]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/auditsc.c
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
473ae30b 66#include <linux/binfmts.h>
a1f8e7f7 67#include <linux/highmem.h>
f46038ff 68#include <linux/syscalls.h>
84db564a 69#include <asm/syscall.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
3f1c8250 73#include <linux/ctype.h>
fcf22d82
PM
74#include <linux/string.h>
75#include <uapi/linux/limits.h>
1da177e4 76
fe7752ba 77#include "audit.h"
1da177e4 78
d7e7528b
EP
79/* flags stating the success for a syscall */
80#define AUDITSC_INVALID 0
81#define AUDITSC_SUCCESS 1
82#define AUDITSC_FAILURE 2
83
de6bbd1d
EP
84/* no execve audit message should be longer than this (userspace limits) */
85#define MAX_EXECVE_AUDIT_LEN 7500
86
3f1c8250
WR
87/* max length to print of cmdline/proctitle value during audit */
88#define MAX_PROCTITLE_AUDIT_LEN 128
89
471a5c7c
AV
90/* number of audit rules */
91int audit_n_rules;
92
e54dc243
AG
93/* determines whether we collect data for signals sent */
94int audit_signals;
95
1da177e4
LT
96struct audit_aux_data {
97 struct audit_aux_data *next;
98 int type;
99};
100
101#define AUDIT_AUX_IPCPERM 0
102
e54dc243
AG
103/* Number of target pids per aux struct. */
104#define AUDIT_AUX_PIDS 16
105
e54dc243
AG
106struct audit_aux_data_pids {
107 struct audit_aux_data d;
108 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 109 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 110 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 111 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 112 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 113 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
114 int pid_count;
115};
116
3fc689e9
EP
117struct audit_aux_data_bprm_fcaps {
118 struct audit_aux_data d;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 struct audit_cap_data old_pcap;
122 struct audit_cap_data new_pcap;
123};
124
74c3cbe3
AV
125struct audit_tree_refs {
126 struct audit_tree_refs *next;
127 struct audit_chunk *c[31];
128};
129
55669bfa
AV
130static int audit_match_perm(struct audit_context *ctx, int mask)
131{
c4bacefb 132 unsigned n;
1a61c88d 133 if (unlikely(!ctx))
134 return 0;
c4bacefb 135 n = ctx->major;
dbda4c0b 136
55669bfa
AV
137 switch (audit_classify_syscall(ctx->arch, n)) {
138 case 0: /* native */
139 if ((mask & AUDIT_PERM_WRITE) &&
140 audit_match_class(AUDIT_CLASS_WRITE, n))
141 return 1;
142 if ((mask & AUDIT_PERM_READ) &&
143 audit_match_class(AUDIT_CLASS_READ, n))
144 return 1;
145 if ((mask & AUDIT_PERM_ATTR) &&
146 audit_match_class(AUDIT_CLASS_CHATTR, n))
147 return 1;
148 return 0;
149 case 1: /* 32bit on biarch */
150 if ((mask & AUDIT_PERM_WRITE) &&
151 audit_match_class(AUDIT_CLASS_WRITE_32, n))
152 return 1;
153 if ((mask & AUDIT_PERM_READ) &&
154 audit_match_class(AUDIT_CLASS_READ_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_ATTR) &&
157 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
158 return 1;
159 return 0;
160 case 2: /* open */
161 return mask & ACC_MODE(ctx->argv[1]);
162 case 3: /* openat */
163 return mask & ACC_MODE(ctx->argv[2]);
164 case 4: /* socketcall */
165 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
166 case 5: /* execve */
167 return mask & AUDIT_PERM_EXEC;
168 default:
169 return 0;
170 }
171}
172
5ef30ee5 173static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 174{
5195d8e2 175 struct audit_names *n;
5ef30ee5 176 umode_t mode = (umode_t)val;
1a61c88d 177
178 if (unlikely(!ctx))
179 return 0;
180
5195d8e2 181 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 182 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 183 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
184 return 1;
185 }
5195d8e2 186
5ef30ee5 187 return 0;
8b67dca9
AV
188}
189
74c3cbe3
AV
190/*
191 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
192 * ->first_trees points to its beginning, ->trees - to the current end of data.
193 * ->tree_count is the number of free entries in array pointed to by ->trees.
194 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
195 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
196 * it's going to remain 1-element for almost any setup) until we free context itself.
197 * References in it _are_ dropped - at the same time we free/drop aux stuff.
198 */
199
200#ifdef CONFIG_AUDIT_TREE
679173b7
EP
201static void audit_set_auditable(struct audit_context *ctx)
202{
203 if (!ctx->prio) {
204 ctx->prio = 1;
205 ctx->current_state = AUDIT_RECORD_CONTEXT;
206 }
207}
208
74c3cbe3
AV
209static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
210{
211 struct audit_tree_refs *p = ctx->trees;
212 int left = ctx->tree_count;
213 if (likely(left)) {
214 p->c[--left] = chunk;
215 ctx->tree_count = left;
216 return 1;
217 }
218 if (!p)
219 return 0;
220 p = p->next;
221 if (p) {
222 p->c[30] = chunk;
223 ctx->trees = p;
224 ctx->tree_count = 30;
225 return 1;
226 }
227 return 0;
228}
229
230static int grow_tree_refs(struct audit_context *ctx)
231{
232 struct audit_tree_refs *p = ctx->trees;
233 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
234 if (!ctx->trees) {
235 ctx->trees = p;
236 return 0;
237 }
238 if (p)
239 p->next = ctx->trees;
240 else
241 ctx->first_trees = ctx->trees;
242 ctx->tree_count = 31;
243 return 1;
244}
245#endif
246
247static void unroll_tree_refs(struct audit_context *ctx,
248 struct audit_tree_refs *p, int count)
249{
250#ifdef CONFIG_AUDIT_TREE
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274#endif
275}
276
277static void free_tree_refs(struct audit_context *ctx)
278{
279 struct audit_tree_refs *p, *q;
280 for (p = ctx->first_trees; p; p = q) {
281 q = p->next;
282 kfree(p);
283 }
284}
285
286static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
287{
288#ifdef CONFIG_AUDIT_TREE
289 struct audit_tree_refs *p;
290 int n;
291 if (!tree)
292 return 0;
293 /* full ones */
294 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
295 for (n = 0; n < 31; n++)
296 if (audit_tree_match(p->c[n], tree))
297 return 1;
298 }
299 /* partial */
300 if (p) {
301 for (n = ctx->tree_count; n < 31; n++)
302 if (audit_tree_match(p->c[n], tree))
303 return 1;
304 }
305#endif
306 return 0;
307}
308
ca57ec0f
EB
309static int audit_compare_uid(kuid_t uid,
310 struct audit_names *name,
311 struct audit_field *f,
312 struct audit_context *ctx)
b34b0393
EP
313{
314 struct audit_names *n;
b34b0393 315 int rc;
ca57ec0f 316
b34b0393 317 if (name) {
ca57ec0f 318 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
319 if (rc)
320 return rc;
321 }
ca57ec0f 322
b34b0393
EP
323 if (ctx) {
324 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
325 rc = audit_uid_comparator(uid, f->op, n->uid);
326 if (rc)
327 return rc;
328 }
329 }
330 return 0;
331}
b34b0393 332
ca57ec0f
EB
333static int audit_compare_gid(kgid_t gid,
334 struct audit_names *name,
335 struct audit_field *f,
336 struct audit_context *ctx)
337{
338 struct audit_names *n;
339 int rc;
340
341 if (name) {
342 rc = audit_gid_comparator(gid, f->op, name->gid);
343 if (rc)
344 return rc;
345 }
346
347 if (ctx) {
348 list_for_each_entry(n, &ctx->names_list, list) {
349 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
350 if (rc)
351 return rc;
352 }
353 }
354 return 0;
355}
356
02d86a56
EP
357static int audit_field_compare(struct task_struct *tsk,
358 const struct cred *cred,
359 struct audit_field *f,
360 struct audit_context *ctx,
361 struct audit_names *name)
362{
02d86a56 363 switch (f->val) {
4a6633ed 364 /* process to file object comparisons */
02d86a56 365 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 366 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 367 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 368 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 369 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 370 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 371 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 372 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 373 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 374 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 375 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 376 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 377 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 378 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 379 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 380 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 381 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 382 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
383 /* uid comparisons */
384 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 385 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 386 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 387 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 388 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 389 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 390 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 391 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
392 /* auid comparisons */
393 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 394 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 395 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 396 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 397 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 398 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
399 /* euid comparisons */
400 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 401 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 402 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 403 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
404 /* suid comparisons */
405 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 406 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
407 /* gid comparisons */
408 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 409 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 410 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 411 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 412 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 413 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
414 /* egid comparisons */
415 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 416 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 417 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 418 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
419 /* sgid comparison */
420 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 421 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
422 default:
423 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
424 return 0;
425 }
426 return 0;
427}
428
f368c07d 429/* Determine if any context name data matches a rule's watch data */
1da177e4 430/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
431 * otherwise.
432 *
433 * If task_creation is true, this is an explicit indication that we are
434 * filtering a task rule at task creation time. This and tsk == current are
435 * the only situations where tsk->cred may be accessed without an rcu read lock.
