]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - ipc/sem.c
Linux 4.14-rc6
[mirror_ubuntu-bionic-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 57 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
70 */
71
1da177e4
LT
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
1da177e4
LT
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
c59ede7b 80#include <linux/capability.h>
19b4946c 81#include <linux/seq_file.h>
3e148c79 82#include <linux/rwsem.h>
e3893534 83#include <linux/nsproxy.h>
ae5e1b22 84#include <linux/ipc_namespace.h>
84f001e1 85#include <linux/sched/wake_q.h>
5f921ae9 86
7153e402 87#include <linux/uaccess.h>
1da177e4
LT
88#include "util.h"
89
e57940d7
MS
90
91/* One queue for each sleeping process in the system. */
92struct sem_queue {
e57940d7
MS
93 struct list_head list; /* queue of pending operations */
94 struct task_struct *sleeper; /* this process */
95 struct sem_undo *undo; /* undo structure */
96 int pid; /* process id of requesting process */
97 int status; /* completion status of operation */
98 struct sembuf *sops; /* array of pending operations */
ed247b7c 99 struct sembuf *blocking; /* the operation that blocked */
e57940d7 100 int nsops; /* number of operations */
4ce33ec2
DB
101 bool alter; /* does *sops alter the array? */
102 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
103};
104
105/* Each task has a list of undo requests. They are executed automatically
106 * when the process exits.
107 */
108struct sem_undo {
109 struct list_head list_proc; /* per-process list: *
110 * all undos from one process
111 * rcu protected */
112 struct rcu_head rcu; /* rcu struct for sem_undo */
113 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
114 struct list_head list_id; /* per semaphore array list:
115 * all undos for one array */
116 int semid; /* semaphore set identifier */
117 short *semadj; /* array of adjustments */
118 /* one per semaphore */
119};
120
121/* sem_undo_list controls shared access to the list of sem_undo structures
122 * that may be shared among all a CLONE_SYSVSEM task group.
123 */
124struct sem_undo_list {
f74370b8 125 refcount_t refcnt;
e57940d7
MS
126 spinlock_t lock;
127 struct list_head list_proc;
128};
129
130
ed2ddbf8 131#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 132
7748dbfa 133static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 134static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 135#ifdef CONFIG_PROC_FS
19b4946c 136static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
137#endif
138
139#define SEMMSL_FAST 256 /* 512 bytes on stack */
140#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
141
9de5ab8a
MS
142/*
143 * Switching from the mode suitable for simple ops
144 * to the mode for complex ops is costly. Therefore:
145 * use some hysteresis
146 */
147#define USE_GLOBAL_LOCK_HYSTERESIS 10
148
1da177e4 149/*
758a6ba3 150 * Locking:
5864a2fd 151 * a) global sem_lock() for read/write
1da177e4 152 * sem_undo.id_next,
758a6ba3 153 * sem_array.complex_count,
5864a2fd
MS
154 * sem_array.pending{_alter,_const},
155 * sem_array.sem_undo
46c0a8ca 156 *
5864a2fd 157 * b) global or semaphore sem_lock() for read/write:
1a233956 158 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
159 *
160 * c) special:
161 * sem_undo_list.list_proc:
162 * * undo_list->lock for write
163 * * rcu for read
9de5ab8a
MS
164 * use_global_lock:
165 * * global sem_lock() for write
166 * * either local or global sem_lock() for read.
167 *
168 * Memory ordering:
169 * Most ordering is enforced by using spin_lock() and spin_unlock().
170 * The special case is use_global_lock:
171 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
172 * using smp_store_release().
173 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
174 * smp_load_acquire().
175 * Setting it from 0 to non-zero must be ordered with regards to
176 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
177 * is inside a spin_lock() and after a write from 0 to non-zero a
178 * spin_lock()+spin_unlock() is done.
1da177e4
LT
179 */
180
e3893534
KK
181#define sc_semmsl sem_ctls[0]
182#define sc_semmns sem_ctls[1]
183#define sc_semopm sem_ctls[2]
184#define sc_semmni sem_ctls[3]
185
0cfb6aee 186int sem_init_ns(struct ipc_namespace *ns)
e3893534 187{
e3893534
KK
188 ns->sc_semmsl = SEMMSL;
189 ns->sc_semmns = SEMMNS;
190 ns->sc_semopm = SEMOPM;
191 ns->sc_semmni = SEMMNI;
192 ns->used_sems = 0;
0cfb6aee 193 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
194}
195
ae5e1b22 196#ifdef CONFIG_IPC_NS
e3893534
KK
197void sem_exit_ns(struct ipc_namespace *ns)
198{
01b8b07a 199 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 200 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 201 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 202}
ae5e1b22 203#endif
1da177e4 204
0cfb6aee 205int __init sem_init(void)
1da177e4 206{
0cfb6aee
GK
207 const int err = sem_init_ns(&init_ipc_ns);
208
19b4946c
MW
209 ipc_init_proc_interface("sysvipc/sem",
210 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 211 IPC_SEM_IDS, sysvipc_sem_proc_show);
0cfb6aee 212 return err;
1da177e4
LT
213}
214
f269f40a
MS
215/**
216 * unmerge_queues - unmerge queues, if possible.
217 * @sma: semaphore array
218 *
219 * The function unmerges the wait queues if complex_count is 0.
220 * It must be called prior to dropping the global semaphore array lock.
221 */
222static void unmerge_queues(struct sem_array *sma)
223{
224 struct sem_queue *q, *tq;
225
226 /* complex operations still around? */
227 if (sma->complex_count)
228 return;
229 /*
230 * We will switch back to simple mode.
231 * Move all pending operation back into the per-semaphore
232 * queues.
233 */
234 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
235 struct sem *curr;
1a233956 236 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
237
238 list_add_tail(&q->list, &curr->pending_alter);
239 }
240 INIT_LIST_HEAD(&sma->pending_alter);
241}
242
243/**
8001c858 244 * merge_queues - merge single semop queues into global queue
f269f40a
MS
245 * @sma: semaphore array
246 *
247 * This function merges all per-semaphore queues into the global queue.
248 * It is necessary to achieve FIFO ordering for the pending single-sop
249 * operations when a multi-semop operation must sleep.
250 * Only the alter operations must be moved, the const operations can stay.
251 */
252static void merge_queues(struct sem_array *sma)
253{
254 int i;
255 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 256 struct sem *sem = &sma->sems[i];
f269f40a
MS
257
258 list_splice_init(&sem->pending_alter, &sma->pending_alter);
259 }
260}
261
53dad6d3
DB
262static void sem_rcu_free(struct rcu_head *head)
263{
dba4cdd3
MS
264 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
265 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3
DB
266
267 security_sem_free(sma);
e2029dfe 268 kvfree(sma);
53dad6d3
DB
269}
270
5e9d5275 271/*
5864a2fd 272 * Enter the mode suitable for non-simple operations:
5e9d5275 273 * Caller must own sem_perm.lock.
5e9d5275 274 */
5864a2fd 275static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
276{
277 int i;
278 struct sem *sem;
279
9de5ab8a
MS
280 if (sma->use_global_lock > 0) {
281 /*
282 * We are already in global lock mode.
283 * Nothing to do, just reset the
284 * counter until we return to simple mode.
285 */
286 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
287 return;
288 }
9de5ab8a 289 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 290
5e9d5275 291 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 292 sem = &sma->sems[i];
27d7be18
MS
293 spin_lock(&sem->lock);
294 spin_unlock(&sem->lock);
5e9d5275 295 }
5864a2fd
MS
296}
297
298/*
299 * Try to leave the mode that disallows simple operations:
300 * Caller must own sem_perm.lock.
301 */
302static void complexmode_tryleave(struct sem_array *sma)
303{
304 if (sma->complex_count) {
305 /* Complex ops are sleeping.
306 * We must stay in complex mode
307 */
308 return;
309 }
9de5ab8a
MS
310 if (sma->use_global_lock == 1) {
311 /*
312 * Immediately after setting use_global_lock to 0,
313 * a simple op can start. Thus: all memory writes
314 * performed by the current operation must be visible
315 * before we set use_global_lock to 0.
316 */
317 smp_store_release(&sma->use_global_lock, 0);
318 } else {
319 sma->use_global_lock--;
320 }
5e9d5275
MS
321}
322
5864a2fd 323#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
324/*
325 * If the request contains only one semaphore operation, and there are
326 * no complex transactions pending, lock only the semaphore involved.
327 * Otherwise, lock the entire semaphore array, since we either have
328 * multiple semaphores in our own semops, or we need to look at
329 * semaphores from other pending complex operations.
6062a8dc
RR
330 */
331static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
332 int nsops)
333{
5e9d5275 334 struct sem *sem;
6062a8dc 335
5e9d5275
MS
336 if (nsops != 1) {
337 /* Complex operation - acquire a full lock */
338 ipc_lock_object(&sma->sem_perm);
6062a8dc 339
5864a2fd
MS
340 /* Prevent parallel simple ops */
341 complexmode_enter(sma);
342 return SEM_GLOBAL_LOCK;
5e9d5275
MS
343 }
344
345 /*
346 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
347 * Optimized locking is possible if no complex operation
348 * is either enqueued or processed right now.
349 *
9de5ab8a 350 * Both facts are tracked by use_global_mode.
5e9d5275 351 */
1a233956 352 sem = &sma->sems[sops->sem_num];
6062a8dc 353
5864a2fd 354 /*
9de5ab8a 355 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
356 * no locking, no memory barrier.
