
722 * @q: the operation that just completed
723 *
724 * update_queue is O(N^2) when it restarts scanning the whole queue of
725 * waiting operations. Therefore this function checks if the restart is
726 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
727 * modified the array.
728 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
729 */
730static int check_restart(struct sem_array *sma, struct sem_queue *q)
731{
1a82e9e1
MS
732 /* pending complex alter operations are too difficult to analyse */
733 if (!list_empty(&sma->pending_alter))
fd5db422
MS
734 return 1;
735
736 /* we were a sleeping complex operation. Too difficult */
737 if (q->nsops > 1)
738 return 1;
739
1a82e9e1
MS
740 /* It is impossible that someone waits for the new value:
741 * - complex operations always restart.
742 * - wait-for-zero are handled seperately.
743 * - q is a previously sleeping simple operation that
744 * altered the array. It must be a decrement, because
745 * simple increments never sleep.
746 * - If there are older (higher priority) decrements
747 * in the queue, then they have observed the original
748 * semval value and couldn't proceed. The operation
749 * decremented to value - thus they won't proceed either.
750 */
751 return 0;
752}
fd5db422 753
1a82e9e1 754/**
8001c858 755 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
756 * @sma: semaphore array.
757 * @semnum: semaphore that was modified.
758 * @pt: list head for the tasks that must be woken up.
759 *
760 * wake_const_ops must be called after a semaphore in a semaphore array
761 * was set to 0. If complex const operations are pending, wake_const_ops must
762 * be called with semnum = -1, as well as with the number of each modified
763 * semaphore.
764 * The tasks that must be woken up are added to @pt. The return code
765 * is stored in q->pid.
766 * The function returns 1 if at least one operation was completed successfully.
767 */
768static int wake_const_ops(struct sem_array *sma, int semnum,
769 struct list_head *pt)
770{
771 struct sem_queue *q;
772 struct list_head *walk;
773 struct list_head *pending_list;
774 int semop_completed = 0;
775
776 if (semnum == -1)
777 pending_list = &sma->pending_const;
778 else
779 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 780
1a82e9e1
MS
781 walk = pending_list->next;
782 while (walk != pending_list) {
783 int error;
784
785 q = container_of(walk, struct sem_queue, list);
786 walk = walk->next;
787
d198cd6d 788 error = perform_atomic_semop(sma, q);
1a82e9e1
MS
789
790 if (error <= 0) {
791 /* operation completed, remove from queue & wakeup */
792
793 unlink_queue(sma, q);
794
795 wake_up_sem_queue_prepare(pt, q, error);
796 if (error == 0)
797 semop_completed = 1;
798 }
799 }
800 return semop_completed;
801}
802
803/**
8001c858 804 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
805 * @sma: semaphore array
806 * @sops: operations that were performed
807 * @nsops: number of operations
808 * @pt: list head of the tasks that must be woken up.
809 *
8001c858
DB
810 * Checks all required queue for wait-for-zero operations, based
811 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
812 * The function returns 1 if at least one operation was completed successfully.
813 */
814static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
815 int nsops, struct list_head *pt)
816{
817 int i;
818 int semop_completed = 0;
819 int got_zero = 0;
820
821 /* first: the per-semaphore queues, if known */
822 if (sops) {
823 for (i = 0; i < nsops; i++) {
824 int num = sops[i].sem_num;
825
826 if (sma->sem_base[num].semval == 0) {
827 got_zero = 1;
828 semop_completed |= wake_const_ops(sma, num, pt);
829 }
830 }
831 } else {
832 /*
833 * No sops means modified semaphores not known.
834 * Assume all were changed.
fd5db422 835 */
1a82e9e1
MS
836 for (i = 0; i < sma->sem_nsems; i++) {
837 if (sma->sem_base[i].semval == 0) {
838 got_zero = 1;
839 semop_completed |= wake_const_ops(sma, i, pt);
840 }
841 }
fd5db422
MS
842 }
843 /*
1a82e9e1
MS
844 * If one of the modified semaphores got 0,
845 * then check the global queue, too.
fd5db422 846 */
1a82e9e1
MS
847 if (got_zero)
848 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 849
1a82e9e1 850 return semop_completed;
fd5db422
MS
851}
852
636c6be8
MS
853
854/**
8001c858 855 * update_queue - look for tasks that can be completed.
636c6be8
MS
856 * @sma: semaphore array.
857 * @semnum: semaphore that was modified.
0a2b9d4c 858 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
859 *
860 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
861 * was modified. If multiple semaphores were modified, update_queue must
862 * be called with semnum = -1, as well as with the number of each modified
863 * semaphore.
0a2b9d4c
MS
864 * The tasks that must be woken up are added to @pt. The return code
865 * is stored in q->pid.
1a82e9e1
MS
866 * The function internally checks if const operations can now succeed.
867 *
0a2b9d4c 868 * The function return 1 if at least one semop was completed successfully.
1da177e4 869 */
0a2b9d4c 870static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 871{
636c6be8
MS
872 struct sem_queue *q;
873 struct list_head *walk;
874 struct list_head *pending_list;
0a2b9d4c 875 int semop_completed = 0;
636c6be8 876
9f1bc2c9 877 if (semnum == -1)
1a82e9e1 878 pending_list = &sma->pending_alter;
9f1bc2c9 879 else
1a82e9e1 880 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
881
882again:
636c6be8
MS
883 walk = pending_list->next;
884 while (walk != pending_list) {
fd5db422 885 int error, restart;
636c6be8 886
9f1bc2c9 887 q = container_of(walk, struct sem_queue, list);
636c6be8 888 walk = walk->next;
1da177e4 889
d987f8b2
MS
890 /* If we are scanning the single sop, per-semaphore list of
891 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 892 * necessary to scan further: simple increments
d987f8b2
MS
893 * that affect only one entry succeed immediately and cannot
894 * be in the per semaphore pending queue, and decrements
895 * cannot be successful if the value is already 0.
