]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/audit.c
audit: Use timespec64 to represent audit timestamps
[mirror_ubuntu-bionic-kernel.git] / kernel / audit.c
CommitLineData
85c8721f 1/* audit.c -- Auditing support
1da177e4
LT
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
6a01b07f 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
1da177e4
LT
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
d7a96f3a 24 * Goals: 1) Integrate fully with Security Modules.
1da177e4
LT
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
85c8721f 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
1da177e4
LT
42 */
43
d957f7b7
JP
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
5b282552 46#include <linux/file.h>
1da177e4 47#include <linux/init.h>
7153e402 48#include <linux/types.h>
60063497 49#include <linux/atomic.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
b7d11258
DW
53#include <linux/err.h>
54#include <linux/kthread.h>
46e959ea 55#include <linux/kernel.h>
b24a30a7 56#include <linux/syscalls.h>
5b52330b
PM
57#include <linux/spinlock.h>
58#include <linux/rcupdate.h>
59#include <linux/mutex.h>
60#include <linux/gfp.h>
b6c7c115 61#include <linux/pid.h>
1da177e4
LT
62
63#include <linux/audit.h>
64
65#include <net/sock.h>
93315ed6 66#include <net/netlink.h>
1da177e4 67#include <linux/skbuff.h>
131ad62d
MDF
68#ifdef CONFIG_SECURITY
69#include <linux/security.h>
70#endif
7dfb7103 71#include <linux/freezer.h>
34e36d8e 72#include <linux/pid_namespace.h>
33faba7f 73#include <net/netns/generic.h>
3dc7e315
DG
74
75#include "audit.h"
1da177e4 76
a3f07114 77/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
1da177e4 78 * (Initialization happens after skb_init is called.) */
a3f07114
EP
79#define AUDIT_DISABLED -1
80#define AUDIT_UNINITIALIZED 0
81#define AUDIT_INITIALIZED 1
1da177e4
LT
82static int audit_initialized;
83
1a6b9f23
EP
84#define AUDIT_OFF 0
85#define AUDIT_ON 1
86#define AUDIT_LOCKED 2
3e1d0bb6
JP
87u32 audit_enabled;
88u32 audit_ever_enabled;
1da177e4 89
ae9d67af
JE
90EXPORT_SYMBOL_GPL(audit_enabled);
91
1da177e4 92/* Default state when kernel boots without any parameters. */
3e1d0bb6 93static u32 audit_default;
1da177e4
LT
94
95/* If auditing cannot proceed, audit_failure selects what happens. */
3e1d0bb6 96static u32 audit_failure = AUDIT_FAIL_PRINTK;
1da177e4 97
5b52330b
PM
98/* private audit network namespace index */
99static unsigned int audit_net_id;
100
101/**
102 * struct audit_net - audit private network namespace data
103 * @sk: communication socket
104 */
105struct audit_net {
106 struct sock *sk;
107};
108
109/**
110 * struct auditd_connection - kernel/auditd connection state
111 * @pid: auditd PID
112 * @portid: netlink portid
113 * @net: the associated network namespace
114 * @lock: spinlock to protect write access
115 *
116 * Description:
117 * This struct is RCU protected; you must either hold the RCU lock for reading
118 * or the included spinlock for writing.
75c0371a 119 */
5b52330b 120static struct auditd_connection {
b6c7c115 121 struct pid *pid;
5b52330b
PM
122 u32 portid;
123 struct net *net;
124 spinlock_t lock;
125} auditd_conn;
1da177e4 126
b0dd25a8 127/* If audit_rate_limit is non-zero, limit the rate of sending audit records
1da177e4
LT
128 * to that number per second. This prevents DoS attacks, but results in
129 * audit records being dropped. */
3e1d0bb6 130static u32 audit_rate_limit;
1da177e4 131
40c0775e
RGB
132/* Number of outstanding audit_buffers allowed.
133 * When set to zero, this means unlimited. */
3e1d0bb6 134static u32 audit_backlog_limit = 64;
e789e561 135#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
3e1d0bb6 136static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1da177e4 137
c2f0c7c3 138/* The identity of the user shutting down the audit system. */
cca080d9 139kuid_t audit_sig_uid = INVALID_UID;
c2f0c7c3 140pid_t audit_sig_pid = -1;
e1396065 141u32 audit_sig_sid = 0;
c2f0c7c3 142
1da177e4
LT
143/* Records can be lost in several ways:
144 0) [suppressed in audit_alloc]
145 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
146 2) out of memory in audit_log_move [alloc_skb]
147 3) suppressed due to audit_rate_limit
148 4) suppressed due to audit_backlog_limit
149*/
92c82e8a 150static atomic_t audit_lost = ATOMIC_INIT(0);
1da177e4 151
f368c07d
AG
152/* Hash for inode-based rules */
153struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
154
b7d11258 155/* The audit_freelist is a list of pre-allocated audit buffers (if more
1da177e4
LT
156 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
157 * being placed on the freelist). */
1da177e4 158static DEFINE_SPINLOCK(audit_freelist_lock);
b0dd25a8 159static int audit_freelist_count;
1da177e4
LT
160static LIST_HEAD(audit_freelist);
161
c6480207 162/* queue msgs to send via kauditd_task */
af8b824f 163static struct sk_buff_head audit_queue;
c6480207
PM
164/* queue msgs due to temporary unicast send problems */
165static struct sk_buff_head audit_retry_queue;
166/* queue msgs waiting for new auditd connection */
af8b824f 167static struct sk_buff_head audit_hold_queue;
c6480207
PM
168
169/* queue servicing thread */
b7d11258
DW
170static struct task_struct *kauditd_task;
171static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
c6480207
PM
172
173/* waitqueue for callers who are blocked on the audit backlog */
9ad9ad38 174static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
1da177e4 175
b0fed402
EP
176static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
177 .mask = -1,
178 .features = 0,
179 .lock = 0,};
180
21b85c31 181static char *audit_feature_names[2] = {
d040e5af 182 "only_unset_loginuid",
21b85c31 183 "loginuid_immutable",
b0fed402
EP
184};
185
186
f368c07d 187/* Serialize requests from userspace. */
916d7576 188DEFINE_MUTEX(audit_cmd_mutex);
1da177e4
LT
189
190/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
191 * audit records. Since printk uses a 1024 byte buffer, this buffer
192 * should be at least that large. */
193#define AUDIT_BUFSIZ 1024
194
195/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
196 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
197#define AUDIT_MAXFREE (2*NR_CPUS)
198
199/* The audit_buffer is used when formatting an audit record. The caller
200 * locks briefly to get the record off the freelist or to allocate the
201 * buffer, and locks briefly to send the buffer to the netlink layer or
202 * to place it on a transmit queue. Multiple audit_buffers can be in
203 * use simultaneously. */
204struct audit_buffer {
205 struct list_head list;
8fc6115c 206 struct sk_buff *skb; /* formatted skb ready to send */
1da177e4 207 struct audit_context *ctx; /* NULL or associated context */
9796fdd8 208 gfp_t gfp_mask;
1da177e4
LT
209};
210
f09ac9db 211struct audit_reply {
f9441639 212 __u32 portid;
638a0fd2 213 struct net *net;
f09ac9db
EP
214 struct sk_buff *skb;
215};
216
5b52330b
PM
217/**
218 * auditd_test_task - Check to see if a given task is an audit daemon
219 * @task: the task to check
220 *
221 * Description:
222 * Return 1 if the task is a registered audit daemon, 0 otherwise.
223 */
b6c7c115 224int auditd_test_task(struct task_struct *task)
5b52330b
PM
225{
226 int rc;
227
228 rcu_read_lock();
b6c7c115 229 rc = (auditd_conn.pid && auditd_conn.pid == task_tgid(task) ? 1 : 0);
5b52330b
PM
230 rcu_read_unlock();
231
232 return rc;
233}
234
b6c7c115
PM
235/**
236 * auditd_pid_vnr - Return the auditd PID relative to the namespace
237 * @auditd: the auditd connection
238 *
239 * Description:
240 * Returns the PID in relation to the namespace, 0 on failure. This function
241 * takes the RCU read lock internally, but if the caller needs to protect the
242 * auditd_connection pointer it should take the RCU read lock as well.
243 */
244static pid_t auditd_pid_vnr(const struct auditd_connection *auditd)
245{
246 pid_t pid;
247
248 rcu_read_lock();
249 if (!auditd || !auditd->pid)
250 pid = 0;
251 else
252 pid = pid_vnr(auditd->pid);
253 rcu_read_unlock();
254
255 return pid;
256}
257
5b52330b
PM
258/**
259 * audit_get_sk - Return the audit socket for the given network namespace
260 * @net: the destination network namespace
261 *
262 * Description:
263 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
264 * that a reference is held for the network namespace while the sock is in use.
265 */
266static struct sock *audit_get_sk(const struct net *net)
267{
268 struct audit_net *aunet;
269
270 if (!net)
271 return NULL;
272
273 aunet = net_generic(net, audit_net_id);
274 return aunet->sk;
275}
276
8c8570fb 277void audit_panic(const char *message)
1da177e4 278{
d957f7b7 279 switch (audit_failure) {
1da177e4
LT
280 case AUDIT_FAIL_SILENT:
281 break;
282 case AUDIT_FAIL_PRINTK:
320f1b1e 283 if (printk_ratelimit())
d957f7b7 284 pr_err("%s\n", message);
1da177e4
LT
285 break;
286 case AUDIT_FAIL_PANIC:
5b52330b 287 panic("audit: %s\n", message);
1da177e4
LT
288 break;
289 }
290}
291
292static inline int audit_rate_check(void)
293{
294 static unsigned long last_check = 0;
295 static int messages = 0;
296 static DEFINE_SPINLOCK(lock);
297 unsigned long flags;
298 unsigned long now;
299 unsigned long elapsed;
300 int retval = 0;
301
302 if (!audit_rate_limit) return 1;
303
304 spin_lock_irqsave(&lock, flags);
305 if (++messages < audit_rate_limit) {
306 retval = 1;
307 } else {
308 now = jiffies;
309 elapsed = now - last_check;
310 if (elapsed > HZ) {
311 last_check = now;
312 messages = 0;
313 retval = 1;
314 }
315 }
316 spin_unlock_irqrestore(&lock, flags);
317
318 return retval;
319}
320
b0dd25a8
RD
321/**
322 * audit_log_lost - conditionally log lost audit message event
323 * @message: the message stating reason for lost audit message
324 *
325 * Emit at least 1 message per second, even if audit_rate_check is
326 * throttling.
327 * Always increment the lost messages counter.