357 */
9de5ab8a 358 if (!sma->use_global_lock) {
6062a8dc 359 /*
5e9d5275
MS
360 * It appears that no complex operation is around.
361 * Acquire the per-semaphore lock.
6062a8dc 362 */
5e9d5275
MS
363 spin_lock(&sem->lock);
364
9de5ab8a
MS
365 /* pairs with smp_store_release() */
366 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
367 /* fast path successful! */
368 return sops->sem_num;
6062a8dc 369 }
5e9d5275
MS
370 spin_unlock(&sem->lock);
371 }
372
373 /* slow path: acquire the full lock */
374 ipc_lock_object(&sma->sem_perm);
6062a8dc 375
9de5ab8a
MS
376 if (sma->use_global_lock == 0) {
377 /*
378 * The use_global_lock mode ended while we waited for
379 * sma->sem_perm.lock. Thus we must switch to locking
380 * with sem->lock.
381 * Unlike in the fast path, there is no need to recheck
382 * sma->use_global_lock after we have acquired sem->lock:
383 * We own sma->sem_perm.lock, thus use_global_lock cannot
384 * change.
5e9d5275
MS
385 */
386 spin_lock(&sem->lock);
9de5ab8a 387
5e9d5275
MS
388 ipc_unlock_object(&sma->sem_perm);
389 return sops->sem_num;
6062a8dc 390 } else {
9de5ab8a
MS
391 /*
392 * Not a false alarm, thus continue to use the global lock
393 * mode. No need for complexmode_enter(), this was done by
394 * the caller that has set use_global_mode to non-zero.
6062a8dc 395 */
5864a2fd 396 return SEM_GLOBAL_LOCK;
6062a8dc 397 }
6062a8dc
RR
398}
399
400static inline void sem_unlock(struct sem_array *sma, int locknum)
401{
5864a2fd 402 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 403 unmerge_queues(sma);
5864a2fd 404 complexmode_tryleave(sma);
cf9d5d78 405 ipc_unlock_object(&sma->sem_perm);
6062a8dc 406 } else {
1a233956 407 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
408 spin_unlock(&sem->lock);
409 }
6062a8dc
RR
410}
411
3e148c79 412/*
d9a605e4 413 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 414 * is not held.
321310ce
LT
415 *
416 * The caller holds the RCU read lock.
3e148c79 417 */
16df3674
DB
418static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
419{
55b7ae50 420 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
421
422 if (IS_ERR(ipcp))
423 return ERR_CAST(ipcp);
424
425 return container_of(ipcp, struct sem_array, sem_perm);
426}
427
16df3674
DB
428static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
429 int id)
430{
431 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
432
433 if (IS_ERR(ipcp))
434 return ERR_CAST(ipcp);
b1ed88b4 435
03f02c76 436 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
437}
438
6ff37972
PP
439static inline void sem_lock_and_putref(struct sem_array *sma)
440{
6062a8dc 441 sem_lock(sma, NULL, -1);
dba4cdd3 442 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
443}
444
7ca7e564
ND
445static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
446{
447 ipc_rmid(&sem_ids(ns), &s->sem_perm);
448}
449
101ede01
KC
450static struct sem_array *sem_alloc(size_t nsems)
451{
452 struct sem_array *sma;
453 size_t size;
454
455 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
456 return NULL;
457
458 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
459 sma = kvmalloc(size, GFP_KERNEL);
460 if (unlikely(!sma))
461 return NULL;
462
463 memset(sma, 0, size);
101ede01
KC
464
465 return sma;
466}
467
f4566f04
ND
468/**
469 * newary - Create a new semaphore set
470 * @ns: namespace
471 * @params: ptr to the structure that contains key, semflg and nsems
472 *
d9a605e4 473 * Called with sem_ids.rwsem held (as a writer)
f4566f04 474 */
7748dbfa 475static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 476{
1da177e4
LT
477 int retval;
478 struct sem_array *sma;
7748dbfa
ND
479 key_t key = params->key;
480 int nsems = params->u.nsems;
481 int semflg = params->flg;
b97e820f 482 int i;
1da177e4
LT
483
484 if (!nsems)
485 return -EINVAL;
e3893534 486 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
487 return -ENOSPC;
488
101ede01 489 sma = sem_alloc(nsems);
3ab08fe2 490 if (!sma)
1da177e4 491 return -ENOMEM;
3ab08fe2 492
1da177e4
LT
493 sma->sem_perm.mode = (semflg & S_IRWXUGO);
494 sma->sem_perm.key = key;
495
496 sma->sem_perm.security = NULL;
497 retval = security_sem_alloc(sma);
498 if (retval) {
e2029dfe 499 kvfree(sma);
1da177e4
LT
500 return retval;
501 }
502
6062a8dc 503 for (i = 0; i < nsems; i++) {
1a233956
MS
504 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
505 INIT_LIST_HEAD(&sma->sems[i].pending_const);
506 spin_lock_init(&sma->sems[i].lock);
6062a8dc 507 }
b97e820f
MS
508
509 sma->complex_count = 0;
9de5ab8a 510 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
511 INIT_LIST_HEAD(&sma->pending_alter);
512 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 513 INIT_LIST_HEAD(&sma->list_id);
1da177e4 514 sma->sem_nsems = nsems;
e54d02b2 515 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 516
2ec55f80
MS
517 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
518 if (retval < 0) {
519 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
520 return retval;
e8577d1f
MS
521 }
522 ns->used_sems += nsems;
523
6062a8dc 524 sem_unlock(sma, -1);
6d49dab8 525 rcu_read_unlock();
1da177e4 526
7ca7e564 527 return sma->sem_perm.id;
1da177e4
LT
528}
529
7748dbfa 530
f4566f04 531/*
d9a605e4 532 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 533 */
03f02c76 534static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 535{
03f02c76
ND
536 struct sem_array *sma;
537
538 sma = container_of(ipcp, struct sem_array, sem_perm);
539 return security_sem_associate(sma, semflg);
7748dbfa
ND
540}
541
f4566f04 542/*
d9a605e4 543 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 544 */
03f02c76
ND
545static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
546 struct ipc_params *params)
7748dbfa 547{
03f02c76
ND
548 struct sem_array *sma;
549
550 sma = container_of(ipcp, struct sem_array, sem_perm);
551 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
552 return -EINVAL;
553
554 return 0;
555}
556
d5460c99 557SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 558{
e3893534 559 struct ipc_namespace *ns;
eb66ec44
MK
560 static const struct ipc_ops sem_ops = {
561 .getnew = newary,
562 .associate = sem_security,
563 .more_checks = sem_more_checks,
564 };
7748dbfa 565 struct ipc_params sem_params;
e3893534
KK
566
567 ns = current->nsproxy->ipc_ns;
1da177e4 568
e3893534 569 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 570 return -EINVAL;
7ca7e564 571
7748dbfa
ND
572 sem_params.key = key;
573 sem_params.flg = semflg;
574 sem_params.u.nsems = nsems;
1da177e4 575
7748dbfa 576 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
577}
578
78f5009c 579/**
4ce33ec2
DB
580 * perform_atomic_semop[_slow] - Attempt to perform semaphore
581 * operations on a given array.
758a6ba3 582 * @sma: semaphore array
d198cd6d 583 * @q: struct sem_queue that describes the operation
758a6ba3 584 *
4ce33ec2
DB
585 * Caller blocking are as follows, based the value
586 * indicated by the semaphore operation (sem_op):
587 *
588 * (1) >0 never blocks.
589 * (2) 0 (wait-for-zero operation): semval is non-zero.
590 * (3) <0 attempting to decrement semval to a value smaller than zero.
591 *
758a6ba3
MS
592 * Returns 0 if the operation was possible.
593 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 594 * Returns <0 for error codes.
1da177e4 595 */
4ce33ec2 596static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 597{
d198cd6d 598 int result, sem_op, nsops, pid;
1da177e4 599 struct sembuf *sop;
239521f3 600 struct sem *curr;
d198cd6d
MS
601 struct sembuf *sops;
602 struct sem_undo *un;
603
604 sops = q->sops;
605 nsops = q->nsops;
606 un = q->undo;
1da177e4
LT
607
608 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 609 curr = &sma->sems[sop->sem_num];
1da177e4
LT
610 sem_op = sop->sem_op;
611 result = curr->semval;
78f5009c 612
1da177e4
LT
613 if (!sem_op && result)
614 goto would_block;
615
616 result += sem_op;
617 if (result < 0)
618 goto would_block;
619 if (result > SEMVMX)
620 goto out_of_range;
78f5009c 621
1da177e4
LT
622 if (sop->sem_flg & SEM_UNDO) {
623 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 624 /* Exceeding the undo range is an error. */
1da177e4
LT
625 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
626 goto out_of_range;
78f5009c 627 un->semadj[sop->sem_num] = undo;
1da177e4 628 }
78f5009c 629
1da177e4
LT
630 curr->semval = result;
631 }
632
633 sop--;
d198cd6d 634 pid = q->pid;
1da177e4 635 while (sop >= sops) {
1a233956 636 sma->sems[sop->sem_num].sempid = pid;
1da177e4
LT
637 sop--;
638 }
78f5009c 639
1da177e4
LT
640 return 0;
641
642out_of_range:
643 result = -ERANGE;
644 goto undo;
645
646would_block:
ed247b7c
MS
647 q->blocking = sop;
648
1da177e4
LT
649 if (sop->sem_flg & IPC_NOWAIT)
650 result = -EAGAIN;
651 else
652 result = 1;
653
654undo:
655 sop--;
656 while (sop >= sops) {
78f5009c 657 sem_op = sop->sem_op;
1a233956 658 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
659 if (sop->sem_flg & SEM_UNDO)
660 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
661 sop--;
662 }
663
664 return result;
665}
666
4ce33ec2
DB
667static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
668{
669 int result, sem_op, nsops;
670 struct sembuf *sop;
671 struct sem *curr;
672 struct sembuf *sops;
673 struct sem_undo *un;
674
675 sops = q->sops;
676 nsops = q->nsops;
677 un = q->undo;
678
679 if (unlikely(q->dupsop))
680 return perform_atomic_semop_slow(sma, q);
681
682 /*
683 * We scan the semaphore set twice, first to ensure that the entire
684 * operation can succeed, therefore avoiding any pointless writes
685 * to shared memory and having to undo such changes in order to block
686 * until the operations can go through.
