]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - ipc/sem.c
ipc/sem.c: store which operation blocks in perform_atomic_semop()
[mirror_ubuntu-zesty-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
73 */
74
1da177e4
LT
75#include <linux/slab.h>
76#include <linux/spinlock.h>
77#include <linux/init.h>
78#include <linux/proc_fs.h>
79#include <linux/time.h>
1da177e4
LT
80#include <linux/security.h>
81#include <linux/syscalls.h>
82#include <linux/audit.h>
c59ede7b 83#include <linux/capability.h>
19b4946c 84#include <linux/seq_file.h>
3e148c79 85#include <linux/rwsem.h>
e3893534 86#include <linux/nsproxy.h>
ae5e1b22 87#include <linux/ipc_namespace.h>
5f921ae9 88
7153e402 89#include <linux/uaccess.h>
1da177e4
LT
90#include "util.h"
91
e57940d7
MS
92/* One semaphore structure for each semaphore in the system. */
93struct sem {
94 int semval; /* current value */
95 int sempid; /* pid of last operation */
6062a8dc 96 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
97 struct list_head pending_alter; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
d12e1e50 101 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 102} ____cacheline_aligned_in_smp;
e57940d7
MS
103
104/* One queue for each sleeping process in the system. */
105struct sem_queue {
e57940d7
MS
106 struct list_head list; /* queue of pending operations */
107 struct task_struct *sleeper; /* this process */
108 struct sem_undo *undo; /* undo structure */
109 int pid; /* process id of requesting process */
110 int status; /* completion status of operation */
111 struct sembuf *sops; /* array of pending operations */
ed247b7c 112 struct sembuf *blocking; /* the operation that blocked */
e57940d7
MS
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
758a6ba3 157 * Locking:
1da177e4 158 * sem_undo.id_next,
758a6ba3 159 * sem_array.complex_count,
1a82e9e1 160 * sem_array.pending{_alter,_cont},
758a6ba3 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4 162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
46c0a8ca 163 *
758a6ba3
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4 190
239521f3 191void __init sem_init(void)
1da177e4 192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
f269f40a
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
8001c858 228 * merge_queues - merge single semop queues into global queue
f269f40a
MS
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
53dad6d3
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
5e9d5275
MS
255/*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
6d07b68c 260 * that a) sem_perm.lock is free and b) complex_count is 0.
5e9d5275
MS
261 */
262static void sem_wait_array(struct sem_array *sma)
263{
264 int i;
265 struct sem *sem;
266
6d07b68c
MS
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
270 */
271 return;
272 }
273
5e9d5275
MS
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
277 }
278}
279
6062a8dc
RR
280/*
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
6062a8dc
RR
286 */
287static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
289{
5e9d5275 290 struct sem *sem;
6062a8dc 291
5e9d5275
MS
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
6062a8dc 295
5e9d5275
MS
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
6062a8dc 298 */
5e9d5275
MS
299 sem_wait_array(sma);
300 return -1;
301 }
302
303 /*
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
317 */
318 sem = sma->sem_base + sops->sem_num;
6062a8dc 319
5e9d5275 320 if (sma->complex_count == 0) {
6062a8dc 321 /*
5e9d5275
MS
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
6062a8dc 324 */
5e9d5275
MS
325 spin_lock(&sem->lock);
326
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
331
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
335 */
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
339 }
6062a8dc 340 }
5e9d5275
MS
341 spin_unlock(&sem->lock);
342 }
343
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
6062a8dc 346
5e9d5275
MS
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
351 */
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
6062a8dc 355 } else {
5e9d5275
MS
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
6062a8dc 358 */
5e9d5275
MS
359 sem_wait_array(sma);
360 return -1;
6062a8dc 361 }
6062a8dc
RR
362}
363
364static inline void sem_unlock(struct sem_array *sma, int locknum)
365{
366 if (locknum == -1) {
f269f40a 367 unmerge_queues(sma);
cf9d5d78 368 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
372 }
6062a8dc
RR
373}
374
3e148c79 375/*
d9a605e4 376 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 377 * is not held.
321310ce
LT
378 *
379 * The caller holds the RCU read lock.
3e148c79 380 */
6062a8dc
RR
381static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 383{
c460b662
RR
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
03f02c76 386
c460b662 387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
b1ed88b4 390
6062a8dc
RR
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
393
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
396 */
72a8ff2f 397 if (ipc_valid_object(ipcp))
c460b662
RR
398 return container_of(ipcp, struct sem_array, sem_perm);
399
6062a8dc 400 sem_unlock(sma, *locknum);
321310ce 401 return ERR_PTR(-EINVAL);
023a5355
ND
402}
403
16df3674
DB
404static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405{
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
410
411 return container_of(ipcp, struct sem_array, sem_perm);
412}
413
16df3674
DB
414static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
416{
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
b1ed88b4 421
03f02c76 422 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
423}
424
6ff37972
PP
425static inline void sem_lock_and_putref(struct sem_array *sma)
426{
6062a8dc 427 sem_lock(sma, NULL, -1);
53dad6d3 428 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
429}
430
7ca7e564
ND
431static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432{
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
434}
435
1da177e4
LT
436/*
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
1a82e9e1 441 * * unlinking the queue entry from the pending list
1da177e4
LT
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
239521f3
MS
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
1da177e4
LT
453 *
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
466 *
467 */
468#define IN_WAKEUP 1
469
f4566f04
ND
470/**
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
474 *
d9a605e4 475 * Called with sem_ids.rwsem held (as a writer)
f4566f04 476 */
7748dbfa 477static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
478{
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
7748dbfa
ND
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
b97e820f 486 int i;
1da177e4
LT
487
488 if (!nsems)
489 return -EINVAL;
e3893534 490 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
491 return -ENOSPC;
492
239521f3 493 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4 494 sma = ipc_rcu_alloc(size);
3ab08fe2 495 if (!sma)
1da177e4 496 return -ENOMEM;
3ab08fe2 497
239521f3 498 memset(sma, 0, size);
1da177e4
LT
499
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
502
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
53dad6d3 506 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
507 return retval;
508 }
509
e3893534 510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 511 if (id < 0) {
53dad6d3 512 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 513 return id;
1da177e4 514 }
e3893534 515 ns->used_sems += nsems;
1da177e4
LT
516
517 sma->sem_base = (struct sem *) &sma[1];
b97e820f 518
6062a8dc 519 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
522 spin_lock_init(&sma->sem_base[i].lock);
523 }
b97e820f
MS
524
525 sma->complex_count = 0;
1a82e9e1
MS
526 INIT_LIST_HEAD(&sma->pending_alter);
527 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 528 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
529 sma->sem_nsems = nsems;
530 sma->sem_ctime = get_seconds();
6062a8dc 531 sem_unlock(sma, -1);
6d49dab8 532 rcu_read_unlock();
1da177e4 533
7ca7e564 534 return sma->sem_perm.id;
1da177e4
LT
535}
536
7748dbfa 537
f4566f04 538/*
d9a605e4 539 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 540 */
03f02c76 541static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 542{
03f02c76
ND
543 struct sem_array *sma;
544
545 sma = container_of(ipcp, struct sem_array, sem_perm);
546 return security_sem_associate(sma, semflg);
7748dbfa
ND
547}
548
f4566f04 549/*
d9a605e4 550 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 551 */
03f02c76
ND
552static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 struct ipc_params *params)
7748dbfa 554{
03f02c76
ND
555 struct sem_array *sma;
556
557 sma = container_of(ipcp, struct sem_array, sem_perm);
558 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
559 return -EINVAL;
560
561 return 0;
562}
563
d5460c99 564SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 565{
e3893534 566 struct ipc_namespace *ns;
eb66ec44
MK
567 static const struct ipc_ops sem_ops = {
568 .getnew = newary,
569 .associate = sem_security,
570 .more_checks = sem_more_checks,
571 };
7748dbfa 572 struct ipc_params sem_params;
e3893534
KK
573
574 ns = current->nsproxy->ipc_ns;
1da177e4 575
e3893534 576 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 577 return -EINVAL;
7ca7e564 578
7748dbfa
ND
579 sem_params.key = key;
580 sem_params.flg = semflg;
581 sem_params.u.nsems = nsems;
1da177e4 582
7748dbfa 583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
584}
585
78f5009c
PM
586/**
587 * perform_atomic_semop - Perform (if possible) a semaphore operation
758a6ba3 588 * @sma: semaphore array
d198cd6d 589 * @q: struct sem_queue that describes the operation
758a6ba3
MS
590 *
591 * Returns 0 if the operation was possible.