328*/
1da177e4
LT
329void audit_log_lost(const char *message)
330{
331 static unsigned long last_msg = 0;
332 static DEFINE_SPINLOCK(lock);
333 unsigned long flags;
334 unsigned long now;
335 int print;
336
337 atomic_inc(&audit_lost);
338
339 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
340
341 if (!print) {
342 spin_lock_irqsave(&lock, flags);
343 now = jiffies;
344 if (now - last_msg > HZ) {
345 print = 1;
346 last_msg = now;
347 }
348 spin_unlock_irqrestore(&lock, flags);
349 }
350
351 if (print) {
320f1b1e 352 if (printk_ratelimit())
3e1d0bb6 353 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
320f1b1e
EP
354 atomic_read(&audit_lost),
355 audit_rate_limit,
356 audit_backlog_limit);
1da177e4
LT
357 audit_panic(message);
358 }
1da177e4
LT
359}
360
3e1d0bb6 361static int audit_log_config_change(char *function_name, u32 new, u32 old,
2532386f 362 int allow_changes)
1da177e4 363{
1a6b9f23
EP
364 struct audit_buffer *ab;
365 int rc = 0;
ce29b682 366
1a6b9f23 367 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
0644ec0c
KC
368 if (unlikely(!ab))
369 return rc;
3e1d0bb6 370 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
4d3fb709 371 audit_log_session_info(ab);
b122c376
EP
372 rc = audit_log_task_context(ab);
373 if (rc)
374 allow_changes = 0; /* Something weird, deny request */
1a6b9f23
EP
375 audit_log_format(ab, " res=%d", allow_changes);
376 audit_log_end(ab);
6a01b07f 377 return rc;
1da177e4
LT
378}
379
3e1d0bb6 380static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
1da177e4 381{
3e1d0bb6
JP
382 int allow_changes, rc = 0;
383 u32 old = *to_change;
6a01b07f
SG
384
385 /* check if we are locked */
1a6b9f23
EP
386 if (audit_enabled == AUDIT_LOCKED)
387 allow_changes = 0;
6a01b07f 388 else
1a6b9f23 389 allow_changes = 1;
ce29b682 390
1a6b9f23 391 if (audit_enabled != AUDIT_OFF) {
dc9eb698 392 rc = audit_log_config_change(function_name, new, old, allow_changes);
1a6b9f23
EP
393 if (rc)
394 allow_changes = 0;
6a01b07f 395 }
6a01b07f
SG
396
397 /* If we are allowed, make the change */
1a6b9f23
EP
398 if (allow_changes == 1)
399 *to_change = new;
6a01b07f
SG
400 /* Not allowed, update reason */
401 else if (rc == 0)
402 rc = -EPERM;
403 return rc;
1da177e4
LT
404}
405
3e1d0bb6 406static int audit_set_rate_limit(u32 limit)
1da177e4 407{
dc9eb698 408 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
1a6b9f23 409}
ce29b682 410
3e1d0bb6 411static int audit_set_backlog_limit(u32 limit)
1a6b9f23 412{
dc9eb698 413 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
1a6b9f23 414}
6a01b07f 415
3e1d0bb6 416static int audit_set_backlog_wait_time(u32 timeout)
51cc83f0
RGB
417{
418 return audit_do_config_change("audit_backlog_wait_time",
31975424 419 &audit_backlog_wait_time, timeout);
51cc83f0
RGB
420}
421
3e1d0bb6 422static int audit_set_enabled(u32 state)
1a6b9f23 423{
b593d384 424 int rc;
724e7bfc 425 if (state > AUDIT_LOCKED)
1a6b9f23 426 return -EINVAL;
6a01b07f 427
dc9eb698 428 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
b593d384
EP
429 if (!rc)
430 audit_ever_enabled |= !!state;
431
432 return rc;
1da177e4
LT
433}
434
3e1d0bb6 435static int audit_set_failure(u32 state)
1da177e4 436{
1da177e4
LT
437 if (state != AUDIT_FAIL_SILENT
438 && state != AUDIT_FAIL_PRINTK
439 && state != AUDIT_FAIL_PANIC)
440 return -EINVAL;
ce29b682 441
dc9eb698 442 return audit_do_config_change("audit_failure", &audit_failure, state);
1da177e4
LT
443}
444
5b52330b
PM
445/**
446 * auditd_set - Set/Reset the auditd connection state
447 * @pid: auditd PID
448 * @portid: auditd netlink portid
449 * @net: auditd network namespace pointer
450 *
451 * Description:
452 * This function will obtain and drop network namespace references as
453 * necessary.
454 */
b6c7c115 455static void auditd_set(struct pid *pid, u32 portid, struct net *net)
5b52330b
PM
456{
457 unsigned long flags;
458
459 spin_lock_irqsave(&auditd_conn.lock, flags);
b6c7c115
PM
460 if (auditd_conn.pid)
461 put_pid(auditd_conn.pid);
462 if (pid)
463 auditd_conn.pid = get_pid(pid);
464 else
465 auditd_conn.pid = NULL;
5b52330b
PM
466 auditd_conn.portid = portid;
467 if (auditd_conn.net)
468 put_net(auditd_conn.net);
469 if (net)
470 auditd_conn.net = get_net(net);
471 else
472 auditd_conn.net = NULL;
473 spin_unlock_irqrestore(&auditd_conn.lock, flags);
474}
475
5b52330b
PM
476/**
477 * kauditd_print_skb - Print the audit record to the ring buffer
478 * @skb: audit record
479 *
480 * Whatever the reason, this packet may not make it to the auditd connection
481 * so write it via printk so the information isn't completely lost.
038cbcf6 482 */
af8b824f 483static void kauditd_printk_skb(struct sk_buff *skb)
038cbcf6
EP
484{
485 struct nlmsghdr *nlh = nlmsg_hdr(skb);
c64e66c6 486 char *data = nlmsg_data(nlh);
038cbcf6 487
5b52330b
PM
488 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
489 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
490}
491
492/**
493 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
494 * @skb: audit record
495 *
496 * Description:
497 * This should only be used by the kauditd_thread when it fails to flush the
498 * hold queue.
499 */
500static void kauditd_rehold_skb(struct sk_buff *skb)
501{
502 /* put the record back in the queue at the same place */
503 skb_queue_head(&audit_hold_queue, skb);
c6480207
PM
504}
505
506/**
507 * kauditd_hold_skb - Queue an audit record, waiting for auditd
508 * @skb: audit record
509 *
510 * Description:
511 * Queue the audit record, waiting for an instance of auditd. When this
512 * function is called we haven't given up yet on sending the record, but things
513 * are not looking good. The first thing we want to do is try to write the
514 * record via printk and then see if we want to try and hold on to the record
515 * and queue it, if we have room. If we want to hold on to the record, but we
516 * don't have room, record a record lost message.
517 */
518static void kauditd_hold_skb(struct sk_buff *skb)
519{
520 /* at this point it is uncertain if we will ever send this to auditd so
521 * try to send the message via printk before we go any further */
522 kauditd_printk_skb(skb);
523
524 /* can we just silently drop the message? */
525 if (!audit_default) {
526 kfree_skb(skb);
527 return;
528 }
529
530 /* if we have room, queue the message */
531 if (!audit_backlog_limit ||
532 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
533 skb_queue_tail(&audit_hold_queue, skb);
534 return;
535 }
038cbcf6 536
c6480207
PM
537 /* we have no other options - drop the message */
538 audit_log_lost("kauditd hold queue overflow");
539 kfree_skb(skb);
038cbcf6
EP
540}
541
c6480207
PM
542/**
543 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
544 * @skb: audit record
545 *
546 * Description:
547 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
548 * but for some reason we are having problems sending it audit records so
549 * queue the given record and attempt to resend.
550 */
551static void kauditd_retry_skb(struct sk_buff *skb)
f3d357b0 552{
c6480207
PM
553 /* NOTE: because records should only live in the retry queue for a
554 * short period of time, before either being sent or moved to the hold
555 * queue, we don't currently enforce a limit on this queue */
556 skb_queue_tail(&audit_retry_queue, skb);
557}
32a1dbae 558
264d5096
PM
559/**
560 * auditd_reset - Disconnect the auditd connection
561 *
562 * Description:
563 * Break the auditd/kauditd connection and move all the queued records into the
564 * hold queue in case auditd reconnects.
565 */
566static void auditd_reset(void)
567{
568 struct sk_buff *skb;
569
570 /* if it isn't already broken, break the connection */
571 rcu_read_lock();
572 if (auditd_conn.pid)
573 auditd_set(0, 0, NULL);
574 rcu_read_unlock();
575
576 /* flush all of the main and retry queues to the hold queue */
577 while ((skb = skb_dequeue(&audit_retry_queue)))
578 kauditd_hold_skb(skb);
579 while ((skb = skb_dequeue(&audit_queue)))
580 kauditd_hold_skb(skb);
581}
582
c6480207 583/**
5b52330b
PM
584 * auditd_send_unicast_skb - Send a record via unicast to auditd
585 * @skb: audit record
c6480207
PM
586 *
587 * Description:
5b52330b
PM
588 * Send a skb to the audit daemon, returns positive/zero values on success and
589 * negative values on failure; in all cases the skb will be consumed by this
590 * function. If the send results in -ECONNREFUSED the connection with auditd
591 * will be reset. This function may sleep so callers should not hold any locks
592 * where this would cause a problem.
c6480207 593 */
5b52330b 594static int auditd_send_unicast_skb(struct sk_buff *skb)
c6480207 595{
5b52330b
PM
596 int rc;
597 u32 portid;
598 struct net *net;
599 struct sock *sk;
600
601 /* NOTE: we can't call netlink_unicast while in the RCU section so
602 * take a reference to the network namespace and grab local
603 * copies of the namespace, the sock, and the portid; the
604 * namespace and sock aren't going to go away while we hold a
605 * reference and if the portid does become invalid after the RCU
606 * section netlink_unicast() should safely return an error */
607
608 rcu_read_lock();
609 if (!auditd_conn.pid) {
610 rcu_read_unlock();
611 rc = -ECONNREFUSED;
612 goto err;
533c7b69 613 }
5b52330b
PM
614 net = auditd_conn.net;
615 get_net(net);
616 sk = audit_get_sk(net);
617 portid = auditd_conn.portid;
618 rcu_read_unlock();
c6480207 619
5b52330b
PM
620 rc = netlink_unicast(sk, skb, portid, 0);
621 put_net(net);
622 if (rc < 0)
623 goto err;
624
625 return rc;
626
627err:
628 if (rc == -ECONNREFUSED)
629 auditd_reset();
630 return rc;
c6480207
PM
631}
632
633/**
5b52330b
PM
634 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
635 * @sk: the sending sock
636 * @portid: the netlink destination
637 * @queue: the skb queue to process
638 * @retry_limit: limit on number of netlink unicast failures
639 * @skb_hook: per-skb hook for additional processing
640 * @err_hook: hook called if the skb fails the netlink unicast send
641 *
642 * Description:
643 * Run through the given queue and attempt to send the audit records to auditd,
644 * returns zero on success, negative values on failure. It is up to the caller
645 * to ensure that the @sk is valid for the duration of this function.
