]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/auditsc.c
tools build: Use $(shell ) instead of `` to get embedded libperl's ccopts
[mirror_ubuntu-focal-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
473ae30b 66#include <linux/binfmts.h>
a1f8e7f7 67#include <linux/highmem.h>
f46038ff 68#include <linux/syscalls.h>
84db564a 69#include <asm/syscall.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
3f1c8250 73#include <linux/ctype.h>
fcf22d82 74#include <linux/string.h>
43761473 75#include <linux/uaccess.h>
9dd813c1 76#include <linux/fsnotify_backend.h>
fcf22d82 77#include <uapi/linux/limits.h>
1da177e4 78
fe7752ba 79#include "audit.h"
1da177e4 80
d7e7528b
EP
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
43761473
PM
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
88#define MAX_EXECVE_AUDIT_LEN 7500
89
3f1c8250
WR
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
471a5c7c
AV
93/* number of audit rules */
94int audit_n_rules;
95
e54dc243
AG
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
1da177e4
LT
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
e54dc243
AG
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
e54dc243
AG
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 112 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 113 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 115 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
117 int pid_count;
118};
119
3fc689e9
EP
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
74c3cbe3
AV
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
55669bfa
AV
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
c4bacefb 135 unsigned n;
1a61c88d 136 if (unlikely(!ctx))
137 return 0;
c4bacefb 138 n = ctx->major;
dbda4c0b 139
55669bfa
AV
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
5ef30ee5 176static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 177{
5195d8e2 178 struct audit_names *n;
5ef30ee5 179 umode_t mode = (umode_t)val;
1a61c88d 180
181 if (unlikely(!ctx))
182 return 0;
183
5195d8e2 184 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 185 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 186 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
187 return 1;
188 }
5195d8e2 189
5ef30ee5 190 return 0;
8b67dca9
AV
191}
192
74c3cbe3
AV
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
679173b7
EP
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
74c3cbe3
AV
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
74c3cbe3
AV
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
74c3cbe3
AV
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
74c3cbe3
AV
274}
275
276static void free_tree_refs(struct audit_context *ctx)
277{
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283}
284
285static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286{
74c3cbe3
AV
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
74c3cbe3
AV
303 return 0;
304}
305
ca57ec0f
EB
306static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
b34b0393
EP
310{
311 struct audit_names *n;
b34b0393 312 int rc;
ca57ec0f 313
b34b0393 314 if (name) {
ca57ec0f 315 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
316 if (rc)
317 return rc;
318 }
ca57ec0f 319
b34b0393
EP
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328}
b34b0393 329
ca57ec0f
EB
330static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334{
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352}
353
02d86a56
EP
354static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359{
02d86a56 360 switch (f->val) {
4a6633ed 361 /* process to file object comparisons */
02d86a56 362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 363 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 365 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 367 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 369 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 373 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 375 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 377 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 379 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
10d68360 384 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 386 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 388 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
10d68360 394 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
10d68360 397 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
10d68360
PM
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 411 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 413 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
f368c07d 430/* Determine if any context name data matches a rule's watch data */
1da177e4 431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
1da177e4 438static int audit_filter_rules(struct task_struct *tsk,
93315ed6 439 struct audit_krule *rule,
1da177e4 440 struct audit_context *ctx,
f368c07d 441 struct audit_names *name,
f5629883
TJ
442 enum audit_state *state,
443 bool task_creation)
1da177e4 444{
f5629883 445 const struct cred *cred;
5195d8e2 446 int i, need_sid = 1;
3dc7e315 447 u32 sid;
8fae4770 448 unsigned int sessionid;
3dc7e315 449
f5629883
TJ
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
1da177e4 452 for (i = 0; i < rule->field_count; i++) {
93315ed6 453 struct audit_field *f = &rule->fields[i];
5195d8e2 454 struct audit_names *n;
1da177e4 455 int result = 0;
f1dc4867 456 pid_t pid;
1da177e4 457
93315ed6 458 switch (f->type) {
1da177e4 459 case AUDIT_PID:
fa2bea2f 460 pid = task_tgid_nr(tsk);
f1dc4867 461 result = audit_comparator(pid, f->op, f->val);
1da177e4 462 break;
3c66251e 463 case AUDIT_PPID:
419c58f1
AV
464 if (ctx) {
465 if (!ctx->ppid)
c92cdeb4 466 ctx->ppid = task_ppid_nr(tsk);
3c66251e 467 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 468 }
3c66251e 469 break;
34d99af5
RGB
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
472 if (f->op == Audit_not_equal)
473 result = !result;
34d99af5 474 break;
1da177e4 475 case AUDIT_UID:
ca57ec0f 476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_EUID:
ca57ec0f 479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_SUID:
ca57ec0f 482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_FSUID:
ca57ec0f 485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
486 break;
487 case AUDIT_GID:
ca57ec0f 488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
489 if (f->op == Audit_equal) {
490 if (!result)
af85d177 491 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
492 } else if (f->op == Audit_not_equal) {
493 if (result)
af85d177 494 result = !groups_search(cred->group_info, f->gid);
37eebe39 495 }
1da177e4
LT
496 break;
497 case AUDIT_EGID:
ca57ec0f 498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
499 if (f->op == Audit_equal) {
500 if (!result)
af85d177 501 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
502 } else if (f->op == Audit_not_equal) {
503 if (result)
af85d177 504 result = !groups_search(cred->group_info, f->gid);
37eebe39 505 }
1da177e4
LT
506 break;
507 case AUDIT_SGID:
ca57ec0f 508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_FSGID:
ca57ec0f 511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 512 break;
8fae4770 513 case AUDIT_SESSIONID:
5b713886 514 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
1da177e4 517 case AUDIT_PERS:
93315ed6 518 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 519 break;
2fd6f58b 520 case AUDIT_ARCH:
9f8dbe9c 521 if (ctx)
93315ed6 522 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 523 break;
1da177e4
LT
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
93315ed6 527 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
528 break;
529 case AUDIT_SUCCESS:
b01f2cc1 530 if (ctx && ctx->return_valid) {
93315ed6
AG
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 533 else
93315ed6 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 535 }
1da177e4
LT
536 break;
537 case AUDIT_DEVMAJOR:
16c174bd
EP
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
5195d8e2 543 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
16c174bd
EP
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
5195d8e2 558 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
f368c07d 568 if (name)
db510fc5 569 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 570 else if (ctx) {
5195d8e2
EP
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
efaffd6e
EP
579 case AUDIT_OBJ_UID:
580 if (name) {
ca57ec0f 581 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
54d3218b
EP
591 case AUDIT_OBJ_GID:
592 if (name) {
ca57ec0f 593 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
f368c07d 603 case AUDIT_WATCH:
0223fad3
RGB
604 if (name) {
605 result = audit_watch_compare(rule->watch,
606 name->ino,
607 name->dev);
608 if (f->op == Audit_not_equal)
609 result = !result;
610 }
f368c07d 611 break;
74c3cbe3 612 case AUDIT_DIR:
0223fad3 613 if (ctx) {
74c3cbe3 614 result = match_tree_refs(ctx, rule->tree);
0223fad3
RGB
615 if (f->op == Audit_not_equal)
616 result = !result;
617 }
74c3cbe3 618 break;
1da177e4 619 case AUDIT_LOGINUID:
38f80590
RGB
620 result = audit_uid_comparator(audit_get_loginuid(tsk),
621 f->op, f->uid);
1da177e4 622 break;
780a7654
EB
623 case AUDIT_LOGINUID_SET:
624 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
625 break;
bf361231 626 case AUDIT_SADDR_FAM:
643e2784 627 if (ctx && ctx->sockaddr)
bf361231
RGB
628 result = audit_comparator(ctx->sockaddr->ss_family,
629 f->op, f->val);
630 break;
3a6b9f85
DG
631 case AUDIT_SUBJ_USER:
632 case AUDIT_SUBJ_ROLE:
633 case AUDIT_SUBJ_TYPE:
634 case AUDIT_SUBJ_SEN:
635 case AUDIT_SUBJ_CLR:
3dc7e315
DG
636 /* NOTE: this may return negative values indicating
637 a temporary error. We simply treat this as a
638 match for now to avoid losing information that
639 may be wanted. An error message will also be
640 logged upon error */
04305e4a 641 if (f->lsm_rule) {
2ad312d2 642 if (need_sid) {
2a862b32 643 security_task_getsecid(tsk, &sid);
2ad312d2
SG
644 need_sid = 0;
645 }
d7a96f3a 646 result = security_audit_rule_match(sid, f->type,
90462a5b
RGB
647 f->op,
648 f->lsm_rule);
2ad312d2 649 }
3dc7e315 650 break;
6e5a2d1d
DG
651 case AUDIT_OBJ_USER:
652 case AUDIT_OBJ_ROLE:
653 case AUDIT_OBJ_TYPE:
654 case AUDIT_OBJ_LEV_LOW:
655 case AUDIT_OBJ_LEV_HIGH:
656 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
657 also applies here */
04305e4a 658 if (f->lsm_rule) {
6e5a2d1d
DG
659 /* Find files that match */
660 if (name) {
d7a96f3a 661 result = security_audit_rule_match(
90462a5b
RGB
662 name->osid,
663 f->type,
664 f->op,
665 f->lsm_rule);
6e5a2d1d 666 } else if (ctx) {
5195d8e2 667 list_for_each_entry(n, &ctx->names_list, list) {
90462a5b
RGB
668 if (security_audit_rule_match(
669 n->osid,
670 f->type,
671 f->op,
672 f->lsm_rule)) {
6e5a2d1d
DG
673 ++result;
674 break;
675 }
676 }
677 }
678 /* Find ipc objects that match */
a33e6751
AV
679 if (!ctx || ctx->type != AUDIT_IPC)
680 break;
681 if (security_audit_rule_match(ctx->ipc.osid,
682 f->type, f->op,
90462a5b 683 f->lsm_rule))
a33e6751 684 ++result;
6e5a2d1d
DG
685 }
686 break;
1da177e4
LT
687 case AUDIT_ARG0:
688 case AUDIT_ARG1:
689 case AUDIT_ARG2:
690 case AUDIT_ARG3:
691 if (ctx)
93315ed6 692 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 693 break;
5adc8a6a
AG
694 case AUDIT_FILTERKEY:
695 /* ignore this field for filtering */
696 result = 1;
697 break;
55669bfa
AV
698 case AUDIT_PERM:
699 result = audit_match_perm(ctx, f->val);
0223fad3
RGB
700 if (f->op == Audit_not_equal)
701 result = !result;
55669bfa 702 break;
8b67dca9
AV
703 case AUDIT_FILETYPE:
704 result = audit_match_filetype(ctx, f->val);
0223fad3
RGB
705 if (f->op == Audit_not_equal)
706 result = !result;
8b67dca9 707 break;
02d86a56
EP
708 case AUDIT_FIELD_COMPARE:
709 result = audit_field_compare(tsk, cred, f, ctx, name);
710 break;
1da177e4 711 }
f5629883 712 if (!result)
1da177e4
LT
713 return 0;
714 }
0590b933
AV
715
716 if (ctx) {
717 if (rule->prio <= ctx->prio)
718 return 0;
719 if (rule->filterkey) {
720 kfree(ctx->filterkey);
721 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
722 }
723 ctx->prio = rule->prio;
724 }
1da177e4 725 switch (rule->action) {
66b12abc
PM
726 case AUDIT_NEVER:
727 *state = AUDIT_DISABLED;
728 break;
729 case AUDIT_ALWAYS:
730 *state = AUDIT_RECORD_CONTEXT;
731 break;
1da177e4
LT
732 }
733 return 1;
734}
735
736/* At process creation time, we can determine if system-call auditing is
737 * completely disabled for this task. Since we only have the task
738 * structure at this point, we can only check uid and gid.