592 * Returns 1 if the operation is impossible, the caller must sleep.
593 * Negative values are error codes.
1da177e4 594 */
d198cd6d 595static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
1da177e4 596{
d198cd6d 597 int result, sem_op, nsops, pid;
1da177e4 598 struct sembuf *sop;
239521f3 599 struct sem *curr;
d198cd6d
MS
600 struct sembuf *sops;
601 struct sem_undo *un;
602
603 sops = q->sops;
604 nsops = q->nsops;
605 un = q->undo;
1da177e4
LT
606
607 for (sop = sops; sop < sops + nsops; sop++) {
608 curr = sma->sem_base + sop->sem_num;
609 sem_op = sop->sem_op;
610 result = curr->semval;
78f5009c 611
1da177e4
LT
612 if (!sem_op && result)
613 goto would_block;
614
615 result += sem_op;
616 if (result < 0)
617 goto would_block;
618 if (result > SEMVMX)
619 goto out_of_range;
78f5009c 620
1da177e4
LT
621 if (sop->sem_flg & SEM_UNDO) {
622 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 623 /* Exceeding the undo range is an error. */
1da177e4
LT
624 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
625 goto out_of_range;
78f5009c 626 un->semadj[sop->sem_num] = undo;
1da177e4 627 }
78f5009c 628
1da177e4
LT
629 curr->semval = result;
630 }
631
632 sop--;
d198cd6d 633 pid = q->pid;
1da177e4
LT
634 while (sop >= sops) {
635 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
636 sop--;
637 }
78f5009c 638
1da177e4
LT
639 return 0;
640
641out_of_range:
642 result = -ERANGE;
643 goto undo;
644
645would_block:
ed247b7c
MS
646 q->blocking = sop;
647
1da177e4
LT
648 if (sop->sem_flg & IPC_NOWAIT)
649 result = -EAGAIN;
650 else
651 result = 1;
652
653undo:
654 sop--;
655 while (sop >= sops) {
78f5009c
PM
656 sem_op = sop->sem_op;
657 sma->sem_base[sop->sem_num].semval -= sem_op;
658 if (sop->sem_flg & SEM_UNDO)
659 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
660 sop--;
661 }
662
663 return result;
664}
665
0a2b9d4c
MS
666/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
667 * @q: queue entry that must be signaled
668 * @error: Error value for the signal
669 *
670 * Prepare the wake-up of the queue entry q.
d4212093 671 */
0a2b9d4c
MS
672static void wake_up_sem_queue_prepare(struct list_head *pt,
673 struct sem_queue *q, int error)
d4212093 674{
0a2b9d4c
MS
675 if (list_empty(pt)) {
676 /*
677 * Hold preempt off so that we don't get preempted and have the
678 * wakee busy-wait until we're scheduled back on.
679 */
680 preempt_disable();
681 }
d4212093 682 q->status = IN_WAKEUP;
0a2b9d4c
MS
683 q->pid = error;
684
9f1bc2c9 685 list_add_tail(&q->list, pt);
0a2b9d4c
MS
686}
687
688/**
8001c858 689 * wake_up_sem_queue_do - do the actual wake-up
0a2b9d4c
MS
690 * @pt: list of tasks to be woken up
691 *
692 * Do the actual wake-up.
693 * The function is called without any locks held, thus the semaphore array
694 * could be destroyed already and the tasks can disappear as soon as the
695 * status is set to the actual return code.
696 */
697static void wake_up_sem_queue_do(struct list_head *pt)
698{
699 struct sem_queue *q, *t;
700 int did_something;
701
702 did_something = !list_empty(pt);
9f1bc2c9 703 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
704 wake_up_process(q->sleeper);
705 /* q can disappear immediately after writing q->status. */
706 smp_wmb();
707 q->status = q->pid;
708 }
709 if (did_something)
710 preempt_enable();
d4212093
NP
711}
712
b97e820f
MS
713static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
714{
715 list_del(&q->list);
9f1bc2c9 716 if (q->nsops > 1)
b97e820f
MS
717 sma->complex_count--;
718}
719
fd5db422
MS
720/** check_restart(sma, q)
721 * @sma: semaphore array
722 * @q: the operation that just completed
723 *
724 * update_queue is O(N^2) when it restarts scanning the whole queue of
725 * waiting operations. Therefore this function checks if the restart is
726 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
727 * modified the array.
728 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
729 */
730static int check_restart(struct sem_array *sma, struct sem_queue *q)
731{
1a82e9e1
MS
732 /* pending complex alter operations are too difficult to analyse */
733 if (!list_empty(&sma->pending_alter))
fd5db422
MS
734 return 1;
735
736 /* we were a sleeping complex operation. Too difficult */
737 if (q->nsops > 1)
738 return 1;
739
1a82e9e1
MS
740 /* It is impossible that someone waits for the new value:
741 * - complex operations always restart.
742 * - wait-for-zero are handled seperately.
743 * - q is a previously sleeping simple operation that
744 * altered the array. It must be a decrement, because
745 * simple increments never sleep.
746 * - If there are older (higher priority) decrements
747 * in the queue, then they have observed the original
748 * semval value and couldn't proceed. The operation
749 * decremented to value - thus they won't proceed either.
750 */
751 return 0;
752}
fd5db422 753
1a82e9e1 754/**
8001c858 755 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
756 * @sma: semaphore array.
757 * @semnum: semaphore that was modified.
758 * @pt: list head for the tasks that must be woken up.
759 *
760 * wake_const_ops must be called after a semaphore in a semaphore array
761 * was set to 0. If complex const operations are pending, wake_const_ops must
762 * be called with semnum = -1, as well as with the number of each modified
763 * semaphore.
764 * The tasks that must be woken up are added to @pt. The return code
765 * is stored in q->pid.
766 * The function returns 1 if at least one operation was completed successfully.
767 */
768static int wake_const_ops(struct sem_array *sma, int semnum,
769 struct list_head *pt)
770{
771 struct sem_queue *q;
772 struct list_head *walk;
773 struct list_head *pending_list;
774 int semop_completed = 0;
775
776 if (semnum == -1)
777 pending_list = &sma->pending_const;
778 else
779 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 780
1a82e9e1
MS
781 walk = pending_list->next;
782 while (walk != pending_list) {
783 int error;
784
785 q = container_of(walk, struct sem_queue, list);
786 walk = walk->next;
787
d198cd6d 788 error = perform_atomic_semop(sma, q);
1a82e9e1
MS
789
790 if (error <= 0) {
791 /* operation completed, remove from queue & wakeup */
792
793 unlink_queue(sma, q);
794
795 wake_up_sem_queue_prepare(pt, q, error);
796 if (error == 0)
797 semop_completed = 1;
798 }
799 }
800 return semop_completed;
801}
802
803/**
8001c858 804 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
805 * @sma: semaphore array
806 * @sops: operations that were performed
807 * @nsops: number of operations
808 * @pt: list head of the tasks that must be woken up.
809 *
8001c858
DB
810 * Checks all required queue for wait-for-zero operations, based
811 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
812 * The function returns 1 if at least one operation was completed successfully.
