]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - ipc/sem.c
ipc/sem: use proper list api for pending_list wakeups
[mirror_ubuntu-zesty-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 57 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
70 */
71
1da177e4
LT
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
1da177e4
LT
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
c59ede7b 80#include <linux/capability.h>
19b4946c 81#include <linux/seq_file.h>
3e148c79 82#include <linux/rwsem.h>
e3893534 83#include <linux/nsproxy.h>
ae5e1b22 84#include <linux/ipc_namespace.h>
5f921ae9 85
7153e402 86#include <linux/uaccess.h>
1da177e4
LT
87#include "util.h"
88
e57940d7
MS
89/* One semaphore structure for each semaphore in the system. */
90struct sem {
91 int semval; /* current value */
a5f4db87
DB
92 /*
93 * PID of the process that last modified the semaphore. For
94 * Linux, specifically these are:
95 * - semop
96 * - semctl, via SETVAL and SETALL.
97 * - at task exit when performing undo adjustments (see exit_sem).
98 */
99 int sempid;
6062a8dc 100 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
101 struct list_head pending_alter; /* pending single-sop operations */
102 /* that alter the semaphore */
103 struct list_head pending_const; /* pending single-sop operations */
104 /* that do not alter the semaphore*/
d12e1e50 105 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 106} ____cacheline_aligned_in_smp;
e57940d7
MS
107
108/* One queue for each sleeping process in the system. */
109struct sem_queue {
e57940d7
MS
110 struct list_head list; /* queue of pending operations */
111 struct task_struct *sleeper; /* this process */
112 struct sem_undo *undo; /* undo structure */
113 int pid; /* process id of requesting process */
114 int status; /* completion status of operation */
115 struct sembuf *sops; /* array of pending operations */
ed247b7c 116 struct sembuf *blocking; /* the operation that blocked */
e57940d7 117 int nsops; /* number of operations */
4ce33ec2
DB
118 bool alter; /* does *sops alter the array? */
119 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
120};
121
122/* Each task has a list of undo requests. They are executed automatically
123 * when the process exits.
124 */
125struct sem_undo {
126 struct list_head list_proc; /* per-process list: *
127 * all undos from one process
128 * rcu protected */
129 struct rcu_head rcu; /* rcu struct for sem_undo */
130 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
131 struct list_head list_id; /* per semaphore array list:
132 * all undos for one array */
133 int semid; /* semaphore set identifier */
134 short *semadj; /* array of adjustments */
135 /* one per semaphore */
136};
137
138/* sem_undo_list controls shared access to the list of sem_undo structures
139 * that may be shared among all a CLONE_SYSVSEM task group.
140 */
141struct sem_undo_list {
142 atomic_t refcnt;
143 spinlock_t lock;
144 struct list_head list_proc;
145};
146
147
ed2ddbf8 148#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 149
1b531f21 150#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 151
7748dbfa 152static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 153static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 154#ifdef CONFIG_PROC_FS
19b4946c 155static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
156#endif
157
158#define SEMMSL_FAST 256 /* 512 bytes on stack */
159#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
160
161/*
758a6ba3 162 * Locking:
5864a2fd 163 * a) global sem_lock() for read/write
1da177e4 164 * sem_undo.id_next,
758a6ba3 165 * sem_array.complex_count,
5864a2fd
MS
166 * sem_array.complex_mode
167 * sem_array.pending{_alter,_const},
168 * sem_array.sem_undo
46c0a8ca 169 *
5864a2fd 170 * b) global or semaphore sem_lock() for read/write:
758a6ba3 171 * sem_array.sem_base[i].pending_{const,alter}:
5864a2fd
MS
172 * sem_array.complex_mode (for read)
173 *
174 * c) special:
175 * sem_undo_list.list_proc:
176 * * undo_list->lock for write
177 * * rcu for read
1da177e4
LT
178 */
179
e3893534
KK
180#define sc_semmsl sem_ctls[0]
181#define sc_semmns sem_ctls[1]
182#define sc_semopm sem_ctls[2]
183#define sc_semmni sem_ctls[3]
184
ed2ddbf8 185void sem_init_ns(struct ipc_namespace *ns)
e3893534 186{
e3893534
KK
187 ns->sc_semmsl = SEMMSL;
188 ns->sc_semmns = SEMMNS;
189 ns->sc_semopm = SEMOPM;
190 ns->sc_semmni = SEMMNI;
191 ns->used_sems = 0;
ed2ddbf8 192 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
193}
194
ae5e1b22 195#ifdef CONFIG_IPC_NS
e3893534
KK
196void sem_exit_ns(struct ipc_namespace *ns)
197{
01b8b07a 198 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 199 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 200}
ae5e1b22 201#endif
1da177e4 202
239521f3 203void __init sem_init(void)
1da177e4 204{
ed2ddbf8 205 sem_init_ns(&init_ipc_ns);
19b4946c
MW
206 ipc_init_proc_interface("sysvipc/sem",
207 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 208 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
209}
210
f269f40a
MS
211/**
212 * unmerge_queues - unmerge queues, if possible.
213 * @sma: semaphore array
214 *
215 * The function unmerges the wait queues if complex_count is 0.
216 * It must be called prior to dropping the global semaphore array lock.
217 */
218static void unmerge_queues(struct sem_array *sma)
219{
220 struct sem_queue *q, *tq;
221
222 /* complex operations still around? */
223 if (sma->complex_count)
224 return;
225 /*
226 * We will switch back to simple mode.
227 * Move all pending operation back into the per-semaphore
228 * queues.
229 */
230 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
231 struct sem *curr;
232 curr = &sma->sem_base[q->sops[0].sem_num];
233
234 list_add_tail(&q->list, &curr->pending_alter);
235 }
236 INIT_LIST_HEAD(&sma->pending_alter);
237}
238
239/**
8001c858 240 * merge_queues - merge single semop queues into global queue
f269f40a
MS
241 * @sma: semaphore array
242 *
243 * This function merges all per-semaphore queues into the global queue.
244 * It is necessary to achieve FIFO ordering for the pending single-sop
245 * operations when a multi-semop operation must sleep.
246 * Only the alter operations must be moved, the const operations can stay.
247 */
248static void merge_queues(struct sem_array *sma)
249{
250 int i;
251 for (i = 0; i < sma->sem_nsems; i++) {
252 struct sem *sem = sma->sem_base + i;
253
254 list_splice_init(&sem->pending_alter, &sma->pending_alter);
255 }
256}
257
53dad6d3
DB
258static void sem_rcu_free(struct rcu_head *head)
259{
260 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
261 struct sem_array *sma = ipc_rcu_to_struct(p);
262
263 security_sem_free(sma);
264 ipc_rcu_free(head);
265}
266
5e9d5275 267/*
5864a2fd 268 * Enter the mode suitable for non-simple operations:
5e9d5275 269 * Caller must own sem_perm.lock.
5e9d5275 270 */
5864a2fd 271static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
272{
273 int i;
274 struct sem *sem;
275
5864a2fd
MS
276 if (sma->complex_mode) {
277 /* We are already in complex_mode. Nothing to do */
6d07b68c
MS
278 return;
279 }
280
5864a2fd
MS
281 /* We need a full barrier after seting complex_mode:
282 * The write to complex_mode must be visible
283 * before we read the first sem->lock spinlock state.
284 */
285 smp_store_mb(sma->complex_mode, true);
286
5e9d5275
MS
287 for (i = 0; i < sma->sem_nsems; i++) {
288 sem = sma->sem_base + i;
289 spin_unlock_wait(&sem->lock);
290 }
5864a2fd
MS
291 /*
292 * spin_unlock_wait() is not a memory barriers, it is only a
293 * control barrier. The code must pair with spin_unlock(&sem->lock),
294 * thus just the control barrier is insufficient.
295 *
296 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
297 */
298 smp_rmb();
299}
300
301/*
302 * Try to leave the mode that disallows simple operations:
303 * Caller must own sem_perm.lock.
304 */
305static void complexmode_tryleave(struct sem_array *sma)
306{
307 if (sma->complex_count) {
308 /* Complex ops are sleeping.
309 * We must stay in complex mode
310 */
311 return;
312 }
313 /*
314 * Immediately after setting complex_mode to false,
315 * a simple op can start. Thus: all memory writes
316 * performed by the current operation must be visible
317 * before we set complex_mode to false.
318 */
319 smp_store_release(&sma->complex_mode, false);
5e9d5275
MS
320}
321
5864a2fd 322#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
323/*
324 * If the request contains only one semaphore operation, and there are
325 * no complex transactions pending, lock only the semaphore involved.
326 * Otherwise, lock the entire semaphore array, since we either have
327 * multiple semaphores in our own semops, or we need to look at
328 * semaphores from other pending complex operations.
6062a8dc
RR
329 */
330static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
331 int nsops)
332{
5e9d5275 333 struct sem *sem;
6062a8dc 334
5e9d5275
MS
335 if (nsops != 1) {
336 /* Complex operation - acquire a full lock */
337 ipc_lock_object(&sma->sem_perm);
6062a8dc 338
5864a2fd
MS
339 /* Prevent parallel simple ops */
340 complexmode_enter(sma);
341 return SEM_GLOBAL_LOCK;
5e9d5275
MS
342 }
343
344 /*
345 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
346 * Optimized locking is possible if no complex operation
347 * is either enqueued or processed right now.