739 */
e048e02c 740static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
741{
742 struct audit_entry *e;
743 enum audit_state state;
744
745 rcu_read_lock();
0f45aa18 746 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
747 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
748 &state, true)) {
e048e02c
AV
749 if (state == AUDIT_RECORD_CONTEXT)
750 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
751 rcu_read_unlock();
752 return state;
753 }
754 }
755 rcu_read_unlock();
756 return AUDIT_BUILD_CONTEXT;
757}
758
a3c54931
AL
759static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
760{
761 int word, bit;
762
763 if (val > 0xffffffff)
764 return false;
765
766 word = AUDIT_WORD(val);
767 if (word >= AUDIT_BITMASK_SIZE)
768 return false;
769
770 bit = AUDIT_BIT(val);
771
772 return rule->mask[word] & bit;
773}
774
1da177e4
LT
775/* At syscall entry and exit time, this filter is called if the
776 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 777 * also not high enough that we already know we have to write an audit
b0dd25a8 778 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
779 */
780static enum audit_state audit_filter_syscall(struct task_struct *tsk,
781 struct audit_context *ctx,
782 struct list_head *list)
783{
784 struct audit_entry *e;
c3896495 785 enum audit_state state;
1da177e4 786
5b52330b 787 if (auditd_test_task(tsk))
f7056d64
DW
788 return AUDIT_DISABLED;
789
1da177e4 790 rcu_read_lock();
699c1868
RGB
791 list_for_each_entry_rcu(e, list, list) {
792 if (audit_in_mask(&e->rule, ctx->major) &&
793 audit_filter_rules(tsk, &e->rule, ctx, NULL,
794 &state, false)) {
795 rcu_read_unlock();
796 ctx->current_state = state;
797 return state;
f368c07d
AG
798 }
799 }
800 rcu_read_unlock();
801 return AUDIT_BUILD_CONTEXT;
802}
803
5195d8e2
EP
804/*
805 * Given an audit_name check the inode hash table to see if they match.
806 * Called holding the rcu read lock to protect the use of audit_inode_hash
807 */
808static int audit_filter_inode_name(struct task_struct *tsk,
809 struct audit_names *n,
810 struct audit_context *ctx) {
5195d8e2
EP
811 int h = audit_hash_ino((u32)n->ino);
812 struct list_head *list = &audit_inode_hash[h];
813 struct audit_entry *e;
814 enum audit_state state;
815
5195d8e2 816 list_for_each_entry_rcu(e, list, list) {
a3c54931 817 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
818 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
819 ctx->current_state = state;
820 return 1;
821 }
822 }
5195d8e2
EP
823 return 0;
824}
825
826/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 827 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 828 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
829 * Regarding audit_state, same rules apply as for audit_filter_syscall().
830 */
0590b933 831void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 832{
5195d8e2 833 struct audit_names *n;
f368c07d 834
5b52330b 835 if (auditd_test_task(tsk))
0590b933 836 return;
f368c07d
AG
837
838 rcu_read_lock();
f368c07d 839
5195d8e2
EP
840 list_for_each_entry(n, &ctx->names_list, list) {
841 if (audit_filter_inode_name(tsk, n, ctx))
842 break;
0f45aa18
DW
843 }
844 rcu_read_unlock();
0f45aa18
DW
845}
846
3f1c8250
WR
847static inline void audit_proctitle_free(struct audit_context *context)
848{
849 kfree(context->proctitle.value);
850 context->proctitle.value = NULL;
851 context->proctitle.len = 0;
852}
853
95e0b46f
LR
854static inline void audit_free_module(struct audit_context *context)
855{
856 if (context->type == AUDIT_KERN_MODULE) {
857 kfree(context->module.name);
858 context->module.name = NULL;
859 }
860}
1da177e4
LT
861static inline void audit_free_names(struct audit_context *context)
862{
5195d8e2 863 struct audit_names *n, *next;
1da177e4 864
5195d8e2
EP
865 list_for_each_entry_safe(n, next, &context->names_list, list) {
866 list_del(&n->list);
55422d0b
PM
867 if (n->name)
868 putname(n->name);
5195d8e2
EP
869 if (n->should_free)
870 kfree(n);
8c8570fb 871 }
1da177e4 872 context->name_count = 0;
44707fdf
JB
873 path_put(&context->pwd);
874 context->pwd.dentry = NULL;
875 context->pwd.mnt = NULL;
1da177e4
LT
876}
877
878static inline void audit_free_aux(struct audit_context *context)
879{
880 struct audit_aux_data *aux;
881
882 while ((aux = context->aux)) {
883 context->aux = aux->next;
884 kfree(aux);
885 }
e54dc243
AG
886 while ((aux = context->aux_pids)) {
887 context->aux_pids = aux->next;
888 kfree(aux);
889 }
1da177e4
LT
890}
891
1da177e4
LT
892static inline struct audit_context *audit_alloc_context(enum audit_state state)
893{
894 struct audit_context *context;
895
17c6ee70
RM
896 context = kzalloc(sizeof(*context), GFP_KERNEL);
897 if (!context)
1da177e4 898 return NULL;
e2c5adc8
AM
899 context->state = state;
900 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 901 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 902 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
903 return context;
904}
905
b0dd25a8
RD
906/**
907 * audit_alloc - allocate an audit context block for a task
908 * @tsk: task
909 *
910 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
911 * if necessary. Doing so turns on system call auditing for the
912 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
913 * needed.