646 *
c6480207 647 */
5b52330b
PM
648static int kauditd_send_queue(struct sock *sk, u32 portid,
649 struct sk_buff_head *queue,
650 unsigned int retry_limit,
651 void (*skb_hook)(struct sk_buff *skb),
652 void (*err_hook)(struct sk_buff *skb))
c6480207 653{
5b52330b
PM
654 int rc = 0;
655 struct sk_buff *skb;
656 static unsigned int failed = 0;
32a1dbae 657
5b52330b
PM
658 /* NOTE: kauditd_thread takes care of all our locking, we just use
659 * the netlink info passed to us (e.g. sk and portid) */
660
661 while ((skb = skb_dequeue(queue))) {
662 /* call the skb_hook for each skb we touch */
663 if (skb_hook)
664 (*skb_hook)(skb);
665
666 /* can we send to anyone via unicast? */
667 if (!sk) {
668 if (err_hook)
669 (*err_hook)(skb);
670 continue;
671 }
6c54e789 672
5b52330b
PM
673 /* grab an extra skb reference in case of error */
674 skb_get(skb);
675 rc = netlink_unicast(sk, skb, portid, 0);
676 if (rc < 0) {
677 /* fatal failure for our queue flush attempt? */
678 if (++failed >= retry_limit ||
679 rc == -ECONNREFUSED || rc == -EPERM) {
680 /* yes - error processing for the queue */
681 sk = NULL;
682 if (err_hook)
683 (*err_hook)(skb);
684 if (!skb_hook)
685 goto out;
686 /* keep processing with the skb_hook */
687 continue;
688 } else
689 /* no - requeue to preserve ordering */
690 skb_queue_head(queue, skb);
691 } else {
692 /* it worked - drop the extra reference and continue */
693 consume_skb(skb);
694 failed = 0;
695 }
c6480207
PM
696 }
697
5b52330b
PM
698out:
699 return (rc >= 0 ? 0 : rc);
f3d357b0
EP
700}
701
451f9216 702/*
c6480207
PM
703 * kauditd_send_multicast_skb - Send a record to any multicast listeners
704 * @skb: audit record
451f9216 705 *
c6480207 706 * Description:
5b52330b
PM
707 * Write a multicast message to anyone listening in the initial network
708 * namespace. This function doesn't consume an skb as might be expected since
709 * it has to copy it anyways.
451f9216 710 */
c6480207 711static void kauditd_send_multicast_skb(struct sk_buff *skb)
451f9216 712{
c6480207 713 struct sk_buff *copy;
5b52330b 714 struct sock *sock = audit_get_sk(&init_net);
c6480207 715 struct nlmsghdr *nlh;
451f9216 716
5b52330b
PM
717 /* NOTE: we are not taking an additional reference for init_net since
718 * we don't have to worry about it going away */
719
7f74ecd7
RGB
720 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
721 return;
722
451f9216
RGB
723 /*
724 * The seemingly wasteful skb_copy() rather than bumping the refcount
725 * using skb_get() is necessary because non-standard mods are made to
726 * the skb by the original kaudit unicast socket send routine. The
727 * existing auditd daemon assumes this breakage. Fixing this would
728 * require co-ordinating a change in the established protocol between
729 * the kaudit kernel subsystem and the auditd userspace code. There is
730 * no reason for new multicast clients to continue with this
731 * non-compliance.
732 */
c6480207 733 copy = skb_copy(skb, GFP_KERNEL);
451f9216
RGB
734 if (!copy)
735 return;
c6480207
PM
736 nlh = nlmsg_hdr(copy);
737 nlh->nlmsg_len = skb->len;
451f9216 738
c6480207 739 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
451f9216
RGB
740}
741
c6480207 742/**
5b52330b
PM
743 * kauditd_thread - Worker thread to send audit records to userspace
744 * @dummy: unused
b551d1d9 745 */
97a41e26 746static int kauditd_thread(void *dummy)
b7d11258 747{
c6480207 748 int rc;
5b52330b
PM
749 u32 portid = 0;
750 struct net *net = NULL;
751 struct sock *sk = NULL;
4aa83872 752
c6480207 753#define UNICAST_RETRIES 5
c6480207 754
83144186 755 set_freezable();
4899b8b1 756 while (!kthread_should_stop()) {
5b52330b
PM
757 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
758 rcu_read_lock();
759 if (!auditd_conn.pid) {
760 rcu_read_unlock();
761 goto main_queue;
762 }
763 net = auditd_conn.net;
764 get_net(net);
765 sk = audit_get_sk(net);
766 portid = auditd_conn.portid;
767 rcu_read_unlock();
c6480207
PM
768
769 /* attempt to flush the hold queue */
5b52330b
PM
770 rc = kauditd_send_queue(sk, portid,
771 &audit_hold_queue, UNICAST_RETRIES,
772 NULL, kauditd_rehold_skb);
773 if (rc < 0) {
774 sk = NULL;
264d5096 775 auditd_reset();
5b52330b 776 goto main_queue;
c6480207 777 }
f3d357b0 778
c6480207 779 /* attempt to flush the retry queue */
5b52330b
PM
780 rc = kauditd_send_queue(sk, portid,
781 &audit_retry_queue, UNICAST_RETRIES,
782 NULL, kauditd_hold_skb);
783 if (rc < 0) {
784 sk = NULL;
264d5096 785 auditd_reset();
5b52330b 786 goto main_queue;
c6480207 787 }
db897319 788
5b52330b
PM
789main_queue:
790 /* process the main queue - do the multicast send and attempt
791 * unicast, dump failed record sends to the retry queue; if
792 * sk == NULL due to previous failures we will just do the
793 * multicast send and move the record to the retry queue */
264d5096
PM
794 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
795 kauditd_send_multicast_skb,
796 kauditd_retry_skb);
797 if (sk == NULL || rc < 0)
798 auditd_reset();
799 sk = NULL;
5b52330b
PM
800
801 /* drop our netns reference, no auditd sends past this line */
802 if (net) {
803 put_net(net);
804 net = NULL;
3320c513 805 }
5b52330b
PM
806
807 /* we have processed all the queues so wake everyone */
808 wake_up(&audit_backlog_wait);
809
810 /* NOTE: we want to wake up if there is anything on the queue,
811 * regardless of if an auditd is connected, as we need to
812 * do the multicast send and rotate records from the
813 * main queue to the retry/hold queues */
814 wait_event_freezable(kauditd_wait,
815 (skb_queue_len(&audit_queue) ? 1 : 0));
b7d11258 816 }
c6480207 817
4899b8b1 818 return 0;
b7d11258
DW
819}
820
9044e6bc
AV
821int audit_send_list(void *_dest)
822{
823 struct audit_netlink_list *dest = _dest;
9044e6bc 824 struct sk_buff *skb;
5b52330b 825 struct sock *sk = audit_get_sk(dest->net);
9044e6bc
AV
826
827 /* wait for parent to finish and send an ACK */
f368c07d
AG
828 mutex_lock(&audit_cmd_mutex);
829 mutex_unlock(&audit_cmd_mutex);
9044e6bc
AV
830
831 while ((skb = __skb_dequeue(&dest->q)) != NULL)
5b52330b 832 netlink_unicast(sk, skb, dest->portid, 0);
9044e6bc 833
5b52330b 834 put_net(dest->net);
9044e6bc
AV
835 kfree(dest);
836
837 return 0;
838}
839
45a0642b 840struct sk_buff *audit_make_reply(int seq, int type, int done,
b8800aa5 841 int multi, const void *payload, int size)
9044e6bc
AV
842{
843 struct sk_buff *skb;
844 struct nlmsghdr *nlh;
9044e6bc
AV
845 void *data;
846 int flags = multi ? NLM_F_MULTI : 0;
847 int t = done ? NLMSG_DONE : type;
848
ee080e6c 849 skb = nlmsg_new(size, GFP_KERNEL);
9044e6bc
AV
850 if (!skb)
851 return NULL;
852
45a0642b 853 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
c64e66c6
DM
854 if (!nlh)
855 goto out_kfree_skb;
856 data = nlmsg_data(nlh);
9044e6bc
AV
857 memcpy(data, payload, size);
858 return skb;
859
c64e66c6
DM
860out_kfree_skb:
861 kfree_skb(skb);
9044e6bc
AV
862 return NULL;
863}
864
f09ac9db
EP
865static int audit_send_reply_thread(void *arg)
866{
867 struct audit_reply *reply = (struct audit_reply *)arg;
5b52330b 868 struct sock *sk = audit_get_sk(reply->net);
f09ac9db
EP
869
870 mutex_lock(&audit_cmd_mutex);
871 mutex_unlock(&audit_cmd_mutex);
872
873 /* Ignore failure. It'll only happen if the sender goes away,
874 because our timeout is set to infinite. */
5b52330b
PM
875 netlink_unicast(sk, reply->skb, reply->portid, 0);
876 put_net(reply->net);
f09ac9db
EP
877 kfree(reply);
878 return 0;
879}
c6480207 880
b0dd25a8
RD
881/**
882 * audit_send_reply - send an audit reply message via netlink
d211f177 883 * @request_skb: skb of request we are replying to (used to target the reply)
b0dd25a8
RD
884 * @seq: sequence number
885 * @type: audit message type
886 * @done: done (last) flag
887 * @multi: multi-part message flag
888 * @payload: payload data
889 * @size: payload size
890 *
f9441639 891 * Allocates an skb, builds the netlink message, and sends it to the port id.
b0dd25a8
RD
892 * No failure notifications.
893 */
6f285b19 894static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
f9441639 895 int multi, const void *payload, int size)
1da177e4 896{
6f285b19 897 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
f09ac9db
EP
898 struct sk_buff *skb;
899 struct task_struct *tsk;
900 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
901 GFP_KERNEL);
902
903 if (!reply)
904 return;
905
45a0642b 906 skb = audit_make_reply(seq, type, done, multi, payload, size);
1da177e4 907 if (!skb)
fcaf1eb8 908 goto out;
f09ac9db 909
6f285b19 910 reply->net = get_net(net);
45a0642b 911 reply->portid = NETLINK_CB(request_skb).portid;
f09ac9db
EP
912 reply->skb = skb;
913
914 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
fcaf1eb8
AM
915 if (!IS_ERR(tsk))
916 return;
917 kfree_skb(skb);
918out:
919 kfree(reply);
1da177e4
LT
920}
921
922/*
923 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
924 * control messages.
925 */
c7bdb545 926static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1da177e4
LT
927{
928 int err = 0;
929
5a3cb3b6 930 /* Only support initial user namespace for now. */
aa4af831
EP
931 /*
932 * We return ECONNREFUSED because it tricks userspace into thinking
933 * that audit was not configured into the kernel. Lots of users
934 * configure their PAM stack (because that's what the distro does)
935 * to reject login if unable to send messages to audit. If we return
936 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
937 * configured in and will let login proceed. If we return EPERM
938 * userspace will reject all logins. This should be removed when we
939 * support non init namespaces!!