436 */
1da177e4 437static int audit_filter_rules(struct task_struct *tsk,
93315ed6 438 struct audit_krule *rule,
1da177e4 439 struct audit_context *ctx,
f368c07d 440 struct audit_names *name,
f5629883
TJ
441 enum audit_state *state,
442 bool task_creation)
1da177e4 443{
f5629883 444 const struct cred *cred;
5195d8e2 445 int i, need_sid = 1;
3dc7e315
DG
446 u32 sid;
447
f5629883
TJ
448 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
449
1da177e4 450 for (i = 0; i < rule->field_count; i++) {
93315ed6 451 struct audit_field *f = &rule->fields[i];
5195d8e2 452 struct audit_names *n;
1da177e4 453 int result = 0;
f1dc4867 454 pid_t pid;
1da177e4 455
93315ed6 456 switch (f->type) {
1da177e4 457 case AUDIT_PID:
f1dc4867
RGB
458 pid = task_pid_nr(tsk);
459 result = audit_comparator(pid, f->op, f->val);
1da177e4 460 break;
3c66251e 461 case AUDIT_PPID:
419c58f1
AV
462 if (ctx) {
463 if (!ctx->ppid)
c92cdeb4 464 ctx->ppid = task_ppid_nr(tsk);
3c66251e 465 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 466 }
3c66251e 467 break;
34d99af5
RGB
468 case AUDIT_EXE:
469 result = audit_exe_compare(tsk, rule->exe);
470 break;
1da177e4 471 case AUDIT_UID:
ca57ec0f 472 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
473 break;
474 case AUDIT_EUID:
ca57ec0f 475 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
476 break;
477 case AUDIT_SUID:
ca57ec0f 478 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
479 break;
480 case AUDIT_FSUID:
ca57ec0f 481 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
482 break;
483 case AUDIT_GID:
ca57ec0f 484 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
485 if (f->op == Audit_equal) {
486 if (!result)
487 result = in_group_p(f->gid);
488 } else if (f->op == Audit_not_equal) {
489 if (result)
490 result = !in_group_p(f->gid);
491 }
1da177e4
LT
492 break;
493 case AUDIT_EGID:
ca57ec0f 494 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
495 if (f->op == Audit_equal) {
496 if (!result)
497 result = in_egroup_p(f->gid);
498 } else if (f->op == Audit_not_equal) {
499 if (result)
500 result = !in_egroup_p(f->gid);
501 }
1da177e4
LT
502 break;
503 case AUDIT_SGID:
ca57ec0f 504 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
505 break;
506 case AUDIT_FSGID:
ca57ec0f 507 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
508 break;
509 case AUDIT_PERS:
93315ed6 510 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 511 break;
2fd6f58b 512 case AUDIT_ARCH:
9f8dbe9c 513 if (ctx)
93315ed6 514 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 515 break;
1da177e4
LT
516
517 case AUDIT_EXIT:
518 if (ctx && ctx->return_valid)
93315ed6 519 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
520 break;
521 case AUDIT_SUCCESS:
b01f2cc1 522 if (ctx && ctx->return_valid) {
93315ed6
AG
523 if (f->val)
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 525 else
93315ed6 526 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 527 }
1da177e4
LT
528 break;
529 case AUDIT_DEVMAJOR:
16c174bd
EP
530 if (name) {
531 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
532 audit_comparator(MAJOR(name->rdev), f->op, f->val))
533 ++result;
534 } else if (ctx) {
5195d8e2 535 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
536 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
537 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
538 ++result;
539 break;
540 }
541 }
542 }
543 break;
544 case AUDIT_DEVMINOR:
16c174bd
EP
545 if (name) {
546 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
547 audit_comparator(MINOR(name->rdev), f->op, f->val))
548 ++result;
549 } else if (ctx) {
5195d8e2 550 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
551 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
552 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
553 ++result;
554 break;
555 }
556 }
557 }
558 break;
559 case AUDIT_INODE:
f368c07d 560 if (name)
db510fc5 561 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 562 else if (ctx) {
5195d8e2
EP
563 list_for_each_entry(n, &ctx->names_list, list) {
564 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
565 ++result;
566 break;
567 }
568 }
569 }
570 break;
efaffd6e
EP
571 case AUDIT_OBJ_UID:
572 if (name) {
ca57ec0f 573 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
574 } else if (ctx) {
575 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 576 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
577 ++result;
578 break;
579 }
580 }
581 }
582 break;
54d3218b
EP
583 case AUDIT_OBJ_GID:
584 if (name) {
ca57ec0f 585 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 588 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
589 ++result;
590 break;
591 }
592 }
593 }
594 break;
f368c07d 595 case AUDIT_WATCH:
ae7b8f41
EP
596 if (name)
597 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 598 break;
74c3cbe3
AV
599 case AUDIT_DIR:
600 if (ctx)
601 result = match_tree_refs(ctx, rule->tree);
602 break;
1da177e4 603 case AUDIT_LOGINUID:
5c1390c9 604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 605 break;
780a7654
EB
606 case AUDIT_LOGINUID_SET:
607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608 break;
3a6b9f85
DG
609 case AUDIT_SUBJ_USER:
610 case AUDIT_SUBJ_ROLE:
611 case AUDIT_SUBJ_TYPE:
612 case AUDIT_SUBJ_SEN:
613 case AUDIT_SUBJ_CLR:
3dc7e315
DG
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
618 logged upon error */
04305e4a 619 if (f->lsm_rule) {
2ad312d2 620 if (need_sid) {
2a862b32 621 security_task_getsecid(tsk, &sid);
2ad312d2
SG
622 need_sid = 0;
623 }
d7a96f3a 624 result = security_audit_rule_match(sid, f->type,
3dc7e315 625 f->op,
04305e4a 626 f->lsm_rule,
3dc7e315 627 ctx);
2ad312d2 628 }
3dc7e315 629 break;
6e5a2d1d
DG
630 case AUDIT_OBJ_USER:
631 case AUDIT_OBJ_ROLE:
632 case AUDIT_OBJ_TYPE:
633 case AUDIT_OBJ_LEV_LOW:
634 case AUDIT_OBJ_LEV_HIGH:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 also applies here */
04305e4a 637 if (f->lsm_rule) {
6e5a2d1d
DG
638 /* Find files that match */
639 if (name) {
d7a96f3a 640 result = security_audit_rule_match(
6e5a2d1d 641 name->osid, f->type, f->op,
04305e4a 642 f->lsm_rule, ctx);
6e5a2d1d 643 } else if (ctx) {
5195d8e2
EP
644 list_for_each_entry(n, &ctx->names_list, list) {
645 if (security_audit_rule_match(n->osid, f->type,
646 f->op, f->lsm_rule,
647 ctx)) {
6e5a2d1d
DG
648 ++result;
649 break;
650 }
651 }
652 }
653 /* Find ipc objects that match */
a33e6751
AV
654 if (!ctx || ctx->type != AUDIT_IPC)
655 break;
656 if (security_audit_rule_match(ctx->ipc.osid,
657 f->type, f->op,
658 f->lsm_rule, ctx))
659 ++result;
6e5a2d1d
DG
660 }
661 break;
1da177e4
LT
662 case AUDIT_ARG0:
663 case AUDIT_ARG1:
664 case AUDIT_ARG2:
665 case AUDIT_ARG3:
666 if (ctx)
93315ed6 667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 668 break;
5adc8a6a
AG
669 case AUDIT_FILTERKEY:
670 /* ignore this field for filtering */
671 result = 1;
672 break;
55669bfa
AV
673 case AUDIT_PERM:
674 result = audit_match_perm(ctx, f->val);
675 break;
8b67dca9
AV
676 case AUDIT_FILETYPE:
677 result = audit_match_filetype(ctx, f->val);
678 break;
02d86a56
EP
679 case AUDIT_FIELD_COMPARE:
680 result = audit_field_compare(tsk, cred, f, ctx, name);
681 break;
1da177e4 682 }
f5629883 683 if (!result)
1da177e4
LT
684 return 0;
685 }
0590b933
AV
686
687 if (ctx) {
688 if (rule->prio <= ctx->prio)
689 return 0;
690 if (rule->filterkey) {
691 kfree(ctx->filterkey);
692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
693 }
694 ctx->prio = rule->prio;
695 }
1da177e4
LT
696 switch (rule->action) {
697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
699 }
700 return 1;
701}
702
703/* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
706 */
e048e02c 707static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
708{
709 struct audit_entry *e;
710 enum audit_state state;
711
712 rcu_read_lock();
0f45aa18 713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715 &state, true)) {
e048e02c
AV
716 if (state == AUDIT_RECORD_CONTEXT)
717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
718 rcu_read_unlock();
719 return state;
720 }
721 }
722 rcu_read_unlock();
723 return AUDIT_BUILD_CONTEXT;
724}
725
a3c54931
AL
726static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
727{
728 int word, bit;
729
730 if (val > 0xffffffff)
731 return false;
732
733 word = AUDIT_WORD(val);
734 if (word >= AUDIT_BITMASK_SIZE)
735 return false;
736
737 bit = AUDIT_BIT(val);
738
739 return rule->mask[word] & bit;
740}
741
1da177e4
LT