914 */
1da177e4
LT
915int audit_alloc(struct task_struct *tsk)
916{
917 struct audit_context *context;
918 enum audit_state state;
e048e02c 919 char *key = NULL;
1da177e4 920
b593d384 921 if (likely(!audit_ever_enabled))
1da177e4
LT
922 return 0; /* Return if not auditing. */
923
e048e02c 924 state = audit_filter_task(tsk, &key);
d48d8051
ON
925 if (state == AUDIT_DISABLED) {
926 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 927 return 0;
d48d8051 928 }
1da177e4
LT
929
930 if (!(context = audit_alloc_context(state))) {
e048e02c 931 kfree(key);
1da177e4
LT
932 audit_log_lost("out of memory in audit_alloc");
933 return -ENOMEM;
934 }
e048e02c 935 context->filterkey = key;
1da177e4 936
c0b0ae8a 937 audit_set_context(tsk, context);
1da177e4
LT
938 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939 return 0;
940}
941
942static inline void audit_free_context(struct audit_context *context)
943{
95e0b46f 944 audit_free_module(context);
c62d773a
AV
945 audit_free_names(context);
946 unroll_tree_refs(context, NULL, 0);
947 free_tree_refs(context);
948 audit_free_aux(context);
949 kfree(context->filterkey);
950 kfree(context->sockaddr);
3f1c8250 951 audit_proctitle_free(context);
c62d773a 952 kfree(context);
1da177e4
LT
953}
954
e54dc243 955static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 956 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 957 u32 sid, char *comm)
e54dc243
AG
958{
959 struct audit_buffer *ab;
2a862b32 960 char *ctx = NULL;
e54dc243
AG
961 u32 len;
962 int rc = 0;
963
964 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
965 if (!ab)
6246ccab 966 return rc;
e54dc243 967
e1760bd5
EB
968 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
969 from_kuid(&init_user_ns, auid),
cca080d9 970 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
971 if (sid) {
972 if (security_secid_to_secctx(sid, &ctx, &len)) {
973 audit_log_format(ab, " obj=(none)");
974 rc = 1;
975 } else {
976 audit_log_format(ab, " obj=%s", ctx);
977 security_release_secctx(ctx, len);
978 }
2a862b32 979 }
c2a7780e
EP
980 audit_log_format(ab, " ocomm=");
981 audit_log_untrustedstring(ab, comm);
e54dc243 982 audit_log_end(ab);
e54dc243
AG
983
984 return rc;
985}
986
43761473
PM
987static void audit_log_execve_info(struct audit_context *context,
988 struct audit_buffer **ab)
bdf4c48a 989{
43761473
PM
990 long len_max;
991 long len_rem;
992 long len_full;
993 long len_buf;
8443075e 994 long len_abuf = 0;
43761473
PM
995 long len_tmp;
996 bool require_data;
997 bool encode;
998 unsigned int iter;
999 unsigned int arg;
1000 char *buf_head;
1001 char *buf;
1002 const char __user *p = (const char __user *)current->mm->arg_start;
1003
1004 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1005 * data we put in the audit record for this argument (see the
1006 * code below) ... at this point in time 96 is plenty */
1007 char abuf[96];
1008
1009 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010 * current value of 7500 is not as important as the fact that it
1011 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1012 * room if we go over a little bit in the logging below */
1013 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014 len_max = MAX_EXECVE_AUDIT_LEN;
1015
1016 /* scratch buffer to hold the userspace args */
1017 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018 if (!buf_head) {
1019 audit_panic("out of memory for argv string");
1020 return;
de6bbd1d 1021 }
43761473 1022 buf = buf_head;
040b3a2d 1023
43761473 1024 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1025
43761473
PM
1026 len_rem = len_max;
1027 len_buf = 0;
1028 len_full = 0;
1029 require_data = true;
1030 encode = false;
1031 iter = 0;
1032 arg = 0;
de6bbd1d 1033 do {
43761473
PM
1034 /* NOTE: we don't ever want to trust this value for anything
1035 * serious, but the audit record format insists we
1036 * provide an argument length for really long arguments,
1037 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038 * to use strncpy_from_user() to obtain this value for
1039 * recording in the log, although we don't use it
1040 * anywhere here to avoid a double-fetch problem */
1041 if (len_full == 0)
1042 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044 /* read more data from userspace */
1045 if (require_data) {
1046 /* can we make more room in the buffer? */
1047 if (buf != buf_head) {
1048 memmove(buf_head, buf, len_buf);
1049 buf = buf_head;
1050 }
1051
1052 /* fetch as much as we can of the argument */
1053 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054 len_max - len_buf);
1055 if (len_tmp == -EFAULT) {
1056 /* unable to copy from userspace */
1057 send_sig(SIGKILL, current, 0);
1058 goto out;
1059 } else if (len_tmp == (len_max - len_buf)) {
1060 /* buffer is not large enough */
1061 require_data = true;
1062 /* NOTE: if we are going to span multiple
1063 * buffers force the encoding so we stand
1064 * a chance at a sane len_full value and
1065 * consistent record encoding */
1066 encode = true;
1067 len_full = len_full * 2;
1068 p += len_tmp;
1069 } else {
1070 require_data = false;
1071 if (!encode)
1072 encode = audit_string_contains_control(
1073 buf, len_tmp);
1074 /* try to use a trusted value for len_full */
1075 if (len_full < len_max)
1076 len_full = (encode ?
1077 len_tmp * 2 : len_tmp);
1078 p += len_tmp + 1;
1079 }
1080 len_buf += len_tmp;
1081 buf_head[len_buf] = '\0';
bdf4c48a 1082
43761473
PM
1083 /* length of the buffer in the audit record? */
1084 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1085 }
de6bbd1d 1086
43761473 1087 /* write as much as we can to the audit log */
ea956d8b 1088 if (len_buf >= 0) {
43761473
PM
1089 /* NOTE: some magic numbers here - basically if we
1090 * can't fit a reasonable amount of data into the
1091 * existing audit buffer, flush it and start with
1092 * a new buffer */
1093 if ((sizeof(abuf) + 8) > len_rem) {
1094 len_rem = len_max;
1095 audit_log_end(*ab);
1096 *ab = audit_log_start(context,
1097 GFP_KERNEL, AUDIT_EXECVE);
1098 if (!*ab)
1099 goto out;
1100 }
bdf4c48a 1101
43761473
PM
1102 /* create the non-arg portion of the arg record */
1103 len_tmp = 0;
1104 if (require_data || (iter > 0) ||
1105 ((len_abuf + sizeof(abuf)) > len_rem)) {
1106 if (iter == 0) {
1107 len_tmp += snprintf(&abuf[len_tmp],
1108 sizeof(abuf) - len_tmp,
1109 " a%d_len=%lu",
1110 arg, len_full);
1111 }
1112 len_tmp += snprintf(&abuf[len_tmp],
1113 sizeof(abuf) - len_tmp,
1114 " a%d[%d]=", arg, iter++);
1115 } else
1116 len_tmp += snprintf(&abuf[len_tmp],
1117 sizeof(abuf) - len_tmp,
1118 " a%d=", arg);
1119 WARN_ON(len_tmp >= sizeof(abuf));
1120 abuf[sizeof(abuf) - 1] = '\0';
1121
1122 /* log the arg in the audit record */
1123 audit_log_format(*ab, "%s", abuf);
1124 len_rem -= len_tmp;
1125 len_tmp = len_buf;
1126 if (encode) {
1127 if (len_abuf > len_rem)
1128 len_tmp = len_rem / 2; /* encoding */
1129 audit_log_n_hex(*ab, buf, len_tmp);
1130 len_rem -= len_tmp * 2;
1131 len_abuf -= len_tmp * 2;
1132 } else {
1133 if (len_abuf > len_rem)
1134 len_tmp = len_rem - 2; /* quotes */
1135 audit_log_n_string(*ab, buf, len_tmp);
1136 len_rem -= len_tmp + 2;
1137 /* don't subtract the "2" because we still need
1138 * to add quotes to the remaining string */
1139 len_abuf -= len_tmp;
1140 }
1141 len_buf -= len_tmp;
1142 buf += len_tmp;
1143 }
bdf4c48a 1144
43761473
PM
1145 /* ready to move to the next argument? */
1146 if ((len_buf == 0) && !require_data) {
1147 arg++;
1148 iter = 0;
1149 len_full = 0;
1150 require_data = true;
1151 encode = false;
1152 }
1153 } while (arg < context->execve.argc);
de6bbd1d 1154
43761473 1155 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1156
43761473
PM
1157out:
1158 kfree(buf_head);
bdf4c48a
PZ
1159}
1160
2efa48fe
Y
1161static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162 kernel_cap_t *cap)
5f3d544f
RGB
1163{
1164 int i;
1165
1166 if (cap_isclear(*cap)) {
1167 audit_log_format(ab, " %s=0", prefix);
1168 return;
1169 }
1170 audit_log_format(ab, " %s=", prefix);
1171 CAP_FOR_EACH_U32(i)
1172 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173}
1174
1175static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176{
1177 if (name->fcap_ver == -1) {
1178 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179 return;
1180 }
1181 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184 name->fcap.fE, name->fcap_ver,
1185 from_kuid(&init_user_ns, name->fcap.rootid));
1186}
1187
38499809
RGB
1188static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1189{
1190 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1191 const struct timespec64 *tk = &context->time.tk_injoffset;
1192 static const char * const ntp_name[] = {
1193 "offset",
1194 "freq",
1195 "status",
1196 "tai",
1197 "tick",
1198 "adjust",
1199 };
1200 int type;
1201
1202 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1203 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1204 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1205 if (!*ab) {
1206 *ab = audit_log_start(context,
1207 GFP_KERNEL,
1208 AUDIT_TIME_ADJNTPVAL);
1209 if (!*ab)
1210 return;
1211 }
1212 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1213 ntp_name[type],
1214 ntp->vals[type].oldval,
1215 ntp->vals[type].newval);
1216 audit_log_end(*ab);
1217 *ab = NULL;
1218 }
1219 }
1220 }
1221 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1222 if (!*ab) {
1223 *ab = audit_log_start(context, GFP_KERNEL,
1224 AUDIT_TIME_INJOFFSET);
1225 if (!*ab)
1226 return;
1227 }
1228 audit_log_format(*ab, "sec=%lli nsec=%li",
1229 (long long)tk->tv_sec, tk->tv_nsec);
1230 audit_log_end(*ab);
1231 *ab = NULL;
1232 }
1233}
1234
a33e6751 1235static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1236{
1237 struct audit_buffer *ab;
1238 int i;
1239
1240 ab = audit_log_start(context, GFP_KERNEL, context->type);
1241 if (!ab)
1242 return;
1243
1244 switch (context->type) {
1245 case AUDIT_SOCKETCALL: {
1246 int nargs = context->socketcall.nargs;
1247 audit_log_format(ab, "nargs=%d", nargs);
1248 for (i = 0; i < nargs; i++)
1249 audit_log_format(ab, " a%d=%lx", i,
1250 context->socketcall.args[i]);
1251 break; }
a33e6751
AV
1252 case AUDIT_IPC: {
1253 u32 osid = context->ipc.osid;
1254
2570ebbd 1255 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1256 from_kuid(&init_user_ns, context->ipc.uid),
1257 from_kgid(&init_user_ns, context->ipc.gid),
1258 context->ipc.mode);
a33e6751
AV
1259 if (osid) {
1260 char *ctx = NULL;
1261 u32 len;
1262 if (security_secid_to_secctx(osid, &ctx, &len)) {