687 */
688 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 689 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
690 sem_op = sop->sem_op;
691 result = curr->semval;
692
693 if (!sem_op && result)
694 goto would_block; /* wait-for-zero */
695
696 result += sem_op;
697 if (result < 0)
698 goto would_block;
699
700 if (result > SEMVMX)
701 return -ERANGE;
702
703 if (sop->sem_flg & SEM_UNDO) {
704 int undo = un->semadj[sop->sem_num] - sem_op;
705
706 /* Exceeding the undo range is an error. */
707 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
708 return -ERANGE;
709 }
710 }
711
712 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 713 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
714 sem_op = sop->sem_op;
715 result = curr->semval;
716
717 if (sop->sem_flg & SEM_UNDO) {
718 int undo = un->semadj[sop->sem_num] - sem_op;
719
720 un->semadj[sop->sem_num] = undo;
721 }
722 curr->semval += sem_op;
723 curr->sempid = q->pid;
724 }
725
726 return 0;
727
728would_block:
729 q->blocking = sop;
730 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
731}
732
9ae949fa
DB
733static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
734 struct wake_q_head *wake_q)
0a2b9d4c 735{
9ae949fa
DB
736 wake_q_add(wake_q, q->sleeper);
737 /*
738 * Rely on the above implicit barrier, such that we can
739 * ensure that we hold reference to the task before setting
740 * q->status. Otherwise we could race with do_exit if the
741 * task is awoken by an external event before calling
742 * wake_up_process().
743 */
744 WRITE_ONCE(q->status, error);
d4212093
NP
745}
746
b97e820f
MS
747static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
748{
749 list_del(&q->list);
9f1bc2c9 750 if (q->nsops > 1)
b97e820f
MS
751 sma->complex_count--;
752}
753
fd5db422
MS
754/** check_restart(sma, q)
755 * @sma: semaphore array
756 * @q: the operation that just completed
757 *
758 * update_queue is O(N^2) when it restarts scanning the whole queue of
759 * waiting operations. Therefore this function checks if the restart is
760 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
761 * modified the array.
762 * Note that wait-for-zero operations are handled without restart.
fd5db422 763 */
4663d3e8 764static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 765{
1a82e9e1
MS
766 /* pending complex alter operations are too difficult to analyse */
767 if (!list_empty(&sma->pending_alter))
fd5db422
MS
768 return 1;
769
770 /* we were a sleeping complex operation. Too difficult */
771 if (q->nsops > 1)
772 return 1;
773
1a82e9e1
MS
774 /* It is impossible that someone waits for the new value:
775 * - complex operations always restart.
776 * - wait-for-zero are handled seperately.
777 * - q is a previously sleeping simple operation that
778 * altered the array. It must be a decrement, because
779 * simple increments never sleep.
780 * - If there are older (higher priority) decrements
781 * in the queue, then they have observed the original
782 * semval value and couldn't proceed. The operation
783 * decremented to value - thus they won't proceed either.
784 */
785 return 0;
786}
fd5db422 787
1a82e9e1 788/**
8001c858 789 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
790 * @sma: semaphore array.
791 * @semnum: semaphore that was modified.
9ae949fa 792 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
793 *
794 * wake_const_ops must be called after a semaphore in a semaphore array
795 * was set to 0. If complex const operations are pending, wake_const_ops must
796 * be called with semnum = -1, as well as with the number of each modified
797 * semaphore.
9ae949fa 798 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
799 * is stored in q->pid.
800 * The function returns 1 if at least one operation was completed successfully.
801 */
802static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 803 struct wake_q_head *wake_q)
1a82e9e1 804{
f150f02c 805 struct sem_queue *q, *tmp;
1a82e9e1
MS
806 struct list_head *pending_list;
807 int semop_completed = 0;
808
809 if (semnum == -1)
810 pending_list = &sma->pending_const;
811 else
1a233956 812 pending_list = &sma->sems[semnum].pending_const;
fd5db422 813
f150f02c
DB
814 list_for_each_entry_safe(q, tmp, pending_list, list) {
815 int error = perform_atomic_semop(sma, q);
1a82e9e1 816
f150f02c
DB
817 if (error > 0)
818 continue;
819 /* operation completed, remove from queue & wakeup */
820 unlink_queue(sma, q);
1a82e9e1 821
f150f02c
DB
822 wake_up_sem_queue_prepare(q, error, wake_q);
823 if (error == 0)
824 semop_completed = 1;
1a82e9e1 825 }
f150f02c 826
1a82e9e1
MS
827 return semop_completed;
828}
829
830/**
8001c858 831 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
832 * @sma: semaphore array
833 * @sops: operations that were performed
834 * @nsops: number of operations
9ae949fa 835 * @wake_q: lockless wake-queue head
1a82e9e1 836 *
8001c858
DB
837 * Checks all required queue for wait-for-zero operations, based
838 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
839 * The function returns 1 if at least one operation was completed successfully.
840 */
841static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 842 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
843{
844 int i;
845 int semop_completed = 0;
846 int got_zero = 0;
847
848 /* first: the per-semaphore queues, if known */
849 if (sops) {
850 for (i = 0; i < nsops; i++) {
851 int num = sops[i].sem_num;
852
1a233956 853 if (sma->sems[num].semval == 0) {
1a82e9e1 854 got_zero = 1;
9ae949fa 855 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
856 }
857 }
858 } else {
859 /*
860 * No sops means modified semaphores not known.
861 * Assume all were changed.
fd5db422 862 */
1a82e9e1 863 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 864 if (sma->sems[i].semval == 0) {
1a82e9e1 865 got_zero = 1;
9ae949fa 866 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
867 }
868 }
fd5db422
MS
869 }
870 /*
1a82e9e1
MS
871 * If one of the modified semaphores got 0,
872 * then check the global queue, too.
fd5db422 873 */
1a82e9e1 874 if (got_zero)
9ae949fa 875 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 876
1a82e9e1 877 return semop_completed;
fd5db422
MS
878}
879
636c6be8
MS
880
881/**
8001c858 882 * update_queue - look for tasks that can be completed.
636c6be8
MS
883 * @sma: semaphore array.
884 * @semnum: semaphore that was modified.
9ae949fa 885 * @wake_q: lockless wake-queue head.
636c6be8
MS
886 *
887 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
888 * was modified. If multiple semaphores were modified, update_queue must
889 * be called with semnum = -1, as well as with the number of each modified
890 * semaphore.
9ae949fa 891 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 892 * is stored in q->pid.
1a82e9e1
MS
893 * The function internally checks if const operations can now succeed.
894 *
0a2b9d4c 895 * The function return 1 if at least one semop was completed successfully.
1da177e4 896 */
9ae949fa 897static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 898{
f150f02c 899 struct sem_queue *q, *tmp;
636c6be8 900 struct list_head *pending_list;
0a2b9d4c 901 int semop_completed = 0;
636c6be8 902
9f1bc2c9 903 if (semnum == -1)
1a82e9e1 904 pending_list = &sma->pending_alter;
9f1bc2c9 905 else
1a233956 906 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
907
908again:
f150f02c 909 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 910 int error, restart;
636c6be8 911
d987f8b2
MS
912 /* If we are scanning the single sop, per-semaphore list of
913 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 914 * necessary to scan further: simple increments
d987f8b2
MS
915 * that affect only one entry succeed immediately and cannot
916 * be in the per semaphore pending queue, and decrements
917 * cannot be successful if the value is already 0.
918 */
1a233956 919 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
920 break;
921
d198cd6d 922 error = perform_atomic_semop(sma, q);
1da177e4
LT
923
924 /* Does q->sleeper still need to sleep? */
9cad200c
NP
925 if (error > 0)
926 continue;
927
b97e820f 928 unlink_queue(sma, q);
9cad200c 929
0a2b9d4c 930 if (error) {
fd5db422 931 restart = 0;
0a2b9d4c
MS
932 } else {
933 semop_completed = 1;
9ae949fa 934 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 935 restart = check_restart(sma, q);
0a2b9d4c 936 }
fd5db422 937
9ae949fa 938 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 939 if (restart)
9cad200c 940 goto again;
1da177e4 941 }
0a2b9d4c 942 return semop_completed;
1da177e4
LT
943}
944
0e8c6656 945/**
8001c858 946 * set_semotime - set sem_otime
0e8c6656
MS
947 * @sma: semaphore array
948 * @sops: operations that modified the array, may be NULL
949 *
950 * sem_otime is replicated to avoid cache line trashing.
951 * This function sets one instance to the current time.