742/* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 744 * also not high enough that we already know we have to write an audit
b0dd25a8 745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
746 */
747static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 struct audit_context *ctx,
749 struct list_head *list)
750{
751 struct audit_entry *e;
c3896495 752 enum audit_state state;
1da177e4 753
351bb722 754 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
755 return AUDIT_DISABLED;
756
1da177e4 757 rcu_read_lock();
c3896495 758 if (!list_empty(list)) {
b63862f4 759 list_for_each_entry_rcu(e, list, list) {
a3c54931 760 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 761 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 762 &state, false)) {
f368c07d 763 rcu_read_unlock();
0590b933 764 ctx->current_state = state;
f368c07d
AG
765 return state;
766 }
767 }
768 }
769 rcu_read_unlock();
770 return AUDIT_BUILD_CONTEXT;
771}
772
5195d8e2
EP
773/*
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
776 */
777static int audit_filter_inode_name(struct task_struct *tsk,
778 struct audit_names *n,
779 struct audit_context *ctx) {
5195d8e2
EP
780 int h = audit_hash_ino((u32)n->ino);
781 struct list_head *list = &audit_inode_hash[h];
782 struct audit_entry *e;
783 enum audit_state state;
784
5195d8e2
EP
785 if (list_empty(list))
786 return 0;
787
788 list_for_each_entry_rcu(e, list, list) {
a3c54931 789 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 ctx->current_state = state;
792 return 1;
793 }
794 }
795
796 return 0;
797}
798
799/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 800 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 801 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
803 */
0590b933 804void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 805{
5195d8e2 806 struct audit_names *n;
f368c07d
AG
807
808 if (audit_pid && tsk->tgid == audit_pid)
0590b933 809 return;
f368c07d
AG
810
811 rcu_read_lock();
f368c07d 812
5195d8e2
EP
813 list_for_each_entry(n, &ctx->names_list, list) {
814 if (audit_filter_inode_name(tsk, n, ctx))
815 break;
0f45aa18
DW
816 }
817 rcu_read_unlock();
0f45aa18
DW
818}
819
4a3eb726
RGB
820/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821static inline struct audit_context *audit_take_context(struct task_struct *tsk,
1da177e4 822 int return_valid,
6d208da8 823 long return_code)
1da177e4
LT
824{
825 struct audit_context *context = tsk->audit_context;
826
56179a6e 827 if (!context)
1da177e4
LT
828 return NULL;
829 context->return_valid = return_valid;
f701b75e
EP
830
831 /*
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
835 *
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 *
840 * but is faster than a bunch of ||
841 */
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
1da177e4 848
0590b933
AV
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
1da177e4
LT
852 }
853
1da177e4
LT
854 tsk->audit_context = NULL;
855 return context;
856}
857
3f1c8250
WR
858static inline void audit_proctitle_free(struct audit_context *context)
859{
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
863}
864
1da177e4
LT
865static inline void audit_free_names(struct audit_context *context)
866{
5195d8e2 867 struct audit_names *n, *next;
1da177e4 868
5195d8e2
EP
869 list_for_each_entry_safe(n, next, &context->names_list, list) {
870 list_del(&n->list);
55422d0b
PM
871 if (n->name)
872 putname(n->name);
5195d8e2
EP
873 if (n->should_free)
874 kfree(n);
8c8570fb 875 }
1da177e4 876 context->name_count = 0;
44707fdf
JB
877 path_put(&context->pwd);
878 context->pwd.dentry = NULL;
879 context->pwd.mnt = NULL;
1da177e4
LT
880}
881
882static inline void audit_free_aux(struct audit_context *context)
883{
884 struct audit_aux_data *aux;
885
886 while ((aux = context->aux)) {
887 context->aux = aux->next;
888 kfree(aux);
889 }
e54dc243
AG
890 while ((aux = context->aux_pids)) {
891 context->aux_pids = aux->next;
892 kfree(aux);
893 }
1da177e4
LT
894}
895
1da177e4
LT
896static inline struct audit_context *audit_alloc_context(enum audit_state state)
897{
898 struct audit_context *context;
899
17c6ee70
RM
900 context = kzalloc(sizeof(*context), GFP_KERNEL);
901 if (!context)
1da177e4 902 return NULL;
e2c5adc8
AM
903 context->state = state;
904 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 905 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 906 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
907 return context;
908}
909
b0dd25a8
RD
910/**
911 * audit_alloc - allocate an audit context block for a task
912 * @tsk: task
913 *
914 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
915 * if necessary. Doing so turns on system call auditing for the
916 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
917 * needed.
918 */
1da177e4
LT
919int audit_alloc(struct task_struct *tsk)
920{
921 struct audit_context *context;
922 enum audit_state state;
e048e02c 923 char *key = NULL;
1da177e4 924
b593d384 925 if (likely(!audit_ever_enabled))
1da177e4
LT
926 return 0; /* Return if not auditing. */
927
e048e02c 928 state = audit_filter_task(tsk, &key);
d48d8051
ON
929 if (state == AUDIT_DISABLED) {
930 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 931 return 0;
d48d8051 932 }
1da177e4
LT
933
934 if (!(context = audit_alloc_context(state))) {
e048e02c 935 kfree(key);
1da177e4
LT
936 audit_log_lost("out of memory in audit_alloc");
937 return -ENOMEM;
938 }
e048e02c 939 context->filterkey = key;
1da177e4 940
1da177e4
LT
941 tsk->audit_context = context;
942 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944}
945
946static inline void audit_free_context(struct audit_context *context)
947{
c62d773a
AV
948 audit_free_names(context);
949 unroll_tree_refs(context, NULL, 0);
950 free_tree_refs(context);
951 audit_free_aux(context);
952 kfree(context->filterkey);
953 kfree(context->sockaddr);
3f1c8250 954 audit_proctitle_free(context);
c62d773a 955 kfree(context);
1da177e4
LT
956}
957
e54dc243 958static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 959 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 960 u32 sid, char *comm)
e54dc243
AG
961{
962 struct audit_buffer *ab;
2a862b32 963 char *ctx = NULL;
e54dc243
AG
964 u32 len;
965 int rc = 0;
966
967 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
968 if (!ab)
6246ccab 969 return rc;
e54dc243 970
e1760bd5
EB
971 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
972 from_kuid(&init_user_ns, auid),
cca080d9 973 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
974 if (sid) {
975 if (security_secid_to_secctx(sid, &ctx, &len)) {
976 audit_log_format(ab, " obj=(none)");
977 rc = 1;
978 } else {
979 audit_log_format(ab, " obj=%s", ctx);
980 security_release_secctx(ctx, len);
981 }
2a862b32 982 }
c2a7780e
EP
983 audit_log_format(ab, " ocomm=");
984 audit_log_untrustedstring(ab, comm);
e54dc243 985 audit_log_end(ab);
e54dc243
AG
986
987 return rc;
988}
989
de6bbd1d
EP
990/*
991 * to_send and len_sent accounting are very loose estimates. We aren't
992 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 993 * within about 500 bytes (next page boundary)
de6bbd1d
EP
994 *
995 * why snprintf? an int is up to 12 digits long. if we just assumed when
996 * logging that a[%d]= was going to be 16 characters long we would be wasting
997 * space in every audit message. In one 7500 byte message we can log up to
998 * about 1000 min size arguments. That comes down to about 50% waste of space
999 * if we didn't do the snprintf to find out how long arg_num_len was.
1000 */
1001static int audit_log_single_execve_arg(struct audit_context *context,
1002 struct audit_buffer **ab,
1003 int arg_num,
1004 size_t *len_sent,
1005 const char __user *p,
1006 char *buf)
bdf4c48a 1007{
de6bbd1d
EP
1008 char arg_num_len_buf[12];
1009 const char __user *tmp_p = p;
b87ce6e4
EP
1010 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1011 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1012 size_t len, len_left, to_send;
1013 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1014 unsigned int i, has_cntl = 0, too_long = 0;
1015 int ret;
1016
1017 /* strnlen_user includes the null we don't want to send */
1018 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1019
de6bbd1d
EP
1020 /*
1021 * We just created this mm, if we can't find the strings
1022 * we just copied into it something is _very_ wrong. Similar
1023 * for strings that are too long, we should not have created
1024 * any.