1263 audit_log_format(ab, " osid=%u", osid);
1264 *call_panic = 1;
1265 } else {
1266 audit_log_format(ab, " obj=%s", ctx);
1267 security_release_secctx(ctx, len);
1268 }
1269 }
e816f370
AV
1270 if (context->ipc.has_perm) {
1271 audit_log_end(ab);
1272 ab = audit_log_start(context, GFP_KERNEL,
1273 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1274 if (unlikely(!ab))
1275 return;
e816f370 1276 audit_log_format(ab,
2570ebbd 1277 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1278 context->ipc.qbytes,
1279 context->ipc.perm_uid,
1280 context->ipc.perm_gid,
1281 context->ipc.perm_mode);
e816f370 1282 }
a33e6751 1283 break; }
fe8e52b9 1284 case AUDIT_MQ_OPEN:
564f6993 1285 audit_log_format(ab,
df0a4283 1286 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1287 "mq_msgsize=%ld mq_curmsgs=%ld",
1288 context->mq_open.oflag, context->mq_open.mode,
1289 context->mq_open.attr.mq_flags,
1290 context->mq_open.attr.mq_maxmsg,
1291 context->mq_open.attr.mq_msgsize,
1292 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1293 break;
1294 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1295 audit_log_format(ab,
1296 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1297 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1298 context->mq_sendrecv.mqdes,
1299 context->mq_sendrecv.msg_len,
1300 context->mq_sendrecv.msg_prio,
b9047726 1301 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1302 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1303 break;
1304 case AUDIT_MQ_NOTIFY:
20114f71
AV
1305 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1306 context->mq_notify.mqdes,
1307 context->mq_notify.sigev_signo);
fe8e52b9 1308 break;
7392906e
AV
1309 case AUDIT_MQ_GETSETATTR: {
1310 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1311 audit_log_format(ab,
1312 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1313 "mq_curmsgs=%ld ",
1314 context->mq_getsetattr.mqdes,
1315 attr->mq_flags, attr->mq_maxmsg,
1316 attr->mq_msgsize, attr->mq_curmsgs);
1317 break; }
fe8e52b9 1318 case AUDIT_CAPSET:
57f71a0a
AV
1319 audit_log_format(ab, "pid=%d", context->capset.pid);
1320 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1321 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1322 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1323 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1324 break;
1325 case AUDIT_MMAP:
120a795d
AV
1326 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1327 context->mmap.flags);
fe8e52b9
PM
1328 break;
1329 case AUDIT_EXECVE:
d9cfea91 1330 audit_log_execve_info(context, &ab);
fe8e52b9 1331 break;
ca86cad7
RGB
1332 case AUDIT_KERN_MODULE:
1333 audit_log_format(ab, "name=");
b305f7ed
YW
1334 if (context->module.name) {
1335 audit_log_untrustedstring(ab, context->module.name);
b305f7ed
YW
1336 } else
1337 audit_log_format(ab, "(null)");
1338
ca86cad7 1339 break;
38499809
RGB
1340 case AUDIT_TIME_ADJNTPVAL:
1341 case AUDIT_TIME_INJOFFSET:
1342 /* this call deviates from the rest, eating the buffer */
1343 audit_log_time(context, &ab);
1344 break;
f3298dc4
AV
1345 }
1346 audit_log_end(ab);
1347}
1348
3f1c8250
WR
1349static inline int audit_proctitle_rtrim(char *proctitle, int len)
1350{
1351 char *end = proctitle + len - 1;
1352 while (end > proctitle && !isprint(*end))
1353 end--;
1354
1355 /* catch the case where proctitle is only 1 non-print character */
1356 len = end - proctitle + 1;
1357 len -= isprint(proctitle[len-1]) == 0;
1358 return len;
1359}
1360
5f3d544f
RGB
1361/*
1362 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1363 * @context: audit_context for the task
1364 * @n: audit_names structure with reportable details
1365 * @path: optional path to report instead of audit_names->name
1366 * @record_num: record number to report when handling a list of names
1367 * @call_panic: optional pointer to int that will be updated if secid fails
1368 */
1369static void audit_log_name(struct audit_context *context, struct audit_names *n,
1370 const struct path *path, int record_num, int *call_panic)
1371{
1372 struct audit_buffer *ab;
1373
1374 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1375 if (!ab)
1376 return;
1377
1378 audit_log_format(ab, "item=%d", record_num);
1379
1380 if (path)
1381 audit_log_d_path(ab, " name=", path);
1382 else if (n->name) {
1383 switch (n->name_len) {
1384 case AUDIT_NAME_FULL:
1385 /* log the full path */
1386 audit_log_format(ab, " name=");
1387 audit_log_untrustedstring(ab, n->name->name);
1388 break;
1389 case 0:
1390 /* name was specified as a relative path and the
1391 * directory component is the cwd
1392 */
1393 audit_log_d_path(ab, " name=", &context->pwd);
1394 break;
1395 default:
1396 /* log the name's directory component */
1397 audit_log_format(ab, " name=");
1398 audit_log_n_untrustedstring(ab, n->name->name,
1399 n->name_len);
1400 }
1401 } else
1402 audit_log_format(ab, " name=(null)");
1403
1404 if (n->ino != AUDIT_INO_UNSET)
1405 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1406 n->ino,
1407 MAJOR(n->dev),
1408 MINOR(n->dev),
1409 n->mode,
1410 from_kuid(&init_user_ns, n->uid),
1411 from_kgid(&init_user_ns, n->gid),
1412 MAJOR(n->rdev),
1413 MINOR(n->rdev));
1414 if (n->osid != 0) {
1415 char *ctx = NULL;
1416 u32 len;
1417
1418 if (security_secid_to_secctx(
1419 n->osid, &ctx, &len)) {
1420 audit_log_format(ab, " osid=%u", n->osid);
1421 if (call_panic)
1422 *call_panic = 2;
1423 } else {
1424 audit_log_format(ab, " obj=%s", ctx);
1425 security_release_secctx(ctx, len);
1426 }
1427 }
1428
1429 /* log the audit_names record type */
1430 switch (n->type) {
1431 case AUDIT_TYPE_NORMAL:
1432 audit_log_format(ab, " nametype=NORMAL");
1433 break;
1434 case AUDIT_TYPE_PARENT:
1435 audit_log_format(ab, " nametype=PARENT");
1436 break;
1437 case AUDIT_TYPE_CHILD_DELETE:
1438 audit_log_format(ab, " nametype=DELETE");
1439 break;
1440 case AUDIT_TYPE_CHILD_CREATE:
1441 audit_log_format(ab, " nametype=CREATE");
1442 break;
1443 default:
1444 audit_log_format(ab, " nametype=UNKNOWN");
1445 break;
1446 }
1447
1448 audit_log_fcaps(ab, n);
1449 audit_log_end(ab);
1450}
1451
2a1fe215 1452static void audit_log_proctitle(void)
3f1c8250
WR
1453{
1454 int res;
1455 char *buf;
1456 char *msg = "(null)";
1457 int len = strlen(msg);
2a1fe215 1458 struct audit_context *context = audit_context();
3f1c8250
WR
1459 struct audit_buffer *ab;
1460
2a1fe215
PM
1461 if (!context || context->dummy)
1462 return;
1463
3f1c8250
WR
1464 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1465 if (!ab)
1466 return; /* audit_panic or being filtered */
1467
1468 audit_log_format(ab, "proctitle=");
1469
1470 /* Not cached */
1471 if (!context->proctitle.value) {
1472 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1473 if (!buf)
1474 goto out;
1475 /* Historically called this from procfs naming */
2a1fe215 1476 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
3f1c8250
WR
1477 if (res == 0) {
1478 kfree(buf);
1479 goto out;
1480 }
1481 res = audit_proctitle_rtrim(buf, res);
1482 if (res == 0) {
1483 kfree(buf);
1484 goto out;
1485 }
1486 context->proctitle.value = buf;
1487 context->proctitle.len = res;
1488 }
1489 msg = context->proctitle.value;
1490 len = context->proctitle.len;
1491out:
1492 audit_log_n_untrustedstring(ab, msg, len);
1493 audit_log_end(ab);
1494}
1495
2a1fe215 1496static void audit_log_exit(void)
1da177e4 1497{
9c7aa6aa 1498 int i, call_panic = 0;
2a1fe215 1499 struct audit_context *context = audit_context();
1da177e4 1500 struct audit_buffer *ab;
7551ced3 1501 struct audit_aux_data *aux;
5195d8e2 1502 struct audit_names *n;
1da177e4 1503
2a1fe215 1504 context->personality = current->personality;
e495149b
AV
1505
1506 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1507 if (!ab)
1508 return; /* audit_panic has been called */
bccf6ae0
DW
1509 audit_log_format(ab, "arch=%x syscall=%d",
1510 context->arch, context->major);
1da177e4
LT
1511 if (context->personality != PER_LINUX)
1512 audit_log_format(ab, " per=%lx", context->personality);
1513 if (context->return_valid)
9f8dbe9c 1514 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1515 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1516 context->return_code);
eb84a20e 1517
1da177e4 1518 audit_log_format(ab,
e23eb920
PM
1519 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1520 context->argv[0],
1521 context->argv[1],
1522 context->argv[2],
1523 context->argv[3],
1524 context->name_count);
eb84a20e 1525
2a1fe215 1526 audit_log_task_info(ab);
9d960985 1527 audit_log_key(ab, context->filterkey);
1da177e4 1528 audit_log_end(ab);
1da177e4 1529
7551ced3 1530 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1531
e495149b 1532 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1533 if (!ab)
1534 continue; /* audit_panic has been called */
1535
1da177e4 1536 switch (aux->type) {
20ca73bc 1537
3fc689e9
EP
1538 case AUDIT_BPRM_FCAPS: {
1539 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1540 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1541 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1542 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1543 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1544 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1545 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1546 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1547 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1548 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1549 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1550 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1551 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
2fec30e2
RGB
1552 audit_log_format(ab, " frootid=%d",
1553 from_kuid(&init_user_ns,
1554 axs->fcap.rootid));
3fc689e9
EP
1555 break; }
1556
1da177e4
LT
1557 }
1558 audit_log_end(ab);
1da177e4
LT
1559 }
1560
f3298dc4 1561 if (context->type)
a33e6751 1562 show_special(context, &call_panic);
f3298dc4 1563
157cf649
AV
1564 if (context->fds[0] >= 0) {
1565 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1566 if (ab) {
1567 audit_log_format(ab, "fd0=%d fd1=%d",
1568 context->fds[0], context->fds[1]);
1569 audit_log_end(ab);
1570 }
1571 }
1572
4f6b434f
AV
1573 if (context->sockaddr_len) {
1574 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1575 if (ab) {
1576 audit_log_format(ab, "saddr=");
1577 audit_log_n_hex(ab, (void *)context->sockaddr,
1578 context->sockaddr_len);
1579 audit_log_end(ab);
1580 }
1581 }
1582
e54dc243
AG