896 */
1a82e9e1 897 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
898 break;
899
d198cd6d 900 error = perform_atomic_semop(sma, q);
1da177e4
LT
901
902 /* Does q->sleeper still need to sleep? */
9cad200c
NP
903 if (error > 0)
904 continue;
905
b97e820f 906 unlink_queue(sma, q);
9cad200c 907
0a2b9d4c 908 if (error) {
fd5db422 909 restart = 0;
0a2b9d4c
MS
910 } else {
911 semop_completed = 1;
1a82e9e1 912 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 913 restart = check_restart(sma, q);
0a2b9d4c 914 }
fd5db422 915
0a2b9d4c 916 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 917 if (restart)
9cad200c 918 goto again;
1da177e4 919 }
0a2b9d4c 920 return semop_completed;
1da177e4
LT
921}
922
0e8c6656 923/**
8001c858 924 * set_semotime - set sem_otime
0e8c6656
MS
925 * @sma: semaphore array
926 * @sops: operations that modified the array, may be NULL
927 *
928 * sem_otime is replicated to avoid cache line trashing.
929 * This function sets one instance to the current time.
930 */
931static void set_semotime(struct sem_array *sma, struct sembuf *sops)
932{
933 if (sops == NULL) {
934 sma->sem_base[0].sem_otime = get_seconds();
935 } else {
936 sma->sem_base[sops[0].sem_num].sem_otime =
937 get_seconds();
938 }
939}
940
0a2b9d4c 941/**
8001c858 942 * do_smart_update - optimized update_queue
fd5db422
MS
943 * @sma: semaphore array
944 * @sops: operations that were performed
945 * @nsops: number of operations
0a2b9d4c
MS
946 * @otime: force setting otime
947 * @pt: list head of the tasks that must be woken up.
fd5db422 948 *
1a82e9e1
MS
949 * do_smart_update() does the required calls to update_queue and wakeup_zero,
950 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
951 * Note that the function does not do the actual wake-up: the caller is
952 * responsible for calling wake_up_sem_queue_do(@pt).
953 * It is safe to perform this call after dropping all locks.
fd5db422 954 */
0a2b9d4c
MS
955static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
956 int otime, struct list_head *pt)
fd5db422
MS
957{
958 int i;
959
1a82e9e1
MS
960 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
961
f269f40a
MS
962 if (!list_empty(&sma->pending_alter)) {
963 /* semaphore array uses the global queue - just process it. */
964 otime |= update_queue(sma, -1, pt);
965 } else {
966 if (!sops) {
967 /*
968 * No sops, thus the modified semaphores are not
969 * known. Check all.
970 */
971 for (i = 0; i < sma->sem_nsems; i++)
972 otime |= update_queue(sma, i, pt);
973 } else {
974 /*
975 * Check the semaphores that were increased:
976 * - No complex ops, thus all sleeping ops are
977 * decrease.
978 * - if we decreased the value, then any sleeping
979 * semaphore ops wont be able to run: If the
980 * previous value was too small, then the new
981 * value will be too small, too.
982 */
983 for (i = 0; i < nsops; i++) {
984 if (sops[i].sem_op > 0) {
985 otime |= update_queue(sma,
986 sops[i].sem_num, pt);
987 }
ab465df9 988 }
9f1bc2c9 989 }
fd5db422 990 }
0e8c6656
MS
991 if (otime)
992 set_semotime(sma, sops);
fd5db422
MS
993}
994
2f2ed41d 995/*
b220c57a 996 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
997 */
998static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
999 bool count_zero)
1000{
b220c57a 1001 struct sembuf *sop = q->blocking;
2f2ed41d 1002
b220c57a
MS
1003 if (sop->sem_num != semnum)
1004 return 0;
2f2ed41d 1005
b220c57a
MS
1006 if (count_zero && sop->sem_op == 0)
1007 return 1;
1008 if (!count_zero && sop->sem_op < 0)
1009 return 1;
1010
1011 return 0;
2f2ed41d
MS
1012}
1013
1da177e4
LT
1014/* The following counts are associated to each semaphore:
1015 * semncnt number of tasks waiting on semval being nonzero
1016 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1017 *
1018 * Per definition, a task waits only on the semaphore of the first semop
1019 * that cannot proceed, even if additional operation would block, too.
1da177e4 1020 */
2f2ed41d
MS
1021static int count_semcnt(struct sem_array *sma, ushort semnum,
1022 bool count_zero)
1da177e4 1023{
2f2ed41d 1024 struct list_head *l;
239521f3 1025 struct sem_queue *q;
2f2ed41d 1026 int semcnt;
1da177e4 1027
2f2ed41d
MS
1028 semcnt = 0;
1029 /* First: check the simple operations. They are easy to evaluate */
1030 if (count_zero)
1031 l = &sma->sem_base[semnum].pending_const;
1032 else
1033 l = &sma->sem_base[semnum].pending_alter;
1da177e4 1034
2f2ed41d
MS
1035 list_for_each_entry(q, l, list) {
1036 /* all task on a per-semaphore list sleep on exactly
1037 * that semaphore
1038 */
1039 semcnt++;
ebc2e5e6
RR
1040 }
1041
2f2ed41d 1042 /* Then: check the complex operations. */
1994862d 1043 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1044 semcnt += check_qop(sma, semnum, q, count_zero);
1045 }
1046 if (count_zero) {
1047 list_for_each_entry(q, &sma->pending_const, list) {
1048 semcnt += check_qop(sma, semnum, q, count_zero);
1049 }
1994862d 1050 }
2f2ed41d 1051 return semcnt;
1da177e4
LT
1052}
1053
d9a605e4
DB
1054/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1055 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1056 * remains locked on exit.