1025 */
45820c29 1026 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d 1027 send_sig(SIGKILL, current, 0);
b0abcfc1 1028 return -1;
de6bbd1d 1029 }
040b3a2d 1030
de6bbd1d
EP
1031 /* walk the whole argument looking for non-ascii chars */
1032 do {
1033 if (len_left > MAX_EXECVE_AUDIT_LEN)
1034 to_send = MAX_EXECVE_AUDIT_LEN;
1035 else
1036 to_send = len_left;
1037 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1038 /*
de6bbd1d
EP
1039 * There is no reason for this copy to be short. We just
1040 * copied them here, and the mm hasn't been exposed to user-
1041 * space yet.
bdf4c48a 1042 */
de6bbd1d 1043 if (ret) {
bdf4c48a
PZ
1044 WARN_ON(1);
1045 send_sig(SIGKILL, current, 0);
b0abcfc1 1046 return -1;
bdf4c48a 1047 }
de6bbd1d
EP
1048 buf[to_send] = '\0';
1049 has_cntl = audit_string_contains_control(buf, to_send);
1050 if (has_cntl) {
1051 /*
1052 * hex messages get logged as 2 bytes, so we can only
1053 * send half as much in each message
1054 */
1055 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1056 break;
1057 }
de6bbd1d
EP
1058 len_left -= to_send;
1059 tmp_p += to_send;
1060 } while (len_left > 0);
1061
1062 len_left = len;
1063
1064 if (len > max_execve_audit_len)
1065 too_long = 1;
1066
1067 /* rewalk the argument actually logging the message */
1068 for (i = 0; len_left > 0; i++) {
1069 int room_left;
1070
1071 if (len_left > max_execve_audit_len)
1072 to_send = max_execve_audit_len;
1073 else
1074 to_send = len_left;
1075
1076 /* do we have space left to send this argument in this ab? */
1077 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1078 if (has_cntl)
1079 room_left -= (to_send * 2);
1080 else
1081 room_left -= to_send;
1082 if (room_left < 0) {
1083 *len_sent = 0;
1084 audit_log_end(*ab);
1085 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1086 if (!*ab)
1087 return 0;
1088 }
bdf4c48a 1089
bdf4c48a 1090 /*
de6bbd1d
EP
1091 * first record needs to say how long the original string was
1092 * so we can be sure nothing was lost.
1093 */
1094 if ((i == 0) && (too_long))
ca96a895 1095 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1096 has_cntl ? 2*len : len);
1097
1098 /*
1099 * normally arguments are small enough to fit and we already
1100 * filled buf above when we checked for control characters
1101 * so don't bother with another copy_from_user
bdf4c48a 1102 */
de6bbd1d
EP
1103 if (len >= max_execve_audit_len)
1104 ret = copy_from_user(buf, p, to_send);
1105 else
1106 ret = 0;
040b3a2d 1107 if (ret) {
bdf4c48a
PZ
1108 WARN_ON(1);
1109 send_sig(SIGKILL, current, 0);
b0abcfc1 1110 return -1;
bdf4c48a 1111 }
de6bbd1d
EP
1112 buf[to_send] = '\0';
1113
1114 /* actually log it */
ca96a895 1115 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1116 if (too_long)
1117 audit_log_format(*ab, "[%d]", i);
1118 audit_log_format(*ab, "=");
1119 if (has_cntl)
b556f8ad 1120 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1121 else
9d960985 1122 audit_log_string(*ab, buf);
de6bbd1d
EP
1123
1124 p += to_send;
1125 len_left -= to_send;
1126 *len_sent += arg_num_len;
1127 if (has_cntl)
1128 *len_sent += to_send * 2;
1129 else
1130 *len_sent += to_send;
1131 }
1132 /* include the null we didn't log */
1133 return len + 1;
1134}
1135
1136static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1137 struct audit_buffer **ab)
de6bbd1d 1138{
5afb8a3f
XW
1139 int i, len;
1140 size_t len_sent = 0;
de6bbd1d
EP
1141 const char __user *p;
1142 char *buf;
bdf4c48a 1143
d9cfea91 1144 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1145
d9cfea91 1146 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1147
1148 /*
1149 * we need some kernel buffer to hold the userspace args. Just
1150 * allocate one big one rather than allocating one of the right size
1151 * for every single argument inside audit_log_single_execve_arg()
1152 * should be <8k allocation so should be pretty safe.
1153 */
1154 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1155 if (!buf) {
b7550787 1156 audit_panic("out of memory for argv string");
de6bbd1d 1157 return;
bdf4c48a 1158 }
de6bbd1d 1159
d9cfea91 1160 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1161 len = audit_log_single_execve_arg(context, ab, i,
1162 &len_sent, p, buf);
1163 if (len <= 0)
1164 break;
1165 p += len;
1166 }
1167 kfree(buf);
bdf4c48a
PZ
1168}
1169
a33e6751 1170static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1171{
1172 struct audit_buffer *ab;
1173 int i;
1174
1175 ab = audit_log_start(context, GFP_KERNEL, context->type);
1176 if (!ab)
1177 return;
1178
1179 switch (context->type) {
1180 case AUDIT_SOCKETCALL: {
1181 int nargs = context->socketcall.nargs;
1182 audit_log_format(ab, "nargs=%d", nargs);
1183 for (i = 0; i < nargs; i++)
1184 audit_log_format(ab, " a%d=%lx", i,
1185 context->socketcall.args[i]);
1186 break; }
a33e6751
AV
1187 case AUDIT_IPC: {
1188 u32 osid = context->ipc.osid;
1189
2570ebbd 1190 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1191 from_kuid(&init_user_ns, context->ipc.uid),
1192 from_kgid(&init_user_ns, context->ipc.gid),
1193 context->ipc.mode);
a33e6751
AV
1194 if (osid) {
1195 char *ctx = NULL;
1196 u32 len;
1197 if (security_secid_to_secctx(osid, &ctx, &len)) {
1198 audit_log_format(ab, " osid=%u", osid);
1199 *call_panic = 1;
1200 } else {
1201 audit_log_format(ab, " obj=%s", ctx);
1202 security_release_secctx(ctx, len);
1203 }
1204 }
e816f370
AV
1205 if (context->ipc.has_perm) {
1206 audit_log_end(ab);
1207 ab = audit_log_start(context, GFP_KERNEL,
1208 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1209 if (unlikely(!ab))
1210 return;
e816f370 1211 audit_log_format(ab,
2570ebbd 1212 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1213 context->ipc.qbytes,
1214 context->ipc.perm_uid,
1215 context->ipc.perm_gid,
1216 context->ipc.perm_mode);
e816f370 1217 }
a33e6751 1218 break; }
564f6993
AV
1219 case AUDIT_MQ_OPEN: {
1220 audit_log_format(ab,
df0a4283 1221 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1222 "mq_msgsize=%ld mq_curmsgs=%ld",
1223 context->mq_open.oflag, context->mq_open.mode,
1224 context->mq_open.attr.mq_flags,
1225 context->mq_open.attr.mq_maxmsg,
1226 context->mq_open.attr.mq_msgsize,
1227 context->mq_open.attr.mq_curmsgs);
1228 break; }
c32c8af4
AV
1229 case AUDIT_MQ_SENDRECV: {
1230 audit_log_format(ab,
1231 "mqdes=%d msg_len=%zd msg_prio=%u "
1232 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1233 context->mq_sendrecv.mqdes,
1234 context->mq_sendrecv.msg_len,
1235 context->mq_sendrecv.msg_prio,
1236 context->mq_sendrecv.abs_timeout.tv_sec,
1237 context->mq_sendrecv.abs_timeout.tv_nsec);
1238 break; }
20114f71
AV
1239 case AUDIT_MQ_NOTIFY: {
1240 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1241 context->mq_notify.mqdes,
1242 context->mq_notify.sigev_signo);
1243 break; }
7392906e
AV
1244 case AUDIT_MQ_GETSETATTR: {
1245 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1246 audit_log_format(ab,
1247 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1248 "mq_curmsgs=%ld ",
1249 context->mq_getsetattr.mqdes,
1250 attr->mq_flags, attr->mq_maxmsg,
1251 attr->mq_msgsize, attr->mq_curmsgs);
1252 break; }
57f71a0a
AV
1253 case AUDIT_CAPSET: {
1254 audit_log_format(ab, "pid=%d", context->capset.pid);
1255 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1256 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1257 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1258 break; }
120a795d
AV
1259 case AUDIT_MMAP: {
1260 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1261 context->mmap.flags);
1262 break; }
d9cfea91
RGB
1263 case AUDIT_EXECVE: {
1264 audit_log_execve_info(context, &ab);
1265 break; }
f3298dc4
AV
1266 }
1267 audit_log_end(ab);
1268}
1269
3f1c8250
WR
1270static inline int audit_proctitle_rtrim(char *proctitle, int len)
1271{
1272 char *end = proctitle + len - 1;
1273 while (end > proctitle && !isprint(*end))
1274 end--;
1275
1276 /* catch the case where proctitle is only 1 non-print character */
1277 len = end - proctitle + 1;
1278 len -= isprint(proctitle[len-1]) == 0;
1279 return len;
1280}
1281
1282static void audit_log_proctitle(struct task_struct *tsk,
1283 struct audit_context *context)
1284{
1285 int res;
1286 char *buf;
1287 char *msg = "(null)";
1288 int len = strlen(msg);
1289 struct audit_buffer *ab;
1290
1291 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1292 if (!ab)
1293 return; /* audit_panic or being filtered */
1294
1295 audit_log_format(ab, "proctitle=");
1296
1297 /* Not cached */