348 *
349 * Both facts are tracked by complex_mode.
5e9d5275
MS
350 */
351 sem = sma->sem_base + sops->sem_num;
6062a8dc 352
5864a2fd
MS
353 /*
354 * Initial check for complex_mode. Just an optimization,
355 * no locking, no memory barrier.
356 */
357 if (!sma->complex_mode) {
6062a8dc 358 /*
5e9d5275
MS
359 * It appears that no complex operation is around.
360 * Acquire the per-semaphore lock.
6062a8dc 361 */
5e9d5275
MS
362 spin_lock(&sem->lock);
363
5864a2fd
MS
364 /*
365 * See 51d7d5205d33
366 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
367 * A full barrier is required: the write of sem->lock
368 * must be visible before the read is executed
369 */
370 smp_mb();
5e9d5275 371
5864a2fd
MS
372 if (!smp_load_acquire(&sma->complex_mode)) {
373 /* fast path successful! */
374 return sops->sem_num;
6062a8dc 375 }
5e9d5275
MS
376 spin_unlock(&sem->lock);
377 }
378
379 /* slow path: acquire the full lock */
380 ipc_lock_object(&sma->sem_perm);
6062a8dc 381
5e9d5275
MS
382 if (sma->complex_count == 0) {
383 /* False alarm:
384 * There is no complex operation, thus we can switch
385 * back to the fast path.
386 */
387 spin_lock(&sem->lock);
388 ipc_unlock_object(&sma->sem_perm);
389 return sops->sem_num;
6062a8dc 390 } else {
5e9d5275
MS
391 /* Not a false alarm, thus complete the sequence for a
392 * full lock.
6062a8dc 393 */
5864a2fd
MS
394 complexmode_enter(sma);
395 return SEM_GLOBAL_LOCK;
6062a8dc 396 }
6062a8dc
RR
397}
398
399static inline void sem_unlock(struct sem_array *sma, int locknum)
400{
5864a2fd 401 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 402 unmerge_queues(sma);
5864a2fd 403 complexmode_tryleave(sma);
cf9d5d78 404 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
405 } else {
406 struct sem *sem = sma->sem_base + locknum;
407 spin_unlock(&sem->lock);
408 }
6062a8dc
RR
409}
410
3e148c79 411/*
d9a605e4 412 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 413 * is not held.
321310ce
LT
414 *
415 * The caller holds the RCU read lock.
3e148c79 416 */
6062a8dc
RR
417static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
418 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 419{
c460b662
RR
420 struct kern_ipc_perm *ipcp;
421 struct sem_array *sma;
03f02c76 422
55b7ae50 423 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
321310ce
LT
424 if (IS_ERR(ipcp))
425 return ERR_CAST(ipcp);
b1ed88b4 426
6062a8dc
RR
427 sma = container_of(ipcp, struct sem_array, sem_perm);
428 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
429
430 /* ipc_rmid() may have already freed the ID while sem_lock
431 * was spinning: verify that the structure is still valid
432 */
72a8ff2f 433 if (ipc_valid_object(ipcp))
c460b662
RR
434 return container_of(ipcp, struct sem_array, sem_perm);
435
6062a8dc 436 sem_unlock(sma, *locknum);
321310ce 437 return ERR_PTR(-EINVAL);
023a5355
ND
438}
439
16df3674
DB
440static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
441{
55b7ae50 442 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
443
444 if (IS_ERR(ipcp))
445 return ERR_CAST(ipcp);
446
447 return container_of(ipcp, struct sem_array, sem_perm);
448}
449
16df3674
DB
450static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
451 int id)
452{
453 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
454
455 if (IS_ERR(ipcp))
456 return ERR_CAST(ipcp);
b1ed88b4 457
03f02c76 458 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
459}
460
6ff37972
PP
461static inline void sem_lock_and_putref(struct sem_array *sma)
462{
6062a8dc 463 sem_lock(sma, NULL, -1);
9b24fef9 464 ipc_rcu_putref(sma, sem_rcu_free);
6ff37972
PP
465}
466
7ca7e564
ND
467static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
468{
469 ipc_rmid(&sem_ids(ns), &s->sem_perm);
470}
471
f4566f04
ND
472/**
473 * newary - Create a new semaphore set
474 * @ns: namespace
475 * @params: ptr to the structure that contains key, semflg and nsems
476 *
d9a605e4 477 * Called with sem_ids.rwsem held (as a writer)
f4566f04 478 */
7748dbfa 479static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
480{
481 int id;
482 int retval;
483 struct sem_array *sma;
484 int size;
7748dbfa
ND
485 key_t key = params->key;
486 int nsems = params->u.nsems;
487 int semflg = params->flg;
b97e820f 488 int i;
1da177e4
LT
489
490 if (!nsems)
491 return -EINVAL;
e3893534 492 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
493 return -ENOSPC;
494
239521f3 495 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4 496 sma = ipc_rcu_alloc(size);
3ab08fe2 497 if (!sma)
1da177e4 498 return -ENOMEM;
3ab08fe2 499
239521f3 500 memset(sma, 0, size);
1da177e4
LT
501
502 sma->sem_perm.mode = (semflg & S_IRWXUGO);
503 sma->sem_perm.key = key;
504
505 sma->sem_perm.security = NULL;
506 retval = security_sem_alloc(sma);
507 if (retval) {
53dad6d3 508 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
509 return retval;
510 }
511
1da177e4 512 sma->sem_base = (struct sem *) &sma[1];
b97e820f 513
6062a8dc 514 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
515 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
516 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
517 spin_lock_init(&sma->sem_base[i].lock);
518 }
b97e820f
MS
519
520 sma->complex_count = 0;
5864a2fd 521 sma->complex_mode = true; /* dropped by sem_unlock below */
1a82e9e1
MS
522 INIT_LIST_HEAD(&sma->pending_alter);
523 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 524 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
525 sma->sem_nsems = nsems;
526 sma->sem_ctime = get_seconds();
e8577d1f
MS
527
528 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
529 if (id < 0) {
530 ipc_rcu_putref(sma, sem_rcu_free);
531 return id;
532 }
533 ns->used_sems += nsems;
534
6062a8dc 535 sem_unlock(sma, -1);
6d49dab8 536 rcu_read_unlock();
1da177e4 537
7ca7e564 538 return sma->sem_perm.id;
1da177e4
LT
539}
540
7748dbfa 541
f4566f04 542/*
d9a605e4 543 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 544 */
03f02c76 545static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 546{
03f02c76
ND
547 struct sem_array *sma;
548
549 sma = container_of(ipcp, struct sem_array, sem_perm);
550 return security_sem_associate(sma, semflg);
7748dbfa
ND
551}
552
f4566f04 553/*
d9a605e4 554 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 555 */
03f02c76
ND
556static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
557 struct ipc_params *params)
7748dbfa 558{
03f02c76
ND
559 struct sem_array *sma;
560
561 sma = container_of(ipcp, struct sem_array, sem_perm);
562 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
563 return -EINVAL;
564
565 return 0;
566}
567
d5460c99 568SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 569{
e3893534 570 struct ipc_namespace *ns;
eb66ec44
MK
571 static const struct ipc_ops sem_ops = {
572 .getnew = newary,
573 .associate = sem_security,
574 .more_checks = sem_more_checks,
575 };
7748dbfa 576 struct ipc_params sem_params;
e3893534
KK
577
578 ns = current->nsproxy->ipc_ns;
1da177e4 579
e3893534 580 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 581 return -EINVAL;
7ca7e564 582
7748dbfa
ND
583 sem_params.key = key;
584 sem_params.flg = semflg;
585 sem_params.u.nsems = nsems;
1da177e4 586
7748dbfa 587 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
588}
589
78f5009c 590/**
4ce33ec2
DB
591 * perform_atomic_semop[_slow] - Attempt to perform semaphore
592 * operations on a given array.
758a6ba3 593 * @sma: semaphore array
d198cd6d 594 * @q: struct sem_queue that describes the operation
758a6ba3 595 *
4ce33ec2
DB
596 * Caller blocking are as follows, based the value
597 * indicated by the semaphore operation (sem_op):
598 *
599 * (1) >0 never blocks.
600 * (2) 0 (wait-for-zero operation): semval is non-zero.
601 * (3) <0 attempting to decrement semval to a value smaller than zero.
602 *
758a6ba3
MS
603 * Returns 0 if the operation was possible.
604 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 605 * Returns <0 for error codes.