952 */
953static void set_semotime(struct sem_array *sma, struct sembuf *sops)
954{
955 if (sops == NULL) {
1a233956 956 sma->sems[0].sem_otime = get_seconds();
0e8c6656 957 } else {
1a233956 958 sma->sems[sops[0].sem_num].sem_otime =
0e8c6656
MS
959 get_seconds();
960 }
961}
962
0a2b9d4c 963/**
8001c858 964 * do_smart_update - optimized update_queue
fd5db422
MS
965 * @sma: semaphore array
966 * @sops: operations that were performed
967 * @nsops: number of operations
0a2b9d4c 968 * @otime: force setting otime
9ae949fa 969 * @wake_q: lockless wake-queue head
fd5db422 970 *
1a82e9e1
MS
971 * do_smart_update() does the required calls to update_queue and wakeup_zero,
972 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 973 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 974 * responsible for calling wake_up_q().
0a2b9d4c 975 * It is safe to perform this call after dropping all locks.
fd5db422 976 */
0a2b9d4c 977static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 978 int otime, struct wake_q_head *wake_q)
fd5db422
MS
979{
980 int i;
981
9ae949fa 982 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 983
f269f40a
MS
984 if (!list_empty(&sma->pending_alter)) {
985 /* semaphore array uses the global queue - just process it. */
9ae949fa 986 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
987 } else {
988 if (!sops) {
989 /*
990 * No sops, thus the modified semaphores are not
991 * known. Check all.
992 */
993 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 994 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
995 } else {
996 /*
997 * Check the semaphores that were increased:
998 * - No complex ops, thus all sleeping ops are
999 * decrease.
1000 * - if we decreased the value, then any sleeping
1001 * semaphore ops wont be able to run: If the
1002 * previous value was too small, then the new
1003 * value will be too small, too.
1004 */
1005 for (i = 0; i < nsops; i++) {
1006 if (sops[i].sem_op > 0) {
1007 otime |= update_queue(sma,
9ae949fa 1008 sops[i].sem_num, wake_q);
f269f40a 1009 }
ab465df9 1010 }
9f1bc2c9 1011 }
fd5db422 1012 }
0e8c6656
MS
1013 if (otime)
1014 set_semotime(sma, sops);
fd5db422
MS
1015}
1016
2f2ed41d 1017/*
b220c57a 1018 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1019 */
1020static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1021 bool count_zero)
1022{
b220c57a 1023 struct sembuf *sop = q->blocking;
2f2ed41d 1024
9b44ee2e
MS
1025 /*
1026 * Linux always (since 0.99.10) reported a task as sleeping on all
1027 * semaphores. This violates SUS, therefore it was changed to the
1028 * standard compliant behavior.
1029 * Give the administrators a chance to notice that an application
1030 * might misbehave because it relies on the Linux behavior.
1031 */
1032 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1033 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1034 current->comm, task_pid_nr(current));
1035
b220c57a
MS
1036 if (sop->sem_num != semnum)
1037 return 0;
2f2ed41d 1038
b220c57a
MS
1039 if (count_zero && sop->sem_op == 0)
1040 return 1;
1041 if (!count_zero && sop->sem_op < 0)
1042 return 1;
1043
1044 return 0;
2f2ed41d
MS
1045}
1046
1da177e4
LT
1047/* The following counts are associated to each semaphore:
1048 * semncnt number of tasks waiting on semval being nonzero
1049 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1050 *
1051 * Per definition, a task waits only on the semaphore of the first semop
1052 * that cannot proceed, even if additional operation would block, too.
1da177e4 1053 */
2f2ed41d
MS
1054static int count_semcnt(struct sem_array *sma, ushort semnum,
1055 bool count_zero)
1da177e4 1056{
2f2ed41d 1057 struct list_head *l;
239521f3 1058 struct sem_queue *q;
2f2ed41d 1059 int semcnt;
1da177e4 1060
2f2ed41d
MS
1061 semcnt = 0;
1062 /* First: check the simple operations. They are easy to evaluate */
1063 if (count_zero)
1a233956 1064 l = &sma->sems[semnum].pending_const;
2f2ed41d 1065 else
1a233956 1066 l = &sma->sems[semnum].pending_alter;
1da177e4 1067
2f2ed41d
MS
1068 list_for_each_entry(q, l, list) {
1069 /* all task on a per-semaphore list sleep on exactly
1070 * that semaphore
1071 */
1072 semcnt++;
ebc2e5e6
RR
1073 }
1074
2f2ed41d 1075 /* Then: check the complex operations. */
1994862d 1076 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1077 semcnt += check_qop(sma, semnum, q, count_zero);
1078 }
1079 if (count_zero) {
1080 list_for_each_entry(q, &sma->pending_const, list) {
1081 semcnt += check_qop(sma, semnum, q, count_zero);
1082 }
1994862d 1083 }
2f2ed41d 1084 return semcnt;
1da177e4
LT
1085}
1086
d9a605e4
DB
1087/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1088 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1089 * remains locked on exit.
1da177e4 1090 */
01b8b07a 1091static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1092{
380af1b3
MS
1093 struct sem_undo *un, *tu;
1094 struct sem_queue *q, *tq;
01b8b07a 1095 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1096 int i;
9ae949fa 1097 DEFINE_WAKE_Q(wake_q);
1da177e4 1098
380af1b3 1099 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1100 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1101 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1102 list_del(&un->list_id);
1103 spin_lock(&un->ulp->lock);
1da177e4 1104 un->semid = -1;
380af1b3
MS
1105 list_del_rcu(&un->list_proc);
1106 spin_unlock(&un->ulp->lock);
693a8b6e 1107 kfree_rcu(un, rcu);
380af1b3 1108 }
1da177e4
LT
1109
1110 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1111 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1112 unlink_queue(sma, q);
9ae949fa 1113 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1114 }
1115
1116 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1117 unlink_queue(sma, q);
9ae949fa 1118 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1119 }
9f1bc2c9 1120 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1121 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1122 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1123 unlink_queue(sma, q);
9ae949fa 1124 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1125 }
1126 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1127 unlink_queue(sma, q);
9ae949fa 1128 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9
RR
1129 }
1130 }
1da177e4 1131
7ca7e564
ND
1132 /* Remove the semaphore set from the IDR */
1133 sem_rmid(ns, sma);
6062a8dc 1134 sem_unlock(sma, -1);
6d49dab8 1135 rcu_read_unlock();
1da177e4 1136
9ae949fa 1137 wake_up_q(&wake_q);
e3893534 1138 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1139 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1140}
1141
1142static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1143{
239521f3 1144 switch (version) {
1da177e4
LT
1145 case IPC_64:
1146 return copy_to_user(buf, in, sizeof(*in));
1147 case IPC_OLD:
1148 {
1149 struct semid_ds out;
1150
982f7c2b
DR
1151 memset(&out, 0, sizeof(out));
1152
1da177e4
LT
1153 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1154
1155 out.sem_otime = in->sem_otime;
1156 out.sem_ctime = in->sem_ctime;
1157 out.sem_nsems = in->sem_nsems;
1158
1159 return copy_to_user(buf, &out, sizeof(out));
1160 }
1161 default:
1162 return -EINVAL;
1163 }
1164}
1165
e54d02b2 1166static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1167{
1168 int i;
e54d02b2 1169 time64_t res;
d12e1e50 1170
1a233956 1171 res = sma->sems[0].sem_otime;
d12e1e50 1172 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1173 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1174
1175 if (to > res)
1176 res = to;
1177 }
1178 return res;
1179}
1180
45a4a64a
AV
1181static int semctl_stat(struct ipc_namespace *ns, int semid,
1182 int cmd, struct semid64_ds *semid64)
1da177e4 1183{
1da177e4 1184 struct sem_array *sma;
45a4a64a
AV
1185 int id = 0;
1186 int err;
1da177e4 1187
45a4a64a 1188 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1189
45a4a64a
AV
1190 rcu_read_lock();
1191 if (cmd == SEM_STAT) {
1192 sma = sem_obtain_object(ns, semid);
1193 if (IS_ERR(sma)) {
1194 err = PTR_ERR(sma);
1195 goto out_unlock;
1196 }
1197 id = sma->sem_perm.id;
1198 } else {
1199 sma = sem_obtain_object_check(ns, semid);
1200 if (IS_ERR(sma)) {
1201 err = PTR_ERR(sma);
1202 goto out_unlock;
1da177e4 1203 }
1da177e4 1204 }
1da177e4 1205
45a4a64a
AV
1206 err = -EACCES;
1207 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1208 goto out_unlock;
1da177e4 1209
45a4a64a
AV
1210 err = security_sem_semctl(sma, cmd);
1211 if (err)
1212 goto out_unlock;
1da177e4 1213
45a4a64a
AV
1214 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1215 semid64->sem_otime = get_semotime(sma);
1216 semid64->sem_ctime = sma->sem_ctime;