1298 if (!context->proctitle.value) {
1299 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1300 if (!buf)
1301 goto out;
1302 /* Historically called this from procfs naming */
1303 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1304 if (res == 0) {
1305 kfree(buf);
1306 goto out;
1307 }
1308 res = audit_proctitle_rtrim(buf, res);
1309 if (res == 0) {
1310 kfree(buf);
1311 goto out;
1312 }
1313 context->proctitle.value = buf;
1314 context->proctitle.len = res;
1315 }
1316 msg = context->proctitle.value;
1317 len = context->proctitle.len;
1318out:
1319 audit_log_n_untrustedstring(ab, msg, len);
1320 audit_log_end(ab);
1321}
1322
e495149b 1323static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1324{
9c7aa6aa 1325 int i, call_panic = 0;
1da177e4 1326 struct audit_buffer *ab;
7551ced3 1327 struct audit_aux_data *aux;
5195d8e2 1328 struct audit_names *n;
1da177e4 1329
e495149b 1330 /* tsk == current */
3f2792ff 1331 context->personality = tsk->personality;
e495149b
AV
1332
1333 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1334 if (!ab)
1335 return; /* audit_panic has been called */
bccf6ae0
DW
1336 audit_log_format(ab, "arch=%x syscall=%d",
1337 context->arch, context->major);
1da177e4
LT
1338 if (context->personality != PER_LINUX)
1339 audit_log_format(ab, " per=%lx", context->personality);
1340 if (context->return_valid)
9f8dbe9c 1341 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1342 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1343 context->return_code);
eb84a20e 1344
1da177e4 1345 audit_log_format(ab,
e23eb920
PM
1346 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1347 context->argv[0],
1348 context->argv[1],
1349 context->argv[2],
1350 context->argv[3],
1351 context->name_count);
eb84a20e 1352
e495149b 1353 audit_log_task_info(ab, tsk);
9d960985 1354 audit_log_key(ab, context->filterkey);
1da177e4 1355 audit_log_end(ab);
1da177e4 1356
7551ced3 1357 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1358
e495149b 1359 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1360 if (!ab)
1361 continue; /* audit_panic has been called */
1362
1da177e4 1363 switch (aux->type) {
20ca73bc 1364
3fc689e9
EP
1365 case AUDIT_BPRM_FCAPS: {
1366 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1367 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1368 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1369 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1370 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1371 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1372 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1373 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1374 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1375 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1376 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1377 break; }
1378
1da177e4
LT
1379 }
1380 audit_log_end(ab);
1da177e4
LT
1381 }
1382
f3298dc4 1383 if (context->type)
a33e6751 1384 show_special(context, &call_panic);
f3298dc4 1385
157cf649
AV
1386 if (context->fds[0] >= 0) {
1387 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1388 if (ab) {
1389 audit_log_format(ab, "fd0=%d fd1=%d",
1390 context->fds[0], context->fds[1]);
1391 audit_log_end(ab);
1392 }
1393 }
1394
4f6b434f
AV
1395 if (context->sockaddr_len) {
1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1397 if (ab) {
1398 audit_log_format(ab, "saddr=");
1399 audit_log_n_hex(ab, (void *)context->sockaddr,
1400 context->sockaddr_len);
1401 audit_log_end(ab);
1402 }
1403 }
1404
e54dc243
AG
1405 for (aux = context->aux_pids; aux; aux = aux->next) {
1406 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1407
1408 for (i = 0; i < axs->pid_count; i++)
1409 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1410 axs->target_auid[i],
1411 axs->target_uid[i],
4746ec5b 1412 axs->target_sessionid[i],
c2a7780e
EP
1413 axs->target_sid[i],
1414 axs->target_comm[i]))
e54dc243 1415 call_panic = 1;
a5cb013d
AV
1416 }
1417
e54dc243
AG
1418 if (context->target_pid &&
1419 audit_log_pid_context(context, context->target_pid,
c2a7780e 1420 context->target_auid, context->target_uid,
4746ec5b 1421 context->target_sessionid,
c2a7780e 1422 context->target_sid, context->target_comm))
e54dc243
AG
1423 call_panic = 1;
1424
44707fdf 1425 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1427 if (ab) {
c158a35c 1428 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1429 audit_log_end(ab);
1430 }
1431 }
73241ccc 1432
5195d8e2 1433 i = 0;
79f6530c
JL
1434 list_for_each_entry(n, &context->names_list, list) {
1435 if (n->hidden)
1436 continue;
b24a30a7 1437 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1438 }
c0641f28 1439
3f1c8250
WR
1440 audit_log_proctitle(tsk, context);
1441
c0641f28
EP
1442 /* Send end of event record to help user space know we are finished */
1443 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1444 if (ab)
1445 audit_log_end(ab);
9c7aa6aa
SG
1446 if (call_panic)
1447 audit_panic("error converting sid to string");
1da177e4
LT
1448}
1449
b0dd25a8
RD
1450/**
1451 * audit_free - free a per-task audit context
1452 * @tsk: task whose audit context block to free
1453 *
fa84cb93 1454 * Called from copy_process and do_exit
b0dd25a8 1455 */
a4ff8dba 1456void __audit_free(struct task_struct *tsk)
1da177e4
LT
1457{
1458 struct audit_context *context;
1459
4a3eb726 1460 context = audit_take_context(tsk, 0, 0);
56179a6e 1461 if (!context)
1da177e4
LT
1462 return;
1463
1464 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1465 * function (e.g., exit_group), then free context block.
1466 * We use GFP_ATOMIC here because we might be doing this
f5561964 1467 * in the context of the idle thread */
e495149b 1468 /* that can happen only if we are called from do_exit() */
0590b933 1469 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1470 audit_log_exit(context, tsk);
916d7576
AV
1471 if (!list_empty(&context->killed_trees))
1472 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1473
1474 audit_free_context(context);
1475}
1476
b0dd25a8
RD
1477/**
1478 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1479 * @major: major syscall type (function)
1480 * @a1: additional syscall register 1
1481 * @a2: additional syscall register 2
1482 * @a3: additional syscall register 3
1483 * @a4: additional syscall register 4
1484 *
1485 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1486 * audit context was created when the task was created and the state or
1487 * filters demand the audit context be built. If the state from the
1488 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1489 * then the record will be written at syscall exit time (otherwise, it
1490 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1491 * be written).
1492 */
b4f0d375
RGB
1493void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1494 unsigned long a3, unsigned long a4)
1da177e4 1495{
5411be59 1496 struct task_struct *tsk = current;
1da177e4
LT
1497 struct audit_context *context = tsk->audit_context;
1498 enum audit_state state;
1499
56179a6e 1500 if (!context)
86a1c34a 1501 return;
1da177e4 1502
1da177e4
LT
1503 BUG_ON(context->in_syscall || context->name_count);
1504
1505 if (!audit_enabled)
1506 return;
1507
4a99854c 1508 context->arch = syscall_get_arch();
1da177e4
LT
1509 context->major = major;
1510 context->argv[0] = a1;
1511 context->argv[1] = a2;
1512 context->argv[2] = a3;
1513 context->argv[3] = a4;
1514
1515 state = context->state;
d51374ad 1516 context->dummy = !audit_n_rules;
0590b933
AV
1517 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1518 context->prio = 0;
0f45aa18 1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1520 }
56179a6e 1521 if (state == AUDIT_DISABLED)
1da177e4
LT
1522 return;
1523
ce625a80 1524 context->serial = 0;
1da177e4
LT
1525 context->ctime = CURRENT_TIME;
1526 context->in_syscall = 1;
0590b933 1527 context->current_state = state;
419c58f1 1528 context->ppid = 0;
1da177e4
LT
1529}
1530
b0dd25a8
RD
1531/**
1532 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1533 * @success: success value of the syscall
1534 * @return_code: return value of the syscall
b0dd25a8
RD
1535 *
1536 * Tear down after system call. If the audit context has been marked as
1da177e4 1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1538 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1539 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1540 * free the names stored from getname().