1583 for (aux = context->aux_pids; aux; aux = aux->next) {
1584 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1585
1586 for (i = 0; i < axs->pid_count; i++)
1587 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1588 axs->target_auid[i],
1589 axs->target_uid[i],
4746ec5b 1590 axs->target_sessionid[i],
c2a7780e
EP
1591 axs->target_sid[i],
1592 axs->target_comm[i]))
e54dc243 1593 call_panic = 1;
a5cb013d
AV
1594 }
1595
e54dc243
AG
1596 if (context->target_pid &&
1597 audit_log_pid_context(context, context->target_pid,
c2a7780e 1598 context->target_auid, context->target_uid,
4746ec5b 1599 context->target_sessionid,
c2a7780e 1600 context->target_sid, context->target_comm))
e54dc243
AG
1601 call_panic = 1;
1602
44707fdf 1603 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1605 if (ab) {
0b7a0fdb 1606 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1607 audit_log_end(ab);
1608 }
1609 }
73241ccc 1610
5195d8e2 1611 i = 0;
79f6530c
JL
1612 list_for_each_entry(n, &context->names_list, list) {
1613 if (n->hidden)
1614 continue;
b24a30a7 1615 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1616 }
c0641f28 1617
2a1fe215 1618 audit_log_proctitle();
3f1c8250 1619
c0641f28
EP
1620 /* Send end of event record to help user space know we are finished */
1621 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1622 if (ab)
1623 audit_log_end(ab);
9c7aa6aa
SG
1624 if (call_panic)
1625 audit_panic("error converting sid to string");
1da177e4
LT
1626}
1627
b0dd25a8 1628/**
196a5085 1629 * __audit_free - free a per-task audit context
b0dd25a8
RD
1630 * @tsk: task whose audit context block to free
1631 *
fa84cb93 1632 * Called from copy_process and do_exit
b0dd25a8 1633 */
a4ff8dba 1634void __audit_free(struct task_struct *tsk)
1da177e4 1635{
2a1fe215 1636 struct audit_context *context = tsk->audit_context;
1da177e4 1637
56179a6e 1638 if (!context)
1da177e4
LT
1639 return;
1640
9e36a5d4
RGB
1641 if (!list_empty(&context->killed_trees))
1642 audit_kill_trees(context);
1643
2a1fe215
PM
1644 /* We are called either by do_exit() or the fork() error handling code;
1645 * in the former case tsk == current and in the latter tsk is a
1646 * random task_struct that doesn't doesn't have any meaningful data we
1647 * need to log via audit_log_exit().
1648 */
1649 if (tsk == current && !context->dummy && context->in_syscall) {
1650 context->return_valid = 0;
1651 context->return_code = 0;
1652
1653 audit_filter_syscall(tsk, context,
1654 &audit_filter_list[AUDIT_FILTER_EXIT]);
1655 audit_filter_inodes(tsk, context);
1656 if (context->current_state == AUDIT_RECORD_CONTEXT)
1657 audit_log_exit();
1658 }
1659
2a1fe215 1660 audit_set_context(tsk, NULL);
1da177e4
LT
1661 audit_free_context(context);
1662}
1663
b0dd25a8 1664/**
196a5085 1665 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1666 * @major: major syscall type (function)
1667 * @a1: additional syscall register 1
1668 * @a2: additional syscall register 2
1669 * @a3: additional syscall register 3
1670 * @a4: additional syscall register 4
1671 *
1672 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1673 * audit context was created when the task was created and the state or
1674 * filters demand the audit context be built. If the state from the
1675 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1676 * then the record will be written at syscall exit time (otherwise, it
1677 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1678 * be written).
1679 */
b4f0d375
RGB
1680void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1681 unsigned long a3, unsigned long a4)
1da177e4 1682{
cdfb6b34 1683 struct audit_context *context = audit_context();
1da177e4
LT
1684 enum audit_state state;
1685
94d14e3e 1686 if (!audit_enabled || !context)
86a1c34a 1687 return;
1da177e4 1688
1da177e4
LT
1689 BUG_ON(context->in_syscall || context->name_count);
1690
1da177e4 1691 state = context->state;
5260ecc2
RGB
1692 if (state == AUDIT_DISABLED)
1693 return;
1694
d51374ad 1695 context->dummy = !audit_n_rules;
0590b933
AV
1696 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1697 context->prio = 0;
cdfb6b34 1698 if (auditd_test_task(current))
5260ecc2 1699 return;
0590b933 1700 }
1da177e4 1701
16add411 1702 context->arch = syscall_get_arch(current);
5260ecc2
RGB
1703 context->major = major;
1704 context->argv[0] = a1;
1705 context->argv[1] = a2;
1706 context->argv[2] = a3;
1707 context->argv[3] = a4;
ce625a80 1708 context->serial = 0;
1da177e4 1709 context->in_syscall = 1;
0590b933 1710 context->current_state = state;
419c58f1 1711 context->ppid = 0;
290e44b7 1712 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
1713}
1714
b0dd25a8 1715/**
196a5085 1716 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1717 * @success: success value of the syscall
1718 * @return_code: return value of the syscall
b0dd25a8
RD
1719 *
1720 * Tear down after system call. If the audit context has been marked as
1da177e4 1721 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1722 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1723 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1724 * free the names stored from getname().
1725 */
d7e7528b 1726void __audit_syscall_exit(int success, long return_code)
1da177e4
LT
1727{
1728 struct audit_context *context;
1729
2a1fe215 1730 context = audit_context();
56179a6e 1731 if (!context)
97e94c45 1732 return;
1da177e4 1733
9e36a5d4
RGB
1734 if (!list_empty(&context->killed_trees))
1735 audit_kill_trees(context);
1736
2a1fe215
PM
1737 if (!context->dummy && context->in_syscall) {
1738 if (success)
1739 context->return_valid = AUDITSC_SUCCESS;
1740 else
1741 context->return_valid = AUDITSC_FAILURE;
1742
1743 /*
1744 * we need to fix up the return code in the audit logs if the
1745 * actual return codes are later going to be fixed up by the
1746 * arch specific signal handlers
1747 *
1748 * This is actually a test for:
1749 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1750 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1751 *
1752 * but is faster than a bunch of ||
1753 */
1754 if (unlikely(return_code <= -ERESTARTSYS) &&
1755 (return_code >= -ERESTART_RESTARTBLOCK) &&
1756 (return_code != -ENOIOCTLCMD))
1757 context->return_code = -EINTR;
1758 else
1759 context->return_code = return_code;
1760
1761 audit_filter_syscall(current, context,
1762 &audit_filter_list[AUDIT_FILTER_EXIT]);
1763 audit_filter_inodes(current, context);
1764 if (context->current_state == AUDIT_RECORD_CONTEXT)
1765 audit_log_exit();
1766 }
1da177e4
LT
1767
1768 context->in_syscall = 0;
0590b933 1769 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1770
95e0b46f 1771 audit_free_module(context);
c62d773a
AV
1772 audit_free_names(context);
1773 unroll_tree_refs(context, NULL, 0);
1774 audit_free_aux(context);
1775 context->aux = NULL;
1776 context->aux_pids = NULL;
1777 context->target_pid = 0;
1778 context->target_sid = 0;
1779 context->sockaddr_len = 0;
1780 context->type = 0;
1781 context->fds[0] = -1;
1782 if (context->state != AUDIT_RECORD_CONTEXT) {
1783 kfree(context->filterkey);
1784 context->filterkey = NULL;
1da177e4 1785 }
1da177e4
LT
1786}
1787
74c3cbe3
AV
1788static inline void handle_one(const struct inode *inode)
1789{
74c3cbe3
AV
1790 struct audit_context *context;
1791 struct audit_tree_refs *p;
1792 struct audit_chunk *chunk;
1793 int count;
08991e83 1794 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 1795 return;
cdfb6b34 1796 context = audit_context();
74c3cbe3
AV
1797 p = context->trees;
1798 count = context->tree_count;
1799 rcu_read_lock();
1800 chunk = audit_tree_lookup(inode);
1801 rcu_read_unlock();
1802 if (!chunk)
1803 return;
1804 if (likely(put_tree_ref(context, chunk)))
1805 return;
1806 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1807 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1808 audit_set_auditable(context);
1809 audit_put_chunk(chunk);
1810 unroll_tree_refs(context, p, count);
1811 return;
1812 }
1813 put_tree_ref(context, chunk);
74c3cbe3
AV
1814}
1815
1816static void handle_path(const struct dentry *dentry)
1817{
74c3cbe3
AV
1818 struct audit_context *context;
1819 struct audit_tree_refs *p;
1820 const struct dentry *d, *parent;
1821 struct audit_chunk *drop;
1822 unsigned long seq;
1823 int count;
1824
cdfb6b34 1825 context = audit_context();
74c3cbe3
AV
1826 p = context->trees;
1827 count = context->tree_count;
1828retry:
1829 drop = NULL;
1830 d = dentry;
1831 rcu_read_lock();
1832 seq = read_seqbegin(&rename_lock);
1833 for(;;) {
3b362157 1834 struct inode *inode = d_backing_inode(d);
08991e83 1835 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3
AV
1836 struct audit_chunk *chunk;
1837 chunk = audit_tree_lookup(inode);
1838 if (chunk) {
1839 if (unlikely(!put_tree_ref(context, chunk))) {
1840 drop = chunk;
1841 break;
1842 }
1843 }
1844 }
1845 parent = d->d_parent;
1846 if (parent == d)
1847 break;
1848 d = parent;
1849 }
1850 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1851 rcu_read_unlock();
1852 if (!drop) {
1853 /* just a race with rename */
1854 unroll_tree_refs(context, p, count);
1855 goto retry;
1856 }
1857 audit_put_chunk(drop);
1858 if (grow_tree_refs(context)) {
1859 /* OK, got more space */
1860 unroll_tree_refs(context, p, count);
1861 goto retry;
1862 }
1863 /* too bad */
f952d10f 1864 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1865 unroll_tree_refs(context, p, count);
1866 audit_set_auditable(context);
1867 return;
1868 }
1869 rcu_read_unlock();
74c3cbe3
AV
1870}
1871
78e2e802
JL
1872static struct audit_names *audit_alloc_name(struct audit_context *context,
1873 unsigned char type)
5195d8e2
EP
1874{
1875 struct audit_names *aname;
1876
1877 if (context->name_count < AUDIT_NAMES) {
1878 aname = &context->preallocated_names[context->name_count];
1879 memset(aname, 0, sizeof(*aname));
1880 } else {
1881 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1882 if (!aname)
1883 return NULL;
1884 aname->should_free = true;
1885 }
1886
84cb777e 1887 aname->ino = AUDIT_INO_UNSET;
78e2e802 1888 aname->type = type;
5195d8e2
EP
1889 list_add_tail(&aname->list, &context->names_list);
1890
1891 context->name_count++;
5195d8e2
EP
1892 return aname;
1893}
1894
7ac86265 1895/**
196a5085 1896 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
1897 * @uptr: userland ptr to pathname
1898 *
1899 * Search the audit_names list for the current audit context. If there is an
1900 * existing entry with a matching "uptr" then return the filename
1901 * associated with that audit_name. If not, return NULL.