1217 semid64->sem_nsems = sma->sem_nsems;
1218 rcu_read_unlock();
1219 return id;
1da177e4 1220
1da177e4 1221out_unlock:
16df3674 1222 rcu_read_unlock();
1da177e4
LT
1223 return err;
1224}
1225
45a4a64a
AV
1226static int semctl_info(struct ipc_namespace *ns, int semid,
1227 int cmd, void __user *p)
1228{
1229 struct seminfo seminfo;
1230 int max_id;
1231 int err;
1232
1233 err = security_sem_semctl(NULL, cmd);
1234 if (err)
1235 return err;
1236
1237 memset(&seminfo, 0, sizeof(seminfo));
1238 seminfo.semmni = ns->sc_semmni;
1239 seminfo.semmns = ns->sc_semmns;
1240 seminfo.semmsl = ns->sc_semmsl;
1241 seminfo.semopm = ns->sc_semopm;
1242 seminfo.semvmx = SEMVMX;
1243 seminfo.semmnu = SEMMNU;
1244 seminfo.semmap = SEMMAP;
1245 seminfo.semume = SEMUME;
1246 down_read(&sem_ids(ns).rwsem);
1247 if (cmd == SEM_INFO) {
1248 seminfo.semusz = sem_ids(ns).in_use;
1249 seminfo.semaem = ns->used_sems;
1250 } else {
1251 seminfo.semusz = SEMUSZ;
1252 seminfo.semaem = SEMAEM;
1253 }
1254 max_id = ipc_get_maxid(&sem_ids(ns));
1255 up_read(&sem_ids(ns).rwsem);
1256 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1257 return -EFAULT;
1258 return (max_id < 0) ? 0 : max_id;
1259}
1260
e1fd1f49 1261static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1262 int val)
e1fd1f49
AV
1263{
1264 struct sem_undo *un;
1265 struct sem_array *sma;
239521f3 1266 struct sem *curr;
45a4a64a 1267 int err;
9ae949fa
DB
1268 DEFINE_WAKE_Q(wake_q);
1269
6062a8dc
RR
1270 if (val > SEMVMX || val < 0)
1271 return -ERANGE;
e1fd1f49 1272
6062a8dc
RR
1273 rcu_read_lock();
1274 sma = sem_obtain_object_check(ns, semid);
1275 if (IS_ERR(sma)) {
1276 rcu_read_unlock();
1277 return PTR_ERR(sma);
1278 }
1279
1280 if (semnum < 0 || semnum >= sma->sem_nsems) {
1281 rcu_read_unlock();
1282 return -EINVAL;
1283 }
1284
1285
1286 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1287 rcu_read_unlock();
1288 return -EACCES;
1289 }
e1fd1f49
AV
1290
1291 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1292 if (err) {
1293 rcu_read_unlock();
1294 return -EACCES;
1295 }
e1fd1f49 1296
6062a8dc 1297 sem_lock(sma, NULL, -1);
e1fd1f49 1298
0f3d2b01 1299 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1300 sem_unlock(sma, -1);
1301 rcu_read_unlock();
1302 return -EIDRM;
1303 }
1304
1a233956 1305 curr = &sma->sems[semnum];
e1fd1f49 1306
cf9d5d78 1307 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1308 list_for_each_entry(un, &sma->list_id, list_id)
1309 un->semadj[semnum] = 0;
1310
1311 curr->semval = val;
1312 curr->sempid = task_tgid_vnr(current);
e54d02b2 1313 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1314 /* maybe some queued-up processes were waiting for this */
9ae949fa 1315 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1316 sem_unlock(sma, -1);
6d49dab8 1317 rcu_read_unlock();
9ae949fa 1318 wake_up_q(&wake_q);
6062a8dc 1319 return 0;
e1fd1f49
AV
1320}
1321
e3893534 1322static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1323 int cmd, void __user *p)
1da177e4
LT
1324{
1325 struct sem_array *sma;
239521f3 1326 struct sem *curr;
16df3674 1327 int err, nsems;
1da177e4 1328 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1329 ushort *sem_io = fast_sem_io;
9ae949fa 1330 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1331
1332 rcu_read_lock();
1333 sma = sem_obtain_object_check(ns, semid);
1334 if (IS_ERR(sma)) {
1335 rcu_read_unlock();
023a5355 1336 return PTR_ERR(sma);
16df3674 1337 }
1da177e4
LT
1338
1339 nsems = sma->sem_nsems;
1340
1da177e4 1341 err = -EACCES;
c728b9c8
LT
1342 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1343 goto out_rcu_wakeup;
1da177e4
LT
1344
1345 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1346 if (err)
1347 goto out_rcu_wakeup;
1da177e4
LT
1348
1349 err = -EACCES;
1350 switch (cmd) {
1351 case GETALL:
1352 {
e1fd1f49 1353 ushort __user *array = p;
1da177e4
LT
1354 int i;
1355
ce857229 1356 sem_lock(sma, NULL, -1);
0f3d2b01 1357 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1358 err = -EIDRM;
1359 goto out_unlock;
1360 }
239521f3 1361 if (nsems > SEMMSL_FAST) {
dba4cdd3 1362 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1363 err = -EIDRM;
6e224f94 1364 goto out_unlock;
ce857229
AV
1365 }
1366 sem_unlock(sma, -1);
6d49dab8 1367 rcu_read_unlock();
f8dbe8d2
KC
1368 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1369 GFP_KERNEL);
239521f3 1370 if (sem_io == NULL) {
dba4cdd3 1371 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1372 return -ENOMEM;
1373 }
1374
4091fd94 1375 rcu_read_lock();
6ff37972 1376 sem_lock_and_putref(sma);
0f3d2b01 1377 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1378 err = -EIDRM;
6e224f94 1379 goto out_unlock;
1da177e4 1380 }
ce857229 1381 }
1da177e4 1382 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1383 sem_io[i] = sma->sems[i].semval;
6062a8dc 1384 sem_unlock(sma, -1);
6d49dab8 1385 rcu_read_unlock();
1da177e4 1386 err = 0;
239521f3 1387 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1388 err = -EFAULT;
1389 goto out_free;
1390 }
1391 case SETALL:
1392 {
1393 int i;
1394 struct sem_undo *un;
1395
dba4cdd3 1396 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1397 err = -EIDRM;
1398 goto out_rcu_wakeup;
6062a8dc 1399 }
16df3674 1400 rcu_read_unlock();
1da177e4 1401
239521f3 1402 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1403 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1404 GFP_KERNEL);
239521f3 1405 if (sem_io == NULL) {
dba4cdd3 1406 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1407 return -ENOMEM;
1408 }
1409 }
1410
239521f3 1411 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1412 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1413 err = -EFAULT;
1414 goto out_free;
1415 }
1416
1417 for (i = 0; i < nsems; i++) {
1418 if (sem_io[i] > SEMVMX) {
dba4cdd3 1419 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1420 err = -ERANGE;
1421 goto out_free;
1422 }
1423 }
4091fd94 1424 rcu_read_lock();
6ff37972 1425 sem_lock_and_putref(sma);
0f3d2b01 1426 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1427 err = -EIDRM;
6e224f94 1428 goto out_unlock;
1da177e4
LT
1429 }
1430
a5f4db87 1431 for (i = 0; i < nsems; i++) {
1a233956
MS
1432 sma->sems[i].semval = sem_io[i];
1433 sma->sems[i].sempid = task_tgid_vnr(current);
a5f4db87 1434 }
4daa28f6 1435
cf9d5d78 1436 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1437 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1438 for (i = 0; i < nsems; i++)
1439 un->semadj[i] = 0;
4daa28f6 1440 }
e54d02b2 1441 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1442 /* maybe some queued-up processes were waiting for this */
9ae949fa 1443 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1444 err = 0;
1445 goto out_unlock;
1446 }
e1fd1f49 1447 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1448 }
1449 err = -EINVAL;
c728b9c8
LT
1450 if (semnum < 0 || semnum >= nsems)
1451 goto out_rcu_wakeup;
1da177e4 1452
6062a8dc 1453 sem_lock(sma, NULL, -1);
0f3d2b01 1454 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1455 err = -EIDRM;
1456 goto out_unlock;
1457 }
1a233956 1458 curr = &sma->sems[semnum];
1da177e4
LT
1459
1460 switch (cmd) {
1461 case GETVAL:
1462 err = curr->semval;
1463 goto out_unlock;
1464 case GETPID:
1465 err = curr->sempid;
1466 goto out_unlock;
1467 case GETNCNT:
2f2ed41d 1468 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1469 goto out_unlock;
1470 case GETZCNT:
2f2ed41d 1471 err = count_semcnt(sma, semnum, 1);
1da177e4 1472 goto out_unlock;
1da177e4 1473 }
16df3674 1474
1da177e4 1475out_unlock:
6062a8dc 1476 sem_unlock(sma, -1);
c728b9c8 1477out_rcu_wakeup:
6d49dab8 1478 rcu_read_unlock();
9ae949fa 1479 wake_up_q(&wake_q);
1da177e4 1480out_free:
239521f3 1481 if (sem_io != fast_sem_io)
f8dbe8d2 1482 kvfree(sem_io);
1da177e4
LT
1483 return err;
1484}
1485
016d7132
PP
1486static inline unsigned long
1487copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1488{
239521f3 1489 switch (version) {
1da177e4 1490 case IPC_64:
016d7132 1491 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1492 return -EFAULT;
1da177e4 1493 return 0;
1da177e4
LT
1494 case IPC_OLD:
1495 {
1496 struct semid_ds tbuf_old;
1497
239521f3 1498 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1499 return -EFAULT;
1500
016d7132
PP
1501 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1502 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1503 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1504
1505 return 0;
1506 }
1507 default:
1508 return -EINVAL;
1509 }
1510}
1511
522bb2a2 1512/*
d9a605e4 1513 * This function handles some semctl commands which require the rwsem
522bb2a2 1514 * to be held in write mode.