940 */
0b747172 941 if (current_user_ns() != &init_user_ns)
aa4af831 942 return -ECONNREFUSED;
34e36d8e 943
1da177e4 944 switch (msg_type) {
1da177e4 945 case AUDIT_LIST:
1da177e4
LT
946 case AUDIT_ADD:
947 case AUDIT_DEL:
18900909
EP
948 return -EOPNOTSUPP;
949 case AUDIT_GET:
950 case AUDIT_SET:
b0fed402
EP
951 case AUDIT_GET_FEATURE:
952 case AUDIT_SET_FEATURE:
18900909
EP
953 case AUDIT_LIST_RULES:
954 case AUDIT_ADD_RULE:
93315ed6 955 case AUDIT_DEL_RULE:
c2f0c7c3 956 case AUDIT_SIGNAL_INFO:
522ed776
MT
957 case AUDIT_TTY_GET:
958 case AUDIT_TTY_SET:
74c3cbe3
AV
959 case AUDIT_TRIM:
960 case AUDIT_MAKE_EQUIV:
5a3cb3b6
RGB
961 /* Only support auditd and auditctl in initial pid namespace
962 * for now. */
5985de67 963 if (task_active_pid_ns(current) != &init_pid_ns)
5a3cb3b6
RGB
964 return -EPERM;
965
90f62cf3 966 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1da177e4
LT
967 err = -EPERM;
968 break;
05474106 969 case AUDIT_USER:
039b6b3e
RD
970 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
971 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
90f62cf3 972 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1da177e4
LT
973 err = -EPERM;
974 break;
975 default: /* bad msg */
976 err = -EINVAL;
977 }
978
979 return err;
980}
981
233a6866 982static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
50397bd1 983{
dc9eb698 984 uid_t uid = from_kuid(&init_user_ns, current_uid());
f1dc4867 985 pid_t pid = task_tgid_nr(current);
50397bd1 986
0868a5e1 987 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
50397bd1 988 *ab = NULL;
233a6866 989 return;
50397bd1
EP
990 }
991
992 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
0644ec0c 993 if (unlikely(!*ab))
233a6866 994 return;
f1dc4867 995 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
4d3fb709 996 audit_log_session_info(*ab);
b122c376 997 audit_log_task_context(*ab);
50397bd1
EP
998}
999
b0fed402
EP
1000int is_audit_feature_set(int i)
1001{
1002 return af.features & AUDIT_FEATURE_TO_MASK(i);
1003}
1004
1005
1006static int audit_get_feature(struct sk_buff *skb)
1007{
1008 u32 seq;
1009
1010 seq = nlmsg_hdr(skb)->nlmsg_seq;
1011
9ef91514 1012 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
b0fed402
EP
1013
1014 return 0;
1015}
1016
1017static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1018 u32 old_lock, u32 new_lock, int res)
1019{
1020 struct audit_buffer *ab;
1021
b6c50fe0
G
1022 if (audit_enabled == AUDIT_OFF)
1023 return;
1024
b0fed402 1025 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
ad2ac263 1026 audit_log_task_info(ab, current);
897f1acb 1027 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
b0fed402
EP
1028 audit_feature_names[which], !!old_feature, !!new_feature,
1029 !!old_lock, !!new_lock, res);
1030 audit_log_end(ab);
1031}
1032
1033static int audit_set_feature(struct sk_buff *skb)
1034{
1035 struct audit_features *uaf;
1036 int i;
1037
6eed9b26 1038 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
b0fed402
EP
1039 uaf = nlmsg_data(nlmsg_hdr(skb));
1040
1041 /* if there is ever a version 2 we should handle that here */
1042
1043 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1044 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1045 u32 old_feature, new_feature, old_lock, new_lock;
1046
1047 /* if we are not changing this feature, move along */
1048 if (!(feature & uaf->mask))
1049 continue;
1050
1051 old_feature = af.features & feature;
1052 new_feature = uaf->features & feature;
1053 new_lock = (uaf->lock | af.lock) & feature;
1054 old_lock = af.lock & feature;
1055
1056 /* are we changing a locked feature? */
4547b3bc 1057 if (old_lock && (new_feature != old_feature)) {
b0fed402
EP
1058 audit_log_feature_change(i, old_feature, new_feature,
1059 old_lock, new_lock, 0);
1060 return -EPERM;
1061 }
1062 }
1063 /* nothing invalid, do the changes */
1064 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1065 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1066 u32 old_feature, new_feature, old_lock, new_lock;
1067
1068 /* if we are not changing this feature, move along */
1069 if (!(feature & uaf->mask))
1070 continue;
1071
1072 old_feature = af.features & feature;
1073 new_feature = uaf->features & feature;
1074 old_lock = af.lock & feature;
1075 new_lock = (uaf->lock | af.lock) & feature;
1076
1077 if (new_feature != old_feature)
1078 audit_log_feature_change(i, old_feature, new_feature,
1079 old_lock, new_lock, 1);
1080
1081 if (new_feature)
1082 af.features |= feature;
1083 else
1084 af.features &= ~feature;
1085 af.lock |= new_lock;
1086 }
1087
1088 return 0;
1089}
1090
b6c7c115 1091static int audit_replace(struct pid *pid)
133e1e5a 1092{
b6c7c115 1093 pid_t pvnr;
5b52330b 1094 struct sk_buff *skb;
133e1e5a 1095
b6c7c115
PM
1096 pvnr = pid_vnr(pid);
1097 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
133e1e5a
RGB
1098 if (!skb)
1099 return -ENOMEM;
5b52330b 1100 return auditd_send_unicast_skb(skb);
133e1e5a
RGB
1101}
1102
1da177e4
LT
1103static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1104{
dc9eb698 1105 u32 seq;
1da177e4 1106 void *data;
1da177e4 1107 int err;
c0404993 1108 struct audit_buffer *ab;
1da177e4 1109 u16 msg_type = nlh->nlmsg_type;
e1396065 1110 struct audit_sig_info *sig_data;
50397bd1 1111 char *ctx = NULL;
e1396065 1112 u32 len;
1da177e4 1113
c7bdb545 1114 err = audit_netlink_ok(skb, msg_type);
1da177e4
LT
1115 if (err)
1116 return err;
1117
1da177e4 1118 seq = nlh->nlmsg_seq;
c64e66c6 1119 data = nlmsg_data(nlh);
1da177e4
LT
1120
1121 switch (msg_type) {
09f883a9
RGB
1122 case AUDIT_GET: {
1123 struct audit_status s;
1124 memset(&s, 0, sizeof(s));
1125 s.enabled = audit_enabled;
1126 s.failure = audit_failure;
b6c7c115
PM
1127 /* NOTE: use pid_vnr() so the PID is relative to the current
1128 * namespace */
1129 s.pid = auditd_pid_vnr(&auditd_conn);
09f883a9
RGB
1130 s.rate_limit = audit_rate_limit;
1131 s.backlog_limit = audit_backlog_limit;
1132 s.lost = atomic_read(&audit_lost);
af8b824f 1133 s.backlog = skb_queue_len(&audit_queue);
0288d718 1134 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
31975424 1135 s.backlog_wait_time = audit_backlog_wait_time;
6f285b19 1136 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1da177e4 1137 break;
09f883a9
RGB
1138 }
1139 case AUDIT_SET: {
1140 struct audit_status s;
1141 memset(&s, 0, sizeof(s));
1142 /* guard against past and future API changes */
1143 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1144 if (s.mask & AUDIT_STATUS_ENABLED) {
1145 err = audit_set_enabled(s.enabled);
20c6aaa3 1146 if (err < 0)
1147 return err;
1da177e4 1148 }
09f883a9
RGB
1149 if (s.mask & AUDIT_STATUS_FAILURE) {
1150 err = audit_set_failure(s.failure);
20c6aaa3 1151 if (err < 0)
1152 return err;
1da177e4 1153 }
09f883a9 1154 if (s.mask & AUDIT_STATUS_PID) {
b6c7c115
PM
1155 /* NOTE: we are using the vnr PID functions below
1156 * because the s.pid value is relative to the
1157 * namespace of the caller; at present this
1158 * doesn't matter much since you can really only
1159 * run auditd from the initial pid namespace, but
1160 * something to keep in mind if this changes */
1161 pid_t new_pid = s.pid;
5b52330b 1162 pid_t auditd_pid;
b6c7c115
PM
1163 struct pid *req_pid = task_tgid(current);
1164
1165 /* sanity check - PID values must match */
1166 if (new_pid != pid_vnr(req_pid))
1167 return -EINVAL;
1a6b9f23 1168
5b52330b 1169 /* test the auditd connection */
b6c7c115 1170 audit_replace(req_pid);
5b52330b 1171
b6c7c115 1172 auditd_pid = auditd_pid_vnr(&auditd_conn);
5b52330b 1173 /* only the current auditd can unregister itself */
b6c7c115 1174 if ((!new_pid) && (new_pid != auditd_pid)) {
5b52330b
PM
1175 audit_log_config_change("audit_pid", new_pid,
1176 auditd_pid, 0);
34eab0a7 1177 return -EACCES;
935c9e7f 1178 }
5b52330b
PM
1179 /* replacing a healthy auditd is not allowed */
1180 if (auditd_pid && new_pid) {
5b52330b
PM
1181 audit_log_config_change("audit_pid", new_pid,
1182 auditd_pid, 0);
133e1e5a 1183 return -EEXIST;
935c9e7f 1184 }
5b52330b 1185
1a6b9f23 1186 if (audit_enabled != AUDIT_OFF)
5b52330b
PM
1187 audit_log_config_change("audit_pid", new_pid,
1188 auditd_pid, 1);
1189
533c7b69 1190 if (new_pid) {
5b52330b 1191 /* register a new auditd connection */
b6c7c115 1192 auditd_set(req_pid, NETLINK_CB(skb).portid,
5b52330b
PM
1193 sock_net(NETLINK_CB(skb).sk));
1194 /* try to process any backlog */
1195 wake_up_interruptible(&kauditd_wait);
1196 } else
1197 /* unregister the auditd connection */
6c54e789 1198 auditd_reset();
1da177e4 1199 }
09f883a9
RGB
1200 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1201 err = audit_set_rate_limit(s.rate_limit);
20c6aaa3 1202 if (err < 0)
1203 return err;
1204 }
51cc83f0 1205 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
09f883a9 1206 err = audit_set_backlog_limit(s.backlog_limit);
51cc83f0
RGB
1207 if (err < 0)
1208 return err;
1209 }
3f0c5fad
EP
1210 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1211 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1212 return -EINVAL;
724e7bfc 1213 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
3f0c5fad
EP
1214 return -EINVAL;
1215 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1216 if (err < 0)
1217 return err;
51cc83f0 1218 }
92c82e8a
RGB
1219 if (s.mask == AUDIT_STATUS_LOST) {
1220 u32 lost = atomic_xchg(&audit_lost, 0);
1221
1222 audit_log_config_change("lost", 0, lost, 1);
1223 return lost;
1224 }
1da177e4 1225 break;
09f883a9 1226 }
b0fed402
EP
1227 case AUDIT_GET_FEATURE:
1228 err = audit_get_feature(skb);
1229 if (err)
1230 return err;
1231 break;
1232 case AUDIT_SET_FEATURE:
1233 err = audit_set_feature(skb);
1234 if (err)
1235 return err;
1236 break;
05474106 1237 case AUDIT_USER:
039b6b3e
RD
1238 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1239 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