813 */
814static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
815 int nsops, struct list_head *pt)
816{
817 int i;
818 int semop_completed = 0;
819 int got_zero = 0;
820
821 /* first: the per-semaphore queues, if known */
822 if (sops) {
823 for (i = 0; i < nsops; i++) {
824 int num = sops[i].sem_num;
825
826 if (sma->sem_base[num].semval == 0) {
827 got_zero = 1;
828 semop_completed |= wake_const_ops(sma, num, pt);
829 }
830 }
831 } else {
832 /*
833 * No sops means modified semaphores not known.
834 * Assume all were changed.
fd5db422 835 */
1a82e9e1
MS
836 for (i = 0; i < sma->sem_nsems; i++) {
837 if (sma->sem_base[i].semval == 0) {
838 got_zero = 1;
839 semop_completed |= wake_const_ops(sma, i, pt);
840 }
841 }
fd5db422
MS
842 }
843 /*
1a82e9e1
MS
844 * If one of the modified semaphores got 0,
845 * then check the global queue, too.
fd5db422 846 */
1a82e9e1
MS
847 if (got_zero)
848 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 849
1a82e9e1 850 return semop_completed;
fd5db422
MS
851}
852
636c6be8
MS
853
854/**
8001c858 855 * update_queue - look for tasks that can be completed.
636c6be8
MS
856 * @sma: semaphore array.
857 * @semnum: semaphore that was modified.
0a2b9d4c 858 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
859 *
860 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
861 * was modified. If multiple semaphores were modified, update_queue must
862 * be called with semnum = -1, as well as with the number of each modified
863 * semaphore.
0a2b9d4c
MS
864 * The tasks that must be woken up are added to @pt. The return code
865 * is stored in q->pid.
1a82e9e1
MS
866 * The function internally checks if const operations can now succeed.
867 *
0a2b9d4c 868 * The function return 1 if at least one semop was completed successfully.
1da177e4 869 */
0a2b9d4c 870static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 871{
636c6be8
MS
872 struct sem_queue *q;
873 struct list_head *walk;
874 struct list_head *pending_list;
0a2b9d4c 875 int semop_completed = 0;
636c6be8 876
9f1bc2c9 877 if (semnum == -1)
1a82e9e1 878 pending_list = &sma->pending_alter;
9f1bc2c9 879 else
1a82e9e1 880 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
881
882again:
636c6be8
MS
883 walk = pending_list->next;
884 while (walk != pending_list) {
fd5db422 885 int error, restart;
636c6be8 886
9f1bc2c9 887 q = container_of(walk, struct sem_queue, list);
636c6be8 888 walk = walk->next;
1da177e4 889
d987f8b2
MS
890 /* If we are scanning the single sop, per-semaphore list of
891 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 892 * necessary to scan further: simple increments
d987f8b2
MS
893 * that affect only one entry succeed immediately and cannot
894 * be in the per semaphore pending queue, and decrements
895 * cannot be successful if the value is already 0.
896 */
1a82e9e1 897 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
898 break;
899
d198cd6d 900 error = perform_atomic_semop(sma, q);
1da177e4
LT
901
902 /* Does q->sleeper still need to sleep? */
9cad200c
NP
903 if (error > 0)
904 continue;
905
b97e820f 906 unlink_queue(sma, q);
9cad200c 907
0a2b9d4c 908 if (error) {
fd5db422 909 restart = 0;
0a2b9d4c
MS
910 } else {
911 semop_completed = 1;
1a82e9e1 912 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 913 restart = check_restart(sma, q);
0a2b9d4c 914 }
fd5db422 915
0a2b9d4c 916 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 917 if (restart)
9cad200c 918 goto again;
1da177e4 919 }
0a2b9d4c 920 return semop_completed;
1da177e4
LT
921}
922
0e8c6656 923/**
8001c858 924 * set_semotime - set sem_otime
0e8c6656
MS
925 * @sma: semaphore array
926 * @sops: operations that modified the array, may be NULL
927 *
928 * sem_otime is replicated to avoid cache line trashing.
929 * This function sets one instance to the current time.
930 */
931static void set_semotime(struct sem_array *sma, struct sembuf *sops)
932{
933 if (sops == NULL) {
934 sma->sem_base[0].sem_otime = get_seconds();
935 } else {
936 sma->sem_base[sops[0].sem_num].sem_otime =
937 get_seconds();
938 }
939}
940
0a2b9d4c 941/**
8001c858 942 * do_smart_update - optimized update_queue
fd5db422
MS
943 * @sma: semaphore array
944 * @sops: operations that were performed
945 * @nsops: number of operations
0a2b9d4c
MS
946 * @otime: force setting otime
947 * @pt: list head of the tasks that must be woken up.
fd5db422 948 *
1a82e9e1
MS
949 * do_smart_update() does the required calls to update_queue and wakeup_zero,
950 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
951 * Note that the function does not do the actual wake-up: the caller is
952 * responsible for calling wake_up_sem_queue_do(@pt).
953 * It is safe to perform this call after dropping all locks.
fd5db422 954 */
0a2b9d4c
MS
955static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
956 int otime, struct list_head *pt)
fd5db422
MS
957{
958 int i;
959
1a82e9e1
MS
960 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
961
f269f40a
MS
962 if (!list_empty(&sma->pending_alter)) {
963 /* semaphore array uses the global queue - just process it. */
964 otime |= update_queue(sma, -1, pt);
965 } else {
966 if (!sops) {
967 /*
968 * No sops, thus the modified semaphores are not
969 * known. Check all.
970 */
971 for (i = 0; i < sma->sem_nsems; i++)
972 otime |= update_queue(sma, i, pt);
973 } else {
974 /*
975 * Check the semaphores that were increased:
976 * - No complex ops, thus all sleeping ops are
977 * decrease.
978 * - if we decreased the value, then any sleeping
979 * semaphore ops wont be able to run: If the
980 * previous value was too small, then the new
981 * value will be too small, too.
982 */
983 for (i = 0; i < nsops; i++) {
984 if (sops[i].sem_op > 0) {
985 otime |= update_queue(sma,
986 sops[i].sem_num, pt);
987 }
ab465df9 988 }
9f1bc2c9 989 }
fd5db422 990 }
0e8c6656
MS
991 if (otime)
992 set_semotime(sma, sops);
fd5db422
MS
993}
994
2f2ed41d
MS
995/*
996 * check_qop: Test how often a queued operation sleeps on the semaphore semnum
997 */
998static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
999 bool count_zero)
1000{
1001 struct sembuf *sops = q->sops;
1002 int nsops = q->nsops;
1003 int i, semcnt;
1004
1005 semcnt = 0;
1006
1007 for (i = 0; i < nsops; i++) {
1008 if (sops[i].sem_num != semnum)
1009 continue;
1010 if (sops[i].sem_flg & IPC_NOWAIT)
1011 continue;
1012 if (count_zero && sops[i].sem_op == 0)
1013 semcnt++;
1014 if (!count_zero && sops[i].sem_op < 0)
1015 semcnt++;
1016 }
1017 return semcnt;
1018}
1019
1da177e4
LT
1020/* The following counts are associated to each semaphore:
1021 * semncnt number of tasks waiting on semval being nonzero
1022 * semzcnt number of tasks waiting on semval being zero
1023 * This model assumes that a task waits on exactly one semaphore.
1024 * Since semaphore operations are to be performed atomically, tasks actually
1025 * wait on a whole sequence of semaphores simultaneously.