1da177e4 606 */
4ce33ec2 607static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 608{
d198cd6d 609 int result, sem_op, nsops, pid;
1da177e4 610 struct sembuf *sop;
239521f3 611 struct sem *curr;
d198cd6d
MS
612 struct sembuf *sops;
613 struct sem_undo *un;
614
615 sops = q->sops;
616 nsops = q->nsops;
617 un = q->undo;
1da177e4
LT
618
619 for (sop = sops; sop < sops + nsops; sop++) {
620 curr = sma->sem_base + sop->sem_num;
621 sem_op = sop->sem_op;
622 result = curr->semval;
78f5009c 623
1da177e4
LT
624 if (!sem_op && result)
625 goto would_block;
626
627 result += sem_op;
628 if (result < 0)
629 goto would_block;
630 if (result > SEMVMX)
631 goto out_of_range;
78f5009c 632
1da177e4
LT
633 if (sop->sem_flg & SEM_UNDO) {
634 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 635 /* Exceeding the undo range is an error. */
1da177e4
LT
636 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
637 goto out_of_range;
78f5009c 638 un->semadj[sop->sem_num] = undo;
1da177e4 639 }
78f5009c 640
1da177e4
LT
641 curr->semval = result;
642 }
643
644 sop--;
d198cd6d 645 pid = q->pid;
1da177e4
LT
646 while (sop >= sops) {
647 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
648 sop--;
649 }
78f5009c 650
1da177e4
LT
651 return 0;
652
653out_of_range:
654 result = -ERANGE;
655 goto undo;
656
657would_block:
ed247b7c
MS
658 q->blocking = sop;
659
1da177e4
LT
660 if (sop->sem_flg & IPC_NOWAIT)
661 result = -EAGAIN;
662 else
663 result = 1;
664
665undo:
666 sop--;
667 while (sop >= sops) {
78f5009c
PM
668 sem_op = sop->sem_op;
669 sma->sem_base[sop->sem_num].semval -= sem_op;
670 if (sop->sem_flg & SEM_UNDO)
671 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
672 sop--;
673 }
674
675 return result;
676}
677
4ce33ec2
DB
678static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
679{
680 int result, sem_op, nsops;
681 struct sembuf *sop;
682 struct sem *curr;
683 struct sembuf *sops;
684 struct sem_undo *un;
685
686 sops = q->sops;
687 nsops = q->nsops;
688 un = q->undo;
689
690 if (unlikely(q->dupsop))
691 return perform_atomic_semop_slow(sma, q);
692
693 /*
694 * We scan the semaphore set twice, first to ensure that the entire
695 * operation can succeed, therefore avoiding any pointless writes
696 * to shared memory and having to undo such changes in order to block
697 * until the operations can go through.
698 */
699 for (sop = sops; sop < sops + nsops; sop++) {
700 curr = sma->sem_base + sop->sem_num;
701 sem_op = sop->sem_op;
702 result = curr->semval;
703
704 if (!sem_op && result)
705 goto would_block; /* wait-for-zero */
706
707 result += sem_op;
708 if (result < 0)
709 goto would_block;
710
711 if (result > SEMVMX)
712 return -ERANGE;
713
714 if (sop->sem_flg & SEM_UNDO) {
715 int undo = un->semadj[sop->sem_num] - sem_op;
716
717 /* Exceeding the undo range is an error. */
718 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
719 return -ERANGE;
720 }
721 }
722
723 for (sop = sops; sop < sops + nsops; sop++) {
724 curr = sma->sem_base + sop->sem_num;
725 sem_op = sop->sem_op;
726 result = curr->semval;
727
728 if (sop->sem_flg & SEM_UNDO) {
729 int undo = un->semadj[sop->sem_num] - sem_op;
730
731 un->semadj[sop->sem_num] = undo;
732 }
733 curr->semval += sem_op;
734 curr->sempid = q->pid;
735 }
736
737 return 0;
738
739would_block:
740 q->blocking = sop;
741 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
742}
743
9ae949fa
DB
744static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
745 struct wake_q_head *wake_q)
0a2b9d4c 746{
9ae949fa
DB
747 wake_q_add(wake_q, q->sleeper);
748 /*
749 * Rely on the above implicit barrier, such that we can
750 * ensure that we hold reference to the task before setting
751 * q->status. Otherwise we could race with do_exit if the
752 * task is awoken by an external event before calling
753 * wake_up_process().
754 */
755 WRITE_ONCE(q->status, error);
d4212093
NP
756}
757
b97e820f
MS
758static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
759{
760 list_del(&q->list);
9f1bc2c9 761 if (q->nsops > 1)
b97e820f
MS
762 sma->complex_count--;
763}
764
fd5db422
MS
765/** check_restart(sma, q)
766 * @sma: semaphore array
767 * @q: the operation that just completed
768 *
769 * update_queue is O(N^2) when it restarts scanning the whole queue of
770 * waiting operations. Therefore this function checks if the restart is
771 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
772 * modified the array.
773 * Note that wait-for-zero operations are handled without restart.
fd5db422 774 */
4663d3e8 775static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 776{
1a82e9e1
MS
777 /* pending complex alter operations are too difficult to analyse */
778 if (!list_empty(&sma->pending_alter))
fd5db422
MS
779 return 1;
780
781 /* we were a sleeping complex operation. Too difficult */
782 if (q->nsops > 1)
783 return 1;
784
1a82e9e1
MS
785 /* It is impossible that someone waits for the new value:
786 * - complex operations always restart.
787 * - wait-for-zero are handled seperately.
788 * - q is a previously sleeping simple operation that
789 * altered the array. It must be a decrement, because
790 * simple increments never sleep.
791 * - If there are older (higher priority) decrements
792 * in the queue, then they have observed the original
793 * semval value and couldn't proceed. The operation
794 * decremented to value - thus they won't proceed either.
795 */
796 return 0;
797}
fd5db422 798
1a82e9e1 799/**
8001c858 800 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
801 * @sma: semaphore array.
802 * @semnum: semaphore that was modified.
9ae949fa 803 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
804 *
805 * wake_const_ops must be called after a semaphore in a semaphore array
806 * was set to 0. If complex const operations are pending, wake_const_ops must
807 * be called with semnum = -1, as well as with the number of each modified
808 * semaphore.
9ae949fa 809 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
810 * is stored in q->pid.
811 * The function returns 1 if at least one operation was completed successfully.
812 */
813static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 814 struct wake_q_head *wake_q)
1a82e9e1 815{
f150f02c 816 struct sem_queue *q, *tmp;
1a82e9e1
MS
817 struct list_head *pending_list;
818 int semop_completed = 0;
819
820 if (semnum == -1)
821 pending_list = &sma->pending_const;
822 else
823 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 824
f150f02c
DB
825 list_for_each_entry_safe(q, tmp, pending_list, list) {
826 int error = perform_atomic_semop(sma, q);
1a82e9e1 827
f150f02c
DB
828 if (error > 0)
829 continue;
830 /* operation completed, remove from queue & wakeup */
831 unlink_queue(sma, q);
1a82e9e1 832
f150f02c
DB
833 wake_up_sem_queue_prepare(q, error, wake_q);
834 if (error == 0)
835 semop_completed = 1;
1a82e9e1 836 }
f150f02c 837
1a82e9e1
MS
838 return semop_completed;
839}
840
841/**
8001c858 842 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
843 * @sma: semaphore array
844 * @sops: operations that were performed
845 * @nsops: number of operations
9ae949fa 846 * @wake_q: lockless wake-queue head
1a82e9e1 847 *
8001c858
DB
848 * Checks all required queue for wait-for-zero operations, based
849 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
850 * The function returns 1 if at least one operation was completed successfully.
851 */
852static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 853 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
854{
855 int i;
856 int semop_completed = 0;
857 int got_zero = 0;
858
859 /* first: the per-semaphore queues, if known */
860 if (sops) {
861 for (i = 0; i < nsops; i++) {
862 int num = sops[i].sem_num;
863
864 if (sma->sem_base[num].semval == 0) {
865 got_zero = 1;
9ae949fa 866 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
867 }
868 }
869 } else {
870 /*
871 * No sops means modified semaphores not known.
872 * Assume all were changed.
fd5db422 873 */
1a82e9e1
MS
874 for (i = 0; i < sma->sem_nsems; i++) {
875 if (sma->sem_base[i].semval == 0) {
876 got_zero = 1;
9ae949fa 877 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
878 }
879 }
fd5db422
MS
880 }
881 /*
1a82e9e1
MS
882 * If one of the modified semaphores got 0,
883 * then check the global queue, too.
fd5db422 884 */
1a82e9e1 885 if (got_zero)
9ae949fa 886 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 887
1a82e9e1 888 return semop_completed;
fd5db422
MS
889}
890
636c6be8
MS
891
892/**
8001c858 893 * update_queue - look for tasks that can be completed.
636c6be8
MS
894 * @sma: semaphore array.
895 * @semnum: semaphore that was modified.
9ae949fa 896 * @wake_q: lockless wake-queue head.
636c6be8
MS
897 *
898 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
899 * was modified. If multiple semaphores were modified, update_queue must
900 * be called with semnum = -1, as well as with the number of each modified
901 * semaphore.
9ae949fa 902 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 903 * is stored in q->pid.
1a82e9e1
MS
904 * The function internally checks if const operations can now succeed.
905 *
0a2b9d4c 906 * The function return 1 if at least one semop was completed successfully.