1da177e4 1057 */
01b8b07a 1058static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1059{
380af1b3
MS
1060 struct sem_undo *un, *tu;
1061 struct sem_queue *q, *tq;
01b8b07a 1062 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1063 struct list_head tasks;
9f1bc2c9 1064 int i;
1da177e4 1065
380af1b3 1066 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1067 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1068 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1069 list_del(&un->list_id);
1070 spin_lock(&un->ulp->lock);
1da177e4 1071 un->semid = -1;
380af1b3
MS
1072 list_del_rcu(&un->list_proc);
1073 spin_unlock(&un->ulp->lock);
693a8b6e 1074 kfree_rcu(un, rcu);
380af1b3 1075 }
1da177e4
LT
1076
1077 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1078 INIT_LIST_HEAD(&tasks);
1a82e9e1
MS
1079 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1080 unlink_queue(sma, q);
1081 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1082 }
1083
1084 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1085 unlink_queue(sma, q);
0a2b9d4c 1086 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1087 }
9f1bc2c9
RR
1088 for (i = 0; i < sma->sem_nsems; i++) {
1089 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1090 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1091 unlink_queue(sma, q);
1092 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1093 }
1094 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1095 unlink_queue(sma, q);
1096 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1097 }
1098 }
1da177e4 1099
7ca7e564
ND
1100 /* Remove the semaphore set from the IDR */
1101 sem_rmid(ns, sma);
6062a8dc 1102 sem_unlock(sma, -1);
6d49dab8 1103 rcu_read_unlock();
1da177e4 1104
0a2b9d4c 1105 wake_up_sem_queue_do(&tasks);
e3893534 1106 ns->used_sems -= sma->sem_nsems;
53dad6d3 1107 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1108}
1109
1110static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1111{
239521f3 1112 switch (version) {
1da177e4
LT
1113 case IPC_64:
1114 return copy_to_user(buf, in, sizeof(*in));
1115 case IPC_OLD:
1116 {
1117 struct semid_ds out;
1118
982f7c2b
DR
1119 memset(&out, 0, sizeof(out));
1120
1da177e4
LT
1121 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1122
1123 out.sem_otime = in->sem_otime;
1124 out.sem_ctime = in->sem_ctime;
1125 out.sem_nsems = in->sem_nsems;
1126
1127 return copy_to_user(buf, &out, sizeof(out));
1128 }
1129 default:
1130 return -EINVAL;
1131 }
1132}
1133
d12e1e50
MS
1134static time_t get_semotime(struct sem_array *sma)
1135{
1136 int i;
1137 time_t res;
1138
1139 res = sma->sem_base[0].sem_otime;
1140 for (i = 1; i < sma->sem_nsems; i++) {
1141 time_t to = sma->sem_base[i].sem_otime;
1142
1143 if (to > res)
1144 res = to;
1145 }
1146 return res;
1147}
1148
4b9fcb0e 1149static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1150 int cmd, int version, void __user *p)
1da177e4 1151{
e5cc9c7b 1152 int err;
1da177e4
LT
1153 struct sem_array *sma;
1154
239521f3 1155 switch (cmd) {
1da177e4
LT
1156 case IPC_INFO:
1157 case SEM_INFO:
1158 {
1159 struct seminfo seminfo;
1160 int max_id;
1161
1162 err = security_sem_semctl(NULL, cmd);
1163 if (err)
1164 return err;
46c0a8ca 1165
239521f3 1166 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1167 seminfo.semmni = ns->sc_semmni;
1168 seminfo.semmns = ns->sc_semmns;
1169 seminfo.semmsl = ns->sc_semmsl;
1170 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1171 seminfo.semvmx = SEMVMX;
1172 seminfo.semmnu = SEMMNU;
1173 seminfo.semmap = SEMMAP;
1174 seminfo.semume = SEMUME;
d9a605e4 1175 down_read(&sem_ids(ns).rwsem);
1da177e4 1176 if (cmd == SEM_INFO) {
e3893534
KK
1177 seminfo.semusz = sem_ids(ns).in_use;
1178 seminfo.semaem = ns->used_sems;
1da177e4
LT
1179 } else {
1180 seminfo.semusz = SEMUSZ;
1181 seminfo.semaem = SEMAEM;
1182 }
7ca7e564 1183 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1184 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1185 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1186 return -EFAULT;
239521f3 1187 return (max_id < 0) ? 0 : max_id;
1da177e4 1188 }
4b9fcb0e 1189 case IPC_STAT:
1da177e4
LT
1190 case SEM_STAT:
1191 {
1192 struct semid64_ds tbuf;
16df3674
DB
1193 int id = 0;
1194
1195 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1196
941b0304 1197 rcu_read_lock();
4b9fcb0e 1198 if (cmd == SEM_STAT) {
16df3674
DB
1199 sma = sem_obtain_object(ns, semid);
1200 if (IS_ERR(sma)) {
1201 err = PTR_ERR(sma);
1202 goto out_unlock;
1203 }
4b9fcb0e
PP
1204 id = sma->sem_perm.id;
1205 } else {
16df3674
DB
1206 sma = sem_obtain_object_check(ns, semid);
1207 if (IS_ERR(sma)) {
1208 err = PTR_ERR(sma);
1209 goto out_unlock;
1210 }
4b9fcb0e 1211 }
1da177e4
LT
1212
1213 err = -EACCES;
b0e77598 1214 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1215 goto out_unlock;
1216
1217 err = security_sem_semctl(sma, cmd);
1218 if (err)
1219 goto out_unlock;
1220
1da177e4 1221 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1222 tbuf.sem_otime = get_semotime(sma);
1223 tbuf.sem_ctime = sma->sem_ctime;
1224 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1225 rcu_read_unlock();
e1fd1f49 1226 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1227 return -EFAULT;
1228 return id;
1229 }
1230 default:
1231 return -EINVAL;
1232 }
1da177e4 1233out_unlock:
16df3674 1234 rcu_read_unlock();
1da177e4
LT
1235 return err;
1236}
1237
e1fd1f49
AV
1238static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1239 unsigned long arg)
1240{
1241 struct sem_undo *un;
1242 struct sem_array *sma;
239521f3 1243 struct sem *curr;
e1fd1f49 1244 int err;
e1fd1f49
AV
1245 struct list_head tasks;
1246 int val;
1247#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1248 /* big-endian 64bit */
1249 val = arg >> 32;
1250#else
1251 /* 32bit or little-endian 64bit */
1252 val = arg;
1253#endif
1254
6062a8dc
RR
1255 if (val > SEMVMX || val < 0)
1256 return -ERANGE;
e1fd1f49
AV
1257
1258 INIT_LIST_HEAD(&tasks);
e1fd1f49 1259
6062a8dc
RR
1260 rcu_read_lock();
1261 sma = sem_obtain_object_check(ns, semid);
1262 if (IS_ERR(sma)) {
1263 rcu_read_unlock();
1264 return PTR_ERR(sma);
1265 }
1266
1267 if (semnum < 0 || semnum >= sma->sem_nsems) {
1268 rcu_read_unlock();
1269 return -EINVAL;
1270 }
1271
1272
1273 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1274 rcu_read_unlock();
1275 return -EACCES;
1276 }
e1fd1f49
AV
1277
1278 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1279 if (err) {