1541 */
d7e7528b 1542void __audit_syscall_exit(int success, long return_code)
1da177e4 1543{
5411be59 1544 struct task_struct *tsk = current;
1da177e4
LT
1545 struct audit_context *context;
1546
d7e7528b
EP
1547 if (success)
1548 success = AUDITSC_SUCCESS;
1549 else
1550 success = AUDITSC_FAILURE;
1da177e4 1551
4a3eb726 1552 context = audit_take_context(tsk, success, return_code);
56179a6e 1553 if (!context)
97e94c45 1554 return;
1da177e4 1555
0590b933 1556 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1557 audit_log_exit(context, tsk);
1da177e4
LT
1558
1559 context->in_syscall = 0;
0590b933 1560 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1561
916d7576
AV
1562 if (!list_empty(&context->killed_trees))
1563 audit_kill_trees(&context->killed_trees);
1564
c62d773a
AV
1565 audit_free_names(context);
1566 unroll_tree_refs(context, NULL, 0);
1567 audit_free_aux(context);
1568 context->aux = NULL;
1569 context->aux_pids = NULL;
1570 context->target_pid = 0;
1571 context->target_sid = 0;
1572 context->sockaddr_len = 0;
1573 context->type = 0;
1574 context->fds[0] = -1;
1575 if (context->state != AUDIT_RECORD_CONTEXT) {
1576 kfree(context->filterkey);
1577 context->filterkey = NULL;
1da177e4 1578 }
c62d773a 1579 tsk->audit_context = context;
1da177e4
LT
1580}
1581
74c3cbe3
AV
1582static inline void handle_one(const struct inode *inode)
1583{
1584#ifdef CONFIG_AUDIT_TREE
1585 struct audit_context *context;
1586 struct audit_tree_refs *p;
1587 struct audit_chunk *chunk;
1588 int count;
e61ce867 1589 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1590 return;
1591 context = current->audit_context;
1592 p = context->trees;
1593 count = context->tree_count;
1594 rcu_read_lock();
1595 chunk = audit_tree_lookup(inode);
1596 rcu_read_unlock();
1597 if (!chunk)
1598 return;
1599 if (likely(put_tree_ref(context, chunk)))
1600 return;
1601 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1602 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1603 audit_set_auditable(context);
1604 audit_put_chunk(chunk);
1605 unroll_tree_refs(context, p, count);
1606 return;
1607 }
1608 put_tree_ref(context, chunk);
1609#endif
1610}
1611
1612static void handle_path(const struct dentry *dentry)
1613{
1614#ifdef CONFIG_AUDIT_TREE
1615 struct audit_context *context;
1616 struct audit_tree_refs *p;
1617 const struct dentry *d, *parent;
1618 struct audit_chunk *drop;
1619 unsigned long seq;
1620 int count;
1621
1622 context = current->audit_context;
1623 p = context->trees;
1624 count = context->tree_count;
1625retry:
1626 drop = NULL;
1627 d = dentry;
1628 rcu_read_lock();
1629 seq = read_seqbegin(&rename_lock);
1630 for(;;) {
3b362157 1631 struct inode *inode = d_backing_inode(d);
e61ce867 1632 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1633 struct audit_chunk *chunk;
1634 chunk = audit_tree_lookup(inode);
1635 if (chunk) {
1636 if (unlikely(!put_tree_ref(context, chunk))) {
1637 drop = chunk;
1638 break;
1639 }
1640 }
1641 }
1642 parent = d->d_parent;
1643 if (parent == d)
1644 break;
1645 d = parent;
1646 }
1647 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1648 rcu_read_unlock();
1649 if (!drop) {
1650 /* just a race with rename */
1651 unroll_tree_refs(context, p, count);
1652 goto retry;
1653 }
1654 audit_put_chunk(drop);
1655 if (grow_tree_refs(context)) {
1656 /* OK, got more space */
1657 unroll_tree_refs(context, p, count);
1658 goto retry;
1659 }
1660 /* too bad */
f952d10f 1661 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1662 unroll_tree_refs(context, p, count);
1663 audit_set_auditable(context);
1664 return;
1665 }
1666 rcu_read_unlock();
1667#endif
1668}
1669
78e2e802
JL
1670static struct audit_names *audit_alloc_name(struct audit_context *context,
1671 unsigned char type)
5195d8e2
EP
1672{
1673 struct audit_names *aname;
1674
1675 if (context->name_count < AUDIT_NAMES) {
1676 aname = &context->preallocated_names[context->name_count];
1677 memset(aname, 0, sizeof(*aname));
1678 } else {
1679 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1680 if (!aname)
1681 return NULL;
1682 aname->should_free = true;
1683 }
1684
84cb777e 1685 aname->ino = AUDIT_INO_UNSET;
78e2e802 1686 aname->type = type;
5195d8e2
EP
1687 list_add_tail(&aname->list, &context->names_list);
1688
1689 context->name_count++;
5195d8e2
EP
1690 return aname;
1691}
1692
7ac86265
JL
1693/**
1694 * audit_reusename - fill out filename with info from existing entry
1695 * @uptr: userland ptr to pathname
1696 *
1697 * Search the audit_names list for the current audit context. If there is an
1698 * existing entry with a matching "uptr" then return the filename
1699 * associated with that audit_name. If not, return NULL.
1700 */
1701struct filename *
1702__audit_reusename(const __user char *uptr)
1703{
1704 struct audit_context *context = current->audit_context;
1705 struct audit_names *n;
1706
1707 list_for_each_entry(n, &context->names_list, list) {
1708 if (!n->name)
1709 continue;
55422d0b
PM
1710 if (n->name->uptr == uptr) {
1711 n->name->refcnt++;
7ac86265 1712 return n->name;
55422d0b 1713 }
7ac86265
JL
1714 }
1715 return NULL;
1716}
1717
b0dd25a8
RD
1718/**
1719 * audit_getname - add a name to the list
1720 * @name: name to add
1721 *
1722 * Add a name to the list of audit names for this context.
1723 * Called from fs/namei.c:getname().
1724 */
91a27b2a 1725void __audit_getname(struct filename *name)
1da177e4
LT
1726{
1727 struct audit_context *context = current->audit_context;
5195d8e2 1728 struct audit_names *n;
1da177e4 1729
55422d0b 1730 if (!context->in_syscall)
1da177e4 1731 return;
91a27b2a 1732
78e2e802 1733 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1734 if (!n)
1735 return;
1736
1737 n->name = name;
1738 n->name_len = AUDIT_NAME_FULL;
adb5c247 1739 name->aname = n;
55422d0b 1740 name->refcnt++;
5195d8e2 1741
f7ad3c6b
MS
1742 if (!context->pwd.dentry)
1743 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1744}
1745
b0dd25a8 1746/**
bfcec708 1747 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1748 * @name: name being audited
481968f4 1749 * @dentry: dentry being audited
79f6530c 1750 * @flags: attributes for this particular entry
b0dd25a8 1751 */
adb5c247 1752void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1753 unsigned int flags)
1da177e4 1754{
1da177e4 1755 struct audit_context *context = current->audit_context;
d6335d77 1756 struct inode *inode = d_backing_inode(dentry);
5195d8e2 1757 struct audit_names *n;
79f6530c 1758 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1759
1760 if (!context->in_syscall)
1761 return;
5195d8e2 1762
9cec9d68
JL
1763 if (!name)
1764 goto out_alloc;
1765
adb5c247
JL
1766 /*
1767 * If we have a pointer to an audit_names entry already, then we can
1768 * just use it directly if the type is correct.
1769 */
1770 n = name->aname;
1771 if (n) {
1772 if (parent) {
1773 if (n->type == AUDIT_TYPE_PARENT ||
1774 n->type == AUDIT_TYPE_UNKNOWN)
1775 goto out;
1776 } else {
1777 if (n->type != AUDIT_TYPE_PARENT)
1778 goto out;
1779 }
1780 }
1781
5195d8e2 1782 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
1783 if (n->ino) {
1784 /* valid inode number, use that for the comparison */
1785 if (n->ino != inode->i_ino ||
1786 n->dev != inode->i_sb->s_dev)
1787 continue;
1788 } else if (n->name) {
1789 /* inode number has not been set, check the name */
1790 if (strcmp(n->name->name, name->name))
1791 continue;
1792 } else
1793 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
1794 continue;
1795
1796 /* match the correct record type */
1797 if (parent) {
1798 if (n->type == AUDIT_TYPE_PARENT ||
1799 n->type == AUDIT_TYPE_UNKNOWN)
1800 goto out;
1801 } else {
1802 if (n->type != AUDIT_TYPE_PARENT)
1803 goto out;
1804 }
1da177e4 1805 }
5195d8e2 1806
9cec9d68 1807out_alloc:
4a928436
PM
1808 /* unable to find an entry with both a matching name and type */
1809 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1810 if (!n)
1811 return;
fcf22d82 1812 if (name) {
fd3522fd 1813 n->name = name;
55422d0b 1814 name->refcnt++;
fcf22d82 1815 }
4a928436 1816
5195d8e2 1817out:
bfcec708 1818 if (parent) {
91a27b2a 1819 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1820 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1821 if (flags & AUDIT_INODE_HIDDEN)
1822 n->hidden = true;
bfcec708
JL
1823 } else {
1824 n->name_len = AUDIT_NAME_FULL;
1825 n->type = AUDIT_TYPE_NORMAL;
1826 }
74c3cbe3 1827 handle_path(dentry);
5195d8e2 1828 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1829}
1830
9f45f5bf
AV
1831void __audit_file(const struct file *file)
1832{
1833 __audit_inode(NULL, file->f_path.dentry, 0);
1834}
1835
73241ccc 1836/**
c43a25ab 1837 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1838 * @parent: inode of dentry parent
c43a25ab 1839 * @dentry: dentry being audited
4fa6b5ec 1840 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1841 *
1842 * For syscalls that create or remove filesystem objects, audit_inode
1843 * can only collect information for the filesystem object's parent.
1844 * This call updates the audit context with the child's information.
1845 * Syscalls that create a new filesystem object must be hooked after
1846 * the object is created. Syscalls that remove a filesystem object
1847 * must be hooked prior, in order to capture the target inode during
1848 * unsuccessful attempts.
1849 */
d6335d77 1850void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
1851 const struct dentry *dentry,
1852 const unsigned char type)
73241ccc 1853{
73241ccc 1854 struct audit_context *context = current->audit_context;
d6335d77 1855 struct inode *inode = d_backing_inode(dentry);
cccc6bba 1856 const char *dname = dentry->d_name.name;
4fa6b5ec 1857 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1858
1859 if (!context->in_syscall)
1860 return;
1861
74c3cbe3
AV
1862 if (inode)
1863 handle_one(inode);
73241ccc 1864
4fa6b5ec 1865 /* look for a parent entry first */
5195d8e2 1866 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
1867 if (!n->name ||
1868 (n->type != AUDIT_TYPE_PARENT &&
1869 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1870 continue;
1871
57c59f58
PM
1872 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1873 !audit_compare_dname_path(dname,
1874 n->name->name, n->name_len)) {
1875 if (n->type == AUDIT_TYPE_UNKNOWN)
1876 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
1877 found_parent = n;
1878 break;
f368c07d 1879 }
5712e88f 1880 }
73241ccc 1881
4fa6b5ec 1882 /* is there a matching child entry? */
5195d8e2 1883 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1884 /* can only match entries that have a name */
57c59f58
PM
1885 if (!n->name ||
1886 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1887 continue;
1888
91a27b2a
JL
1889 if (!strcmp(dname, n->name->name) ||
1890 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1891 found_parent ?