d9a605e4 1515 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1516 */
21a4826a 1517static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1518 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1519{
1520 struct sem_array *sma;
1521 int err;
1da177e4
LT
1522 struct kern_ipc_perm *ipcp;
1523
d9a605e4 1524 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1525 rcu_read_lock();
1526
16df3674 1527 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1528 &semid64->sem_perm, 0);
7b4cc5d8
DB
1529 if (IS_ERR(ipcp)) {
1530 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1531 goto out_unlock1;
1532 }
073115d6 1533
a5f75e7f 1534 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1535
1536 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1537 if (err)
1538 goto out_unlock1;
1da177e4 1539
7b4cc5d8 1540 switch (cmd) {
1da177e4 1541 case IPC_RMID:
6062a8dc 1542 sem_lock(sma, NULL, -1);
7b4cc5d8 1543 /* freeary unlocks the ipc object and rcu */
01b8b07a 1544 freeary(ns, ipcp);
522bb2a2 1545 goto out_up;
1da177e4 1546 case IPC_SET:
6062a8dc 1547 sem_lock(sma, NULL, -1);
45a4a64a 1548 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1549 if (err)
7b4cc5d8 1550 goto out_unlock0;
e54d02b2 1551 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1552 break;
1553 default:
1da177e4 1554 err = -EINVAL;
7b4cc5d8 1555 goto out_unlock1;
1da177e4 1556 }
1da177e4 1557
7b4cc5d8 1558out_unlock0:
6062a8dc 1559 sem_unlock(sma, -1);
7b4cc5d8 1560out_unlock1:
6d49dab8 1561 rcu_read_unlock();
522bb2a2 1562out_up:
d9a605e4 1563 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1564 return err;
1565}
1566
e1fd1f49 1567SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1568{
1da177e4 1569 int version;
e3893534 1570 struct ipc_namespace *ns;
e1fd1f49 1571 void __user *p = (void __user *)arg;
45a4a64a
AV
1572 struct semid64_ds semid64;
1573 int err;
1da177e4
LT
1574
1575 if (semid < 0)
1576 return -EINVAL;
1577
1578 version = ipc_parse_version(&cmd);
e3893534 1579 ns = current->nsproxy->ipc_ns;
1da177e4 1580
239521f3 1581 switch (cmd) {
1da177e4
LT
1582 case IPC_INFO:
1583 case SEM_INFO:
45a4a64a 1584 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1585 case IPC_STAT:
1da177e4 1586 case SEM_STAT:
45a4a64a
AV
1587 err = semctl_stat(ns, semid, cmd, &semid64);
1588 if (err < 0)
1589 return err;
1590 if (copy_semid_to_user(p, &semid64, version))
1591 err = -EFAULT;
1592 return err;
1da177e4
LT
1593 case GETALL:
1594 case GETVAL:
1595 case GETPID:
1596 case GETNCNT:
1597 case GETZCNT:
1da177e4 1598 case SETALL:
e1fd1f49 1599 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1600 case SETVAL: {
1601 int val;
1602#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1603 /* big-endian 64bit */
1604 val = arg >> 32;
1605#else
1606 /* 32bit or little-endian 64bit */
1607 val = arg;
1608#endif
1609 return semctl_setval(ns, semid, semnum, val);
1610 }
1da177e4 1611 case IPC_SET:
45a4a64a
AV
1612 if (copy_semid_from_user(&semid64, p, version))
1613 return -EFAULT;
1614 case IPC_RMID:
1615 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1616 default:
1617 return -EINVAL;
1618 }
1619}
1620
c0ebccb6
AV
1621#ifdef CONFIG_COMPAT
1622
1623struct compat_semid_ds {
1624 struct compat_ipc_perm sem_perm;
1625 compat_time_t sem_otime;
1626 compat_time_t sem_ctime;
1627 compat_uptr_t sem_base;
1628 compat_uptr_t sem_pending;
1629 compat_uptr_t sem_pending_last;
1630 compat_uptr_t undo;
1631 unsigned short sem_nsems;
1632};
1633
1634static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1635 int version)
1636{
1637 memset(out, 0, sizeof(*out));
1638 if (version == IPC_64) {
1639 struct compat_semid64_ds *p = buf;
1640 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1641 } else {
1642 struct compat_semid_ds *p = buf;
1643 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1644 }
1645}
1646
1647static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1648 int version)
1649{
1650 if (version == IPC_64) {
1651 struct compat_semid64_ds v;
1652 memset(&v, 0, sizeof(v));
1653 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1654 v.sem_otime = in->sem_otime;
1655 v.sem_ctime = in->sem_ctime;
1656 v.sem_nsems = in->sem_nsems;
1657 return copy_to_user(buf, &v, sizeof(v));
1658 } else {
1659 struct compat_semid_ds v;
1660 memset(&v, 0, sizeof(v));
1661 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1662 v.sem_otime = in->sem_otime;
1663 v.sem_ctime = in->sem_ctime;
1664 v.sem_nsems = in->sem_nsems;
1665 return copy_to_user(buf, &v, sizeof(v));
1666 }
1667}
1668
1669COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1670{
1671 void __user *p = compat_ptr(arg);
1672 struct ipc_namespace *ns;
1673 struct semid64_ds semid64;
1674 int version = compat_ipc_parse_version(&cmd);
1675 int err;
1676
1677 ns = current->nsproxy->ipc_ns;
1678
1679 if (semid < 0)
1680 return -EINVAL;
1681
1682 switch (cmd & (~IPC_64)) {
1683 case IPC_INFO:
1684 case SEM_INFO:
1685 return semctl_info(ns, semid, cmd, p);
1686 case IPC_STAT:
1687 case SEM_STAT:
1688 err = semctl_stat(ns, semid, cmd, &semid64);
1689 if (err < 0)
1690 return err;
1691 if (copy_compat_semid_to_user(p, &semid64, version))
1692 err = -EFAULT;
1693 return err;
1694 case GETVAL:
1695 case GETPID:
1696 case GETNCNT:
1697 case GETZCNT:
1698 case GETALL:
1da177e4 1699 case SETALL:
e1fd1f49
AV
1700 return semctl_main(ns, semid, semnum, cmd, p);
1701 case SETVAL:
1702 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1703 case IPC_SET:
c0ebccb6
AV
1704 if (copy_compat_semid_from_user(&semid64, p, version))
1705 return -EFAULT;
1706 /* fallthru */
1707 case IPC_RMID:
1708 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1709 default:
1710 return -EINVAL;
1711 }
1712}
c0ebccb6 1713#endif
1da177e4 1714
1da177e4
LT
1715/* If the task doesn't already have a undo_list, then allocate one
1716 * here. We guarantee there is only one thread using this undo list,
1717 * and current is THE ONE
1718 *
1719 * If this allocation and assignment succeeds, but later
1720 * portions of this code fail, there is no need to free the sem_undo_list.
1721 * Just let it stay associated with the task, and it'll be freed later
1722 * at exit time.
1723 *
1724 * This can block, so callers must hold no locks.
1725 */
1726static inline int get_undo_list(struct sem_undo_list **undo_listp)
1727{
1728 struct sem_undo_list *undo_list;
1da177e4
LT
1729
1730 undo_list = current->sysvsem.undo_list;
1731 if (!undo_list) {
2453a306 1732 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1733 if (undo_list == NULL)
1734 return -ENOMEM;
00a5dfdb 1735 spin_lock_init(&undo_list->lock);
f74370b8 1736 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1737 INIT_LIST_HEAD(&undo_list->list_proc);
1738
1da177e4
LT
1739 current->sysvsem.undo_list = undo_list;
1740 }
1741 *undo_listp = undo_list;
1742 return 0;
1743}
1744
bf17bb71 1745static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1746{
bf17bb71 1747 struct sem_undo *un;
4daa28f6 1748
bf17bb71
NP
1749 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1750 if (un->semid == semid)
1751 return un;
1da177e4 1752 }
4daa28f6 1753 return NULL;
1da177e4
LT
1754}
1755
bf17bb71
NP
1756static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1757{
1758 struct sem_undo *un;
1759
239521f3 1760 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1761
1762 un = __lookup_undo(ulp, semid);
1763 if (un) {
1764 list_del_rcu(&un->list_proc);
1765 list_add_rcu(&un->list_proc, &ulp->list_proc);
1766 }
1767 return un;
1768}
1769
4daa28f6 1770/**
8001c858 1771 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1772 * @ns: namespace
1773 * @semid: semaphore array id
1774 *
1775 * The function looks up (and if not present creates) the undo structure.
1776 * The size of the undo structure depends on the size of the semaphore
1777 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1778 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1779 * performs a rcu_read_lock().
4daa28f6
MS
1780 */
1781static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1782{
1783 struct sem_array *sma;
1784 struct sem_undo_list *ulp;
1785 struct sem_undo *un, *new;
6062a8dc 1786 int nsems, error;
1da177e4
LT
1787
1788 error = get_undo_list(&ulp);
1789 if (error)
1790 return ERR_PTR(error);
1791
380af1b3 1792 rcu_read_lock();
c530c6ac 1793 spin_lock(&ulp->lock);
1da177e4 1794 un = lookup_undo(ulp, semid);
c530c6ac 1795 spin_unlock(&ulp->lock);
239521f3 1796 if (likely(un != NULL))
1da177e4
LT
1797 goto out;
1798
1799 /* no undo structure around - allocate one. */
4daa28f6 1800 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1801 sma = sem_obtain_object_check(ns, semid);
1802 if (IS_ERR(sma)) {
1803 rcu_read_unlock();
4de85cd6 1804 return ERR_CAST(sma);
16df3674 1805 }
023a5355 1806
1da177e4 1807 nsems = sma->sem_nsems;
dba4cdd3 1808 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1809 rcu_read_unlock();
1810 un = ERR_PTR(-EIDRM);
1811 goto out;
1812 }
16df3674 1813 rcu_read_unlock();
1da177e4 1814
4daa28f6 1815 /* step 2: allocate new undo structure */
4668edc3 1816 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1817 if (!new) {
dba4cdd3 1818 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1819 return ERR_PTR(-ENOMEM);
1820 }
1da177e4 1821
380af1b3 1822 /* step 3: Acquire the lock on semaphore array */
4091fd94 1823 rcu_read_lock();
6ff37972 1824 sem_lock_and_putref(sma);
0f3d2b01 1825 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1826 sem_unlock(sma, -1);
6d49dab8 1827 rcu_read_unlock();
1da177e4
LT
1828 kfree(new);
1829 un = ERR_PTR(-EIDRM);
1830 goto out;
1831 }
380af1b3
MS
1832 spin_lock(&ulp->lock);
1833
1834 /*
1835 * step 4: check for races: did someone else allocate the undo struct?