1280 rcu_read_unlock();
1281 return -EACCES;
1282 }
e1fd1f49 1283
6062a8dc 1284 sem_lock(sma, NULL, -1);
e1fd1f49 1285
0f3d2b01 1286 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1287 sem_unlock(sma, -1);
1288 rcu_read_unlock();
1289 return -EIDRM;
1290 }
1291
e1fd1f49
AV
1292 curr = &sma->sem_base[semnum];
1293
cf9d5d78 1294 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1295 list_for_each_entry(un, &sma->list_id, list_id)
1296 un->semadj[semnum] = 0;
1297
1298 curr->semval = val;
1299 curr->sempid = task_tgid_vnr(current);
1300 sma->sem_ctime = get_seconds();
1301 /* maybe some queued-up processes were waiting for this */
1302 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1303 sem_unlock(sma, -1);
6d49dab8 1304 rcu_read_unlock();
e1fd1f49 1305 wake_up_sem_queue_do(&tasks);
6062a8dc 1306 return 0;
e1fd1f49
AV
1307}
1308
e3893534 1309static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1310 int cmd, void __user *p)
1da177e4
LT
1311{
1312 struct sem_array *sma;
239521f3 1313 struct sem *curr;
16df3674 1314 int err, nsems;
1da177e4 1315 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1316 ushort *sem_io = fast_sem_io;
0a2b9d4c 1317 struct list_head tasks;
1da177e4 1318
16df3674
DB
1319 INIT_LIST_HEAD(&tasks);
1320
1321 rcu_read_lock();
1322 sma = sem_obtain_object_check(ns, semid);
1323 if (IS_ERR(sma)) {
1324 rcu_read_unlock();
023a5355 1325 return PTR_ERR(sma);
16df3674 1326 }
1da177e4
LT
1327
1328 nsems = sma->sem_nsems;
1329
1da177e4 1330 err = -EACCES;
c728b9c8
LT
1331 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1332 goto out_rcu_wakeup;
1da177e4
LT
1333
1334 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1335 if (err)
1336 goto out_rcu_wakeup;
1da177e4
LT
1337
1338 err = -EACCES;
1339 switch (cmd) {
1340 case GETALL:
1341 {
e1fd1f49 1342 ushort __user *array = p;
1da177e4
LT
1343 int i;
1344
ce857229 1345 sem_lock(sma, NULL, -1);
0f3d2b01 1346 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1347 err = -EIDRM;
1348 goto out_unlock;
1349 }
239521f3 1350 if (nsems > SEMMSL_FAST) {
ce857229 1351 if (!ipc_rcu_getref(sma)) {
ce857229 1352 err = -EIDRM;
6e224f94 1353 goto out_unlock;
ce857229
AV
1354 }
1355 sem_unlock(sma, -1);
6d49dab8 1356 rcu_read_unlock();
1da177e4 1357 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1358 if (sem_io == NULL) {
53dad6d3 1359 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1360 return -ENOMEM;
1361 }
1362
4091fd94 1363 rcu_read_lock();
6ff37972 1364 sem_lock_and_putref(sma);
0f3d2b01 1365 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1366 err = -EIDRM;
6e224f94 1367 goto out_unlock;
1da177e4 1368 }
ce857229 1369 }
1da177e4
LT
1370 for (i = 0; i < sma->sem_nsems; i++)
1371 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1372 sem_unlock(sma, -1);
6d49dab8 1373 rcu_read_unlock();
1da177e4 1374 err = 0;
239521f3 1375 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1376 err = -EFAULT;
1377 goto out_free;
1378 }
1379 case SETALL:
1380 {
1381 int i;
1382 struct sem_undo *un;
1383
6062a8dc 1384 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1385 err = -EIDRM;
1386 goto out_rcu_wakeup;
6062a8dc 1387 }
16df3674 1388 rcu_read_unlock();
1da177e4 1389
239521f3 1390 if (nsems > SEMMSL_FAST) {
1da177e4 1391 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1392 if (sem_io == NULL) {
53dad6d3 1393 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1394 return -ENOMEM;
1395 }
1396 }
1397
239521f3 1398 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
53dad6d3 1399 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1400 err = -EFAULT;
1401 goto out_free;
1402 }
1403
1404 for (i = 0; i < nsems; i++) {
1405 if (sem_io[i] > SEMVMX) {
53dad6d3 1406 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1407 err = -ERANGE;
1408 goto out_free;
1409 }
1410 }
4091fd94 1411 rcu_read_lock();
6ff37972 1412 sem_lock_and_putref(sma);
0f3d2b01 1413 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1414 err = -EIDRM;
6e224f94 1415 goto out_unlock;
1da177e4
LT
1416 }
1417
1418 for (i = 0; i < nsems; i++)
1419 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1420
cf9d5d78 1421 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1422 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1423 for (i = 0; i < nsems; i++)
1424 un->semadj[i] = 0;
4daa28f6 1425 }
1da177e4
LT
1426 sma->sem_ctime = get_seconds();
1427 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1428 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1429 err = 0;
1430 goto out_unlock;
1431 }
e1fd1f49 1432 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1433 }
1434 err = -EINVAL;
c728b9c8
LT
1435 if (semnum < 0 || semnum >= nsems)
1436 goto out_rcu_wakeup;
1da177e4 1437
6062a8dc 1438 sem_lock(sma, NULL, -1);
0f3d2b01 1439 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1440 err = -EIDRM;
1441 goto out_unlock;
1442 }
1da177e4
LT
1443 curr = &sma->sem_base[semnum];
1444
1445 switch (cmd) {
1446 case GETVAL:
1447 err = curr->semval;
1448 goto out_unlock;
1449 case GETPID:
1450 err = curr->sempid;
1451 goto out_unlock;
1452 case GETNCNT:
2f2ed41d 1453 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1454 goto out_unlock;
1455 case GETZCNT:
2f2ed41d 1456 err = count_semcnt(sma, semnum, 1);
1da177e4 1457 goto out_unlock;
1da177e4 1458 }
16df3674 1459
1da177e4 1460out_unlock:
6062a8dc 1461 sem_unlock(sma, -1);
c728b9c8 1462out_rcu_wakeup:
6d49dab8 1463 rcu_read_unlock();
0a2b9d4c 1464 wake_up_sem_queue_do(&tasks);
1da177e4 1465out_free:
239521f3 1466 if (sem_io != fast_sem_io)
1da177e4
LT
1467 ipc_free(sem_io, sizeof(ushort)*nsems);
1468 return err;
1469}
1470
016d7132
PP
1471static inline unsigned long
1472copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1473{
239521f3 1474 switch (version) {
1da177e4 1475 case IPC_64:
016d7132 1476 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1477 return -EFAULT;
1da177e4 1478 return 0;
1da177e4
LT
1479 case IPC_OLD:
1480 {
1481 struct semid_ds tbuf_old;
1482
239521f3 1483 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1484 return -EFAULT;
1485
016d7132
PP
1486 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1487 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1488 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1489
1490 return 0;
1491 }
1492 default:
1493 return -EINVAL;
1494 }
1495}
1496
522bb2a2 1497/*
d9a605e4 1498 * This function handles some semctl commands which require the rwsem
522bb2a2 1499 * to be held in write mode.