1902 */
1903struct filename *
1904__audit_reusename(const __user char *uptr)
1905{
cdfb6b34 1906 struct audit_context *context = audit_context();
7ac86265
JL
1907 struct audit_names *n;
1908
1909 list_for_each_entry(n, &context->names_list, list) {
1910 if (!n->name)
1911 continue;
55422d0b
PM
1912 if (n->name->uptr == uptr) {
1913 n->name->refcnt++;
7ac86265 1914 return n->name;
55422d0b 1915 }
7ac86265
JL
1916 }
1917 return NULL;
1918}
1919
b0dd25a8 1920/**
196a5085 1921 * __audit_getname - add a name to the list
b0dd25a8
RD
1922 * @name: name to add
1923 *
1924 * Add a name to the list of audit names for this context.
1925 * Called from fs/namei.c:getname().
1926 */
91a27b2a 1927void __audit_getname(struct filename *name)
1da177e4 1928{
cdfb6b34 1929 struct audit_context *context = audit_context();
5195d8e2 1930 struct audit_names *n;
1da177e4 1931
55422d0b 1932 if (!context->in_syscall)
1da177e4 1933 return;
91a27b2a 1934
78e2e802 1935 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1936 if (!n)
1937 return;
1938
1939 n->name = name;
1940 n->name_len = AUDIT_NAME_FULL;
adb5c247 1941 name->aname = n;
55422d0b 1942 name->refcnt++;
5195d8e2 1943
f7ad3c6b
MS
1944 if (!context->pwd.dentry)
1945 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1946}
1947
5f3d544f
RGB
1948static inline int audit_copy_fcaps(struct audit_names *name,
1949 const struct dentry *dentry)
1950{
1951 struct cpu_vfs_cap_data caps;
1952 int rc;
1953
1954 if (!dentry)
1955 return 0;
1956
1957 rc = get_vfs_caps_from_disk(dentry, &caps);
1958 if (rc)
1959 return rc;
1960
1961 name->fcap.permitted = caps.permitted;
1962 name->fcap.inheritable = caps.inheritable;
1963 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1964 name->fcap.rootid = caps.rootid;
1965 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1966 VFS_CAP_REVISION_SHIFT;
1967
1968 return 0;
1969}
1970
1971/* Copy inode data into an audit_names. */
2efa48fe
Y
1972static void audit_copy_inode(struct audit_names *name,
1973 const struct dentry *dentry,
1974 struct inode *inode, unsigned int flags)
5f3d544f
RGB
1975{
1976 name->ino = inode->i_ino;
1977 name->dev = inode->i_sb->s_dev;
1978 name->mode = inode->i_mode;
1979 name->uid = inode->i_uid;
1980 name->gid = inode->i_gid;
1981 name->rdev = inode->i_rdev;
1982 security_inode_getsecid(inode, &name->osid);
1983 if (flags & AUDIT_INODE_NOEVAL) {
1984 name->fcap_ver = -1;
1985 return;
1986 }
1987 audit_copy_fcaps(name, dentry);
1988}
1989
b0dd25a8 1990/**
bfcec708 1991 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1992 * @name: name being audited
481968f4 1993 * @dentry: dentry being audited
79f6530c 1994 * @flags: attributes for this particular entry
b0dd25a8 1995 */
adb5c247 1996void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1997 unsigned int flags)
1da177e4 1998{
cdfb6b34 1999 struct audit_context *context = audit_context();
d6335d77 2000 struct inode *inode = d_backing_inode(dentry);
5195d8e2 2001 struct audit_names *n;
79f6530c 2002 bool parent = flags & AUDIT_INODE_PARENT;
a252f56a
RGB
2003 struct audit_entry *e;
2004 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2005 int i;
1da177e4
LT
2006
2007 if (!context->in_syscall)
2008 return;
5195d8e2 2009
a252f56a 2010 rcu_read_lock();
699c1868
RGB
2011 list_for_each_entry_rcu(e, list, list) {
2012 for (i = 0; i < e->rule.field_count; i++) {
2013 struct audit_field *f = &e->rule.fields[i];
2014
2015 if (f->type == AUDIT_FSTYPE
2016 && audit_comparator(inode->i_sb->s_magic,
2017 f->op, f->val)
2018 && e->rule.action == AUDIT_NEVER) {
2019 rcu_read_unlock();
2020 return;
a252f56a
RGB
2021 }
2022 }
2023 }
2024 rcu_read_unlock();
2025
9cec9d68
JL
2026 if (!name)
2027 goto out_alloc;
2028
adb5c247
JL
2029 /*
2030 * If we have a pointer to an audit_names entry already, then we can
2031 * just use it directly if the type is correct.
2032 */
2033 n = name->aname;
2034 if (n) {
2035 if (parent) {
2036 if (n->type == AUDIT_TYPE_PARENT ||
2037 n->type == AUDIT_TYPE_UNKNOWN)
2038 goto out;
2039 } else {
2040 if (n->type != AUDIT_TYPE_PARENT)
2041 goto out;
2042 }
2043 }
2044
5195d8e2 2045 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
2046 if (n->ino) {
2047 /* valid inode number, use that for the comparison */
2048 if (n->ino != inode->i_ino ||
2049 n->dev != inode->i_sb->s_dev)
2050 continue;
2051 } else if (n->name) {
2052 /* inode number has not been set, check the name */
2053 if (strcmp(n->name->name, name->name))
2054 continue;
2055 } else
2056 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
2057 continue;
2058
2059 /* match the correct record type */
2060 if (parent) {
2061 if (n->type == AUDIT_TYPE_PARENT ||
2062 n->type == AUDIT_TYPE_UNKNOWN)
2063 goto out;
2064 } else {
2065 if (n->type != AUDIT_TYPE_PARENT)
2066 goto out;
2067 }
1da177e4 2068 }
5195d8e2 2069
9cec9d68 2070out_alloc:
4a928436
PM
2071 /* unable to find an entry with both a matching name and type */
2072 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2073 if (!n)
2074 return;
fcf22d82 2075 if (name) {
fd3522fd 2076 n->name = name;
55422d0b 2077 name->refcnt++;
fcf22d82 2078 }
4a928436 2079
5195d8e2 2080out:
bfcec708 2081 if (parent) {
91a27b2a 2082 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 2083 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
2084 if (flags & AUDIT_INODE_HIDDEN)
2085 n->hidden = true;
bfcec708
JL
2086 } else {
2087 n->name_len = AUDIT_NAME_FULL;
2088 n->type = AUDIT_TYPE_NORMAL;
2089 }
74c3cbe3 2090 handle_path(dentry);
57d46577 2091 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
73241ccc
AG
2092}
2093
9f45f5bf
AV
2094void __audit_file(const struct file *file)
2095{
2096 __audit_inode(NULL, file->f_path.dentry, 0);
2097}
2098
73241ccc 2099/**
c43a25ab 2100 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2101 * @parent: inode of dentry parent
c43a25ab 2102 * @dentry: dentry being audited
4fa6b5ec 2103 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
2104 *
2105 * For syscalls that create or remove filesystem objects, audit_inode
2106 * can only collect information for the filesystem object's parent.
2107 * This call updates the audit context with the child's information.
2108 * Syscalls that create a new filesystem object must be hooked after
2109 * the object is created. Syscalls that remove a filesystem object
2110 * must be hooked prior, in order to capture the target inode during
2111 * unsuccessful attempts.