1026 * The counts we return here are a rough approximation, but still
1027 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1028 */
2f2ed41d
MS
1029static int count_semcnt(struct sem_array *sma, ushort semnum,
1030 bool count_zero)
1da177e4 1031{
2f2ed41d 1032 struct list_head *l;
239521f3 1033 struct sem_queue *q;
2f2ed41d 1034 int semcnt;
1da177e4 1035
2f2ed41d
MS
1036 semcnt = 0;
1037 /* First: check the simple operations. They are easy to evaluate */
1038 if (count_zero)
1039 l = &sma->sem_base[semnum].pending_const;
1040 else
1041 l = &sma->sem_base[semnum].pending_alter;
1da177e4 1042
2f2ed41d
MS
1043 list_for_each_entry(q, l, list) {
1044 /* all task on a per-semaphore list sleep on exactly
1045 * that semaphore
1046 */
1047 semcnt++;
ebc2e5e6
RR
1048 }
1049
2f2ed41d 1050 /* Then: check the complex operations. */
1994862d 1051 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1052 semcnt += check_qop(sma, semnum, q, count_zero);
1053 }
1054 if (count_zero) {
1055 list_for_each_entry(q, &sma->pending_const, list) {
1056 semcnt += check_qop(sma, semnum, q, count_zero);
1057 }
1994862d 1058 }
2f2ed41d 1059 return semcnt;
1da177e4
LT
1060}
1061
d9a605e4
DB
1062/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1063 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1064 * remains locked on exit.
1da177e4 1065 */
01b8b07a 1066static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1067{
380af1b3
MS
1068 struct sem_undo *un, *tu;
1069 struct sem_queue *q, *tq;
01b8b07a 1070 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1071 struct list_head tasks;
9f1bc2c9 1072 int i;
1da177e4 1073
380af1b3 1074 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1075 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1076 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1077 list_del(&un->list_id);
1078 spin_lock(&un->ulp->lock);
1da177e4 1079 un->semid = -1;
380af1b3
MS
1080 list_del_rcu(&un->list_proc);
1081 spin_unlock(&un->ulp->lock);
693a8b6e 1082 kfree_rcu(un, rcu);
380af1b3 1083 }
1da177e4
LT
1084
1085 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1086 INIT_LIST_HEAD(&tasks);
1a82e9e1
MS
1087 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1088 unlink_queue(sma, q);
1089 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1090 }
1091
1092 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1093 unlink_queue(sma, q);
0a2b9d4c 1094 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1095 }
9f1bc2c9
RR
1096 for (i = 0; i < sma->sem_nsems; i++) {
1097 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1098 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1099 unlink_queue(sma, q);
1100 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1101 }
1102 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1103 unlink_queue(sma, q);
1104 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1105 }
1106 }
1da177e4 1107
7ca7e564
ND
1108 /* Remove the semaphore set from the IDR */
1109 sem_rmid(ns, sma);
6062a8dc 1110 sem_unlock(sma, -1);
6d49dab8 1111 rcu_read_unlock();
1da177e4 1112
0a2b9d4c 1113 wake_up_sem_queue_do(&tasks);
e3893534 1114 ns->used_sems -= sma->sem_nsems;
53dad6d3 1115 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1116}
1117
1118static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1119{
239521f3 1120 switch (version) {
1da177e4
LT
1121 case IPC_64:
1122 return copy_to_user(buf, in, sizeof(*in));
1123 case IPC_OLD:
1124 {
1125 struct semid_ds out;
1126
982f7c2b
DR
1127 memset(&out, 0, sizeof(out));
1128
1da177e4
LT
1129 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1130
1131 out.sem_otime = in->sem_otime;
1132 out.sem_ctime = in->sem_ctime;
1133 out.sem_nsems = in->sem_nsems;
1134
1135 return copy_to_user(buf, &out, sizeof(out));
1136 }
1137 default:
1138 return -EINVAL;
1139 }
1140}
1141
d12e1e50
MS
1142static time_t get_semotime(struct sem_array *sma)
1143{
1144 int i;
1145 time_t res;
1146
1147 res = sma->sem_base[0].sem_otime;
1148 for (i = 1; i < sma->sem_nsems; i++) {
1149 time_t to = sma->sem_base[i].sem_otime;
1150
1151 if (to > res)
1152 res = to;
1153 }
1154 return res;
1155}
1156
4b9fcb0e 1157static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1158 int cmd, int version, void __user *p)
1da177e4 1159{
e5cc9c7b 1160 int err;
1da177e4
LT
1161 struct sem_array *sma;
1162
239521f3 1163 switch (cmd) {
1da177e4
LT
1164 case IPC_INFO:
1165 case SEM_INFO:
1166 {
1167 struct seminfo seminfo;
1168 int max_id;
1169
1170 err = security_sem_semctl(NULL, cmd);
1171 if (err)
1172 return err;
46c0a8ca 1173
239521f3 1174 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1175 seminfo.semmni = ns->sc_semmni;
1176 seminfo.semmns = ns->sc_semmns;
1177 seminfo.semmsl = ns->sc_semmsl;
1178 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1179 seminfo.semvmx = SEMVMX;
1180 seminfo.semmnu = SEMMNU;
1181 seminfo.semmap = SEMMAP;
1182 seminfo.semume = SEMUME;
d9a605e4 1183 down_read(&sem_ids(ns).rwsem);
1da177e4 1184 if (cmd == SEM_INFO) {
e3893534
KK
1185 seminfo.semusz = sem_ids(ns).in_use;
1186 seminfo.semaem = ns->used_sems;
1da177e4
LT
1187 } else {
1188 seminfo.semusz = SEMUSZ;
1189 seminfo.semaem = SEMAEM;
1190 }
7ca7e564 1191 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1192 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1193 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1194 return -EFAULT;
239521f3 1195 return (max_id < 0) ? 0 : max_id;
1da177e4 1196 }
4b9fcb0e 1197 case IPC_STAT:
1da177e4
LT
1198 case SEM_STAT:
1199 {
1200 struct semid64_ds tbuf;
16df3674
DB
1201 int id = 0;
1202
1203 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1204
941b0304 1205 rcu_read_lock();
4b9fcb0e 1206 if (cmd == SEM_STAT) {
16df3674
DB
1207 sma = sem_obtain_object(ns, semid);
1208 if (IS_ERR(sma)) {
1209 err = PTR_ERR(sma);
1210 goto out_unlock;
1211 }
4b9fcb0e
PP
1212 id = sma->sem_perm.id;
1213 } else {
16df3674
DB
1214 sma = sem_obtain_object_check(ns, semid);
1215 if (IS_ERR(sma)) {
1216 err = PTR_ERR(sma);
1217 goto out_unlock;
1218 }
4b9fcb0e 1219 }
1da177e4
LT
1220
1221 err = -EACCES;
b0e77598 1222 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1223 goto out_unlock;
1224
1225 err = security_sem_semctl(sma, cmd);
1226 if (err)
1227 goto out_unlock;
1228
1da177e4 1229 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1230 tbuf.sem_otime = get_semotime(sma);
1231 tbuf.sem_ctime = sma->sem_ctime;
1232 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1233 rcu_read_unlock();
e1fd1f49 1234 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1235 return -EFAULT;
1236 return id;
1237 }
1238 default:
1239 return -EINVAL;
1240 }
1da177e4 1241out_unlock:
16df3674 1242 rcu_read_unlock();
1da177e4
LT
1243 return err;
1244}
1245
e1fd1f49
AV
1246static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1247 unsigned long arg)
1248{
1249 struct sem_undo *un;
1250 struct sem_array *sma;
239521f3 1251 struct sem *curr;
e1fd1f49 1252 int err;
e1fd1f49
AV
1253 struct list_head tasks;
1254 int val;
1255#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1256 /* big-endian 64bit */
1257 val = arg >> 32;
1258#else
1259 /* 32bit or little-endian 64bit */