d9a605e4 1500 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1501 */
21a4826a 1502static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1503 int cmd, int version, void __user *p)
1da177e4
LT
1504{
1505 struct sem_array *sma;
1506 int err;
016d7132 1507 struct semid64_ds semid64;
1da177e4
LT
1508 struct kern_ipc_perm *ipcp;
1509
239521f3 1510 if (cmd == IPC_SET) {
e1fd1f49 1511 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1512 return -EFAULT;
1da177e4 1513 }
073115d6 1514
d9a605e4 1515 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1516 rcu_read_lock();
1517
16df3674
DB
1518 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1519 &semid64.sem_perm, 0);
7b4cc5d8
DB
1520 if (IS_ERR(ipcp)) {
1521 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1522 goto out_unlock1;
1523 }
073115d6 1524
a5f75e7f 1525 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1526
1527 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1528 if (err)
1529 goto out_unlock1;
1da177e4 1530
7b4cc5d8 1531 switch (cmd) {
1da177e4 1532 case IPC_RMID:
6062a8dc 1533 sem_lock(sma, NULL, -1);
7b4cc5d8 1534 /* freeary unlocks the ipc object and rcu */
01b8b07a 1535 freeary(ns, ipcp);
522bb2a2 1536 goto out_up;
1da177e4 1537 case IPC_SET:
6062a8dc 1538 sem_lock(sma, NULL, -1);
1efdb69b
EB
1539 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1540 if (err)
7b4cc5d8 1541 goto out_unlock0;
1da177e4 1542 sma->sem_ctime = get_seconds();
1da177e4
LT
1543 break;
1544 default:
1da177e4 1545 err = -EINVAL;
7b4cc5d8 1546 goto out_unlock1;
1da177e4 1547 }
1da177e4 1548
7b4cc5d8 1549out_unlock0:
6062a8dc 1550 sem_unlock(sma, -1);
7b4cc5d8 1551out_unlock1:
6d49dab8 1552 rcu_read_unlock();
522bb2a2 1553out_up:
d9a605e4 1554 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1555 return err;
1556}
1557
e1fd1f49 1558SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1559{
1da177e4 1560 int version;
e3893534 1561 struct ipc_namespace *ns;
e1fd1f49 1562 void __user *p = (void __user *)arg;
1da177e4
LT
1563
1564 if (semid < 0)
1565 return -EINVAL;
1566
1567 version = ipc_parse_version(&cmd);
e3893534 1568 ns = current->nsproxy->ipc_ns;
1da177e4 1569
239521f3 1570 switch (cmd) {
1da177e4
LT
1571 case IPC_INFO:
1572 case SEM_INFO:
4b9fcb0e 1573 case IPC_STAT:
1da177e4 1574 case SEM_STAT:
e1fd1f49 1575 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1576 case GETALL:
1577 case GETVAL:
1578 case GETPID:
1579 case GETNCNT:
1580 case GETZCNT:
1da177e4 1581 case SETALL:
e1fd1f49
AV
1582 return semctl_main(ns, semid, semnum, cmd, p);
1583 case SETVAL:
1584 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1585 case IPC_RMID:
1586 case IPC_SET:
e1fd1f49 1587 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1588 default:
1589 return -EINVAL;
1590 }
1591}
1592
1da177e4
LT
1593/* If the task doesn't already have a undo_list, then allocate one
1594 * here. We guarantee there is only one thread using this undo list,
1595 * and current is THE ONE
1596 *
1597 * If this allocation and assignment succeeds, but later
1598 * portions of this code fail, there is no need to free the sem_undo_list.
1599 * Just let it stay associated with the task, and it'll be freed later
1600 * at exit time.
1601 *
1602 * This can block, so callers must hold no locks.
1603 */
1604static inline int get_undo_list(struct sem_undo_list **undo_listp)
1605{
1606 struct sem_undo_list *undo_list;
1da177e4
LT
1607
1608 undo_list = current->sysvsem.undo_list;
1609 if (!undo_list) {
2453a306 1610 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1611 if (undo_list == NULL)
1612 return -ENOMEM;
00a5dfdb 1613 spin_lock_init(&undo_list->lock);
1da177e4 1614 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1615 INIT_LIST_HEAD(&undo_list->list_proc);
1616
1da177e4
LT
1617 current->sysvsem.undo_list = undo_list;
1618 }
1619 *undo_listp = undo_list;
1620 return 0;
1621}
1622
bf17bb71 1623static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1624{
bf17bb71 1625 struct sem_undo *un;
4daa28f6 1626
bf17bb71
NP
1627 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1628 if (un->semid == semid)
1629 return un;
1da177e4 1630 }
4daa28f6 1631 return NULL;
1da177e4
LT
1632}
1633
bf17bb71
NP
1634static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1635{
1636 struct sem_undo *un;
1637
239521f3 1638 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1639
1640 un = __lookup_undo(ulp, semid);
1641 if (un) {
1642 list_del_rcu(&un->list_proc);
1643 list_add_rcu(&un->list_proc, &ulp->list_proc);
1644 }
1645 return un;
1646}
1647
4daa28f6 1648/**
8001c858 1649 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1650 * @ns: namespace
1651 * @semid: semaphore array id
1652 *
1653 * The function looks up (and if not present creates) the undo structure.