1da177e4 907 */
9ae949fa 908static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 909{
f150f02c 910 struct sem_queue *q, *tmp;
636c6be8 911 struct list_head *pending_list;
0a2b9d4c 912 int semop_completed = 0;
636c6be8 913
9f1bc2c9 914 if (semnum == -1)
1a82e9e1 915 pending_list = &sma->pending_alter;
9f1bc2c9 916 else
1a82e9e1 917 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
918
919again:
f150f02c 920 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 921 int error, restart;
636c6be8 922
d987f8b2
MS
923 /* If we are scanning the single sop, per-semaphore list of
924 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 925 * necessary to scan further: simple increments
d987f8b2
MS
926 * that affect only one entry succeed immediately and cannot
927 * be in the per semaphore pending queue, and decrements
928 * cannot be successful if the value is already 0.
929 */
1a82e9e1 930 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
931 break;
932
d198cd6d 933 error = perform_atomic_semop(sma, q);
1da177e4
LT
934
935 /* Does q->sleeper still need to sleep? */
9cad200c
NP
936 if (error > 0)
937 continue;
938
b97e820f 939 unlink_queue(sma, q);
9cad200c 940
0a2b9d4c 941 if (error) {
fd5db422 942 restart = 0;
0a2b9d4c
MS
943 } else {
944 semop_completed = 1;
9ae949fa 945 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 946 restart = check_restart(sma, q);
0a2b9d4c 947 }
fd5db422 948
9ae949fa 949 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 950 if (restart)
9cad200c 951 goto again;
1da177e4 952 }
0a2b9d4c 953 return semop_completed;
1da177e4
LT
954}
955
0e8c6656 956/**
8001c858 957 * set_semotime - set sem_otime
0e8c6656
MS
958 * @sma: semaphore array
959 * @sops: operations that modified the array, may be NULL
960 *
961 * sem_otime is replicated to avoid cache line trashing.
962 * This function sets one instance to the current time.
963 */
964static void set_semotime(struct sem_array *sma, struct sembuf *sops)
965{
966 if (sops == NULL) {
967 sma->sem_base[0].sem_otime = get_seconds();
968 } else {
969 sma->sem_base[sops[0].sem_num].sem_otime =
970 get_seconds();
971 }
972}
973
0a2b9d4c 974/**
8001c858 975 * do_smart_update - optimized update_queue
fd5db422
MS
976 * @sma: semaphore array
977 * @sops: operations that were performed
978 * @nsops: number of operations
0a2b9d4c 979 * @otime: force setting otime
9ae949fa 980 * @wake_q: lockless wake-queue head
fd5db422 981 *
1a82e9e1
MS
982 * do_smart_update() does the required calls to update_queue and wakeup_zero,
983 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 984 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 985 * responsible for calling wake_up_q().
0a2b9d4c 986 * It is safe to perform this call after dropping all locks.
fd5db422 987 */
0a2b9d4c 988static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 989 int otime, struct wake_q_head *wake_q)
fd5db422
MS
990{
991 int i;
992
9ae949fa 993 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 994
f269f40a
MS
995 if (!list_empty(&sma->pending_alter)) {
996 /* semaphore array uses the global queue - just process it. */
9ae949fa 997 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
998 } else {
999 if (!sops) {
1000 /*
1001 * No sops, thus the modified semaphores are not
1002 * known. Check all.
1003 */
1004 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1005 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1006 } else {
1007 /*
1008 * Check the semaphores that were increased:
1009 * - No complex ops, thus all sleeping ops are
1010 * decrease.
1011 * - if we decreased the value, then any sleeping
1012 * semaphore ops wont be able to run: If the
1013 * previous value was too small, then the new
1014 * value will be too small, too.
1015 */
1016 for (i = 0; i < nsops; i++) {
1017 if (sops[i].sem_op > 0) {
1018 otime |= update_queue(sma,
9ae949fa 1019 sops[i].sem_num, wake_q);
f269f40a 1020 }
ab465df9 1021 }
9f1bc2c9 1022 }
fd5db422 1023 }
0e8c6656
MS
1024 if (otime)
1025 set_semotime(sma, sops);
fd5db422
MS
1026}
1027
2f2ed41d 1028/*
b220c57a 1029 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1030 */
1031static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1032 bool count_zero)
1033{
b220c57a 1034 struct sembuf *sop = q->blocking;
2f2ed41d 1035
9b44ee2e
MS
1036 /*
1037 * Linux always (since 0.99.10) reported a task as sleeping on all
1038 * semaphores. This violates SUS, therefore it was changed to the
1039 * standard compliant behavior.
1040 * Give the administrators a chance to notice that an application
1041 * might misbehave because it relies on the Linux behavior.
1042 */
1043 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1044 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1045 current->comm, task_pid_nr(current));
1046
b220c57a
MS
1047 if (sop->sem_num != semnum)
1048 return 0;
2f2ed41d 1049
b220c57a
MS
1050 if (count_zero && sop->sem_op == 0)
1051 return 1;
1052 if (!count_zero && sop->sem_op < 0)
1053 return 1;
1054
1055 return 0;
2f2ed41d
MS
1056}
1057
1da177e4
LT
1058/* The following counts are associated to each semaphore:
1059 * semncnt number of tasks waiting on semval being nonzero
1060 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1061 *
1062 * Per definition, a task waits only on the semaphore of the first semop
1063 * that cannot proceed, even if additional operation would block, too.
1da177e4 1064 */
2f2ed41d
MS
1065static int count_semcnt(struct sem_array *sma, ushort semnum,
1066 bool count_zero)
1da177e4 1067{
2f2ed41d 1068 struct list_head *l;
239521f3 1069 struct sem_queue *q;
2f2ed41d 1070 int semcnt;
1da177e4 1071
2f2ed41d
MS
1072 semcnt = 0;
1073 /* First: check the simple operations. They are easy to evaluate */
1074 if (count_zero)
1075 l = &sma->sem_base[semnum].pending_const;
1076 else
1077 l = &sma->sem_base[semnum].pending_alter;
1da177e4 1078
2f2ed41d
MS
1079 list_for_each_entry(q, l, list) {
1080 /* all task on a per-semaphore list sleep on exactly
1081 * that semaphore
1082 */
1083 semcnt++;
ebc2e5e6
RR
1084 }
1085
2f2ed41d 1086 /* Then: check the complex operations. */
1994862d 1087 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1088 semcnt += check_qop(sma, semnum, q, count_zero);
1089 }
1090 if (count_zero) {
1091 list_for_each_entry(q, &sma->pending_const, list) {
1092 semcnt += check_qop(sma, semnum, q, count_zero);
1093 }
1994862d 1094 }
2f2ed41d 1095 return semcnt;
1da177e4
LT
1096}
1097
d9a605e4
DB
1098/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1099 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1100 * remains locked on exit.