1260 val = arg;
1261#endif
1262
6062a8dc
RR
1263 if (val > SEMVMX || val < 0)
1264 return -ERANGE;
e1fd1f49
AV
1265
1266 INIT_LIST_HEAD(&tasks);
e1fd1f49 1267
6062a8dc
RR
1268 rcu_read_lock();
1269 sma = sem_obtain_object_check(ns, semid);
1270 if (IS_ERR(sma)) {
1271 rcu_read_unlock();
1272 return PTR_ERR(sma);
1273 }
1274
1275 if (semnum < 0 || semnum >= sma->sem_nsems) {
1276 rcu_read_unlock();
1277 return -EINVAL;
1278 }
1279
1280
1281 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1282 rcu_read_unlock();
1283 return -EACCES;
1284 }
e1fd1f49
AV
1285
1286 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1287 if (err) {
1288 rcu_read_unlock();
1289 return -EACCES;
1290 }
e1fd1f49 1291
6062a8dc 1292 sem_lock(sma, NULL, -1);
e1fd1f49 1293
0f3d2b01 1294 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1295 sem_unlock(sma, -1);
1296 rcu_read_unlock();
1297 return -EIDRM;
1298 }
1299
e1fd1f49
AV
1300 curr = &sma->sem_base[semnum];
1301
cf9d5d78 1302 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1303 list_for_each_entry(un, &sma->list_id, list_id)
1304 un->semadj[semnum] = 0;
1305
1306 curr->semval = val;
1307 curr->sempid = task_tgid_vnr(current);
1308 sma->sem_ctime = get_seconds();
1309 /* maybe some queued-up processes were waiting for this */
1310 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1311 sem_unlock(sma, -1);
6d49dab8 1312 rcu_read_unlock();
e1fd1f49 1313 wake_up_sem_queue_do(&tasks);
6062a8dc 1314 return 0;
e1fd1f49
AV
1315}
1316
e3893534 1317static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1318 int cmd, void __user *p)
1da177e4
LT
1319{
1320 struct sem_array *sma;
239521f3 1321 struct sem *curr;
16df3674 1322 int err, nsems;
1da177e4 1323 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1324 ushort *sem_io = fast_sem_io;
0a2b9d4c 1325 struct list_head tasks;
1da177e4 1326
16df3674
DB
1327 INIT_LIST_HEAD(&tasks);
1328
1329 rcu_read_lock();
1330 sma = sem_obtain_object_check(ns, semid);
1331 if (IS_ERR(sma)) {
1332 rcu_read_unlock();
023a5355 1333 return PTR_ERR(sma);
16df3674 1334 }
1da177e4
LT
1335
1336 nsems = sma->sem_nsems;
1337
1da177e4 1338 err = -EACCES;
c728b9c8
LT
1339 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1340 goto out_rcu_wakeup;
1da177e4
LT
1341
1342 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1343 if (err)
1344 goto out_rcu_wakeup;
1da177e4
LT
1345
1346 err = -EACCES;
1347 switch (cmd) {
1348 case GETALL:
1349 {
e1fd1f49 1350 ushort __user *array = p;
1da177e4
LT
1351 int i;
1352
ce857229 1353 sem_lock(sma, NULL, -1);
0f3d2b01 1354 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1355 err = -EIDRM;
1356 goto out_unlock;
1357 }
239521f3 1358 if (nsems > SEMMSL_FAST) {
ce857229 1359 if (!ipc_rcu_getref(sma)) {
ce857229 1360 err = -EIDRM;
6e224f94 1361 goto out_unlock;
ce857229
AV
1362 }
1363 sem_unlock(sma, -1);
6d49dab8 1364 rcu_read_unlock();
1da177e4 1365 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1366 if (sem_io == NULL) {
53dad6d3 1367 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1368 return -ENOMEM;
1369 }
1370
4091fd94 1371 rcu_read_lock();
6ff37972 1372 sem_lock_and_putref(sma);
0f3d2b01 1373 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1374 err = -EIDRM;
6e224f94 1375 goto out_unlock;
1da177e4 1376 }
ce857229 1377 }
1da177e4
LT
1378 for (i = 0; i < sma->sem_nsems; i++)
1379 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1380 sem_unlock(sma, -1);
6d49dab8 1381 rcu_read_unlock();
1da177e4 1382 err = 0;
239521f3 1383 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1384 err = -EFAULT;
1385 goto out_free;
1386 }
1387 case SETALL:
1388 {
1389 int i;
1390 struct sem_undo *un;
1391
6062a8dc 1392 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1393 err = -EIDRM;
1394 goto out_rcu_wakeup;
6062a8dc 1395 }
16df3674 1396 rcu_read_unlock();
1da177e4 1397
239521f3 1398 if (nsems > SEMMSL_FAST) {
1da177e4 1399 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1400 if (sem_io == NULL) {
53dad6d3 1401 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1402 return -ENOMEM;
1403 }
1404 }
1405
239521f3 1406 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
53dad6d3 1407 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1408 err = -EFAULT;
1409 goto out_free;
1410 }
1411
1412 for (i = 0; i < nsems; i++) {
1413 if (sem_io[i] > SEMVMX) {
53dad6d3 1414 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1415 err = -ERANGE;
1416 goto out_free;
1417 }
1418 }
4091fd94 1419 rcu_read_lock();
6ff37972 1420 sem_lock_and_putref(sma);
0f3d2b01 1421 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1422 err = -EIDRM;
6e224f94 1423 goto out_unlock;
1da177e4
LT
1424 }
1425
1426 for (i = 0; i < nsems; i++)
1427 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1428
cf9d5d78 1429 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1430 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1431 for (i = 0; i < nsems; i++)
1432 un->semadj[i] = 0;
4daa28f6 1433 }
1da177e4
LT
1434 sma->sem_ctime = get_seconds();
1435 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1436 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1437 err = 0;
1438 goto out_unlock;
1439 }
e1fd1f49 1440 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1441 }
1442 err = -EINVAL;
c728b9c8
LT
1443 if (semnum < 0 || semnum >= nsems)
1444 goto out_rcu_wakeup;
1da177e4 1445
6062a8dc 1446 sem_lock(sma, NULL, -1);
0f3d2b01 1447 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1448 err = -EIDRM;
1449 goto out_unlock;
1450 }
1da177e4
LT
1451 curr = &sma->sem_base[semnum];
1452
1453 switch (cmd) {
1454 case GETVAL:
1455 err = curr->semval;
1456 goto out_unlock;
1457 case GETPID:
1458 err = curr->sempid;
1459 goto out_unlock;
1460 case GETNCNT:
2f2ed41d 1461 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1462 goto out_unlock;
1463 case GETZCNT:
2f2ed41d 1464 err = count_semcnt(sma, semnum, 1);
1da177e4 1465 goto out_unlock;
1da177e4 1466 }
16df3674 1467
1da177e4 1468out_unlock:
6062a8dc 1469 sem_unlock(sma, -1);
c728b9c8 1470out_rcu_wakeup:
6d49dab8 1471 rcu_read_unlock();
0a2b9d4c 1472 wake_up_sem_queue_do(&tasks);
1da177e4 1473out_free:
239521f3 1474 if (sem_io != fast_sem_io)
1da177e4
LT
1475 ipc_free(sem_io, sizeof(ushort)*nsems);
1476 return err;
1477}
1478
016d7132
PP
1479static inline unsigned long
1480copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1481{
239521f3 1482 switch (version) {
1da177e4 1483 case IPC_64:
016d7132 1484 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1485 return -EFAULT;
1da177e4 1486 return 0;
1da177e4
LT
1487 case IPC_OLD:
1488 {
1489 struct semid_ds tbuf_old;
1490
239521f3 1491 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1492 return -EFAULT;
1493
016d7132
PP
1494 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1495 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1496 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1497
1498 return 0;
1499 }
1500 default:
1501 return -EINVAL;
1502 }
1503}
1504
522bb2a2 1505/*
d9a605e4 1506 * This function handles some semctl commands which require the rwsem
522bb2a2 1507 * to be held in write mode.