1892 found_parent->name_len :
e3d6b07b 1893 AUDIT_NAME_FULL)) {
57c59f58
PM
1894 if (n->type == AUDIT_TYPE_UNKNOWN)
1895 n->type = type;
4fa6b5ec
JL
1896 found_child = n;
1897 break;
5712e88f 1898 }
ac9910ce 1899 }
5712e88f 1900
5712e88f 1901 if (!found_parent) {
4fa6b5ec
JL
1902 /* create a new, "anonymous" parent record */
1903 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1904 if (!n)
ac9910ce 1905 return;
5195d8e2 1906 audit_copy_inode(n, NULL, parent);
73d3ec5a 1907 }
5712e88f
AG
1908
1909 if (!found_child) {
4fa6b5ec
JL
1910 found_child = audit_alloc_name(context, type);
1911 if (!found_child)
5712e88f 1912 return;
5712e88f
AG
1913
1914 /* Re-use the name belonging to the slot for a matching parent
1915 * directory. All names for this context are relinquished in
1916 * audit_free_names() */
1917 if (found_parent) {
4fa6b5ec
JL
1918 found_child->name = found_parent->name;
1919 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 1920 found_child->name->refcnt++;
5712e88f 1921 }
5712e88f 1922 }
57c59f58 1923
4fa6b5ec
JL
1924 if (inode)
1925 audit_copy_inode(found_child, dentry, inode);
1926 else
84cb777e 1927 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 1928}
50e437d5 1929EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1930
b0dd25a8
RD
1931/**
1932 * auditsc_get_stamp - get local copies of audit_context values
1933 * @ctx: audit_context for the task
1934 * @t: timespec to store time recorded in the audit_context
1935 * @serial: serial value that is recorded in the audit_context
1936 *
1937 * Also sets the context as auditable.
1938 */
48887e63 1939int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1940 struct timespec *t, unsigned int *serial)
1da177e4 1941{
48887e63
AV
1942 if (!ctx->in_syscall)
1943 return 0;
ce625a80
DW
1944 if (!ctx->serial)
1945 ctx->serial = audit_serial();
bfb4496e
DW
1946 t->tv_sec = ctx->ctime.tv_sec;
1947 t->tv_nsec = ctx->ctime.tv_nsec;
1948 *serial = ctx->serial;
0590b933
AV
1949 if (!ctx->prio) {
1950 ctx->prio = 1;
1951 ctx->current_state = AUDIT_RECORD_CONTEXT;
1952 }
48887e63 1953 return 1;
1da177e4
LT
1954}
1955
4746ec5b
EP
1956/* global counter which is incremented every time something logs in */
1957static atomic_t session_id = ATOMIC_INIT(0);
1958
da0a6104
EP
1959static int audit_set_loginuid_perm(kuid_t loginuid)
1960{
da0a6104
EP
1961 /* if we are unset, we don't need privs */
1962 if (!audit_loginuid_set(current))
1963 return 0;
21b85c31
EP
1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1966 return -EPERM;
83fa6bbe
EP
1967 /* it is set, you need permission */
1968 if (!capable(CAP_AUDIT_CONTROL))
1969 return -EPERM;
d040e5af
EP
1970 /* reject if this is not an unset and we don't allow that */
1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1972 return -EPERM;
83fa6bbe 1973 return 0;
da0a6104
EP
1974}
1975
1976static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1977 unsigned int oldsessionid, unsigned int sessionid,
1978 int rc)
1979{
1980 struct audit_buffer *ab;
5ee9a75c 1981 uid_t uid, oldloginuid, loginuid;
db0a6fb5 1982 struct tty_struct *tty;
da0a6104 1983
c2412d91
G
1984 if (!audit_enabled)
1985 return;
1986
76a658c2
RGB
1987 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1988 if (!ab)
1989 return;
1990
da0a6104 1991 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
1992 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1993 loginuid = from_kuid(&init_user_ns, kloginuid),
db0a6fb5 1994 tty = audit_get_tty(current);
da0a6104 1995
ddfad8af
EP
1996 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1997 audit_log_task_context(ab);
db0a6fb5
RGB
1998 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
1999 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2000 oldsessionid, sessionid, !rc);
2001 audit_put_tty(tty);
da0a6104
EP
2002 audit_log_end(ab);
2003}
2004
b0dd25a8 2005/**
0a300be6 2006 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2007 * @loginuid: loginuid value
2008 *
2009 * Returns 0.
2010 *
2011 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2012 */
e1760bd5 2013int audit_set_loginuid(kuid_t loginuid)
1da177e4 2014{
0a300be6 2015 struct task_struct *task = current;
9175c9d2
EP
2016 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2017 kuid_t oldloginuid;
da0a6104 2018 int rc;
41757106 2019
da0a6104
EP
2020 oldloginuid = audit_get_loginuid(current);
2021 oldsessionid = audit_get_sessionid(current);
2022
2023 rc = audit_set_loginuid_perm(loginuid);
2024 if (rc)
2025 goto out;
633b4545 2026
81407c84
EP
2027 /* are we setting or clearing? */
2028 if (uid_valid(loginuid))
4440e854 2029 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2030
4746ec5b 2031 task->sessionid = sessionid;
bfef93a5 2032 task->loginuid = loginuid;
da0a6104
EP
2033out:
2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2035 return rc;
1da177e4
LT
2036}
2037
20ca73bc
GW
2038/**
2039 * __audit_mq_open - record audit data for a POSIX MQ open
2040 * @oflag: open flag
2041 * @mode: mode bits
6b962559 2042 * @attr: queue attributes
20ca73bc 2043 *
20ca73bc 2044 */
df0a4283 2045void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2046{
20ca73bc
GW
2047 struct audit_context *context = current->audit_context;
2048
564f6993
AV
2049 if (attr)
2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2051 else
2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2053
564f6993
AV
2054 context->mq_open.oflag = oflag;
2055 context->mq_open.mode = mode;
20ca73bc 2056
564f6993 2057 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2058}
2059
2060/**
c32c8af4 2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2062 * @mqdes: MQ descriptor
2063 * @msg_len: Message length
2064 * @msg_prio: Message priority
c32c8af4 2065 * @abs_timeout: Message timeout in absolute time
20ca73bc 2066 *
20ca73bc 2067 */
c32c8af4
AV
2068void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2069 const struct timespec *abs_timeout)
20ca73bc 2070{
20ca73bc 2071 struct audit_context *context = current->audit_context;
c32c8af4 2072 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2073
c32c8af4
AV
2074 if (abs_timeout)
2075 memcpy(p, abs_timeout, sizeof(struct timespec));
2076 else
2077 memset(p, 0, sizeof(struct timespec));
20ca73bc 2078
c32c8af4
AV
2079 context->mq_sendrecv.mqdes = mqdes;
2080 context->mq_sendrecv.msg_len = msg_len;
2081 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2082
c32c8af4 2083 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2084}
2085
2086/**
2087 * __audit_mq_notify - record audit data for a POSIX MQ notify
2088 * @mqdes: MQ descriptor
6b962559 2089 * @notification: Notification event
20ca73bc 2090 *
20ca73bc
GW
2091 */
2092
20114f71 2093void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2094{
20ca73bc
GW
2095 struct audit_context *context = current->audit_context;
2096
20114f71
AV
2097 if (notification)
2098 context->mq_notify.sigev_signo = notification->sigev_signo;
2099 else
2100 context->mq_notify.sigev_signo = 0;
20ca73bc 2101
20114f71
AV
2102 context->mq_notify.mqdes = mqdes;
2103 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2104}
2105
2106/**
2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2108 * @mqdes: MQ descriptor
2109 * @mqstat: MQ flags
2110 *
20ca73bc 2111 */
7392906e 2112void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2113{
20ca73bc 2114 struct audit_context *context = current->audit_context;
7392906e
AV
2115 context->mq_getsetattr.mqdes = mqdes;
2116 context->mq_getsetattr.mqstat = *mqstat;
2117 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2118}
2119
b0dd25a8 2120/**
073115d6
SG
2121 * audit_ipc_obj - record audit data for ipc object
2122 * @ipcp: ipc permissions
2123 *
073115d6 2124 */
a33e6751 2125void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2126{
073115d6 2127 struct audit_context *context = current->audit_context;
a33e6751
AV
2128 context->ipc.uid = ipcp->uid;
2129 context->ipc.gid = ipcp->gid;
2130 context->ipc.mode = ipcp->mode;
e816f370 2131 context->ipc.has_perm = 0;
a33e6751
AV
2132 security_ipc_getsecid(ipcp, &context->ipc.osid);
2133 context->type = AUDIT_IPC;
073115d6
SG
2134}
2135
2136/**
2137 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2138 * @qbytes: msgq bytes
2139 * @uid: msgq user id
2140 * @gid: msgq group id
2141 * @mode: msgq mode (permissions)
2142 *
e816f370 2143 * Called only after audit_ipc_obj().