4a4cd633
DW
1240 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1241 return 0;
1242
86b2efbe 1243 err = audit_filter(msg_type, AUDIT_FILTER_USER);
724e4fcc 1244 if (err == 1) { /* match or error */
4a4cd633 1245 err = 0;
522ed776 1246 if (msg_type == AUDIT_USER_TTY) {
37282a77 1247 err = tty_audit_push();
522ed776
MT
1248 if (err)
1249 break;
1250 }
dc9eb698 1251 audit_log_common_recv_msg(&ab, msg_type);
50397bd1 1252 if (msg_type != AUDIT_USER_TTY)
b50eba7e
RGB
1253 audit_log_format(ab, " msg='%.*s'",
1254 AUDIT_MESSAGE_TEXT_MAX,
50397bd1
EP
1255 (char *)data);
1256 else {
1257 int size;
1258
f7616102 1259 audit_log_format(ab, " data=");
50397bd1 1260 size = nlmsg_len(nlh);
55ad2f8d
MT
1261 if (size > 0 &&
1262 ((unsigned char *)data)[size - 1] == '\0')
1263 size--;
b556f8ad 1264 audit_log_n_untrustedstring(ab, data, size);
4a4cd633 1265 }
50397bd1 1266 audit_log_end(ab);
0f45aa18 1267 }
1da177e4 1268 break;
93315ed6
AG
1269 case AUDIT_ADD_RULE:
1270 case AUDIT_DEL_RULE:
1271 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1272 return -EINVAL;
1a6b9f23 1273 if (audit_enabled == AUDIT_LOCKED) {
dc9eb698
EP
1274 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1275 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
50397bd1 1276 audit_log_end(ab);
6a01b07f
SG
1277 return -EPERM;
1278 }
45a0642b 1279 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1da177e4 1280 break;
ce0d9f04 1281 case AUDIT_LIST_RULES:
6f285b19 1282 err = audit_list_rules_send(skb, seq);
ce0d9f04 1283 break;
74c3cbe3
AV
1284 case AUDIT_TRIM:
1285 audit_trim_trees();
dc9eb698 1286 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
74c3cbe3
AV
1287 audit_log_format(ab, " op=trim res=1");
1288 audit_log_end(ab);
1289 break;
1290 case AUDIT_MAKE_EQUIV: {
1291 void *bufp = data;
1292 u32 sizes[2];
7719e437 1293 size_t msglen = nlmsg_len(nlh);
74c3cbe3
AV
1294 char *old, *new;
1295
1296 err = -EINVAL;
7719e437 1297 if (msglen < 2 * sizeof(u32))
74c3cbe3
AV
1298 break;
1299 memcpy(sizes, bufp, 2 * sizeof(u32));
1300 bufp += 2 * sizeof(u32);
7719e437
HH
1301 msglen -= 2 * sizeof(u32);
1302 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
74c3cbe3
AV
1303 if (IS_ERR(old)) {
1304 err = PTR_ERR(old);
1305 break;
1306 }
7719e437 1307 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
74c3cbe3
AV
1308 if (IS_ERR(new)) {
1309 err = PTR_ERR(new);
1310 kfree(old);
1311 break;
1312 }
1313 /* OK, here comes... */
1314 err = audit_tag_tree(old, new);
1315
dc9eb698 1316 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
50397bd1 1317
74c3cbe3
AV
1318 audit_log_format(ab, " op=make_equiv old=");
1319 audit_log_untrustedstring(ab, old);
1320 audit_log_format(ab, " new=");
1321 audit_log_untrustedstring(ab, new);
1322 audit_log_format(ab, " res=%d", !err);
1323 audit_log_end(ab);
1324 kfree(old);
1325 kfree(new);
1326 break;
1327 }
c2f0c7c3 1328 case AUDIT_SIGNAL_INFO:
939cbf26
EP
1329 len = 0;
1330 if (audit_sig_sid) {
1331 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1332 if (err)
1333 return err;
1334 }
e1396065
AV
1335 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1336 if (!sig_data) {
939cbf26
EP
1337 if (audit_sig_sid)
1338 security_release_secctx(ctx, len);
e1396065
AV
1339 return -ENOMEM;
1340 }
cca080d9 1341 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
e1396065 1342 sig_data->pid = audit_sig_pid;
939cbf26
EP
1343 if (audit_sig_sid) {
1344 memcpy(sig_data->ctx, ctx, len);
1345 security_release_secctx(ctx, len);
1346 }
6f285b19
EB
1347 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1348 sig_data, sizeof(*sig_data) + len);
e1396065 1349 kfree(sig_data);
c2f0c7c3 1350 break;
522ed776
MT
1351 case AUDIT_TTY_GET: {
1352 struct audit_tty_status s;
2e28d38a 1353 unsigned int t;
8aa14b64 1354
2e28d38a
PH
1355 t = READ_ONCE(current->signal->audit_tty);
1356 s.enabled = t & AUDIT_TTY_ENABLE;
1357 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
8aa14b64 1358
6f285b19 1359 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
522ed776
MT
1360 break;
1361 }
1362 case AUDIT_TTY_SET: {
a06e56b2 1363 struct audit_tty_status s, old;
a06e56b2 1364 struct audit_buffer *ab;
2e28d38a 1365 unsigned int t;
0e23bacc
EP
1366
1367 memset(&s, 0, sizeof(s));
1368 /* guard against past and future API changes */
1369 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1370 /* check if new data is valid */
1371 if ((s.enabled != 0 && s.enabled != 1) ||
1372 (s.log_passwd != 0 && s.log_passwd != 1))
1373 err = -EINVAL;
a06e56b2 1374
2e28d38a
PH
1375 if (err)
1376 t = READ_ONCE(current->signal->audit_tty);
1377 else {
1378 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1379 t = xchg(&current->signal->audit_tty, t);
0e23bacc 1380 }
2e28d38a
PH
1381 old.enabled = t & AUDIT_TTY_ENABLE;
1382 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
522ed776 1383
a06e56b2 1384 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1ce319f1
EP
1385 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1386 " old-log_passwd=%d new-log_passwd=%d res=%d",
1387 old.enabled, s.enabled, old.log_passwd,
1388 s.log_passwd, !err);
a06e56b2 1389 audit_log_end(ab);
522ed776
MT
1390 break;
1391 }
1da177e4
LT
1392 default:
1393 err = -EINVAL;
1394 break;
1395 }
1396
1397 return err < 0 ? err : 0;
1398}
1399
a9d16208
PM
1400/**
1401 * audit_receive - receive messages from a netlink control socket
1402 * @skb: the message buffer
1403 *
1404 * Parse the provided skb and deal with any messages that may be present,
1405 * malformed skbs are discarded.
b0dd25a8 1406 */
a9d16208 1407static void audit_receive(struct sk_buff *skb)
1da177e4 1408{
ea7ae60b
EP
1409 struct nlmsghdr *nlh;
1410 /*
94191213 1411 * len MUST be signed for nlmsg_next to be able to dec it below 0
ea7ae60b
EP
1412 * if the nlmsg_len was not aligned
1413 */
1414 int len;
1415 int err;
1416
1417 nlh = nlmsg_hdr(skb);
1418 len = skb->len;
1419
a9d16208 1420 mutex_lock(&audit_cmd_mutex);
94191213 1421 while (nlmsg_ok(nlh, len)) {
ea7ae60b
EP
1422 err = audit_receive_msg(skb, nlh);
1423 /* if err or if this message says it wants a response */
1424 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1da177e4 1425 netlink_ack(skb, nlh, err);
ea7ae60b 1426
2851da57 1427 nlh = nlmsg_next(nlh, &len);
1da177e4 1428 }
f368c07d 1429 mutex_unlock(&audit_cmd_mutex);
1da177e4
LT
1430}
1431
3a101b8d 1432/* Run custom bind function on netlink socket group connect or bind requests. */
023e2cfa 1433static int audit_bind(struct net *net, int group)
3a101b8d
RGB
1434{
1435 if (!capable(CAP_AUDIT_READ))
1436 return -EPERM;
1437
1438 return 0;
1439}
1440
33faba7f 1441static int __net_init audit_net_init(struct net *net)
1da177e4 1442{
a31f2d17
PNA
1443 struct netlink_kernel_cfg cfg = {
1444 .input = audit_receive,
3a101b8d 1445 .bind = audit_bind,
451f9216
RGB
1446 .flags = NL_CFG_F_NONROOT_RECV,
1447 .groups = AUDIT_NLGRP_MAX,
a31f2d17 1448 };
f368c07d 1449
33faba7f
RGB
1450 struct audit_net *aunet = net_generic(net, audit_net_id);
1451
5b52330b
PM
1452 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1453 if (aunet->sk == NULL) {
33faba7f 1454 audit_panic("cannot initialize netlink socket in namespace");
11ee39eb
G
1455 return -ENOMEM;
1456 }
5b52330b
PM
1457 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1458
33faba7f
RGB
1459 return 0;
1460}
1461
1462static void __net_exit audit_net_exit(struct net *net)
1463{
1464 struct audit_net *aunet = net_generic(net, audit_net_id);
5b52330b
PM
1465
1466 rcu_read_lock();
1467 if (net == auditd_conn.net)
c6480207 1468 auditd_reset();
5b52330b 1469 rcu_read_unlock();
33faba7f 1470
5b52330b 1471 netlink_kernel_release(aunet->sk);
33faba7f
RGB
1472}
1473
8626877b 1474static struct pernet_operations audit_net_ops __net_initdata = {
33faba7f
RGB
1475 .init = audit_net_init,
1476 .exit = audit_net_exit,
1477 .id = &audit_net_id,
1478 .size = sizeof(struct audit_net),
1479};
1480
1481/* Initialize audit support at boot time. */
1482static int __init audit_init(void)
1483{
1484 int i;
1485
a3f07114
EP
1486 if (audit_initialized == AUDIT_DISABLED)
1487 return 0;
1488
5b52330b
PM
1489 memset(&auditd_conn, 0, sizeof(auditd_conn));
1490 spin_lock_init(&auditd_conn.lock);
1da177e4 1491
af8b824f 1492 skb_queue_head_init(&audit_queue);
c6480207 1493 skb_queue_head_init(&audit_retry_queue);
af8b824f 1494 skb_queue_head_init(&audit_hold_queue);
3dc7e315 1495
f368c07d
AG
1496 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1497 INIT_LIST_HEAD(&audit_inode_hash[i]);
f368c07d 1498
5b52330b
PM
1499 pr_info("initializing netlink subsys (%s)\n",
1500 audit_default ? "enabled" : "disabled");
1501 register_pernet_subsys(&audit_net_ops);
1502
1503 audit_initialized = AUDIT_INITIALIZED;
1504 audit_enabled = audit_default;
1505 audit_ever_enabled |= !!audit_default;
1506
6c925564
PM
1507 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1508 if (IS_ERR(kauditd_task)) {
1509 int err = PTR_ERR(kauditd_task);
1510 panic("audit: failed to start the kauditd thread (%d)\n", err);
1511 }
1512
7c397d01
SG
1513 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1514 "state=initialized audit_enabled=%u res=1",
1515 audit_enabled);
6c925564 1516
1da177e4
LT
1517 return 0;
1518}
1da177e4
LT
1519__initcall(audit_init);
1520
1521/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1522static int __init audit_enable(char *str)
1523{
1524 audit_default = !!simple_strtol(str, NULL, 0);
a3f07114
EP
1525 if (!audit_default)
1526 audit_initialized = AUDIT_DISABLED;
1527
d957f7b7 1528 pr_info("%s\n", audit_default ?
d3ca0344 1529 "enabled (after initialization)" : "disabled (until reboot)");
a3f07114 1530
9b41046c 1531 return 1;
1da177e4 1532}
1da177e4
LT
1533__setup("audit=", audit_enable);
1534
f910fde7
RGB
1535/* Process kernel command-line parameter at boot time.