1654 * The size of the undo structure depends on the size of the semaphore
1655 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1656 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1657 * performs a rcu_read_lock().
4daa28f6
MS
1658 */
1659static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1660{
1661 struct sem_array *sma;
1662 struct sem_undo_list *ulp;
1663 struct sem_undo *un, *new;
6062a8dc 1664 int nsems, error;
1da177e4
LT
1665
1666 error = get_undo_list(&ulp);
1667 if (error)
1668 return ERR_PTR(error);
1669
380af1b3 1670 rcu_read_lock();
c530c6ac 1671 spin_lock(&ulp->lock);
1da177e4 1672 un = lookup_undo(ulp, semid);
c530c6ac 1673 spin_unlock(&ulp->lock);
239521f3 1674 if (likely(un != NULL))
1da177e4
LT
1675 goto out;
1676
1677 /* no undo structure around - allocate one. */
4daa28f6 1678 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1679 sma = sem_obtain_object_check(ns, semid);
1680 if (IS_ERR(sma)) {
1681 rcu_read_unlock();
4de85cd6 1682 return ERR_CAST(sma);
16df3674 1683 }
023a5355 1684
1da177e4 1685 nsems = sma->sem_nsems;
6062a8dc
RR
1686 if (!ipc_rcu_getref(sma)) {
1687 rcu_read_unlock();
1688 un = ERR_PTR(-EIDRM);
1689 goto out;
1690 }
16df3674 1691 rcu_read_unlock();
1da177e4 1692
4daa28f6 1693 /* step 2: allocate new undo structure */
4668edc3 1694 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1695 if (!new) {
53dad6d3 1696 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1697 return ERR_PTR(-ENOMEM);
1698 }
1da177e4 1699
380af1b3 1700 /* step 3: Acquire the lock on semaphore array */
4091fd94 1701 rcu_read_lock();
6ff37972 1702 sem_lock_and_putref(sma);
0f3d2b01 1703 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1704 sem_unlock(sma, -1);
6d49dab8 1705 rcu_read_unlock();
1da177e4
LT
1706 kfree(new);
1707 un = ERR_PTR(-EIDRM);
1708 goto out;
1709 }
380af1b3
MS
1710 spin_lock(&ulp->lock);
1711
1712 /*
1713 * step 4: check for races: did someone else allocate the undo struct?
1714 */
1715 un = lookup_undo(ulp, semid);
1716 if (un) {
1717 kfree(new);
1718 goto success;
1719 }
4daa28f6
MS
1720 /* step 5: initialize & link new undo structure */
1721 new->semadj = (short *) &new[1];
380af1b3 1722 new->ulp = ulp;
4daa28f6
MS
1723 new->semid = semid;
1724 assert_spin_locked(&ulp->lock);
380af1b3 1725 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1726 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1727 list_add(&new->list_id, &sma->list_id);
380af1b3 1728 un = new;
4daa28f6 1729
380af1b3 1730success:
c530c6ac 1731 spin_unlock(&ulp->lock);
6062a8dc 1732 sem_unlock(sma, -1);
1da177e4
LT
1733out:
1734 return un;
1735}
1736
c61284e9
MS
1737
1738/**
8001c858 1739 * get_queue_result - retrieve the result code from sem_queue
c61284e9
MS
1740 * @q: Pointer to queue structure
1741 *
1742 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1743 * q->status, then we must loop until the value is replaced with the final
1744 * value: This may happen if a task is woken up by an unrelated event (e.g.
1745 * signal) and in parallel the task is woken up by another task because it got
1746 * the requested semaphores.
1747 *
1748 * The function can be called with or without holding the semaphore spinlock.
1749 */
1750static int get_queue_result(struct sem_queue *q)
1751{
1752 int error;
1753
1754 error = q->status;
1755 while (unlikely(error == IN_WAKEUP)) {
1756 cpu_relax();
1757 error = q->status;
1758 }
1759
1760 return error;
1761}
1762
d5460c99
HC
1763SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1764 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1765{
1766 int error = -EINVAL;
1767 struct sem_array *sma;
1768 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1769 struct sembuf *sops = fast_sops, *sop;
1da177e4 1770 struct sem_undo *un;
6062a8dc 1771 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1772 struct sem_queue queue;
1773 unsigned long jiffies_left = 0;
e3893534 1774 struct ipc_namespace *ns;
0a2b9d4c 1775 struct list_head tasks;
e3893534
KK
1776
1777 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1778
1779 if (nsops < 1 || semid < 0)
1780 return -EINVAL;
e3893534 1781 if (nsops > ns->sc_semopm)
1da177e4 1782 return -E2BIG;
239521f3
MS
1783 if (nsops > SEMOPM_FAST) {
1784 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1785 if (sops == NULL)
1da177e4
LT
1786 return -ENOMEM;
1787 }
239521f3
MS
1788 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1789 error = -EFAULT;
1da177e4
LT
1790 goto out_free;
1791 }
1792 if (timeout) {
1793 struct timespec _timeout;
1794 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1795 error = -EFAULT;
1796 goto out_free;
1797 }
1798 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1799 _timeout.tv_nsec >= 1000000000L) {
1800 error = -EINVAL;
1801 goto out_free;
1802 }
1803 jiffies_left = timespec_to_jiffies(&_timeout);
1804 }
1805 max = 0;
1806 for (sop = sops; sop < sops + nsops; sop++) {
1807 if (sop->sem_num >= max)
1808 max = sop->sem_num;
1809 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1810 undos = 1;
1811 if (sop->sem_op != 0)
1da177e4
LT
1812 alter = 1;
1813 }
1da177e4 1814
6062a8dc
RR
1815 INIT_LIST_HEAD(&tasks);
1816
1da177e4 1817 if (undos) {
6062a8dc 1818 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1819 un = find_alloc_undo(ns, semid);
1da177e4
LT
1820 if (IS_ERR(un)) {
1821 error = PTR_ERR(un);
1822 goto out_free;
1823 }
6062a8dc 1824 } else {
1da177e4 1825 un = NULL;
6062a8dc
RR
1826 rcu_read_lock();
1827 }
1da177e4 1828
16df3674 1829 sma = sem_obtain_object_check(ns, semid);
023a5355 1830 if (IS_ERR(sma)) {
6062a8dc 1831 rcu_read_unlock();
023a5355 1832 error = PTR_ERR(sma);
1da177e4 1833 goto out_free;
023a5355
ND
1834 }
1835
16df3674 1836 error = -EFBIG;
c728b9c8
LT
1837 if (max >= sma->sem_nsems)
1838 goto out_rcu_wakeup;
16df3674
DB
1839
1840 error = -EACCES;
c728b9c8
LT
1841 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1842 goto out_rcu_wakeup;
16df3674
DB
1843
1844 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1845 if (error)
1846 goto out_rcu_wakeup;
16df3674 1847
6e224f94
MS
1848 error = -EIDRM;
1849 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1850 /*
1851 * We eventually might perform the following check in a lockless
1852 * fashion, considering ipc_valid_object() locking constraints.