1da177e4 1101 */
01b8b07a 1102static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1103{
380af1b3
MS
1104 struct sem_undo *un, *tu;
1105 struct sem_queue *q, *tq;
01b8b07a 1106 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1107 int i;
9ae949fa 1108 DEFINE_WAKE_Q(wake_q);
1da177e4 1109
380af1b3 1110 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1111 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1112 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1113 list_del(&un->list_id);
1114 spin_lock(&un->ulp->lock);
1da177e4 1115 un->semid = -1;
380af1b3
MS
1116 list_del_rcu(&un->list_proc);
1117 spin_unlock(&un->ulp->lock);
693a8b6e 1118 kfree_rcu(un, rcu);
380af1b3 1119 }
1da177e4
LT
1120
1121 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1122 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1123 unlink_queue(sma, q);
9ae949fa 1124 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1125 }
1126
1127 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1128 unlink_queue(sma, q);
9ae949fa 1129 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1130 }
9f1bc2c9
RR
1131 for (i = 0; i < sma->sem_nsems; i++) {
1132 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1133 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1134 unlink_queue(sma, q);
9ae949fa 1135 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1136 }
1137 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1138 unlink_queue(sma, q);
9ae949fa 1139 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9
RR
1140 }
1141 }
1da177e4 1142
7ca7e564
ND
1143 /* Remove the semaphore set from the IDR */
1144 sem_rmid(ns, sma);
6062a8dc 1145 sem_unlock(sma, -1);
6d49dab8 1146 rcu_read_unlock();
1da177e4 1147
9ae949fa 1148 wake_up_q(&wake_q);
e3893534 1149 ns->used_sems -= sma->sem_nsems;
53dad6d3 1150 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1151}
1152
1153static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1154{
239521f3 1155 switch (version) {
1da177e4
LT
1156 case IPC_64:
1157 return copy_to_user(buf, in, sizeof(*in));
1158 case IPC_OLD:
1159 {
1160 struct semid_ds out;
1161
982f7c2b
DR
1162 memset(&out, 0, sizeof(out));
1163
1da177e4
LT
1164 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1165
1166 out.sem_otime = in->sem_otime;
1167 out.sem_ctime = in->sem_ctime;
1168 out.sem_nsems = in->sem_nsems;
1169
1170 return copy_to_user(buf, &out, sizeof(out));
1171 }
1172 default:
1173 return -EINVAL;
1174 }
1175}
1176
d12e1e50
MS
1177static time_t get_semotime(struct sem_array *sma)
1178{
1179 int i;
1180 time_t res;
1181
1182 res = sma->sem_base[0].sem_otime;
1183 for (i = 1; i < sma->sem_nsems; i++) {
1184 time_t to = sma->sem_base[i].sem_otime;
1185
1186 if (to > res)
1187 res = to;
1188 }
1189 return res;
1190}
1191
4b9fcb0e 1192static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1193 int cmd, int version, void __user *p)
1da177e4 1194{
e5cc9c7b 1195 int err;
1da177e4
LT
1196 struct sem_array *sma;
1197
239521f3 1198 switch (cmd) {
1da177e4
LT
1199 case IPC_INFO:
1200 case SEM_INFO:
1201 {
1202 struct seminfo seminfo;
1203 int max_id;
1204
1205 err = security_sem_semctl(NULL, cmd);
1206 if (err)
1207 return err;
46c0a8ca 1208
239521f3 1209 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1210 seminfo.semmni = ns->sc_semmni;
1211 seminfo.semmns = ns->sc_semmns;
1212 seminfo.semmsl = ns->sc_semmsl;
1213 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1214 seminfo.semvmx = SEMVMX;
1215 seminfo.semmnu = SEMMNU;
1216 seminfo.semmap = SEMMAP;
1217 seminfo.semume = SEMUME;
d9a605e4 1218 down_read(&sem_ids(ns).rwsem);
1da177e4 1219 if (cmd == SEM_INFO) {
e3893534
KK
1220 seminfo.semusz = sem_ids(ns).in_use;
1221 seminfo.semaem = ns->used_sems;
1da177e4
LT
1222 } else {
1223 seminfo.semusz = SEMUSZ;
1224 seminfo.semaem = SEMAEM;
1225 }
7ca7e564 1226 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1227 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1228 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1229 return -EFAULT;
239521f3 1230 return (max_id < 0) ? 0 : max_id;
1da177e4 1231 }
4b9fcb0e 1232 case IPC_STAT:
1da177e4
LT
1233 case SEM_STAT:
1234 {
1235 struct semid64_ds tbuf;
16df3674
DB
1236 int id = 0;
1237
1238 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1239
941b0304 1240 rcu_read_lock();
4b9fcb0e 1241 if (cmd == SEM_STAT) {
16df3674
DB
1242 sma = sem_obtain_object(ns, semid);
1243 if (IS_ERR(sma)) {
1244 err = PTR_ERR(sma);
1245 goto out_unlock;
1246 }
4b9fcb0e
PP
1247 id = sma->sem_perm.id;
1248 } else {
16df3674
DB
1249 sma = sem_obtain_object_check(ns, semid);
1250 if (IS_ERR(sma)) {
1251 err = PTR_ERR(sma);
1252 goto out_unlock;
1253 }
4b9fcb0e 1254 }
1da177e4
LT
1255
1256 err = -EACCES;
b0e77598 1257 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1258 goto out_unlock;
1259
1260 err = security_sem_semctl(sma, cmd);
1261 if (err)
1262 goto out_unlock;
1263
1da177e4 1264 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1265 tbuf.sem_otime = get_semotime(sma);
1266 tbuf.sem_ctime = sma->sem_ctime;
1267 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1268 rcu_read_unlock();
e1fd1f49 1269 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1270 return -EFAULT;
1271 return id;
1272 }
1273 default:
1274 return -EINVAL;
1275 }
1da177e4 1276out_unlock:
16df3674 1277 rcu_read_unlock();
1da177e4
LT
1278 return err;
1279}
1280
e1fd1f49
AV
1281static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1282 unsigned long arg)
1283{
1284 struct sem_undo *un;
1285 struct sem_array *sma;
239521f3 1286 struct sem *curr;
9ae949fa
DB
1287 int err, val;
1288 DEFINE_WAKE_Q(wake_q);
1289
e1fd1f49
AV
1290#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1291 /* big-endian 64bit */
1292 val = arg >> 32;
1293#else
1294 /* 32bit or little-endian 64bit */
1295 val = arg;
1296#endif
1297
6062a8dc
RR
1298 if (val > SEMVMX || val < 0)
1299 return -ERANGE;
e1fd1f49 1300
6062a8dc
RR
1301 rcu_read_lock();
1302 sma = sem_obtain_object_check(ns, semid);
1303 if (IS_ERR(sma)) {
1304 rcu_read_unlock();
1305 return PTR_ERR(sma);
1306 }
1307
1308 if (semnum < 0 || semnum >= sma->sem_nsems) {
1309 rcu_read_unlock();
1310 return -EINVAL;
1311 }
1312
1313
1314 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1315 rcu_read_unlock();
1316 return -EACCES;
1317 }
e1fd1f49
AV
1318
1319 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1320 if (err) {
1321 rcu_read_unlock();
1322 return -EACCES;
1323 }
e1fd1f49 1324
6062a8dc 1325 sem_lock(sma, NULL, -1);
e1fd1f49 1326
0f3d2b01 1327 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1328 sem_unlock(sma, -1);
1329 rcu_read_unlock();
1330 return -EIDRM;
1331 }
1332
e1fd1f49
AV
1333 curr = &sma->sem_base[semnum];
1334
cf9d5d78 1335 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1336 list_for_each_entry(un, &sma->list_id, list_id)
1337 un->semadj[semnum] = 0;
1338
1339 curr->semval = val;
1340 curr->sempid = task_tgid_vnr(current);
1341 sma->sem_ctime = get_seconds();
1342 /* maybe some queued-up processes were waiting for this */
9ae949fa 1343 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1344 sem_unlock(sma, -1);
6d49dab8 1345 rcu_read_unlock();
9ae949fa 1346 wake_up_q(&wake_q);
6062a8dc 1347 return 0;
e1fd1f49
AV
1348}
1349
e3893534 1350static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1351 int cmd, void __user *p)
1da177e4
LT
1352{
1353 struct sem_array *sma;
239521f3 1354 struct sem *curr;
16df3674 1355 int err, nsems;
1da177e4 1356 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1357 ushort *sem_io = fast_sem_io;
9ae949fa 1358 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1359
1360 rcu_read_lock();
1361 sma = sem_obtain_object_check(ns, semid);
1362 if (IS_ERR(sma)) {
1363 rcu_read_unlock();
023a5355 1364 return PTR_ERR(sma);
16df3674 1365 }
1da177e4
LT
1366
1367 nsems = sma->sem_nsems;
1368
1da177e4 1369 err = -EACCES;
c728b9c8
LT
1370 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1371 goto out_rcu_wakeup;
1da177e4
LT
1372
1373 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1374 if (err)
1375 goto out_rcu_wakeup;
1da177e4
LT
1376
1377 err = -EACCES;
1378 switch (cmd) {
1379 case GETALL:
1380 {
e1fd1f49 1381 ushort __user *array = p;
1da177e4
LT
1382 int i;
1383
ce857229 1384 sem_lock(sma, NULL, -1);
0f3d2b01 1385 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1386 err = -EIDRM;
1387 goto out_unlock;
1388 }
239521f3 1389 if (nsems > SEMMSL_FAST) {
ce857229 1390 if (!ipc_rcu_getref(sma)) {
ce857229 1391 err = -EIDRM;
6e224f94 1392 goto out_unlock;
ce857229
AV
1393 }
1394 sem_unlock(sma, -1);
6d49dab8 1395 rcu_read_unlock();
1da177e4 1396 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1397 if (sem_io == NULL) {
9b24fef9 1398 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1399 return -ENOMEM;
1400 }
1401
4091fd94 1402 rcu_read_lock();
6ff37972 1403 sem_lock_and_putref(sma);
0f3d2b01 1404 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1405 err = -EIDRM;