d9a605e4 1508 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1509 */
21a4826a 1510static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1511 int cmd, int version, void __user *p)
1da177e4
LT
1512{
1513 struct sem_array *sma;
1514 int err;
016d7132 1515 struct semid64_ds semid64;
1da177e4
LT
1516 struct kern_ipc_perm *ipcp;
1517
239521f3 1518 if (cmd == IPC_SET) {
e1fd1f49 1519 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1520 return -EFAULT;
1da177e4 1521 }
073115d6 1522
d9a605e4 1523 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1524 rcu_read_lock();
1525
16df3674
DB
1526 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1527 &semid64.sem_perm, 0);
7b4cc5d8
DB
1528 if (IS_ERR(ipcp)) {
1529 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1530 goto out_unlock1;
1531 }
073115d6 1532
a5f75e7f 1533 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1534
1535 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1536 if (err)
1537 goto out_unlock1;
1da177e4 1538
7b4cc5d8 1539 switch (cmd) {
1da177e4 1540 case IPC_RMID:
6062a8dc 1541 sem_lock(sma, NULL, -1);
7b4cc5d8 1542 /* freeary unlocks the ipc object and rcu */
01b8b07a 1543 freeary(ns, ipcp);
522bb2a2 1544 goto out_up;
1da177e4 1545 case IPC_SET:
6062a8dc 1546 sem_lock(sma, NULL, -1);
1efdb69b
EB
1547 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1548 if (err)
7b4cc5d8 1549 goto out_unlock0;
1da177e4 1550 sma->sem_ctime = get_seconds();
1da177e4
LT
1551 break;
1552 default:
1da177e4 1553 err = -EINVAL;
7b4cc5d8 1554 goto out_unlock1;
1da177e4 1555 }
1da177e4 1556
7b4cc5d8 1557out_unlock0:
6062a8dc 1558 sem_unlock(sma, -1);
7b4cc5d8 1559out_unlock1:
6d49dab8 1560 rcu_read_unlock();
522bb2a2 1561out_up:
d9a605e4 1562 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1563 return err;
1564}
1565
e1fd1f49 1566SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1567{
1da177e4 1568 int version;
e3893534 1569 struct ipc_namespace *ns;
e1fd1f49 1570 void __user *p = (void __user *)arg;
1da177e4
LT
1571
1572 if (semid < 0)
1573 return -EINVAL;
1574
1575 version = ipc_parse_version(&cmd);
e3893534 1576 ns = current->nsproxy->ipc_ns;
1da177e4 1577
239521f3 1578 switch (cmd) {
1da177e4
LT
1579 case IPC_INFO:
1580 case SEM_INFO:
4b9fcb0e 1581 case IPC_STAT:
1da177e4 1582 case SEM_STAT:
e1fd1f49 1583 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1584 case GETALL:
1585 case GETVAL:
1586 case GETPID:
1587 case GETNCNT:
1588 case GETZCNT:
1da177e4 1589 case SETALL:
e1fd1f49
AV
1590 return semctl_main(ns, semid, semnum, cmd, p);
1591 case SETVAL:
1592 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1593 case IPC_RMID:
1594 case IPC_SET:
e1fd1f49 1595 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1596 default:
1597 return -EINVAL;
1598 }
1599}
1600
1da177e4
LT
1601/* If the task doesn't already have a undo_list, then allocate one
1602 * here. We guarantee there is only one thread using this undo list,
1603 * and current is THE ONE
1604 *
1605 * If this allocation and assignment succeeds, but later
1606 * portions of this code fail, there is no need to free the sem_undo_list.
1607 * Just let it stay associated with the task, and it'll be freed later
1608 * at exit time.
1609 *
1610 * This can block, so callers must hold no locks.
1611 */
1612static inline int get_undo_list(struct sem_undo_list **undo_listp)
1613{
1614 struct sem_undo_list *undo_list;
1da177e4
LT
1615
1616 undo_list = current->sysvsem.undo_list;
1617 if (!undo_list) {
2453a306 1618 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1619 if (undo_list == NULL)
1620 return -ENOMEM;
00a5dfdb 1621 spin_lock_init(&undo_list->lock);
1da177e4 1622 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1623 INIT_LIST_HEAD(&undo_list->list_proc);
1624
1da177e4
LT
1625 current->sysvsem.undo_list = undo_list;
1626 }
1627 *undo_listp = undo_list;
1628 return 0;
1629}
1630
bf17bb71 1631static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1632{
bf17bb71 1633 struct sem_undo *un;
4daa28f6 1634
bf17bb71
NP
1635 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1636 if (un->semid == semid)
1637 return un;
1da177e4 1638 }
4daa28f6 1639 return NULL;
1da177e4
LT
1640}
1641
bf17bb71
NP
1642static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1643{
1644 struct sem_undo *un;
1645
239521f3 1646 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1647
1648 un = __lookup_undo(ulp, semid);
1649 if (un) {
1650 list_del_rcu(&un->list_proc);
1651 list_add_rcu(&un->list_proc, &ulp->list_proc);
1652 }
1653 return un;
1654}
1655
4daa28f6 1656/**
8001c858 1657 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1658 * @ns: namespace
1659 * @semid: semaphore array id
1660 *
1661 * The function looks up (and if not present creates) the undo structure.
1662 * The size of the undo structure depends on the size of the semaphore
1663 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1664 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1665 * performs a rcu_read_lock().
4daa28f6
MS
1666 */
1667static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1668{
1669 struct sem_array *sma;
1670 struct sem_undo_list *ulp;
1671 struct sem_undo *un, *new;
6062a8dc 1672 int nsems, error;
1da177e4
LT
1673
1674 error = get_undo_list(&ulp);
1675 if (error)
1676 return ERR_PTR(error);
1677
380af1b3 1678 rcu_read_lock();
c530c6ac 1679 spin_lock(&ulp->lock);
1da177e4 1680 un = lookup_undo(ulp, semid);
c530c6ac 1681 spin_unlock(&ulp->lock);
239521f3 1682 if (likely(un != NULL))
1da177e4
LT
1683 goto out;
1684
1685 /* no undo structure around - allocate one. */
4daa28f6 1686 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1687 sma = sem_obtain_object_check(ns, semid);
1688 if (IS_ERR(sma)) {
1689 rcu_read_unlock();
4de85cd6 1690 return ERR_CAST(sma);
16df3674 1691 }
023a5355 1692
1da177e4 1693 nsems = sma->sem_nsems;
6062a8dc
RR
1694 if (!ipc_rcu_getref(sma)) {
1695 rcu_read_unlock();
1696 un = ERR_PTR(-EIDRM);
1697 goto out;
1698 }
16df3674 1699 rcu_read_unlock();
1da177e4 1700
4daa28f6 1701 /* step 2: allocate new undo structure */
4668edc3 1702 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1703 if (!new) {
53dad6d3 1704 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1705 return ERR_PTR(-ENOMEM);
1706 }
1da177e4 1707
380af1b3 1708 /* step 3: Acquire the lock on semaphore array */
4091fd94 1709 rcu_read_lock();
6ff37972 1710 sem_lock_and_putref(sma);
0f3d2b01 1711 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1712 sem_unlock(sma, -1);
6d49dab8 1713 rcu_read_unlock();
1da177e4
LT
1714 kfree(new);
1715 un = ERR_PTR(-EIDRM);
1716 goto out;
1717 }
380af1b3
MS
1718 spin_lock(&ulp->lock);
1719
1720 /*
1721 * step 4: check for races: did someone else allocate the undo struct?