1853 * If nsops == 1 and there is no contention for sem_perm.lock, then
1854 * only a per-semaphore lock is held and it's OK to proceed with the
1855 * check below. More details on the fine grained locking scheme
1856 * entangled here and why it's RMID race safe on comments at sem_lock()
1857 */
1858 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1859 goto out_unlock_free;
1da177e4 1860 /*
4daa28f6 1861 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1862 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1863 * and now a new array with received the same id. Check and fail.
25985edc 1864 * This case can be detected checking un->semid. The existence of
380af1b3 1865 * "un" itself is guaranteed by rcu.
1da177e4 1866 */
6062a8dc
RR
1867 if (un && un->semid == -1)
1868 goto out_unlock_free;
4daa28f6 1869
d198cd6d
MS
1870 queue.sops = sops;
1871 queue.nsops = nsops;
1872 queue.undo = un;
1873 queue.pid = task_tgid_vnr(current);
1874 queue.alter = alter;
1875
1876 error = perform_atomic_semop(sma, &queue);
0e8c6656
MS
1877 if (error == 0) {
1878 /* If the operation was successful, then do
1879 * the required updates.
1880 */
1881 if (alter)
0a2b9d4c 1882 do_smart_update(sma, sops, nsops, 1, &tasks);
0e8c6656
MS
1883 else
1884 set_semotime(sma, sops);
1da177e4 1885 }
0e8c6656
MS
1886 if (error <= 0)
1887 goto out_unlock_free;
1da177e4
LT
1888
1889 /* We need to sleep on this operation, so we put the current
1890 * task into the pending queue and go to sleep.
1891 */
46c0a8ca 1892
b97e820f
MS
1893 if (nsops == 1) {
1894 struct sem *curr;
1895 curr = &sma->sem_base[sops->sem_num];
1896
f269f40a
MS
1897 if (alter) {
1898 if (sma->complex_count) {
1899 list_add_tail(&queue.list,
1900 &sma->pending_alter);
1901 } else {
1902
1903 list_add_tail(&queue.list,
1904 &curr->pending_alter);
1905 }
1906 } else {
1a82e9e1 1907 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1908 }
b97e820f 1909 } else {
f269f40a
MS
1910 if (!sma->complex_count)
1911 merge_queues(sma);
1912
9f1bc2c9 1913 if (alter)
1a82e9e1 1914 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1915 else
1a82e9e1
MS
1916 list_add_tail(&queue.list, &sma->pending_const);
1917
b97e820f
MS
1918 sma->complex_count++;
1919 }
1920
1da177e4
LT
1921 queue.status = -EINTR;
1922 queue.sleeper = current;
0b0577f6
MS
1923
1924sleep_again:
1da177e4 1925 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1926 sem_unlock(sma, locknum);
6d49dab8 1927 rcu_read_unlock();
1da177e4
LT
1928
1929 if (timeout)
1930 jiffies_left = schedule_timeout(jiffies_left);
1931 else
1932 schedule();
1933
c61284e9 1934 error = get_queue_result(&queue);
1da177e4
LT
1935
1936 if (error != -EINTR) {
1937 /* fast path: update_queue already obtained all requested
c61284e9
MS
1938 * resources.
1939 * Perform a smp_mb(): User space could assume that semop()
1940 * is a memory barrier: Without the mb(), the cpu could
1941 * speculatively read in user space stale data that was
1942 * overwritten by the previous owner of the semaphore.
1943 */
1944 smp_mb();
1945
1da177e4
LT
1946 goto out_free;
1947 }
1948
321310ce 1949 rcu_read_lock();
6062a8dc 1950 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1951
1952 /*
1953 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1954 */
1955 error = get_queue_result(&queue);
1956
1957 /*
1958 * Array removed? If yes, leave without sem_unlock().
1959 */
023a5355 1960 if (IS_ERR(sma)) {
321310ce 1961 rcu_read_unlock();
1da177e4
LT
1962 goto out_free;
1963 }
1964
c61284e9 1965
1da177e4 1966 /*
d694ad62
MS
1967 * If queue.status != -EINTR we are woken up by another process.
1968 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1969 */
3ab08fe2 1970 if (error != -EINTR)
1da177e4 1971 goto out_unlock_free;
1da177e4
LT
1972
1973 /*
1974 * If an interrupt occurred we have to clean up the queue
1975 */
1976 if (timeout && jiffies_left == 0)
1977 error = -EAGAIN;
0b0577f6
MS
1978
1979 /*
1980 * If the wakeup was spurious, just retry
1981 */
1982 if (error == -EINTR && !signal_pending(current))
1983 goto sleep_again;
1984
b97e820f 1985 unlink_queue(sma, &queue);
1da177e4
LT
1986
1987out_unlock_free:
6062a8dc 1988 sem_unlock(sma, locknum);
c728b9c8 1989out_rcu_wakeup:
6d49dab8 1990 rcu_read_unlock();
0a2b9d4c 1991 wake_up_sem_queue_do(&tasks);
1da177e4 1992out_free:
239521f3 1993 if (sops != fast_sops)
1da177e4
LT
1994 kfree(sops);
1995 return error;
1996}
1997
d5460c99
HC
1998SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1999 unsigned, nsops)
1da177e4
LT
2000{
2001 return sys_semtimedop(semid, tsops, nsops, NULL);
2002}
2003
2004/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2005 * parent and child tasks.