6e224f94 1406 goto out_unlock;
1da177e4 1407 }
ce857229 1408 }
1da177e4
LT
1409 for (i = 0; i < sma->sem_nsems; i++)
1410 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1411 sem_unlock(sma, -1);
6d49dab8 1412 rcu_read_unlock();
1da177e4 1413 err = 0;
239521f3 1414 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1415 err = -EFAULT;
1416 goto out_free;
1417 }
1418 case SETALL:
1419 {
1420 int i;
1421 struct sem_undo *un;
1422
6062a8dc 1423 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1424 err = -EIDRM;
1425 goto out_rcu_wakeup;
6062a8dc 1426 }
16df3674 1427 rcu_read_unlock();
1da177e4 1428
239521f3 1429 if (nsems > SEMMSL_FAST) {
1da177e4 1430 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1431 if (sem_io == NULL) {
9b24fef9 1432 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1433 return -ENOMEM;
1434 }
1435 }
1436
239521f3 1437 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
9b24fef9 1438 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1439 err = -EFAULT;
1440 goto out_free;
1441 }
1442
1443 for (i = 0; i < nsems; i++) {
1444 if (sem_io[i] > SEMVMX) {
9b24fef9 1445 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1446 err = -ERANGE;
1447 goto out_free;
1448 }
1449 }
4091fd94 1450 rcu_read_lock();
6ff37972 1451 sem_lock_and_putref(sma);
0f3d2b01 1452 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1453 err = -EIDRM;
6e224f94 1454 goto out_unlock;
1da177e4
LT
1455 }
1456
a5f4db87 1457 for (i = 0; i < nsems; i++) {
1da177e4 1458 sma->sem_base[i].semval = sem_io[i];
a5f4db87
DB
1459 sma->sem_base[i].sempid = task_tgid_vnr(current);
1460 }
4daa28f6 1461
cf9d5d78 1462 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1463 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1464 for (i = 0; i < nsems; i++)
1465 un->semadj[i] = 0;
4daa28f6 1466 }
1da177e4
LT
1467 sma->sem_ctime = get_seconds();
1468 /* maybe some queued-up processes were waiting for this */
9ae949fa 1469 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1470 err = 0;
1471 goto out_unlock;
1472 }
e1fd1f49 1473 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1474 }
1475 err = -EINVAL;
c728b9c8
LT
1476 if (semnum < 0 || semnum >= nsems)
1477 goto out_rcu_wakeup;
1da177e4 1478
6062a8dc 1479 sem_lock(sma, NULL, -1);
0f3d2b01 1480 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1481 err = -EIDRM;
1482 goto out_unlock;
1483 }
1da177e4
LT
1484 curr = &sma->sem_base[semnum];
1485
1486 switch (cmd) {
1487 case GETVAL:
1488 err = curr->semval;
1489 goto out_unlock;
1490 case GETPID:
1491 err = curr->sempid;
1492 goto out_unlock;
1493 case GETNCNT:
2f2ed41d 1494 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1495 goto out_unlock;
1496 case GETZCNT:
2f2ed41d 1497 err = count_semcnt(sma, semnum, 1);
1da177e4 1498 goto out_unlock;
1da177e4 1499 }
16df3674 1500
1da177e4 1501out_unlock:
6062a8dc 1502 sem_unlock(sma, -1);
c728b9c8 1503out_rcu_wakeup:
6d49dab8 1504 rcu_read_unlock();
9ae949fa 1505 wake_up_q(&wake_q);
1da177e4 1506out_free:
239521f3 1507 if (sem_io != fast_sem_io)
1d5cfdb0 1508 ipc_free(sem_io);
1da177e4
LT
1509 return err;
1510}
1511
016d7132
PP
1512static inline unsigned long
1513copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1514{
239521f3 1515 switch (version) {
1da177e4 1516 case IPC_64:
016d7132 1517 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1518 return -EFAULT;
1da177e4 1519 return 0;
1da177e4
LT
1520 case IPC_OLD:
1521 {
1522 struct semid_ds tbuf_old;
1523
239521f3 1524 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1525 return -EFAULT;
1526
016d7132
PP
1527 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1528 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1529 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1530
1531 return 0;
1532 }
1533 default:
1534 return -EINVAL;
1535 }
1536}
1537
522bb2a2 1538/*
d9a605e4 1539 * This function handles some semctl commands which require the rwsem
522bb2a2 1540 * to be held in write mode.
d9a605e4 1541 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1542 */
21a4826a 1543static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1544 int cmd, int version, void __user *p)
1da177e4
LT
1545{
1546 struct sem_array *sma;
1547 int err;
016d7132 1548 struct semid64_ds semid64;
1da177e4
LT
1549 struct kern_ipc_perm *ipcp;
1550
239521f3 1551 if (cmd == IPC_SET) {
e1fd1f49 1552 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1553 return -EFAULT;
1da177e4 1554 }
073115d6 1555
d9a605e4 1556 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1557 rcu_read_lock();
1558
16df3674
DB
1559 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1560 &semid64.sem_perm, 0);
7b4cc5d8
DB
1561 if (IS_ERR(ipcp)) {
1562 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1563 goto out_unlock1;
1564 }
073115d6 1565
a5f75e7f 1566 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1567
1568 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1569 if (err)
1570 goto out_unlock1;
1da177e4 1571
7b4cc5d8 1572 switch (cmd) {
1da177e4 1573 case IPC_RMID:
6062a8dc 1574 sem_lock(sma, NULL, -1);
7b4cc5d8 1575 /* freeary unlocks the ipc object and rcu */
01b8b07a 1576 freeary(ns, ipcp);
522bb2a2 1577 goto out_up;
1da177e4 1578 case IPC_SET:
6062a8dc 1579 sem_lock(sma, NULL, -1);
1efdb69b
EB
1580 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1581 if (err)
7b4cc5d8 1582 goto out_unlock0;
1da177e4 1583 sma->sem_ctime = get_seconds();
1da177e4
LT
1584 break;
1585 default:
1da177e4 1586 err = -EINVAL;
7b4cc5d8 1587 goto out_unlock1;
1da177e4 1588 }
1da177e4 1589
7b4cc5d8 1590out_unlock0:
6062a8dc 1591 sem_unlock(sma, -1);
7b4cc5d8 1592out_unlock1:
6d49dab8 1593 rcu_read_unlock();
522bb2a2 1594out_up:
d9a605e4 1595 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1596 return err;
1597}
1598
e1fd1f49 1599SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1600{
1da177e4 1601 int version;
e3893534 1602 struct ipc_namespace *ns;
e1fd1f49 1603 void __user *p = (void __user *)arg;
1da177e4
LT
1604
1605 if (semid < 0)
1606 return -EINVAL;
1607
1608 version = ipc_parse_version(&cmd);
e3893534 1609 ns = current->nsproxy->ipc_ns;
1da177e4 1610
239521f3 1611 switch (cmd) {
1da177e4
LT
1612 case IPC_INFO:
1613 case SEM_INFO:
4b9fcb0e 1614 case IPC_STAT:
1da177e4 1615 case SEM_STAT:
e1fd1f49 1616 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1617 case GETALL:
1618 case GETVAL:
1619 case GETPID:
1620 case GETNCNT:
1621 case GETZCNT:
1da177e4 1622 case SETALL:
e1fd1f49
AV
1623 return semctl_main(ns, semid, semnum, cmd, p);
1624 case SETVAL:
1625 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1626 case IPC_RMID:
1627 case IPC_SET:
e1fd1f49 1628 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1629 default:
1630 return -EINVAL;
1631 }
1632}
1633
1da177e4
LT
1634/* If the task doesn't already have a undo_list, then allocate one
1635 * here. We guarantee there is only one thread using this undo list,
1636 * and current is THE ONE
1637 *
1638 * If this allocation and assignment succeeds, but later
1639 * portions of this code fail, there is no need to free the sem_undo_list.
1640 * Just let it stay associated with the task, and it'll be freed later
1641 * at exit time.
1642 *
1643 * This can block, so callers must hold no locks.
1644 */
1645static inline int get_undo_list(struct sem_undo_list **undo_listp)
1646{
1647 struct sem_undo_list *undo_list;
1da177e4
LT
1648
1649 undo_list = current->sysvsem.undo_list;
1650 if (!undo_list) {
2453a306 1651 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1652 if (undo_list == NULL)
1653 return -ENOMEM;
00a5dfdb 1654 spin_lock_init(&undo_list->lock);
1da177e4 1655 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1656 INIT_LIST_HEAD(&undo_list->list_proc);
1657
1da177e4
LT
1658 current->sysvsem.undo_list = undo_list;
1659 }
1660 *undo_listp = undo_list;
1661 return 0;
1662}
1663
bf17bb71 1664static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1665{
bf17bb71 1666 struct sem_undo *un;
4daa28f6 1667
bf17bb71
NP
1668 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1669 if (un->semid == semid)
1670 return un;
1da177e4 1671 }
4daa28f6 1672 return NULL;
1da177e4
LT
1673}
1674
bf17bb71
NP
1675static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1676{
1677 struct sem_undo *un;
1678
239521f3 1679 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1680
1681 un = __lookup_undo(ulp, semid);
1682 if (un) {
1683 list_del_rcu(&un->list_proc);
1684 list_add_rcu(&un->list_proc, &ulp->list_proc);
1685 }
1686 return un;
1687}
1688
4daa28f6 1689/**
8001c858 1690 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1691 * @ns: namespace
1692 * @semid: semaphore array id
1693 *
1694 * The function looks up (and if not present creates) the undo structure.
1695 * The size of the undo structure depends on the size of the semaphore
1696 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1697 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1698 * performs a rcu_read_lock().