1536 * audit_backlog_limit=<n> */
1537static int __init audit_backlog_limit_set(char *str)
1538{
3e1d0bb6 1539 u32 audit_backlog_limit_arg;
d957f7b7 1540
f910fde7 1541 pr_info("audit_backlog_limit: ");
3e1d0bb6
JP
1542 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1543 pr_cont("using default of %u, unable to parse %s\n",
d957f7b7 1544 audit_backlog_limit, str);
f910fde7
RGB
1545 return 1;
1546 }
3e1d0bb6
JP
1547
1548 audit_backlog_limit = audit_backlog_limit_arg;
d957f7b7 1549 pr_cont("%d\n", audit_backlog_limit);
f910fde7
RGB
1550
1551 return 1;
1552}
1553__setup("audit_backlog_limit=", audit_backlog_limit_set);
1554
16e1904e
CW
1555static void audit_buffer_free(struct audit_buffer *ab)
1556{
1557 unsigned long flags;
1558
8fc6115c
CW
1559 if (!ab)
1560 return;
1561
d865e573 1562 kfree_skb(ab->skb);
16e1904e 1563 spin_lock_irqsave(&audit_freelist_lock, flags);
5d136a01 1564 if (audit_freelist_count > AUDIT_MAXFREE)
16e1904e 1565 kfree(ab);
5d136a01
SH
1566 else {
1567 audit_freelist_count++;
16e1904e 1568 list_add(&ab->list, &audit_freelist);
5d136a01 1569 }
16e1904e
CW
1570 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1571}
1572
c0404993 1573static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
dd0fc66f 1574 gfp_t gfp_mask, int type)
16e1904e
CW
1575{
1576 unsigned long flags;
1577 struct audit_buffer *ab = NULL;
c0404993 1578 struct nlmsghdr *nlh;
16e1904e
CW
1579
1580 spin_lock_irqsave(&audit_freelist_lock, flags);
1581 if (!list_empty(&audit_freelist)) {
1582 ab = list_entry(audit_freelist.next,
1583 struct audit_buffer, list);
1584 list_del(&ab->list);
1585 --audit_freelist_count;
1586 }
1587 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1588
1589 if (!ab) {
4332bdd3 1590 ab = kmalloc(sizeof(*ab), gfp_mask);
16e1904e 1591 if (!ab)
8fc6115c 1592 goto err;
16e1904e 1593 }
8fc6115c 1594
b7d11258 1595 ab->ctx = ctx;
9ad9ad38 1596 ab->gfp_mask = gfp_mask;
ee080e6c
EP
1597
1598 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1599 if (!ab->skb)
c64e66c6 1600 goto err;
ee080e6c 1601
c64e66c6
DM
1602 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1603 if (!nlh)
1604 goto out_kfree_skb;
ee080e6c 1605
16e1904e 1606 return ab;
ee080e6c 1607
c64e66c6 1608out_kfree_skb:
ee080e6c
EP
1609 kfree_skb(ab->skb);
1610 ab->skb = NULL;
8fc6115c
CW
1611err:
1612 audit_buffer_free(ab);
1613 return NULL;
16e1904e 1614}
1da177e4 1615
b0dd25a8
RD
1616/**
1617 * audit_serial - compute a serial number for the audit record
1618 *
1619 * Compute a serial number for the audit record. Audit records are
bfb4496e
DW
1620 * written to user-space as soon as they are generated, so a complete
1621 * audit record may be written in several pieces. The timestamp of the
1622 * record and this serial number are used by the user-space tools to
1623 * determine which pieces belong to the same audit record. The
1624 * (timestamp,serial) tuple is unique for each syscall and is live from
1625 * syscall entry to syscall exit.
1626 *
bfb4496e
DW
1627 * NOTE: Another possibility is to store the formatted records off the
1628 * audit context (for those records that have a context), and emit them
1629 * all at syscall exit. However, this could delay the reporting of
1630 * significant errors until syscall exit (or never, if the system
b0dd25a8
RD
1631 * halts).
1632 */
bfb4496e
DW
1633unsigned int audit_serial(void)
1634{
01478d7d 1635 static atomic_t serial = ATOMIC_INIT(0);
d5b454f2 1636
01478d7d 1637 return atomic_add_return(1, &serial);
bfb4496e
DW
1638}
1639
5600b892 1640static inline void audit_get_stamp(struct audit_context *ctx,
2115bb25 1641 struct timespec64 *t, unsigned int *serial)
bfb4496e 1642{
48887e63 1643 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
2115bb25 1644 ktime_get_real_ts64(t);
bfb4496e
DW
1645 *serial = audit_serial();
1646 }
1647}
1648
b0dd25a8
RD
1649/**
1650 * audit_log_start - obtain an audit buffer
1651 * @ctx: audit_context (may be NULL)
1652 * @gfp_mask: type of allocation
1653 * @type: audit message type
1654 *
1655 * Returns audit_buffer pointer on success or NULL on error.
1656 *
1657 * Obtain an audit buffer. This routine does locking to obtain the
1658 * audit buffer, but then no locking is required for calls to
1659 * audit_log_*format. If the task (ctx) is a task that is currently in a
1660 * syscall, then the syscall is marked as auditable and an audit record
1661 * will be written at syscall exit. If there is no associated task, then
1662 * task context (ctx) should be NULL.
1663 */
9796fdd8 1664struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
9ad9ad38 1665 int type)
1da177e4 1666{
31975424 1667 struct audit_buffer *ab;
2115bb25 1668 struct timespec64 t;
31975424 1669 unsigned int uninitialized_var(serial);
1da177e4 1670
a3f07114 1671 if (audit_initialized != AUDIT_INITIALIZED)
1da177e4
LT
1672 return NULL;
1673
86b2efbe 1674 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
c8edc80c
DK
1675 return NULL;
1676
5b52330b 1677 /* NOTE: don't ever fail/sleep on these two conditions:
a09cfa47
PM
1678 * 1. auditd generated record - since we need auditd to drain the
1679 * queue; also, when we are checking for auditd, compare PIDs using
1680 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1681 * using a PID anchored in the caller's namespace
5b52330b
PM
1682 * 2. generator holding the audit_cmd_mutex - we don't want to block
1683 * while holding the mutex */
1684 if (!(auditd_test_task(current) ||
1685 (current == __mutex_owner(&audit_cmd_mutex)))) {
1686 long stime = audit_backlog_wait_time;
31975424
PM
1687
1688 while (audit_backlog_limit &&
1689 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1690 /* wake kauditd to try and flush the queue */
1691 wake_up_interruptible(&kauditd_wait);
9ad9ad38 1692
31975424
PM
1693 /* sleep if we are allowed and we haven't exhausted our
1694 * backlog wait limit */
5b52330b 1695 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
31975424
PM
1696 DECLARE_WAITQUEUE(wait, current);
1697
1698 add_wait_queue_exclusive(&audit_backlog_wait,
1699 &wait);
1700 set_current_state(TASK_UNINTERRUPTIBLE);
5b52330b 1701 stime = schedule_timeout(stime);
31975424
PM
1702 remove_wait_queue(&audit_backlog_wait, &wait);
1703 } else {
1704 if (audit_rate_check() && printk_ratelimit())
1705 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1706 skb_queue_len(&audit_queue),
1707 audit_backlog_limit);
1708 audit_log_lost("backlog limit exceeded");
1709 return NULL;
8ac1c8d5 1710 }
9ad9ad38 1711 }
fb19b4c6
DW
1712 }
1713
9ad9ad38 1714 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1da177e4
LT
1715 if (!ab) {
1716 audit_log_lost("out of memory in audit_log_start");
1717 return NULL;
1718 }
1719
bfb4496e 1720 audit_get_stamp(ab->ctx, &t, &serial);
2115bb25
DD
1721 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1722 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
31975424 1723
1da177e4
LT
1724 return ab;
1725}
1726
8fc6115c 1727/**
5ac52f33 1728 * audit_expand - expand skb in the audit buffer
8fc6115c 1729 * @ab: audit_buffer
b0dd25a8 1730 * @extra: space to add at tail of the skb
8fc6115c
CW
1731 *
1732 * Returns 0 (no space) on failed expansion, or available space if
1733 * successful.
1734 */
e3b926b4 1735static inline int audit_expand(struct audit_buffer *ab, int extra)
8fc6115c 1736{
5ac52f33 1737 struct sk_buff *skb = ab->skb;
406a1d86
HX
1738 int oldtail = skb_tailroom(skb);
1739 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1740 int newtail = skb_tailroom(skb);
1741
5ac52f33
CW
1742 if (ret < 0) {
1743 audit_log_lost("out of memory in audit_expand");
8fc6115c 1744 return 0;
5ac52f33 1745 }
406a1d86
HX
1746
1747 skb->truesize += newtail - oldtail;
1748 return newtail;
8fc6115c 1749}
1da177e4 1750
b0dd25a8
RD
1751/*
1752 * Format an audit message into the audit buffer. If there isn't enough
1da177e4
LT
1753 * room in the audit buffer, more room will be allocated and vsnprint
1754 * will be called a second time. Currently, we assume that a printk
b0dd25a8
RD
1755 * can't format message larger than 1024 bytes, so we don't either.