2112 */
d6335d77 2113void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
2114 const struct dentry *dentry,
2115 const unsigned char type)
73241ccc 2116{
cdfb6b34 2117 struct audit_context *context = audit_context();
d6335d77 2118 struct inode *inode = d_backing_inode(dentry);
795d673a 2119 const struct qstr *dname = &dentry->d_name;
4fa6b5ec 2120 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
2121 struct audit_entry *e;
2122 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2123 int i;
73241ccc
AG
2124
2125 if (!context->in_syscall)
2126 return;
2127
42d5e376 2128 rcu_read_lock();
699c1868
RGB
2129 list_for_each_entry_rcu(e, list, list) {
2130 for (i = 0; i < e->rule.field_count; i++) {
2131 struct audit_field *f = &e->rule.fields[i];
2132
2133 if (f->type == AUDIT_FSTYPE
2134 && audit_comparator(parent->i_sb->s_magic,
2135 f->op, f->val)
2136 && e->rule.action == AUDIT_NEVER) {
2137 rcu_read_unlock();
2138 return;
42d5e376
RGB
2139 }
2140 }
2141 }
2142 rcu_read_unlock();
2143
74c3cbe3
AV
2144 if (inode)
2145 handle_one(inode);
73241ccc 2146
4fa6b5ec 2147 /* look for a parent entry first */
5195d8e2 2148 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
2149 if (!n->name ||
2150 (n->type != AUDIT_TYPE_PARENT &&
2151 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2152 continue;
2153
57c59f58
PM
2154 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2155 !audit_compare_dname_path(dname,
2156 n->name->name, n->name_len)) {
2157 if (n->type == AUDIT_TYPE_UNKNOWN)
2158 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
2159 found_parent = n;
2160 break;
f368c07d 2161 }
5712e88f 2162 }
73241ccc 2163
4fa6b5ec 2164 /* is there a matching child entry? */
5195d8e2 2165 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 2166 /* can only match entries that have a name */
57c59f58
PM
2167 if (!n->name ||
2168 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2169 continue;
2170
795d673a 2171 if (!strcmp(dname->name, n->name->name) ||
91a27b2a 2172 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
2173 found_parent ?
2174 found_parent->name_len :
e3d6b07b 2175 AUDIT_NAME_FULL)) {
57c59f58
PM
2176 if (n->type == AUDIT_TYPE_UNKNOWN)
2177 n->type = type;
4fa6b5ec
JL
2178 found_child = n;
2179 break;
5712e88f 2180 }
ac9910ce 2181 }
5712e88f 2182
5712e88f 2183 if (!found_parent) {
4fa6b5ec
JL
2184 /* create a new, "anonymous" parent record */
2185 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2186 if (!n)
ac9910ce 2187 return;
57d46577 2188 audit_copy_inode(n, NULL, parent, 0);
73d3ec5a 2189 }
5712e88f
AG
2190
2191 if (!found_child) {
4fa6b5ec
JL
2192 found_child = audit_alloc_name(context, type);
2193 if (!found_child)
5712e88f 2194 return;
5712e88f
AG
2195
2196 /* Re-use the name belonging to the slot for a matching parent
2197 * directory. All names for this context are relinquished in
2198 * audit_free_names() */
2199 if (found_parent) {
4fa6b5ec
JL
2200 found_child->name = found_parent->name;
2201 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 2202 found_child->name->refcnt++;
5712e88f 2203 }
5712e88f 2204 }
57c59f58 2205
4fa6b5ec 2206 if (inode)
57d46577 2207 audit_copy_inode(found_child, dentry, inode, 0);
4fa6b5ec 2208 else
84cb777e 2209 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 2210}
50e437d5 2211EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2212
b0dd25a8
RD
2213/**
2214 * auditsc_get_stamp - get local copies of audit_context values
2215 * @ctx: audit_context for the task
2115bb25 2216 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
2217 * @serial: serial value that is recorded in the audit_context
2218 *
2219 * Also sets the context as auditable.
2220 */
48887e63 2221int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 2222 struct timespec64 *t, unsigned int *serial)
1da177e4 2223{
48887e63
AV
2224 if (!ctx->in_syscall)
2225 return 0;
ce625a80
DW
2226 if (!ctx->serial)
2227 ctx->serial = audit_serial();
bfb4496e
DW
2228 t->tv_sec = ctx->ctime.tv_sec;
2229 t->tv_nsec = ctx->ctime.tv_nsec;
2230 *serial = ctx->serial;
0590b933
AV
2231 if (!ctx->prio) {
2232 ctx->prio = 1;
2233 ctx->current_state = AUDIT_RECORD_CONTEXT;
2234 }
48887e63 2235 return 1;
1da177e4
LT
2236}
2237
20ca73bc
GW
2238/**
2239 * __audit_mq_open - record audit data for a POSIX MQ open
2240 * @oflag: open flag
2241 * @mode: mode bits
6b962559 2242 * @attr: queue attributes
20ca73bc 2243 *
20ca73bc 2244 */
df0a4283 2245void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2246{
cdfb6b34 2247 struct audit_context *context = audit_context();
20ca73bc 2248
564f6993
AV
2249 if (attr)
2250 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2251 else
2252 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2253
564f6993
AV
2254 context->mq_open.oflag = oflag;
2255 context->mq_open.mode = mode;
20ca73bc 2256
564f6993 2257 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2258}
2259
2260/**
c32c8af4 2261 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2262 * @mqdes: MQ descriptor
2263 * @msg_len: Message length
2264 * @msg_prio: Message priority
c32c8af4 2265 * @abs_timeout: Message timeout in absolute time
20ca73bc 2266 *
20ca73bc 2267 */
c32c8af4 2268void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2269 const struct timespec64 *abs_timeout)
20ca73bc 2270{
cdfb6b34 2271 struct audit_context *context = audit_context();
b9047726 2272 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2273
c32c8af4 2274 if (abs_timeout)
b9047726 2275 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2276 else
b9047726 2277 memset(p, 0, sizeof(*p));
20ca73bc 2278
c32c8af4
AV
2279 context->mq_sendrecv.mqdes = mqdes;
2280 context->mq_sendrecv.msg_len = msg_len;
2281 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2282
c32c8af4 2283 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2284}
2285
2286/**
2287 * __audit_mq_notify - record audit data for a POSIX MQ notify
2288 * @mqdes: MQ descriptor
6b962559 2289 * @notification: Notification event
20ca73bc 2290 *
20ca73bc
GW
2291 */
2292
20114f71 2293void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2294{
cdfb6b34 2295 struct audit_context *context = audit_context();
20ca73bc 2296
20114f71
AV
2297 if (notification)
2298 context->mq_notify.sigev_signo = notification->sigev_signo;
2299 else
2300 context->mq_notify.sigev_signo = 0;
20ca73bc 2301
20114f71
AV
2302 context->mq_notify.mqdes = mqdes;
2303 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2304}
2305
2306/**
2307 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2308 * @mqdes: MQ descriptor
2309 * @mqstat: MQ flags
2310 *
20ca73bc 2311 */
7392906e 2312void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2313{
cdfb6b34 2314 struct audit_context *context = audit_context();
7392906e
AV
2315 context->mq_getsetattr.mqdes = mqdes;
2316 context->mq_getsetattr.mqstat = *mqstat;
2317 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2318}
2319
b0dd25a8 2320/**
196a5085 2321 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2322 * @ipcp: ipc permissions
2323 *
073115d6 2324 */
a33e6751 2325void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2326{
cdfb6b34 2327 struct audit_context *context = audit_context();
a33e6751
AV
2328 context->ipc.uid = ipcp->uid;
2329 context->ipc.gid = ipcp->gid;
2330 context->ipc.mode = ipcp->mode;
e816f370 2331 context->ipc.has_perm = 0;
a33e6751
AV
2332 security_ipc_getsecid(ipcp, &context->ipc.osid);
2333 context->type = AUDIT_IPC;
073115d6
SG
2334}
2335
2336/**
196a5085 2337 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2338 * @qbytes: msgq bytes
2339 * @uid: msgq user id
2340 * @gid: msgq group id
2341 * @mode: msgq mode (permissions)
2342 *
e816f370 2343 * Called only after audit_ipc_obj().
b0dd25a8 2344 */
2570ebbd 2345void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2346{
cdfb6b34 2347 struct audit_context *context = audit_context();
1da177e4 2348
e816f370
AV
2349 context->ipc.qbytes = qbytes;
2350 context->ipc.perm_uid = uid;
2351 context->ipc.perm_gid = gid;
2352 context->ipc.perm_mode = mode;
2353 context->ipc.has_perm = 1;
1da177e4 2354}
c2f0c7c3 2355
d9cfea91 2356void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2357{
cdfb6b34 2358 struct audit_context *context = audit_context();
473ae30b 2359
d9cfea91
RGB
2360 context->type = AUDIT_EXECVE;
2361 context->execve.argc = bprm->argc;
473ae30b
AV
2362}
2363
2364
b0dd25a8 2365/**
196a5085 2366 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2367 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2368 * @args: args array
2369 *
b0dd25a8 2370 */
2950fa9d 2371int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2372{
cdfb6b34 2373 struct audit_context *context = audit_context();
3ec3b2fb 2374
2950fa9d
CG
2375 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2376 return -EINVAL;
f3298dc4
AV
2377 context->type = AUDIT_SOCKETCALL;
2378 context->socketcall.nargs = nargs;
2379 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2380 return 0;
3ec3b2fb
DW
2381}
2382
db349509
AV
2383/**
2384 * __audit_fd_pair - record audit data for pipe and socketpair
2385 * @fd1: the first file descriptor
2386 * @fd2: the second file descriptor
2387 *
db349509 2388 */
157cf649 2389void __audit_fd_pair(int fd1, int fd2)
db349509 2390{
cdfb6b34 2391 struct audit_context *context = audit_context();
157cf649
AV
2392 context->fds[0] = fd1;
2393 context->fds[1] = fd2;
db349509
AV
2394}
2395
b0dd25a8 2396/**
196a5085 2397 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2398 * @len: data length in user space
2399 * @a: data address in kernel space
2400 *
2401 * Returns 0 for success or NULL context or < 0 on error.