b0dd25a8 2144 */
2570ebbd 2145void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2146{
1da177e4
LT
2147 struct audit_context *context = current->audit_context;
2148
e816f370
AV
2149 context->ipc.qbytes = qbytes;
2150 context->ipc.perm_uid = uid;
2151 context->ipc.perm_gid = gid;
2152 context->ipc.perm_mode = mode;
2153 context->ipc.has_perm = 1;
1da177e4 2154}
c2f0c7c3 2155
d9cfea91 2156void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2157{
473ae30b 2158 struct audit_context *context = current->audit_context;
473ae30b 2159
d9cfea91
RGB
2160 context->type = AUDIT_EXECVE;
2161 context->execve.argc = bprm->argc;
473ae30b
AV
2162}
2163
2164
b0dd25a8
RD
2165/**
2166 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2168 * @args: args array
2169 *
b0dd25a8 2170 */
2950fa9d 2171int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2172{
3ec3b2fb
DW
2173 struct audit_context *context = current->audit_context;
2174
2950fa9d
CG
2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2176 return -EINVAL;
f3298dc4
AV
2177 context->type = AUDIT_SOCKETCALL;
2178 context->socketcall.nargs = nargs;
2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2180 return 0;
3ec3b2fb
DW
2181}
2182
db349509
AV
2183/**
2184 * __audit_fd_pair - record audit data for pipe and socketpair
2185 * @fd1: the first file descriptor
2186 * @fd2: the second file descriptor
2187 *
db349509 2188 */
157cf649 2189void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2190{
2191 struct audit_context *context = current->audit_context;
157cf649
AV
2192 context->fds[0] = fd1;
2193 context->fds[1] = fd2;
db349509
AV
2194}
2195
b0dd25a8
RD
2196/**
2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2198 * @len: data length in user space
2199 * @a: data address in kernel space
2200 *
2201 * Returns 0 for success or NULL context or < 0 on error.
2202 */
07c49417 2203int __audit_sockaddr(int len, void *a)
3ec3b2fb 2204{
3ec3b2fb
DW
2205 struct audit_context *context = current->audit_context;
2206
4f6b434f
AV
2207 if (!context->sockaddr) {
2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2209 if (!p)
2210 return -ENOMEM;
2211 context->sockaddr = p;
2212 }
3ec3b2fb 2213
4f6b434f
AV
2214 context->sockaddr_len = len;
2215 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2216 return 0;
2217}
2218
a5cb013d
AV
2219void __audit_ptrace(struct task_struct *t)
2220{
2221 struct audit_context *context = current->audit_context;
2222
f1dc4867 2223 context->target_pid = task_pid_nr(t);
c2a7780e 2224 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2225 context->target_uid = task_uid(t);
4746ec5b 2226 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2227 security_task_getsecid(t, &context->target_sid);
c2a7780e 2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2229}
2230
b0dd25a8
RD
2231/**
2232 * audit_signal_info - record signal info for shutting down audit subsystem
2233 * @sig: signal value
2234 * @t: task being signaled
2235 *
2236 * If the audit subsystem is being terminated, record the task (pid)
2237 * and uid that is doing that.
2238 */
e54dc243 2239int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2240{
e54dc243
AG
2241 struct audit_aux_data_pids *axp;
2242 struct task_struct *tsk = current;
2243 struct audit_context *ctx = tsk->audit_context;
cca080d9 2244 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2245
175fc484 2246 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
f1dc4867 2248 audit_sig_pid = task_pid_nr(tsk);
e1760bd5 2249 if (uid_valid(tsk->loginuid))
bfef93a5 2250 audit_sig_uid = tsk->loginuid;
175fc484 2251 else
c69e8d9c 2252 audit_sig_uid = uid;
2a862b32 2253 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2254 }
2255 if (!audit_signals || audit_dummy_context())
2256 return 0;
c2f0c7c3 2257 }
e54dc243 2258
e54dc243
AG
2259 /* optimize the common case by putting first signal recipient directly
2260 * in audit_context */
2261 if (!ctx->target_pid) {
f1dc4867 2262 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2263 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2264 ctx->target_uid = t_uid;
4746ec5b 2265 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2266 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2268 return 0;
2269 }
2270
2271 axp = (void *)ctx->aux_pids;
2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2274 if (!axp)
2275 return -ENOMEM;
2276
2277 axp->d.type = AUDIT_OBJ_PID;
2278 axp->d.next = ctx->aux_pids;
2279 ctx->aux_pids = (void *)axp;
2280 }
88ae704c 2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2282
f1dc4867 2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2285 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2289 axp->pid_count++;
2290
2291 return 0;
c2f0c7c3 2292}
0a4ff8c2 2293
3fc689e9
EP
2294/**
2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2296 * @bprm: pointer to the bprm being processed
2297 * @new: the proposed new credentials
2298 * @old: the old credentials
3fc689e9
EP
2299 *
2300 * Simply check if the proc already has the caps given by the file and if not
2301 * store the priv escalation info for later auditing at the end of the syscall
2302 *
3fc689e9
EP
2303 * -Eric
2304 */
d84f4f99
DH
2305int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2306 const struct cred *new, const struct cred *old)
3fc689e9
EP
2307{
2308 struct audit_aux_data_bprm_fcaps *ax;
2309 struct audit_context *context = current->audit_context;
2310 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2311
2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2313 if (!ax)
d84f4f99 2314 return -ENOMEM;
3fc689e9
EP
2315
2316 ax->d.type = AUDIT_BPRM_FCAPS;
2317 ax->d.next = context->aux;
2318 context->aux = (void *)ax;
2319
f4a4a8b1 2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2321
2322 ax->fcap.permitted = vcaps.permitted;
2323 ax->fcap.inheritable = vcaps.inheritable;
2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2326
d84f4f99
DH
2327 ax->old_pcap.permitted = old->cap_permitted;
2328 ax->old_pcap.inheritable = old->cap_inheritable;
2329 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2330
d84f4f99
DH
2331 ax->new_pcap.permitted = new->cap_permitted;
2332 ax->new_pcap.inheritable = new->cap_inheritable;
2333 ax->new_pcap.effective = new->cap_effective;
2334 return 0;
3fc689e9
EP
2335}
2336
e68b75a0
EP
2337/**
2338 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2339 * @new: the new credentials
2340 * @old: the old (current) credentials
e68b75a0 2341 *
da3dae54 2342 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2343 * audit system if applicable
2344 */
ca24a23e 2345void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2346{
e68b75a0 2347 struct audit_context *context = current->audit_context;
ca24a23e 2348 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2349 context->capset.cap.effective = new->cap_effective;
2350 context->capset.cap.inheritable = new->cap_effective;
2351 context->capset.cap.permitted = new->cap_permitted;
2352 context->type = AUDIT_CAPSET;
e68b75a0
EP
2353}
2354
120a795d
AV
2355void __audit_mmap_fd(int fd, int flags)
2356{
2357 struct audit_context *context = current->audit_context;
2358 context->mmap.fd = fd;
2359 context->mmap.flags = flags;
2360 context->type = AUDIT_MMAP;
2361}
2362
7b9205bd 2363static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2364{
cca080d9
EB
2365 kuid_t auid, uid;
2366 kgid_t gid;
85e7bac3 2367 unsigned int sessionid;
9eab339b 2368 char comm[sizeof(current->comm)];
85e7bac3
EP
2369
2370 auid = audit_get_loginuid(current);
2371 sessionid = audit_get_sessionid(current);
2372 current_uid_gid(&uid, &gid);
2373
2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2375 from_kuid(&init_user_ns, auid),
2376 from_kuid(&init_user_ns, uid),
2377 from_kgid(&init_user_ns, gid),
2378 sessionid);
85e7bac3 2379 audit_log_task_context(ab);
f1dc4867 2380 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
9eab339b 2381 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2382 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2383}
2384
0a4ff8c2
SG
2385/**
2386 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2387 * @signr: signal value
0a4ff8c2
SG
2388 *
2389 * If a process ends with a core dump, something fishy is going on and we
2390 * should record the event for investigation.
2391 */
2392void audit_core_dumps(long signr)
2393{
2394 struct audit_buffer *ab;
0a4ff8c2
SG
2395
2396 if (!audit_enabled)
2397 return;
2398
2399 if (signr == SIGQUIT) /* don't care for those */
2400 return;
2401
2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2403 if (unlikely(!ab))
2404 return;
61c0ee87
PD
2405 audit_log_task(ab);
2406 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2407 audit_log_end(ab);
2408}
0a4ff8c2 2409
3dc1c1b2 2410void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2411{
2412 struct audit_buffer *ab;
2413
7b9205bd
KC
2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2415 if (unlikely(!ab))
2416 return;
2417 audit_log_task(ab);
84db564a 2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
efbc0fbf
AL
2419 signr, syscall_get_arch(), syscall,
2420 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
2421 audit_log_end(ab);
2422}
916d7576
AV
2423
2424struct list_head *audit_killed_trees(void)
2425{
2426 struct audit_context *ctx = current->audit_context;
2427 if (likely(!ctx || !ctx->in_syscall))
2428 return NULL;
2429 return &ctx->killed_trees;
2430}