1756 */
1da177e4
LT
1757static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1758 va_list args)
1759{
1760 int len, avail;
5ac52f33 1761 struct sk_buff *skb;
eecb0a73 1762 va_list args2;
1da177e4
LT
1763
1764 if (!ab)
1765 return;
1766
5ac52f33
CW
1767 BUG_ON(!ab->skb);
1768 skb = ab->skb;
1769 avail = skb_tailroom(skb);
1770 if (avail == 0) {
e3b926b4 1771 avail = audit_expand(ab, AUDIT_BUFSIZ);
8fc6115c
CW
1772 if (!avail)
1773 goto out;
1da177e4 1774 }
eecb0a73 1775 va_copy(args2, args);
27a884dc 1776 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1da177e4
LT
1777 if (len >= avail) {
1778 /* The printk buffer is 1024 bytes long, so if we get
1779 * here and AUDIT_BUFSIZ is at least 1024, then we can
1780 * log everything that printk could have logged. */
b0dd25a8
RD
1781 avail = audit_expand(ab,
1782 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
8fc6115c 1783 if (!avail)
a0e86bd4 1784 goto out_va_end;
27a884dc 1785 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1da177e4 1786 }
168b7173
SG
1787 if (len > 0)
1788 skb_put(skb, len);
a0e86bd4
JJ
1789out_va_end:
1790 va_end(args2);
8fc6115c
CW
1791out:
1792 return;
1da177e4
LT
1793}
1794
b0dd25a8
RD
1795/**
1796 * audit_log_format - format a message into the audit buffer.
1797 * @ab: audit_buffer
1798 * @fmt: format string
1799 * @...: optional parameters matching @fmt string
1800 *
1801 * All the work is done in audit_log_vformat.
1802 */
1da177e4
LT
1803void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1804{
1805 va_list args;
1806
1807 if (!ab)
1808 return;
1809 va_start(args, fmt);
1810 audit_log_vformat(ab, fmt, args);
1811 va_end(args);
1812}
1813
b0dd25a8
RD
1814/**
1815 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1816 * @ab: the audit_buffer
1817 * @buf: buffer to convert to hex
1818 * @len: length of @buf to be converted
1819 *
1820 * No return value; failure to expand is silently ignored.
1821 *
1822 * This function will take the passed buf and convert it into a string of
1823 * ascii hex digits. The new string is placed onto the skb.
1824 */
b556f8ad 1825void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
168b7173 1826 size_t len)
83c7d091 1827{
168b7173
SG
1828 int i, avail, new_len;
1829 unsigned char *ptr;
1830 struct sk_buff *skb;
168b7173 1831
8ef2d304
AG
1832 if (!ab)
1833 return;
1834
168b7173
SG
1835 BUG_ON(!ab->skb);
1836 skb = ab->skb;
1837 avail = skb_tailroom(skb);
1838 new_len = len<<1;
1839 if (new_len >= avail) {
1840 /* Round the buffer request up to the next multiple */
1841 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1842 avail = audit_expand(ab, new_len);
1843 if (!avail)
1844 return;
1845 }
83c7d091 1846
27a884dc 1847 ptr = skb_tail_pointer(skb);
b8dbc324
JP
1848 for (i = 0; i < len; i++)
1849 ptr = hex_byte_pack_upper(ptr, buf[i]);
168b7173
SG
1850 *ptr = 0;
1851 skb_put(skb, len << 1); /* new string is twice the old string */
83c7d091
DW
1852}
1853
9c937dcc
AG
1854/*
1855 * Format a string of no more than slen characters into the audit buffer,
1856 * enclosed in quote marks.
1857 */
b556f8ad
EP
1858void audit_log_n_string(struct audit_buffer *ab, const char *string,
1859 size_t slen)
9c937dcc
AG
1860{
1861 int avail, new_len;
1862 unsigned char *ptr;
1863 struct sk_buff *skb;
1864
8ef2d304
AG
1865 if (!ab)
1866 return;
1867
9c937dcc
AG
1868 BUG_ON(!ab->skb);
1869 skb = ab->skb;
1870 avail = skb_tailroom(skb);
1871 new_len = slen + 3; /* enclosing quotes + null terminator */
1872 if (new_len > avail) {
1873 avail = audit_expand(ab, new_len);
1874 if (!avail)
1875 return;
1876 }
27a884dc 1877 ptr = skb_tail_pointer(skb);
9c937dcc
AG
1878 *ptr++ = '"';
1879 memcpy(ptr, string, slen);
1880 ptr += slen;
1881 *ptr++ = '"';
1882 *ptr = 0;
1883 skb_put(skb, slen + 2); /* don't include null terminator */
1884}
1885
de6bbd1d
EP
1886/**
1887 * audit_string_contains_control - does a string need to be logged in hex
f706d5d2
DJ
1888 * @string: string to be checked
1889 * @len: max length of the string to check
de6bbd1d 1890 */
9fcf836b 1891bool audit_string_contains_control(const char *string, size_t len)
de6bbd1d
EP
1892{
1893 const unsigned char *p;
b3897f56 1894 for (p = string; p < (const unsigned char *)string + len; p++) {
1d6c9649 1895 if (*p == '"' || *p < 0x21 || *p > 0x7e)
9fcf836b 1896 return true;
de6bbd1d 1897 }
9fcf836b 1898 return false;
de6bbd1d
EP
1899}
1900
b0dd25a8 1901/**
522ed776 1902 * audit_log_n_untrustedstring - log a string that may contain random characters
b0dd25a8 1903 * @ab: audit_buffer
f706d5d2 1904 * @len: length of string (not including trailing null)
b0dd25a8
RD
1905 * @string: string to be logged
1906 *
1907 * This code will escape a string that is passed to it if the string
1908 * contains a control character, unprintable character, double quote mark,
168b7173 1909 * or a space. Unescaped strings will start and end with a double quote mark.
b0dd25a8 1910 * Strings that are escaped are printed in hex (2 digits per char).
9c937dcc
AG
1911 *
1912 * The caller specifies the number of characters in the string to log, which may
1913 * or may not be the entire string.
b0dd25a8 1914 */
b556f8ad
EP
1915void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1916 size_t len)
83c7d091 1917{
de6bbd1d 1918 if (audit_string_contains_control(string, len))
b556f8ad 1919 audit_log_n_hex(ab, string, len);
de6bbd1d 1920 else
b556f8ad 1921 audit_log_n_string(ab, string, len);
83c7d091
DW
1922}
1923
9c937dcc 1924/**
522ed776 1925 * audit_log_untrustedstring - log a string that may contain random characters
9c937dcc
AG
1926 * @ab: audit_buffer
1927 * @string: string to be logged
1928 *
522ed776 1929 * Same as audit_log_n_untrustedstring(), except that strlen is used to
9c937dcc
AG
1930 * determine string length.
1931 */
de6bbd1d 1932void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
9c937dcc 1933{
b556f8ad 1934 audit_log_n_untrustedstring(ab, string, strlen(string));
9c937dcc
AG
1935}
1936
168b7173 1937/* This is a helper-function to print the escaped d_path */
1da177e4 1938void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
66b3fad3 1939 const struct path *path)
1da177e4 1940{
44707fdf 1941 char *p, *pathname;
1da177e4 1942
8fc6115c 1943 if (prefix)
c158a35c 1944 audit_log_format(ab, "%s", prefix);
1da177e4 1945
168b7173 1946 /* We will allow 11 spaces for ' (deleted)' to be appended */
44707fdf
JB
1947 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1948 if (!pathname) {
def57543 1949 audit_log_string(ab, "<no_memory>");
168b7173 1950 return;
1da177e4 1951 }
cf28b486 1952 p = d_path(path, pathname, PATH_MAX+11);
168b7173
SG
1953 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1954 /* FIXME: can we save some information here? */
def57543 1955 audit_log_string(ab, "<too_long>");
5600b892 1956 } else
168b7173 1957 audit_log_untrustedstring(ab, p);
44707fdf 1958 kfree(pathname);
1da177e4
LT
1959}
1960
4d3fb709
EP
1961void audit_log_session_info(struct audit_buffer *ab)
1962{
4440e854 1963 unsigned int sessionid = audit_get_sessionid(current);
4d3fb709
EP
1964 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1965
b8f89caa 1966 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
4d3fb709
EP
1967}
1968
9d960985
EP
1969void audit_log_key(struct audit_buffer *ab, char *key)
1970{
1971 audit_log_format(ab, " key=");
1972 if (key)
1973 audit_log_untrustedstring(ab, key);
1974 else
1975 audit_log_format(ab, "(null)");
1976}
1977
b24a30a7
EP
1978void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1979{
1980 int i;
1981
1982 audit_log_format(ab, " %s=", prefix);
1983 CAP_FOR_EACH_U32(i) {
1984 audit_log_format(ab, "%08x",
7d8b6c63 1985 cap->cap[CAP_LAST_U32 - i]);
b24a30a7
EP
1986 }
1987}
1988
691e6d59 1989static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
b24a30a7
EP
1990{
1991 kernel_cap_t *perm = &name->fcap.permitted;
1992 kernel_cap_t *inh = &name->fcap.inheritable;
1993 int log = 0;
1994
1995 if (!cap_isclear(*perm)) {
1996 audit_log_cap(ab, "cap_fp", perm);
1997 log = 1;
1998 }
1999 if (!cap_isclear(*inh)) {
2000 audit_log_cap(ab, "cap_fi", inh);
2001 log = 1;
2002 }
2003
2004 if (log)
2005 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2006 name->fcap.fE, name->fcap_ver);
2007}
2008
2009static inline int audit_copy_fcaps(struct audit_names *name,
2010 const struct dentry *dentry)
2011{
2012 struct cpu_vfs_cap_data caps;
2013 int rc;
2014
2015 if (!dentry)
2016 return 0;
2017
2018 rc = get_vfs_caps_from_disk(dentry, &caps);
2019 if (rc)
2020 return rc;
2021
2022 name->fcap.permitted = caps.permitted;
2023 name->fcap.inheritable = caps.inheritable;
2024 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2025 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2026 VFS_CAP_REVISION_SHIFT;
2027
2028 return 0;
2029}
2030
2031/* Copy inode data into an audit_names. */
2032void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
d6335d77 2033 struct inode *inode)
b24a30a7
EP
2034{
2035 name->ino = inode->i_ino;
2036 name->dev = inode->i_sb->s_dev;
2037 name->mode = inode->i_mode;
2038 name->uid = inode->i_uid;
2039 name->gid = inode->i_gid;
2040 name->rdev = inode->i_rdev;
2041 security_inode_getsecid(inode, &name->osid);
2042 audit_copy_fcaps(name, dentry);
2043}
2044
2045/**
2046 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2047 * @context: audit_context for the task
2048 * @n: audit_names structure with reportable details
2049 * @path: optional path to report instead of audit_names->name
2050 * @record_num: record number to report when handling a list of names