1836 */
1837 un = lookup_undo(ulp, semid);
1838 if (un) {
1839 kfree(new);
1840 goto success;
1841 }
4daa28f6
MS
1842 /* step 5: initialize & link new undo structure */
1843 new->semadj = (short *) &new[1];
380af1b3 1844 new->ulp = ulp;
4daa28f6
MS
1845 new->semid = semid;
1846 assert_spin_locked(&ulp->lock);
380af1b3 1847 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1848 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1849 list_add(&new->list_id, &sma->list_id);
380af1b3 1850 un = new;
4daa28f6 1851
380af1b3 1852success:
c530c6ac 1853 spin_unlock(&ulp->lock);
6062a8dc 1854 sem_unlock(sma, -1);
1da177e4
LT
1855out:
1856 return un;
1857}
1858
44ee4546 1859static long do_semtimedop(int semid, struct sembuf __user *tsops,
3ef56dc2 1860 unsigned nsops, const struct timespec64 *timeout)
1da177e4
LT
1861{
1862 int error = -EINVAL;
1863 struct sem_array *sma;
1864 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1865 struct sembuf *sops = fast_sops, *sop;
1da177e4 1866 struct sem_undo *un;
4ce33ec2
DB
1867 int max, locknum;
1868 bool undos = false, alter = false, dupsop = false;
1da177e4 1869 struct sem_queue queue;
4ce33ec2 1870 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1871 struct ipc_namespace *ns;
1872
1873 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1874
1875 if (nsops < 1 || semid < 0)
1876 return -EINVAL;
e3893534 1877 if (nsops > ns->sc_semopm)
1da177e4 1878 return -E2BIG;
239521f3 1879 if (nsops > SEMOPM_FAST) {
e4243b80 1880 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
239521f3 1881 if (sops == NULL)
1da177e4
LT
1882 return -ENOMEM;
1883 }
4ce33ec2 1884
239521f3
MS
1885 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1886 error = -EFAULT;
1da177e4
LT
1887 goto out_free;
1888 }
4ce33ec2 1889
1da177e4 1890 if (timeout) {
44ee4546
AV
1891 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1892 timeout->tv_nsec >= 1000000000L) {
1da177e4
LT
1893 error = -EINVAL;
1894 goto out_free;
1895 }
3ef56dc2 1896 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 1897 }
4ce33ec2 1898
1da177e4
LT
1899 max = 0;
1900 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1901 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1902
1da177e4
LT
1903 if (sop->sem_num >= max)
1904 max = sop->sem_num;
1905 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1906 undos = true;
1907 if (dup & mask) {
1908 /*
1909 * There was a previous alter access that appears
1910 * to have accessed the same semaphore, thus use
1911 * the dupsop logic. "appears", because the detection
1912 * can only check % BITS_PER_LONG.
1913 */
1914 dupsop = true;
1915 }
1916 if (sop->sem_op != 0) {
1917 alter = true;
1918 dup |= mask;
1919 }
1da177e4 1920 }
1da177e4 1921
1da177e4 1922 if (undos) {
6062a8dc 1923 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1924 un = find_alloc_undo(ns, semid);
1da177e4
LT
1925 if (IS_ERR(un)) {
1926 error = PTR_ERR(un);
1927 goto out_free;
1928 }
6062a8dc 1929 } else {
1da177e4 1930 un = NULL;
6062a8dc
RR
1931 rcu_read_lock();
1932 }
1da177e4 1933
16df3674 1934 sma = sem_obtain_object_check(ns, semid);
023a5355 1935 if (IS_ERR(sma)) {
6062a8dc 1936 rcu_read_unlock();
023a5355 1937 error = PTR_ERR(sma);
1da177e4 1938 goto out_free;
023a5355
ND
1939 }
1940
16df3674 1941 error = -EFBIG;
248e7357
DB
1942 if (max >= sma->sem_nsems) {
1943 rcu_read_unlock();
1944 goto out_free;
1945 }
16df3674
DB
1946
1947 error = -EACCES;
248e7357
DB
1948 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1949 rcu_read_unlock();
1950 goto out_free;
1951 }
16df3674
DB
1952
1953 error = security_sem_semop(sma, sops, nsops, alter);
248e7357
DB
1954 if (error) {
1955 rcu_read_unlock();
1956 goto out_free;
1957 }
16df3674 1958
6e224f94
MS
1959 error = -EIDRM;
1960 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1961 /*
1962 * We eventually might perform the following check in a lockless
1963 * fashion, considering ipc_valid_object() locking constraints.
1964 * If nsops == 1 and there is no contention for sem_perm.lock, then
1965 * only a per-semaphore lock is held and it's OK to proceed with the
1966 * check below. More details on the fine grained locking scheme
1967 * entangled here and why it's RMID race safe on comments at sem_lock()
1968 */
1969 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1970 goto out_unlock_free;
1da177e4 1971 /*
4daa28f6 1972 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1973 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1974 * and now a new array with received the same id. Check and fail.
25985edc 1975 * This case can be detected checking un->semid. The existence of
380af1b3 1976 * "un" itself is guaranteed by rcu.
1da177e4 1977 */
6062a8dc
RR
1978 if (un && un->semid == -1)
1979 goto out_unlock_free;
4daa28f6 1980
d198cd6d
MS
1981 queue.sops = sops;
1982 queue.nsops = nsops;
1983 queue.undo = un;
1984 queue.pid = task_tgid_vnr(current);
1985 queue.alter = alter;
4ce33ec2 1986 queue.dupsop = dupsop;
d198cd6d
MS
1987
1988 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
1989 if (error == 0) { /* non-blocking succesfull path */
1990 DEFINE_WAKE_Q(wake_q);
1991
1992 /*
1993 * If the operation was successful, then do
0e8c6656
MS
1994 * the required updates.
1995 */
1996 if (alter)
9ae949fa 1997 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
1998 else
1999 set_semotime(sma, sops);
9ae949fa
DB
2000
2001 sem_unlock(sma, locknum);
2002 rcu_read_unlock();
2003 wake_up_q(&wake_q);
2004
2005 goto out_free;
1da177e4 2006 }
9ae949fa 2007 if (error < 0) /* non-blocking error path */
0e8c6656 2008 goto out_unlock_free;
1da177e4 2009
9ae949fa
DB
2010 /*
2011 * We need to sleep on this operation, so we put the current
1da177e4
LT
2012 * task into the pending queue and go to sleep.
2013 */
b97e820f
MS
2014 if (nsops == 1) {
2015 struct sem *curr;
1a233956 2016 curr = &sma->sems[sops->sem_num];
b97e820f 2017
f269f40a
MS
2018 if (alter) {
2019 if (sma->complex_count) {
2020 list_add_tail(&queue.list,
2021 &sma->pending_alter);
2022 } else {
2023
2024 list_add_tail(&queue.list,
2025 &curr->pending_alter);
2026 }
2027 } else {
1a82e9e1 2028 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2029 }
b97e820f 2030 } else {
f269f40a
MS
2031 if (!sma->complex_count)
2032 merge_queues(sma);
2033
9f1bc2c9 2034 if (alter)
1a82e9e1 2035 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2036 else
1a82e9e1
MS
2037 list_add_tail(&queue.list, &sma->pending_const);
2038
b97e820f
MS
2039 sma->complex_count++;
2040 }
2041
b5fa01a2
DB
2042 do {
2043 queue.status = -EINTR;
2044 queue.sleeper = current;
0b0577f6 2045
b5fa01a2
DB
2046 __set_current_state(TASK_INTERRUPTIBLE);
2047 sem_unlock(sma, locknum);
2048 rcu_read_unlock();
1da177e4 2049
b5fa01a2
DB
2050 if (timeout)
2051 jiffies_left = schedule_timeout(jiffies_left);
2052 else
2053 schedule();
1da177e4 2054
9ae949fa 2055 /*
b5fa01a2
DB
2056 * fastpath: the semop has completed, either successfully or
2057 * not, from the syscall pov, is quite irrelevant to us at this
2058 * point; we're done.
2059 *
2060 * We _do_ care, nonetheless, about being awoken by a signal or
2061 * spuriously. The queue.status is checked again in the
2062 * slowpath (aka after taking sem_lock), such that we can detect
2063 * scenarios where we were awakened externally, during the
2064 * window between wake_q_add() and wake_up_q().
c61284e9 2065 */
b5fa01a2
DB
2066 error = READ_ONCE(queue.status);
2067 if (error != -EINTR) {
2068 /*
2069 * User space could assume that semop() is a memory
2070 * barrier: Without the mb(), the cpu could
2071 * speculatively read in userspace stale data that was
2072 * overwritten by the previous owner of the semaphore.