1da177e4
LT
2006 */
2007
2008int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2009{
2010 struct sem_undo_list *undo_list;
2011 int error;
2012
2013 if (clone_flags & CLONE_SYSVSEM) {
2014 error = get_undo_list(&undo_list);
2015 if (error)
2016 return error;
1da177e4
LT
2017 atomic_inc(&undo_list->refcnt);
2018 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2019 } else
1da177e4
LT
2020 tsk->sysvsem.undo_list = NULL;
2021
2022 return 0;
2023}
2024
2025/*
2026 * add semadj values to semaphores, free undo structures.
2027 * undo structures are not freed when semaphore arrays are destroyed
2028 * so some of them may be out of date.
2029 * IMPLEMENTATION NOTE: There is some confusion over whether the
2030 * set of adjustments that needs to be done should be done in an atomic
2031 * manner or not. That is, if we are attempting to decrement the semval
2032 * should we queue up and wait until we can do so legally?
2033 * The original implementation attempted to do this (queue and wait).
2034 * The current implementation does not do so. The POSIX standard
2035 * and SVID should be consulted to determine what behavior is mandated.
2036 */
2037void exit_sem(struct task_struct *tsk)
2038{
4daa28f6 2039 struct sem_undo_list *ulp;
1da177e4 2040
4daa28f6
MS
2041 ulp = tsk->sysvsem.undo_list;
2042 if (!ulp)
1da177e4 2043 return;
9edff4ab 2044 tsk->sysvsem.undo_list = NULL;
1da177e4 2045
4daa28f6 2046 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2047 return;
2048
380af1b3 2049 for (;;) {
1da177e4 2050 struct sem_array *sma;
380af1b3 2051 struct sem_undo *un;
0a2b9d4c 2052 struct list_head tasks;
6062a8dc 2053 int semid, i;
4daa28f6 2054
380af1b3 2055 rcu_read_lock();
05725f7e
JP
2056 un = list_entry_rcu(ulp->list_proc.next,
2057 struct sem_undo, list_proc);
380af1b3
MS
2058 if (&un->list_proc == &ulp->list_proc)
2059 semid = -1;
2060 else
2061 semid = un->semid;
4daa28f6 2062
6062a8dc
RR
2063 if (semid == -1) {
2064 rcu_read_unlock();
380af1b3 2065 break;
6062a8dc 2066 }
1da177e4 2067
6062a8dc 2068 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 2069 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2070 if (IS_ERR(sma)) {
2071 rcu_read_unlock();
380af1b3 2072 continue;
6062a8dc 2073 }
1da177e4 2074
6062a8dc 2075 sem_lock(sma, NULL, -1);
6e224f94 2076 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2077 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2078 sem_unlock(sma, -1);
2079 rcu_read_unlock();
2080 continue;
2081 }
bf17bb71 2082 un = __lookup_undo(ulp, semid);
380af1b3
MS
2083 if (un == NULL) {
2084 /* exit_sem raced with IPC_RMID+semget() that created
2085 * exactly the same semid. Nothing to do.
2086 */
6062a8dc 2087 sem_unlock(sma, -1);
6d49dab8 2088 rcu_read_unlock();
380af1b3
MS
2089 continue;
2090 }
2091
2092 /* remove un from the linked lists */
cf9d5d78 2093 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2094 list_del(&un->list_id);
2095
380af1b3
MS
2096 spin_lock(&ulp->lock);
2097 list_del_rcu(&un->list_proc);
2098 spin_unlock(&ulp->lock);
2099
4daa28f6
MS
2100 /* perform adjustments registered in un */
2101 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2102 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2103 if (un->semadj[i]) {
2104 semaphore->semval += un->semadj[i];
1da177e4
LT
2105 /*
2106 * Range checks of the new semaphore value,
2107 * not defined by sus:
2108 * - Some unices ignore the undo entirely
2109 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2110 * - some cap the value (e.g. FreeBSD caps
2111 * at 0, but doesn't enforce SEMVMX)
2112 *
2113 * Linux caps the semaphore value, both at 0
2114 * and at SEMVMX.
2115 *
239521f3 2116 * Manfred <manfred@colorfullife.com>
1da177e4 2117 */
5f921ae9
IM
2118 if (semaphore->semval < 0)
2119 semaphore->semval = 0;
2120 if (semaphore->semval > SEMVMX)
2121 semaphore->semval = SEMVMX;
b488893a 2122 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2123 }
2124 }
1da177e4 2125 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2126 INIT_LIST_HEAD(&tasks);
2127 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2128 sem_unlock(sma, -1);
6d49dab8 2129 rcu_read_unlock();
0a2b9d4c 2130 wake_up_sem_queue_do(&tasks);
380af1b3 2131
693a8b6e 2132 kfree_rcu(un, rcu);
1da177e4 2133 }
4daa28f6 2134 kfree(ulp);
1da177e4
LT
2135}
2136
2137#ifdef CONFIG_PROC_FS
19b4946c 2138static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2139{
1efdb69b 2140 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2141 struct sem_array *sma = it;
d12e1e50
MS
2142 time_t sem_otime;
2143
d8c63376
MS
2144 /*
2145 * The proc interface isn't aware of sem_lock(), it calls
2146 * ipc_lock_object() directly (in sysvipc_find_ipc).
2147 * In order to stay compatible with sem_lock(), we must wait until
2148 * all simple semop() calls have left their critical regions.
2149 */
2150 sem_wait_array(sma);
2151
d12e1e50 2152 sem_otime = get_semotime(sma);
19b4946c
MW
2153
2154 return seq_printf(s,
b97e820f 2155 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2156 sma->sem_perm.key,
7ca7e564 2157 sma->sem_perm.id,
19b4946c
MW
2158 sma->sem_perm.mode,
2159 sma->sem_nsems,
1efdb69b
EB
2160 from_kuid_munged(user_ns, sma->sem_perm.uid),
2161 from_kgid_munged(user_ns, sma->sem_perm.gid),
2162 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2163 from_kgid_munged(user_ns, sma->sem_perm.cgid),
d12e1e50 2164 sem_otime,
19b4946c 2165 sma->sem_ctime);
1da177e4
LT
2166}
2167#endif