2051 * @call_panic: optional pointer to int that will be updated if secid fails
2052 */
2053void audit_log_name(struct audit_context *context, struct audit_names *n,
8bd10763 2054 const struct path *path, int record_num, int *call_panic)
b24a30a7
EP
2055{
2056 struct audit_buffer *ab;
2057 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2058 if (!ab)
2059 return;
2060
2061 audit_log_format(ab, "item=%d", record_num);
2062
2063 if (path)
2064 audit_log_d_path(ab, " name=", path);
2065 else if (n->name) {
2066 switch (n->name_len) {
2067 case AUDIT_NAME_FULL:
2068 /* log the full path */
2069 audit_log_format(ab, " name=");
2070 audit_log_untrustedstring(ab, n->name->name);
2071 break;
2072 case 0:
2073 /* name was specified as a relative path and the
2074 * directory component is the cwd */
2075 audit_log_d_path(ab, " name=", &context->pwd);
2076 break;
2077 default:
2078 /* log the name's directory component */
2079 audit_log_format(ab, " name=");
2080 audit_log_n_untrustedstring(ab, n->name->name,
2081 n->name_len);
2082 }
2083 } else
2084 audit_log_format(ab, " name=(null)");
2085
425afcff 2086 if (n->ino != AUDIT_INO_UNSET)
b24a30a7
EP
2087 audit_log_format(ab, " inode=%lu"
2088 " dev=%02x:%02x mode=%#ho"
2089 " ouid=%u ogid=%u rdev=%02x:%02x",
2090 n->ino,
2091 MAJOR(n->dev),
2092 MINOR(n->dev),
2093 n->mode,
2094 from_kuid(&init_user_ns, n->uid),
2095 from_kgid(&init_user_ns, n->gid),
2096 MAJOR(n->rdev),
2097 MINOR(n->rdev));
b24a30a7
EP
2098 if (n->osid != 0) {
2099 char *ctx = NULL;
2100 u32 len;
2101 if (security_secid_to_secctx(
2102 n->osid, &ctx, &len)) {
2103 audit_log_format(ab, " osid=%u", n->osid);
2104 if (call_panic)
2105 *call_panic = 2;
2106 } else {
2107 audit_log_format(ab, " obj=%s", ctx);
2108 security_release_secctx(ctx, len);
2109 }
2110 }
2111
d3aea84a
JL
2112 /* log the audit_names record type */
2113 audit_log_format(ab, " nametype=");
2114 switch(n->type) {
2115 case AUDIT_TYPE_NORMAL:
2116 audit_log_format(ab, "NORMAL");
2117 break;
2118 case AUDIT_TYPE_PARENT:
2119 audit_log_format(ab, "PARENT");
2120 break;
2121 case AUDIT_TYPE_CHILD_DELETE:
2122 audit_log_format(ab, "DELETE");
2123 break;
2124 case AUDIT_TYPE_CHILD_CREATE:
2125 audit_log_format(ab, "CREATE");
2126 break;
2127 default:
2128 audit_log_format(ab, "UNKNOWN");
2129 break;
2130 }
2131
b24a30a7
EP
2132 audit_log_fcaps(ab, n);
2133 audit_log_end(ab);
2134}
2135
2136int audit_log_task_context(struct audit_buffer *ab)
2137{
2138 char *ctx = NULL;
2139 unsigned len;
2140 int error;
2141 u32 sid;
2142
2143 security_task_getsecid(current, &sid);
2144 if (!sid)
2145 return 0;
2146
2147 error = security_secid_to_secctx(sid, &ctx, &len);
2148 if (error) {
2149 if (error != -EINVAL)
2150 goto error_path;
2151 return 0;
2152 }
2153
2154 audit_log_format(ab, " subj=%s", ctx);
2155 security_release_secctx(ctx, len);
2156 return 0;
2157
2158error_path:
2159 audit_panic("error in audit_log_task_context");
2160 return error;
2161}
2162EXPORT_SYMBOL(audit_log_task_context);
2163
4766b199
DB
2164void audit_log_d_path_exe(struct audit_buffer *ab,
2165 struct mm_struct *mm)
2166{
5b282552
DB
2167 struct file *exe_file;
2168
2169 if (!mm)
2170 goto out_null;
4766b199 2171
5b282552
DB
2172 exe_file = get_mm_exe_file(mm);
2173 if (!exe_file)
2174 goto out_null;
2175
2176 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2177 fput(exe_file);
2178 return;
2179out_null:
2180 audit_log_format(ab, " exe=(null)");
4766b199
DB
2181}
2182
3f5be2da
RGB
2183struct tty_struct *audit_get_tty(struct task_struct *tsk)
2184{
2185 struct tty_struct *tty = NULL;
2186 unsigned long flags;
2187
2188 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2189 if (tsk->signal)
2190 tty = tty_kref_get(tsk->signal->tty);
2191 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2192 return tty;
2193}
2194
2195void audit_put_tty(struct tty_struct *tty)
2196{
2197 tty_kref_put(tty);
2198}
2199
b24a30a7
EP
2200void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2201{
2202 const struct cred *cred;
9eab339b 2203 char comm[sizeof(tsk->comm)];
db0a6fb5 2204 struct tty_struct *tty;
b24a30a7
EP
2205
2206 if (!ab)
2207 return;
2208
2209 /* tsk == current */
2210 cred = current_cred();
db0a6fb5 2211 tty = audit_get_tty(tsk);
b24a30a7 2212 audit_log_format(ab,
c92cdeb4 2213 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
b24a30a7 2214 " euid=%u suid=%u fsuid=%u"
2f2ad101 2215 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
c92cdeb4 2216 task_ppid_nr(tsk),
fa2bea2f 2217 task_tgid_nr(tsk),
b24a30a7
EP
2218 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2219 from_kuid(&init_user_ns, cred->uid),
2220 from_kgid(&init_user_ns, cred->gid),
2221 from_kuid(&init_user_ns, cred->euid),
2222 from_kuid(&init_user_ns, cred->suid),
2223 from_kuid(&init_user_ns, cred->fsuid),
2224 from_kgid(&init_user_ns, cred->egid),
2225 from_kgid(&init_user_ns, cred->sgid),
2226 from_kgid(&init_user_ns, cred->fsgid),
db0a6fb5
RGB
2227 tty ? tty_name(tty) : "(none)",
2228 audit_get_sessionid(tsk));
2229 audit_put_tty(tty);
b24a30a7 2230 audit_log_format(ab, " comm=");
9eab339b 2231 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
4766b199 2232 audit_log_d_path_exe(ab, tsk->mm);
b24a30a7
EP
2233 audit_log_task_context(ab);
2234}
2235EXPORT_SYMBOL(audit_log_task_info);
2236
a51d9eaa
KC
2237/**
2238 * audit_log_link_denied - report a link restriction denial
22011964 2239 * @operation: specific link operation
a51d9eaa
KC
2240 * @link: the path that triggered the restriction
2241 */
8bd10763 2242void audit_log_link_denied(const char *operation, const struct path *link)
a51d9eaa
KC
2243{
2244 struct audit_buffer *ab;
b24a30a7
EP
2245 struct audit_names *name;
2246
2247 name = kzalloc(sizeof(*name), GFP_NOFS);
2248 if (!name)
2249 return;
a51d9eaa 2250
b24a30a7 2251 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
a51d9eaa
KC
2252 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2253 AUDIT_ANOM_LINK);
d1c7d97a 2254 if (!ab)
b24a30a7
EP
2255 goto out;
2256 audit_log_format(ab, "op=%s", operation);
2257 audit_log_task_info(ab, current);
2258 audit_log_format(ab, " res=0");
a51d9eaa 2259 audit_log_end(ab);
b24a30a7
EP
2260
2261 /* Generate AUDIT_PATH record with object. */
2262 name->type = AUDIT_TYPE_NORMAL;
3b362157 2263 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
b24a30a7
EP
2264 audit_log_name(current->audit_context, name, link, 0, NULL);
2265out:
2266 kfree(name);
a51d9eaa
KC
2267}
2268
b0dd25a8
RD
2269/**
2270 * audit_log_end - end one audit record
2271 * @ab: the audit_buffer
2272 *
4aa83872
PM
2273 * We can not do a netlink send inside an irq context because it blocks (last
2274 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2275 * queue and a tasklet is scheduled to remove them from the queue outside the
2276 * irq context. May be called in any context.
b0dd25a8 2277 */
b7d11258 2278void audit_log_end(struct audit_buffer *ab)
1da177e4 2279{
5b52330b
PM
2280 struct sk_buff *skb;
2281 struct nlmsghdr *nlh;
2282
1da177e4
LT
2283 if (!ab)
2284 return;
5b52330b
PM
2285
2286 if (audit_rate_check()) {
2287 skb = ab->skb;
f3d357b0 2288 ab->skb = NULL;
5b52330b
PM
2289
2290 /* setup the netlink header, see the comments in
2291 * kauditd_send_multicast_skb() for length quirks */
2292 nlh = nlmsg_hdr(skb);
2293 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2294
2295 /* queue the netlink packet and poke the kauditd thread */
2296 skb_queue_tail(&audit_queue, skb);
2297 wake_up_interruptible(&kauditd_wait);
2298 } else
2299 audit_log_lost("rate limit exceeded");
2300
16e1904e 2301 audit_buffer_free(ab);
1da177e4
LT
2302}
2303
b0dd25a8
RD
2304/**
2305 * audit_log - Log an audit record
2306 * @ctx: audit context
2307 * @gfp_mask: type of allocation
2308 * @type: audit message type
2309 * @fmt: format string to use
2310 * @...: variable parameters matching the format string
2311 *
2312 * This is a convenience function that calls audit_log_start,
2313 * audit_log_vformat, and audit_log_end. It may be called
2314 * in any context.
2315 */
5600b892 2316void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
9ad9ad38 2317 const char *fmt, ...)
1da177e4
LT
2318{
2319 struct audit_buffer *ab;
2320 va_list args;
2321
9ad9ad38 2322 ab = audit_log_start(ctx, gfp_mask, type);
1da177e4
LT
2323 if (ab) {
2324 va_start(args, fmt);
2325 audit_log_vformat(ab, fmt, args);
2326 va_end(args);
2327 audit_log_end(ab);
2328 }
2329}
bf45da97 2330
131ad62d
MDF
2331#ifdef CONFIG_SECURITY
2332/**
2333 * audit_log_secctx - Converts and logs SELinux context
2334 * @ab: audit_buffer
2335 * @secid: security number
2336 *
2337 * This is a helper function that calls security_secid_to_secctx to convert
2338 * secid to secctx and then adds the (converted) SELinux context to the audit
2339 * log by calling audit_log_format, thus also preventing leak of internal secid
2340 * to userspace. If secid cannot be converted audit_panic is called.
2341 */
2342void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2343{
2344 u32 len;
2345 char *secctx;
2346
2347 if (security_secid_to_secctx(secid, &secctx, &len)) {
2348 audit_panic("Cannot convert secid to context");
2349 } else {
2350 audit_log_format(ab, " obj=%s", secctx);
2351 security_release_secctx(secctx, len);
2352 }
2353}
2354EXPORT_SYMBOL(audit_log_secctx);
2355#endif
2356
bf45da97 2357EXPORT_SYMBOL(audit_log_start);
2358EXPORT_SYMBOL(audit_log_end);
2359EXPORT_SYMBOL(audit_log_format);
2360EXPORT_SYMBOL(audit_log);