2402 */
07c49417 2403int __audit_sockaddr(int len, void *a)
3ec3b2fb 2404{
cdfb6b34 2405 struct audit_context *context = audit_context();
3ec3b2fb 2406
4f6b434f
AV
2407 if (!context->sockaddr) {
2408 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2409 if (!p)
2410 return -ENOMEM;
2411 context->sockaddr = p;
2412 }
3ec3b2fb 2413
4f6b434f
AV
2414 context->sockaddr_len = len;
2415 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2416 return 0;
2417}
2418
a5cb013d
AV
2419void __audit_ptrace(struct task_struct *t)
2420{
cdfb6b34 2421 struct audit_context *context = audit_context();
a5cb013d 2422
fa2bea2f 2423 context->target_pid = task_tgid_nr(t);
c2a7780e 2424 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2425 context->target_uid = task_uid(t);
4746ec5b 2426 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2427 security_task_getsecid(t, &context->target_sid);
c2a7780e 2428 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2429}
2430
b0dd25a8 2431/**
b48345aa 2432 * audit_signal_info_syscall - record signal info for syscalls
b0dd25a8
RD
2433 * @t: task being signaled
2434 *
2435 * If the audit subsystem is being terminated, record the task (pid)
2436 * and uid that is doing that.
2437 */
b48345aa 2438int audit_signal_info_syscall(struct task_struct *t)
c2f0c7c3 2439{
e54dc243 2440 struct audit_aux_data_pids *axp;
cdfb6b34 2441 struct audit_context *ctx = audit_context();
b48345aa 2442 kuid_t t_uid = task_uid(t);
e54dc243 2443
ab6434a1
PM
2444 if (!audit_signals || audit_dummy_context())
2445 return 0;
2446
e54dc243
AG
2447 /* optimize the common case by putting first signal recipient directly
2448 * in audit_context */
2449 if (!ctx->target_pid) {
f1dc4867 2450 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2451 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2452 ctx->target_uid = t_uid;
4746ec5b 2453 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2454 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2455 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2456 return 0;
2457 }
2458
2459 axp = (void *)ctx->aux_pids;
2460 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2461 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2462 if (!axp)
2463 return -ENOMEM;
2464
2465 axp->d.type = AUDIT_OBJ_PID;
2466 axp->d.next = ctx->aux_pids;
2467 ctx->aux_pids = (void *)axp;
2468 }
88ae704c 2469 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2470
f1dc4867 2471 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2472 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2473 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2474 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2475 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2476 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2477 axp->pid_count++;
2478
2479 return 0;
c2f0c7c3 2480}
0a4ff8c2 2481
3fc689e9
EP
2482/**
2483 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2484 * @bprm: pointer to the bprm being processed
2485 * @new: the proposed new credentials
2486 * @old: the old credentials
3fc689e9
EP
2487 *
2488 * Simply check if the proc already has the caps given by the file and if not
2489 * store the priv escalation info for later auditing at the end of the syscall
2490 *
3fc689e9
EP
2491 * -Eric
2492 */
d84f4f99
DH
2493int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2494 const struct cred *new, const struct cred *old)
3fc689e9
EP
2495{
2496 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2497 struct audit_context *context = audit_context();
3fc689e9 2498 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2499
2500 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2501 if (!ax)
d84f4f99 2502 return -ENOMEM;
3fc689e9
EP
2503
2504 ax->d.type = AUDIT_BPRM_FCAPS;
2505 ax->d.next = context->aux;
2506 context->aux = (void *)ax;
2507
f4a4a8b1 2508 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2509
2510 ax->fcap.permitted = vcaps.permitted;
2511 ax->fcap.inheritable = vcaps.inheritable;
2512 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2fec30e2 2513 ax->fcap.rootid = vcaps.rootid;
3fc689e9
EP
2514 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2515
d84f4f99
DH
2516 ax->old_pcap.permitted = old->cap_permitted;
2517 ax->old_pcap.inheritable = old->cap_inheritable;
2518 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2519 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2520
d84f4f99
DH
2521 ax->new_pcap.permitted = new->cap_permitted;
2522 ax->new_pcap.inheritable = new->cap_inheritable;
2523 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2524 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2525 return 0;
3fc689e9
EP
2526}
2527
e68b75a0
EP
2528/**
2529 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2530 * @new: the new credentials
2531 * @old: the old (current) credentials
e68b75a0 2532 *
da3dae54 2533 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2534 * audit system if applicable
2535 */
ca24a23e 2536void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2537{
cdfb6b34 2538 struct audit_context *context = audit_context();
fa2bea2f 2539 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2540 context->capset.cap.effective = new->cap_effective;
2541 context->capset.cap.inheritable = new->cap_effective;
2542 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2543 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2544 context->type = AUDIT_CAPSET;
e68b75a0
EP
2545}
2546
120a795d
AV
2547void __audit_mmap_fd(int fd, int flags)
2548{
cdfb6b34 2549 struct audit_context *context = audit_context();
120a795d
AV
2550 context->mmap.fd = fd;
2551 context->mmap.flags = flags;
2552 context->type = AUDIT_MMAP;
2553}
2554
ca86cad7
RGB
2555void __audit_log_kern_module(char *name)
2556{
cdfb6b34 2557 struct audit_context *context = audit_context();
ca86cad7 2558
b305f7ed
YW
2559 context->module.name = kstrdup(name, GFP_KERNEL);
2560 if (!context->module.name)
2561 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2562 context->type = AUDIT_KERN_MODULE;
2563}
2564
de8cd83e
SG
2565void __audit_fanotify(unsigned int response)
2566{
cdfb6b34 2567 audit_log(audit_context(), GFP_KERNEL,
de8cd83e
SG
2568 AUDIT_FANOTIFY, "resp=%u", response);
2569}
2570
2d87a067
OM
2571void __audit_tk_injoffset(struct timespec64 offset)
2572{
38499809 2573 struct audit_context *context = audit_context();
7e8eda73 2574
38499809
RGB
2575 /* only set type if not already set by NTP */
2576 if (!context->type)
2577 context->type = AUDIT_TIME_INJOFFSET;
2578 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
7e8eda73
OM
2579}
2580
2581void __audit_ntp_log(const struct audit_ntp_data *ad)
2582{
38499809
RGB
2583 struct audit_context *context = audit_context();
2584 int type;
2585
2586 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2587 if (ad->vals[type].newval != ad->vals[type].oldval) {
2588 /* unconditionally set type, overwriting TK */
2589 context->type = AUDIT_TIME_ADJNTPVAL;
2590 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2591 break;
2592 }
7e8eda73
OM
2593}
2594
7b9205bd 2595static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2596{
cca080d9
EB
2597 kuid_t auid, uid;
2598 kgid_t gid;
85e7bac3 2599 unsigned int sessionid;
9eab339b 2600 char comm[sizeof(current->comm)];
85e7bac3
EP
2601
2602 auid = audit_get_loginuid(current);
2603 sessionid = audit_get_sessionid(current);
2604 current_uid_gid(&uid, &gid);
2605
2606 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2607 from_kuid(&init_user_ns, auid),
2608 from_kuid(&init_user_ns, uid),
2609 from_kgid(&init_user_ns, gid),
2610 sessionid);
85e7bac3 2611 audit_log_task_context(ab);
fa2bea2f 2612 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2613 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2614 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2615}
2616
0a4ff8c2
SG
2617/**
2618 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2619 * @signr: signal value
0a4ff8c2
SG
2620 *
2621 * If a process ends with a core dump, something fishy is going on and we
2622 * should record the event for investigation.
2623 */
2624void audit_core_dumps(long signr)
2625{
2626 struct audit_buffer *ab;
0a4ff8c2
SG
2627
2628 if (!audit_enabled)
2629 return;
2630
2631 if (signr == SIGQUIT) /* don't care for those */
2632 return;
2633
d87de4a8 2634 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2635 if (unlikely(!ab))
2636 return;
61c0ee87 2637 audit_log_task(ab);
89670aff 2638 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2639 audit_log_end(ab);
2640}
0a4ff8c2 2641
326bee02
TH
2642/**
2643 * audit_seccomp - record information about a seccomp action
2644 * @syscall: syscall number
2645 * @signr: signal value
2646 * @code: the seccomp action
2647 *
2648 * Record the information associated with a seccomp action. Event filtering for
2649 * seccomp actions that are not to be logged is done in seccomp_log().
2650 * Therefore, this function forces auditing independent of the audit_enabled
2651 * and dummy context state because seccomp actions should be logged even when
2652 * audit is not in use.
2653 */
2654void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2655{
2656 struct audit_buffer *ab;
2657
9b8753ff 2658 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
2659 if (unlikely(!ab))
2660 return;
2661 audit_log_task(ab);
84db564a 2662 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
16add411 2663 signr, syscall_get_arch(current), syscall,
efbc0fbf 2664 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
2665 audit_log_end(ab);
2666}
916d7576 2667
ea6eca77
TH
2668void audit_seccomp_actions_logged(const char *names, const char *old_names,
2669 int res)
2670{
2671 struct audit_buffer *ab;
2672
2673 if (!audit_enabled)
2674 return;
2675
8982a1fb 2676 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
2677 AUDIT_CONFIG_CHANGE);
2678 if (unlikely(!ab))
2679 return;
2680
d0a3f18a
PM
2681 audit_log_format(ab,
2682 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2683 names, old_names, res);
ea6eca77
TH
2684 audit_log_end(ab);
2685}
2686
916d7576
AV
2687struct list_head *audit_killed_trees(void)
2688{
cdfb6b34 2689 struct audit_context *ctx = audit_context();
916d7576
AV
2690 if (likely(!ctx || !ctx->in_syscall))
2691 return NULL;
2692 return &ctx->killed_trees;
2693}