4daa28f6
MS
1699 */
1700static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1701{
1702 struct sem_array *sma;
1703 struct sem_undo_list *ulp;
1704 struct sem_undo *un, *new;
6062a8dc 1705 int nsems, error;
1da177e4
LT
1706
1707 error = get_undo_list(&ulp);
1708 if (error)
1709 return ERR_PTR(error);
1710
380af1b3 1711 rcu_read_lock();
c530c6ac 1712 spin_lock(&ulp->lock);
1da177e4 1713 un = lookup_undo(ulp, semid);
c530c6ac 1714 spin_unlock(&ulp->lock);
239521f3 1715 if (likely(un != NULL))
1da177e4
LT
1716 goto out;
1717
1718 /* no undo structure around - allocate one. */
4daa28f6 1719 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1720 sma = sem_obtain_object_check(ns, semid);
1721 if (IS_ERR(sma)) {
1722 rcu_read_unlock();
4de85cd6 1723 return ERR_CAST(sma);
16df3674 1724 }
023a5355 1725
1da177e4 1726 nsems = sma->sem_nsems;
6062a8dc
RR
1727 if (!ipc_rcu_getref(sma)) {
1728 rcu_read_unlock();
1729 un = ERR_PTR(-EIDRM);
1730 goto out;
1731 }
16df3674 1732 rcu_read_unlock();
1da177e4 1733
4daa28f6 1734 /* step 2: allocate new undo structure */
4668edc3 1735 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1736 if (!new) {
9b24fef9 1737 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1738 return ERR_PTR(-ENOMEM);
1739 }
1da177e4 1740
380af1b3 1741 /* step 3: Acquire the lock on semaphore array */
4091fd94 1742 rcu_read_lock();
6ff37972 1743 sem_lock_and_putref(sma);
0f3d2b01 1744 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1745 sem_unlock(sma, -1);
6d49dab8 1746 rcu_read_unlock();
1da177e4
LT
1747 kfree(new);
1748 un = ERR_PTR(-EIDRM);
1749 goto out;
1750 }
380af1b3
MS
1751 spin_lock(&ulp->lock);
1752
1753 /*
1754 * step 4: check for races: did someone else allocate the undo struct?
1755 */
1756 un = lookup_undo(ulp, semid);
1757 if (un) {
1758 kfree(new);
1759 goto success;
1760 }
4daa28f6
MS
1761 /* step 5: initialize & link new undo structure */
1762 new->semadj = (short *) &new[1];
380af1b3 1763 new->ulp = ulp;
4daa28f6
MS
1764 new->semid = semid;
1765 assert_spin_locked(&ulp->lock);
380af1b3 1766 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1767 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1768 list_add(&new->list_id, &sma->list_id);
380af1b3 1769 un = new;
4daa28f6 1770
380af1b3 1771success:
c530c6ac 1772 spin_unlock(&ulp->lock);
6062a8dc 1773 sem_unlock(sma, -1);
1da177e4
LT
1774out:
1775 return un;
1776}
1777
d5460c99
HC
1778SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1779 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1780{
1781 int error = -EINVAL;
1782 struct sem_array *sma;
1783 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1784 struct sembuf *sops = fast_sops, *sop;
1da177e4 1785 struct sem_undo *un;
4ce33ec2
DB
1786 int max, locknum;
1787 bool undos = false, alter = false, dupsop = false;
1da177e4 1788 struct sem_queue queue;
4ce33ec2 1789 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1790 struct ipc_namespace *ns;
1791
1792 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1793
1794 if (nsops < 1 || semid < 0)
1795 return -EINVAL;
e3893534 1796 if (nsops > ns->sc_semopm)
1da177e4 1797 return -E2BIG;
239521f3
MS
1798 if (nsops > SEMOPM_FAST) {
1799 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1800 if (sops == NULL)
1da177e4
LT
1801 return -ENOMEM;
1802 }
4ce33ec2 1803
239521f3
MS
1804 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1805 error = -EFAULT;
1da177e4
LT
1806 goto out_free;
1807 }
4ce33ec2 1808
1da177e4
LT
1809 if (timeout) {
1810 struct timespec _timeout;
1811 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1812 error = -EFAULT;
1813 goto out_free;
1814 }
1815 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1816 _timeout.tv_nsec >= 1000000000L) {
1817 error = -EINVAL;
1818 goto out_free;
1819 }
1820 jiffies_left = timespec_to_jiffies(&_timeout);
1821 }
4ce33ec2 1822
1da177e4
LT
1823 max = 0;
1824 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1825 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1826
1da177e4
LT
1827 if (sop->sem_num >= max)
1828 max = sop->sem_num;
1829 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1830 undos = true;
1831 if (dup & mask) {
1832 /*
1833 * There was a previous alter access that appears
1834 * to have accessed the same semaphore, thus use
1835 * the dupsop logic. "appears", because the detection
1836 * can only check % BITS_PER_LONG.
1837 */
1838 dupsop = true;
1839 }
1840 if (sop->sem_op != 0) {
1841 alter = true;
1842 dup |= mask;
1843 }
1da177e4 1844 }
1da177e4 1845
1da177e4 1846 if (undos) {
6062a8dc 1847 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1848 un = find_alloc_undo(ns, semid);
1da177e4
LT
1849 if (IS_ERR(un)) {
1850 error = PTR_ERR(un);
1851 goto out_free;
1852 }
6062a8dc 1853 } else {
1da177e4 1854 un = NULL;
6062a8dc
RR
1855 rcu_read_lock();
1856 }
1da177e4 1857
16df3674 1858 sma = sem_obtain_object_check(ns, semid);
023a5355 1859 if (IS_ERR(sma)) {
6062a8dc 1860 rcu_read_unlock();
023a5355 1861 error = PTR_ERR(sma);
1da177e4 1862 goto out_free;
023a5355
ND
1863 }
1864
16df3674 1865 error = -EFBIG;
248e7357
DB
1866 if (max >= sma->sem_nsems) {
1867 rcu_read_unlock();
1868 goto out_free;
1869 }
16df3674
DB
1870
1871 error = -EACCES;
248e7357
DB
1872 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1873 rcu_read_unlock();
1874 goto out_free;
1875 }
16df3674
DB
1876
1877 error = security_sem_semop(sma, sops, nsops, alter);
248e7357
DB
1878 if (error) {
1879 rcu_read_unlock();
1880 goto out_free;
1881 }
16df3674 1882
6e224f94
MS
1883 error = -EIDRM;
1884 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1885 /*
1886 * We eventually might perform the following check in a lockless
1887 * fashion, considering ipc_valid_object() locking constraints.
1888 * If nsops == 1 and there is no contention for sem_perm.lock, then
1889 * only a per-semaphore lock is held and it's OK to proceed with the
1890 * check below. More details on the fine grained locking scheme
1891 * entangled here and why it's RMID race safe on comments at sem_lock()
1892 */
1893 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1894 goto out_unlock_free;
1da177e4 1895 /*
4daa28f6 1896 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1897 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1898 * and now a new array with received the same id. Check and fail.
25985edc 1899 * This case can be detected checking un->semid. The existence of
380af1b3 1900 * "un" itself is guaranteed by rcu.
1da177e4 1901 */
6062a8dc
RR
1902 if (un && un->semid == -1)
1903 goto out_unlock_free;
4daa28f6 1904
d198cd6d
MS
1905 queue.sops = sops;
1906 queue.nsops = nsops;
1907 queue.undo = un;
1908 queue.pid = task_tgid_vnr(current);
1909 queue.alter = alter;
4ce33ec2 1910 queue.dupsop = dupsop;
d198cd6d
MS
1911
1912 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
1913 if (error == 0) { /* non-blocking succesfull path */
1914 DEFINE_WAKE_Q(wake_q);
1915
1916 /*
1917 * If the operation was successful, then do
0e8c6656
MS
1918 * the required updates.
1919 */
1920 if (alter)
9ae949fa 1921 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
1922 else
1923 set_semotime(sma, sops);
9ae949fa
DB
1924
1925 sem_unlock(sma, locknum);
1926 rcu_read_unlock();
1927 wake_up_q(&wake_q);
1928
1929 goto out_free;
1da177e4 1930 }
9ae949fa 1931 if (error < 0) /* non-blocking error path */
0e8c6656 1932 goto out_unlock_free;
1da177e4 1933
9ae949fa
DB
1934 /*
1935 * We need to sleep on this operation, so we put the current
1da177e4
LT
1936 * task into the pending queue and go to sleep.
1937 */
b97e820f
MS
1938 if (nsops == 1) {
1939 struct sem *curr;
1940 curr = &sma->sem_base[sops->sem_num];
1941
f269f40a
MS
1942 if (alter) {
1943 if (sma->complex_count) {
1944 list_add_tail(&queue.list,
1945 &sma->pending_alter);
1946 } else {
1947
1948 list_add_tail(&queue.list,
1949 &curr->pending_alter);
1950 }
1951 } else {
1a82e9e1 1952 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1953 }
b97e820f 1954 } else {
f269f40a
MS
1955 if (!sma->complex_count)
1956 merge_queues(sma);
1957
9f1bc2c9 1958 if (alter)
1a82e9e1 1959 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1960 else
1a82e9e1
MS
1961 list_add_tail(&queue.list, &sma->pending_const);
1962
b97e820f
MS
1963 sma->complex_count++;
1964 }
1965
9ae949fa 1966sleep_again:
1da177e4
LT
1967 queue.status = -EINTR;
1968 queue.sleeper = current;
0b0577f6 1969
52644c9a 1970 __set_current_state(TASK_INTERRUPTIBLE);
6062a8dc 1971 sem_unlock(sma, locknum);
6d49dab8 1972 rcu_read_unlock();
1da177e4
LT
1973
1974 if (timeout)
1975 jiffies_left = schedule_timeout(jiffies_left);
1976 else
1977 schedule();
1978
9ae949fa
DB
1979 /*
1980 * fastpath: the semop has completed, either successfully or not, from
1981 * the syscall pov, is quite irrelevant to us at this point; we're done.