1722 */
1723 un = lookup_undo(ulp, semid);
1724 if (un) {
1725 kfree(new);
1726 goto success;
1727 }
4daa28f6
MS
1728 /* step 5: initialize & link new undo structure */
1729 new->semadj = (short *) &new[1];
380af1b3 1730 new->ulp = ulp;
4daa28f6
MS
1731 new->semid = semid;
1732 assert_spin_locked(&ulp->lock);
380af1b3 1733 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1734 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1735 list_add(&new->list_id, &sma->list_id);
380af1b3 1736 un = new;
4daa28f6 1737
380af1b3 1738success:
c530c6ac 1739 spin_unlock(&ulp->lock);
6062a8dc 1740 sem_unlock(sma, -1);
1da177e4
LT
1741out:
1742 return un;
1743}
1744
c61284e9
MS
1745
1746/**
8001c858 1747 * get_queue_result - retrieve the result code from sem_queue
c61284e9
MS
1748 * @q: Pointer to queue structure
1749 *
1750 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1751 * q->status, then we must loop until the value is replaced with the final
1752 * value: This may happen if a task is woken up by an unrelated event (e.g.
1753 * signal) and in parallel the task is woken up by another task because it got
1754 * the requested semaphores.
1755 *
1756 * The function can be called with or without holding the semaphore spinlock.
1757 */
1758static int get_queue_result(struct sem_queue *q)
1759{
1760 int error;
1761
1762 error = q->status;
1763 while (unlikely(error == IN_WAKEUP)) {
1764 cpu_relax();
1765 error = q->status;
1766 }
1767
1768 return error;
1769}
1770
d5460c99
HC
1771SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1772 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1773{
1774 int error = -EINVAL;
1775 struct sem_array *sma;
1776 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1777 struct sembuf *sops = fast_sops, *sop;
1da177e4 1778 struct sem_undo *un;
6062a8dc 1779 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1780 struct sem_queue queue;
1781 unsigned long jiffies_left = 0;
e3893534 1782 struct ipc_namespace *ns;
0a2b9d4c 1783 struct list_head tasks;
e3893534
KK
1784
1785 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1786
1787 if (nsops < 1 || semid < 0)
1788 return -EINVAL;
e3893534 1789 if (nsops > ns->sc_semopm)
1da177e4 1790 return -E2BIG;
239521f3
MS
1791 if (nsops > SEMOPM_FAST) {
1792 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1793 if (sops == NULL)
1da177e4
LT
1794 return -ENOMEM;
1795 }
239521f3
MS
1796 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1797 error = -EFAULT;
1da177e4
LT
1798 goto out_free;
1799 }
1800 if (timeout) {
1801 struct timespec _timeout;
1802 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1803 error = -EFAULT;
1804 goto out_free;
1805 }
1806 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1807 _timeout.tv_nsec >= 1000000000L) {
1808 error = -EINVAL;
1809 goto out_free;
1810 }
1811 jiffies_left = timespec_to_jiffies(&_timeout);
1812 }
1813 max = 0;
1814 for (sop = sops; sop < sops + nsops; sop++) {
1815 if (sop->sem_num >= max)
1816 max = sop->sem_num;
1817 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1818 undos = 1;
1819 if (sop->sem_op != 0)
1da177e4
LT
1820 alter = 1;
1821 }
1da177e4 1822
6062a8dc
RR
1823 INIT_LIST_HEAD(&tasks);
1824
1da177e4 1825 if (undos) {
6062a8dc 1826 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1827 un = find_alloc_undo(ns, semid);
1da177e4
LT
1828 if (IS_ERR(un)) {
1829 error = PTR_ERR(un);
1830 goto out_free;
1831 }
6062a8dc 1832 } else {
1da177e4 1833 un = NULL;
6062a8dc
RR
1834 rcu_read_lock();
1835 }
1da177e4 1836
16df3674 1837 sma = sem_obtain_object_check(ns, semid);
023a5355 1838 if (IS_ERR(sma)) {
6062a8dc 1839 rcu_read_unlock();
023a5355 1840 error = PTR_ERR(sma);
1da177e4 1841 goto out_free;
023a5355
ND
1842 }
1843
16df3674 1844 error = -EFBIG;
c728b9c8
LT
1845 if (max >= sma->sem_nsems)
1846 goto out_rcu_wakeup;
16df3674
DB
1847
1848 error = -EACCES;
c728b9c8
LT
1849 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1850 goto out_rcu_wakeup;
16df3674
DB
1851
1852 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1853 if (error)
1854 goto out_rcu_wakeup;
16df3674 1855
6e224f94
MS
1856 error = -EIDRM;
1857 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1858 /*
1859 * We eventually might perform the following check in a lockless
1860 * fashion, considering ipc_valid_object() locking constraints.
1861 * If nsops == 1 and there is no contention for sem_perm.lock, then
1862 * only a per-semaphore lock is held and it's OK to proceed with the
1863 * check below. More details on the fine grained locking scheme
1864 * entangled here and why it's RMID race safe on comments at sem_lock()
1865 */
1866 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1867 goto out_unlock_free;
1da177e4 1868 /*
4daa28f6 1869 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1870 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1871 * and now a new array with received the same id. Check and fail.
25985edc 1872 * This case can be detected checking un->semid. The existence of
380af1b3 1873 * "un" itself is guaranteed by rcu.
1da177e4 1874 */
6062a8dc
RR
1875 if (un && un->semid == -1)
1876 goto out_unlock_free;
4daa28f6 1877
d198cd6d
MS
1878 queue.sops = sops;
1879 queue.nsops = nsops;
1880 queue.undo = un;
1881 queue.pid = task_tgid_vnr(current);
1882 queue.alter = alter;
1883
1884 error = perform_atomic_semop(sma, &queue);
0e8c6656
MS
1885 if (error == 0) {
1886 /* If the operation was successful, then do
1887 * the required updates.
1888 */
1889 if (alter)
0a2b9d4c 1890 do_smart_update(sma, sops, nsops, 1, &tasks);
0e8c6656
MS
1891 else
1892 set_semotime(sma, sops);
1da177e4 1893 }
0e8c6656
MS
1894 if (error <= 0)
1895 goto out_unlock_free;
1da177e4
LT
1896
1897 /* We need to sleep on this operation, so we put the current
1898 * task into the pending queue and go to sleep.
1899 */
46c0a8ca 1900
b97e820f
MS
1901 if (nsops == 1) {
1902 struct sem *curr;
1903 curr = &sma->sem_base[sops->sem_num];
1904
f269f40a
MS
1905 if (alter) {
1906 if (sma->complex_count) {
1907 list_add_tail(&queue.list,
1908 &sma->pending_alter);
1909 } else {
1910
1911 list_add_tail(&queue.list,
1912 &curr->pending_alter);
1913 }
1914 } else {
1a82e9e1 1915 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1916 }
b97e820f 1917 } else {
f269f40a
MS
1918 if (!sma->complex_count)
1919 merge_queues(sma);
1920
9f1bc2c9 1921 if (alter)
1a82e9e1 1922 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1923 else
1a82e9e1
MS
1924 list_add_tail(&queue.list, &sma->pending_const);
1925
b97e820f
MS
1926 sma->complex_count++;
1927 }
1928
1da177e4
LT
1929 queue.status = -EINTR;
1930 queue.sleeper = current;
0b0577f6
MS
1931
1932sleep_again:
1da177e4 1933 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1934 sem_unlock(sma, locknum);
6d49dab8 1935 rcu_read_unlock();
1da177e4
LT
1936
1937 if (timeout)
1938 jiffies_left = schedule_timeout(jiffies_left);
1939 else
1940 schedule();
1941
c61284e9 1942 error = get_queue_result(&queue);
1da177e4
LT
1943
1944 if (error != -EINTR) {
1945 /* fast path: update_queue already obtained all requested
c61284e9
MS
1946 * resources.
1947 * Perform a smp_mb(): User space could assume that semop()
1948 * is a memory barrier: Without the mb(), the cpu could
1949 * speculatively read in user space stale data that was
1950 * overwritten by the previous owner of the semaphore.
1951 */
1952 smp_mb();
1953
1da177e4
LT
1954 goto out_free;
1955 }
1956
321310ce 1957 rcu_read_lock();
6062a8dc 1958 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1959
1960 /*
1961 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1962 */
1963 error = get_queue_result(&queue);
1964
1965 /*
1966 * Array removed? If yes, leave without sem_unlock().