2073 */
2074 smp_mb();
2075 goto out_free;
2076 }
d694ad62 2077
b5fa01a2 2078 rcu_read_lock();
c626bc46 2079 locknum = sem_lock(sma, sops, nsops);
1da177e4 2080
370b262c
DB
2081 if (!ipc_valid_object(&sma->sem_perm))
2082 goto out_unlock_free;
2083
2084 error = READ_ONCE(queue.status);
1da177e4 2085
b5fa01a2
DB
2086 /*
2087 * If queue.status != -EINTR we are woken up by another process.
2088 * Leave without unlink_queue(), but with sem_unlock().
2089 */
2090 if (error != -EINTR)
2091 goto out_unlock_free;
0b0577f6 2092
b5fa01a2
DB
2093 /*
2094 * If an interrupt occurred we have to clean up the queue.
2095 */
2096 if (timeout && jiffies_left == 0)
2097 error = -EAGAIN;
2098 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2099
b97e820f 2100 unlink_queue(sma, &queue);
1da177e4
LT
2101
2102out_unlock_free:
6062a8dc 2103 sem_unlock(sma, locknum);
6d49dab8 2104 rcu_read_unlock();
1da177e4 2105out_free:
239521f3 2106 if (sops != fast_sops)
e4243b80 2107 kvfree(sops);
1da177e4
LT
2108 return error;
2109}
2110
44ee4546
AV
2111SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2112 unsigned, nsops, const struct timespec __user *, timeout)
2113{
2114 if (timeout) {
3ef56dc2
DD
2115 struct timespec64 ts;
2116 if (get_timespec64(&ts, timeout))
44ee4546
AV
2117 return -EFAULT;
2118 return do_semtimedop(semid, tsops, nsops, &ts);
2119 }
2120 return do_semtimedop(semid, tsops, nsops, NULL);
2121}
2122
2123#ifdef CONFIG_COMPAT
2124COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2125 unsigned, nsops,
2126 const struct compat_timespec __user *, timeout)
2127{
2128 if (timeout) {
3ef56dc2
DD
2129 struct timespec64 ts;
2130 if (compat_get_timespec64(&ts, timeout))
44ee4546
AV
2131 return -EFAULT;
2132 return do_semtimedop(semid, tsems, nsops, &ts);
2133 }
2134 return do_semtimedop(semid, tsems, nsops, NULL);
2135}
2136#endif
2137
d5460c99
HC
2138SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2139 unsigned, nsops)
1da177e4 2140{
44ee4546 2141 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2142}
2143
2144/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2145 * parent and child tasks.
1da177e4
LT
2146 */
2147
2148int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2149{
2150 struct sem_undo_list *undo_list;
2151 int error;
2152
2153 if (clone_flags & CLONE_SYSVSEM) {
2154 error = get_undo_list(&undo_list);
2155 if (error)
2156 return error;
f74370b8 2157 refcount_inc(&undo_list->refcnt);
1da177e4 2158 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2159 } else
1da177e4
LT
2160 tsk->sysvsem.undo_list = NULL;
2161
2162 return 0;
2163}
2164
2165/*
2166 * add semadj values to semaphores, free undo structures.
2167 * undo structures are not freed when semaphore arrays are destroyed
2168 * so some of them may be out of date.
2169 * IMPLEMENTATION NOTE: There is some confusion over whether the
2170 * set of adjustments that needs to be done should be done in an atomic
2171 * manner or not. That is, if we are attempting to decrement the semval
2172 * should we queue up and wait until we can do so legally?
2173 * The original implementation attempted to do this (queue and wait).
2174 * The current implementation does not do so. The POSIX standard
2175 * and SVID should be consulted to determine what behavior is mandated.
2176 */
2177void exit_sem(struct task_struct *tsk)
2178{
4daa28f6 2179 struct sem_undo_list *ulp;
1da177e4 2180
4daa28f6
MS
2181 ulp = tsk->sysvsem.undo_list;
2182 if (!ulp)
1da177e4 2183 return;
9edff4ab 2184 tsk->sysvsem.undo_list = NULL;
1da177e4 2185
f74370b8 2186 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2187 return;
2188
380af1b3 2189 for (;;) {
1da177e4 2190 struct sem_array *sma;
380af1b3 2191 struct sem_undo *un;
6062a8dc 2192 int semid, i;
9ae949fa 2193 DEFINE_WAKE_Q(wake_q);
4daa28f6 2194
2a1613a5
NB
2195 cond_resched();
2196
380af1b3 2197 rcu_read_lock();
05725f7e
JP
2198 un = list_entry_rcu(ulp->list_proc.next,
2199 struct sem_undo, list_proc);
602b8593
HK
2200 if (&un->list_proc == &ulp->list_proc) {
2201 /*
2202 * We must wait for freeary() before freeing this ulp,
2203 * in case we raced with last sem_undo. There is a small
2204 * possibility where we exit while freeary() didn't
2205 * finish unlocking sem_undo_list.
2206 */
e0892e08
PM
2207 spin_lock(&ulp->lock);
2208 spin_unlock(&ulp->lock);
602b8593
HK
2209 rcu_read_unlock();
2210 break;
2211 }
2212 spin_lock(&ulp->lock);
2213 semid = un->semid;
2214 spin_unlock(&ulp->lock);
4daa28f6 2215
602b8593 2216 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2217 if (semid == -1) {
2218 rcu_read_unlock();
602b8593 2219 continue;
6062a8dc 2220 }
1da177e4 2221
602b8593 2222 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2223 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2224 if (IS_ERR(sma)) {
2225 rcu_read_unlock();
380af1b3 2226 continue;
6062a8dc 2227 }
1da177e4 2228
6062a8dc 2229 sem_lock(sma, NULL, -1);
6e224f94 2230 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2231 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2232 sem_unlock(sma, -1);
2233 rcu_read_unlock();
2234 continue;
2235 }
bf17bb71 2236 un = __lookup_undo(ulp, semid);
380af1b3
MS
2237 if (un == NULL) {
2238 /* exit_sem raced with IPC_RMID+semget() that created
2239 * exactly the same semid. Nothing to do.
2240 */
6062a8dc 2241 sem_unlock(sma, -1);
6d49dab8 2242 rcu_read_unlock();
380af1b3
MS
2243 continue;
2244 }
2245
2246 /* remove un from the linked lists */
cf9d5d78 2247 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2248 list_del(&un->list_id);
2249
a9795584
HK
2250 /* we are the last process using this ulp, acquiring ulp->lock
2251 * isn't required. Besides that, we are also protected against
2252 * IPC_RMID as we hold sma->sem_perm lock now
2253 */
380af1b3 2254 list_del_rcu(&un->list_proc);
380af1b3 2255
4daa28f6
MS
2256 /* perform adjustments registered in un */
2257 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2258 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2259 if (un->semadj[i]) {
2260 semaphore->semval += un->semadj[i];
1da177e4
LT
2261 /*
2262 * Range checks of the new semaphore value,
2263 * not defined by sus:
2264 * - Some unices ignore the undo entirely
2265 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2266 * - some cap the value (e.g. FreeBSD caps
2267 * at 0, but doesn't enforce SEMVMX)
2268 *
2269 * Linux caps the semaphore value, both at 0
2270 * and at SEMVMX.
2271 *
239521f3 2272 * Manfred <manfred@colorfullife.com>
1da177e4 2273 */
5f921ae9
IM
2274 if (semaphore->semval < 0)
2275 semaphore->semval = 0;
2276 if (semaphore->semval > SEMVMX)
2277 semaphore->semval = SEMVMX;
b488893a 2278 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2279 }
2280 }
1da177e4 2281 /* maybe some queued-up processes were waiting for this */
9ae949fa 2282 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2283 sem_unlock(sma, -1);
6d49dab8 2284 rcu_read_unlock();
9ae949fa 2285 wake_up_q(&wake_q);
380af1b3 2286
693a8b6e 2287 kfree_rcu(un, rcu);
1da177e4 2288 }
4daa28f6 2289 kfree(ulp);
1da177e4
LT
2290}
2291
2292#ifdef CONFIG_PROC_FS
19b4946c 2293static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2294{
1efdb69b 2295 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2296 struct kern_ipc_perm *ipcp = it;
2297 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2298 time64_t sem_otime;
d12e1e50 2299
d8c63376
MS
2300 /*
2301 * The proc interface isn't aware of sem_lock(), it calls
2302 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2303 * In order to stay compatible with sem_lock(), we must
2304 * enter / leave complex_mode.
d8c63376 2305 */
5864a2fd 2306 complexmode_enter(sma);
d8c63376 2307
d12e1e50 2308 sem_otime = get_semotime(sma);
19b4946c 2309
7f032d6e 2310 seq_printf(s,
e54d02b2 2311 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2312 sma->sem_perm.key,
2313 sma->sem_perm.id,
2314 sma->sem_perm.mode,
2315 sma->sem_nsems,
2316 from_kuid_munged(user_ns, sma->sem_perm.uid),
2317 from_kgid_munged(user_ns, sma->sem_perm.gid),
2318 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2319 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2320 sem_otime,
2321 sma->sem_ctime);
2322
5864a2fd
MS
2323 complexmode_tryleave(sma);
2324
7f032d6e 2325 return 0;
1da177e4
LT
2326}
2327#endif