1982 *
1983 * We _do_ care, nonetheless, about being awoken by a signal or
1984 * spuriously. The queue.status is checked again in the slowpath (aka
1985 * after taking sem_lock), such that we can detect scenarios where we
1986 * were awakened externally, during the window between wake_q_add() and
1987 * wake_up_q().
1988 */
1989 error = READ_ONCE(queue.status);
1da177e4 1990 if (error != -EINTR) {
9ae949fa
DB
1991 /*
1992 * User space could assume that semop() is a memory barrier:
1993 * Without the mb(), the cpu could speculatively read in user
1994 * space stale data that was overwritten by the previous owner
1995 * of the semaphore.
c61284e9
MS
1996 */
1997 smp_mb();
1da177e4
LT
1998 goto out_free;
1999 }
2000
321310ce 2001 rcu_read_lock();
6062a8dc 2002 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
9ae949fa 2003 error = READ_ONCE(queue.status);
d694ad62
MS
2004
2005 /*
2006 * Array removed? If yes, leave without sem_unlock().
2007 */
023a5355 2008 if (IS_ERR(sma)) {
321310ce 2009 rcu_read_unlock();
1da177e4
LT
2010 goto out_free;
2011 }
2012
2013 /*
d694ad62
MS
2014 * If queue.status != -EINTR we are woken up by another process.
2015 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 2016 */
3ab08fe2 2017 if (error != -EINTR)
1da177e4 2018 goto out_unlock_free;
1da177e4
LT
2019
2020 /*
9ae949fa 2021 * If an interrupt occurred we have to clean up the queue.
1da177e4
LT
2022 */
2023 if (timeout && jiffies_left == 0)
2024 error = -EAGAIN;
0b0577f6
MS
2025
2026 /*
9ae949fa 2027 * If the wakeup was spurious, just retry.
0b0577f6
MS
2028 */
2029 if (error == -EINTR && !signal_pending(current))
2030 goto sleep_again;
2031
b97e820f 2032 unlink_queue(sma, &queue);
1da177e4
LT
2033
2034out_unlock_free:
6062a8dc 2035 sem_unlock(sma, locknum);
6d49dab8 2036 rcu_read_unlock();
1da177e4 2037out_free:
239521f3 2038 if (sops != fast_sops)
1da177e4
LT
2039 kfree(sops);
2040 return error;
2041}
2042
d5460c99
HC
2043SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2044 unsigned, nsops)
1da177e4
LT
2045{
2046 return sys_semtimedop(semid, tsops, nsops, NULL);
2047}
2048
2049/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2050 * parent and child tasks.
1da177e4
LT
2051 */
2052
2053int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2054{
2055 struct sem_undo_list *undo_list;
2056 int error;
2057
2058 if (clone_flags & CLONE_SYSVSEM) {
2059 error = get_undo_list(&undo_list);
2060 if (error)
2061 return error;
1da177e4
LT
2062 atomic_inc(&undo_list->refcnt);
2063 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2064 } else
1da177e4
LT
2065 tsk->sysvsem.undo_list = NULL;
2066
2067 return 0;
2068}
2069
2070/*
2071 * add semadj values to semaphores, free undo structures.
2072 * undo structures are not freed when semaphore arrays are destroyed
2073 * so some of them may be out of date.
2074 * IMPLEMENTATION NOTE: There is some confusion over whether the
2075 * set of adjustments that needs to be done should be done in an atomic
2076 * manner or not. That is, if we are attempting to decrement the semval
2077 * should we queue up and wait until we can do so legally?
2078 * The original implementation attempted to do this (queue and wait).
2079 * The current implementation does not do so. The POSIX standard
2080 * and SVID should be consulted to determine what behavior is mandated.
2081 */
2082void exit_sem(struct task_struct *tsk)
2083{
4daa28f6 2084 struct sem_undo_list *ulp;
1da177e4 2085
4daa28f6
MS
2086 ulp = tsk->sysvsem.undo_list;
2087 if (!ulp)
1da177e4 2088 return;
9edff4ab 2089 tsk->sysvsem.undo_list = NULL;
1da177e4 2090
4daa28f6 2091 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2092 return;
2093
380af1b3 2094 for (;;) {
1da177e4 2095 struct sem_array *sma;
380af1b3 2096 struct sem_undo *un;
6062a8dc 2097 int semid, i;
9ae949fa 2098 DEFINE_WAKE_Q(wake_q);
4daa28f6 2099
2a1613a5
NB
2100 cond_resched();
2101
380af1b3 2102 rcu_read_lock();
05725f7e
JP
2103 un = list_entry_rcu(ulp->list_proc.next,
2104 struct sem_undo, list_proc);
602b8593
HK
2105 if (&un->list_proc == &ulp->list_proc) {
2106 /*
2107 * We must wait for freeary() before freeing this ulp,
2108 * in case we raced with last sem_undo. There is a small
2109 * possibility where we exit while freeary() didn't
2110 * finish unlocking sem_undo_list.
2111 */
2112 spin_unlock_wait(&ulp->lock);
2113 rcu_read_unlock();
2114 break;
2115 }
2116 spin_lock(&ulp->lock);
2117 semid = un->semid;
2118 spin_unlock(&ulp->lock);
4daa28f6 2119
602b8593 2120 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2121 if (semid == -1) {
2122 rcu_read_unlock();
602b8593 2123 continue;
6062a8dc 2124 }
1da177e4 2125
602b8593 2126 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2127 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2128 if (IS_ERR(sma)) {
2129 rcu_read_unlock();
380af1b3 2130 continue;
6062a8dc 2131 }
1da177e4 2132
6062a8dc 2133 sem_lock(sma, NULL, -1);
6e224f94 2134 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2135 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2136 sem_unlock(sma, -1);
2137 rcu_read_unlock();
2138 continue;
2139 }
bf17bb71 2140 un = __lookup_undo(ulp, semid);
380af1b3
MS
2141 if (un == NULL) {
2142 /* exit_sem raced with IPC_RMID+semget() that created
2143 * exactly the same semid. Nothing to do.
2144 */
6062a8dc 2145 sem_unlock(sma, -1);
6d49dab8 2146 rcu_read_unlock();
380af1b3
MS
2147 continue;
2148 }
2149
2150 /* remove un from the linked lists */
cf9d5d78 2151 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2152 list_del(&un->list_id);
2153
a9795584
HK
2154 /* we are the last process using this ulp, acquiring ulp->lock
2155 * isn't required. Besides that, we are also protected against
2156 * IPC_RMID as we hold sma->sem_perm lock now
2157 */
380af1b3 2158 list_del_rcu(&un->list_proc);
380af1b3 2159
4daa28f6
MS
2160 /* perform adjustments registered in un */
2161 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2162 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2163 if (un->semadj[i]) {
2164 semaphore->semval += un->semadj[i];
1da177e4
LT
2165 /*
2166 * Range checks of the new semaphore value,
2167 * not defined by sus:
2168 * - Some unices ignore the undo entirely
2169 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2170 * - some cap the value (e.g. FreeBSD caps
2171 * at 0, but doesn't enforce SEMVMX)
2172 *
2173 * Linux caps the semaphore value, both at 0
2174 * and at SEMVMX.
2175 *
239521f3 2176 * Manfred <manfred@colorfullife.com>
1da177e4 2177 */
5f921ae9
IM
2178 if (semaphore->semval < 0)
2179 semaphore->semval = 0;
2180 if (semaphore->semval > SEMVMX)
2181 semaphore->semval = SEMVMX;
b488893a 2182 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2183 }
2184 }
1da177e4 2185 /* maybe some queued-up processes were waiting for this */
9ae949fa 2186 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2187 sem_unlock(sma, -1);
6d49dab8 2188 rcu_read_unlock();
9ae949fa 2189 wake_up_q(&wake_q);
380af1b3 2190
693a8b6e 2191 kfree_rcu(un, rcu);
1da177e4 2192 }
4daa28f6 2193 kfree(ulp);
1da177e4
LT
2194}
2195
2196#ifdef CONFIG_PROC_FS
19b4946c 2197static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2198{
1efdb69b 2199 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2200 struct sem_array *sma = it;
d12e1e50
MS
2201 time_t sem_otime;
2202
d8c63376
MS
2203 /*
2204 * The proc interface isn't aware of sem_lock(), it calls
2205 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2206 * In order to stay compatible with sem_lock(), we must
2207 * enter / leave complex_mode.
d8c63376 2208 */
5864a2fd 2209 complexmode_enter(sma);
d8c63376 2210
d12e1e50 2211 sem_otime = get_semotime(sma);
19b4946c 2212
7f032d6e
JP
2213 seq_printf(s,
2214 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2215 sma->sem_perm.key,
2216 sma->sem_perm.id,
2217 sma->sem_perm.mode,
2218 sma->sem_nsems,
2219 from_kuid_munged(user_ns, sma->sem_perm.uid),
2220 from_kgid_munged(user_ns, sma->sem_perm.gid),
2221 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2222 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2223 sem_otime,
2224 sma->sem_ctime);
2225
5864a2fd
MS
2226 complexmode_tryleave(sma);
2227
7f032d6e 2228 return 0;
1da177e4
LT
2229}
2230#endif