1967 */
023a5355 1968 if (IS_ERR(sma)) {
321310ce 1969 rcu_read_unlock();
1da177e4
LT
1970 goto out_free;
1971 }
1972
c61284e9 1973
1da177e4 1974 /*
d694ad62
MS
1975 * If queue.status != -EINTR we are woken up by another process.
1976 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1977 */
3ab08fe2 1978 if (error != -EINTR)
1da177e4 1979 goto out_unlock_free;
1da177e4
LT
1980
1981 /*
1982 * If an interrupt occurred we have to clean up the queue
1983 */
1984 if (timeout && jiffies_left == 0)
1985 error = -EAGAIN;
0b0577f6
MS
1986
1987 /*
1988 * If the wakeup was spurious, just retry
1989 */
1990 if (error == -EINTR && !signal_pending(current))
1991 goto sleep_again;
1992
b97e820f 1993 unlink_queue(sma, &queue);
1da177e4
LT
1994
1995out_unlock_free:
6062a8dc 1996 sem_unlock(sma, locknum);
c728b9c8 1997out_rcu_wakeup:
6d49dab8 1998 rcu_read_unlock();
0a2b9d4c 1999 wake_up_sem_queue_do(&tasks);
1da177e4 2000out_free:
239521f3 2001 if (sops != fast_sops)
1da177e4
LT
2002 kfree(sops);
2003 return error;
2004}
2005
d5460c99
HC
2006SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2007 unsigned, nsops)
1da177e4
LT
2008{
2009 return sys_semtimedop(semid, tsops, nsops, NULL);
2010}
2011
2012/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2013 * parent and child tasks.
1da177e4
LT
2014 */
2015
2016int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2017{
2018 struct sem_undo_list *undo_list;
2019 int error;
2020
2021 if (clone_flags & CLONE_SYSVSEM) {
2022 error = get_undo_list(&undo_list);
2023 if (error)
2024 return error;
1da177e4
LT
2025 atomic_inc(&undo_list->refcnt);
2026 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2027 } else
1da177e4
LT
2028 tsk->sysvsem.undo_list = NULL;
2029
2030 return 0;
2031}
2032
2033/*
2034 * add semadj values to semaphores, free undo structures.
2035 * undo structures are not freed when semaphore arrays are destroyed
2036 * so some of them may be out of date.
2037 * IMPLEMENTATION NOTE: There is some confusion over whether the
2038 * set of adjustments that needs to be done should be done in an atomic
2039 * manner or not. That is, if we are attempting to decrement the semval
2040 * should we queue up and wait until we can do so legally?
2041 * The original implementation attempted to do this (queue and wait).
2042 * The current implementation does not do so. The POSIX standard
2043 * and SVID should be consulted to determine what behavior is mandated.
2044 */
2045void exit_sem(struct task_struct *tsk)
2046{
4daa28f6 2047 struct sem_undo_list *ulp;
1da177e4 2048
4daa28f6
MS
2049 ulp = tsk->sysvsem.undo_list;
2050 if (!ulp)
1da177e4 2051 return;
9edff4ab 2052 tsk->sysvsem.undo_list = NULL;
1da177e4 2053
4daa28f6 2054 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2055 return;
2056
380af1b3 2057 for (;;) {
1da177e4 2058 struct sem_array *sma;
380af1b3 2059 struct sem_undo *un;
0a2b9d4c 2060 struct list_head tasks;
6062a8dc 2061 int semid, i;
4daa28f6 2062
380af1b3 2063 rcu_read_lock();
05725f7e
JP
2064 un = list_entry_rcu(ulp->list_proc.next,
2065 struct sem_undo, list_proc);
380af1b3
MS
2066 if (&un->list_proc == &ulp->list_proc)
2067 semid = -1;
2068 else
2069 semid = un->semid;
4daa28f6 2070
6062a8dc
RR
2071 if (semid == -1) {
2072 rcu_read_unlock();
380af1b3 2073 break;
6062a8dc 2074 }
1da177e4 2075
6062a8dc 2076 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 2077 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2078 if (IS_ERR(sma)) {
2079 rcu_read_unlock();
380af1b3 2080 continue;
6062a8dc 2081 }
1da177e4 2082
6062a8dc 2083 sem_lock(sma, NULL, -1);
6e224f94 2084 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2085 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2086 sem_unlock(sma, -1);
2087 rcu_read_unlock();
2088 continue;
2089 }
bf17bb71 2090 un = __lookup_undo(ulp, semid);
380af1b3
MS
2091 if (un == NULL) {
2092 /* exit_sem raced with IPC_RMID+semget() that created
2093 * exactly the same semid. Nothing to do.
2094 */
6062a8dc 2095 sem_unlock(sma, -1);
6d49dab8 2096 rcu_read_unlock();
380af1b3
MS
2097 continue;
2098 }
2099
2100 /* remove un from the linked lists */
cf9d5d78 2101 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2102 list_del(&un->list_id);
2103
380af1b3
MS
2104 spin_lock(&ulp->lock);
2105 list_del_rcu(&un->list_proc);
2106 spin_unlock(&ulp->lock);
2107
4daa28f6
MS
2108 /* perform adjustments registered in un */
2109 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2110 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2111 if (un->semadj[i]) {
2112 semaphore->semval += un->semadj[i];
1da177e4
LT
2113 /*
2114 * Range checks of the new semaphore value,
2115 * not defined by sus:
2116 * - Some unices ignore the undo entirely
2117 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2118 * - some cap the value (e.g. FreeBSD caps
2119 * at 0, but doesn't enforce SEMVMX)
2120 *
2121 * Linux caps the semaphore value, both at 0
2122 * and at SEMVMX.
2123 *
239521f3 2124 * Manfred <manfred@colorfullife.com>
1da177e4 2125 */
5f921ae9
IM
2126 if (semaphore->semval < 0)
2127 semaphore->semval = 0;
2128 if (semaphore->semval > SEMVMX)
2129 semaphore->semval = SEMVMX;
b488893a 2130 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2131 }
2132 }
1da177e4 2133 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2134 INIT_LIST_HEAD(&tasks);
2135 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2136 sem_unlock(sma, -1);
6d49dab8 2137 rcu_read_unlock();
0a2b9d4c 2138 wake_up_sem_queue_do(&tasks);
380af1b3 2139
693a8b6e 2140 kfree_rcu(un, rcu);
1da177e4 2141 }
4daa28f6 2142 kfree(ulp);
1da177e4
LT
2143}
2144
2145#ifdef CONFIG_PROC_FS
19b4946c 2146static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2147{
1efdb69b 2148 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2149 struct sem_array *sma = it;
d12e1e50
MS
2150 time_t sem_otime;
2151
d8c63376
MS
2152 /*
2153 * The proc interface isn't aware of sem_lock(), it calls
2154 * ipc_lock_object() directly (in sysvipc_find_ipc).
2155 * In order to stay compatible with sem_lock(), we must wait until
2156 * all simple semop() calls have left their critical regions.
2157 */
2158 sem_wait_array(sma);
2159
d12e1e50 2160 sem_otime = get_semotime(sma);
19b4946c
MW
2161
2162 return seq_printf(s,
b97e820f 2163 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2164 sma->sem_perm.key,
7ca7e564 2165 sma->sem_perm.id,
19b4946c
MW
2166 sma->sem_perm.mode,
2167 sma->sem_nsems,
1efdb69b
EB
2168 from_kuid_munged(user_ns, sma->sem_perm.uid),
2169 from_kgid_munged(user_ns, sma->sem_perm.gid),
2170 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2171 from_kgid_munged(user_ns, sma->sem_perm.cgid),
d12e1e50 2172 sem_otime,
19b4946c 2173 sma->sem_ctime);
1da177e4
LT
2174}
2175#endif