]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/auditsc.c
audit: allow interfield comparison in audit rules
[mirror_ubuntu-artful-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
d7e7528b
EP
73/* flags stating the success for a syscall */
74#define AUDITSC_INVALID 0
75#define AUDITSC_SUCCESS 1
76#define AUDITSC_FAILURE 2
77
1da177e4 78/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81#define AUDIT_NAMES 5
1da177e4 82
9c937dcc
AG
83/* Indicates that audit should log the full pathname. */
84#define AUDIT_NAME_FULL -1
85
de6bbd1d
EP
86/* no execve audit message should be longer than this (userspace limits) */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
471a5c7c
AV
89/* number of audit rules */
90int audit_n_rules;
91
e54dc243
AG
92/* determines whether we collect data for signals sent */
93int audit_signals;
94
851f7ff5
EP
95struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102};
103
1da177e4
LT
104/* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109struct audit_names {
5195d8e2 110 struct list_head list; /* audit_context->names_list */
1da177e4
LT
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
1b50eed9 118 u32 osid;
851f7ff5
EP
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
5195d8e2
EP
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
1da177e4
LT
129};
130
131struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134};
135
136#define AUDIT_AUX_IPCPERM 0
137
e54dc243
AG
138/* Number of target pids per aux struct. */
139#define AUDIT_AUX_PIDS 16
140
473ae30b
AV
141struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
bdf4c48a 145 struct mm_struct *mm;
473ae30b
AV
146};
147
e54dc243
AG
148struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 154 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
156 int pid_count;
157};
158
3fc689e9
EP
159struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165};
166
e68b75a0
EP
167struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171};
172
74c3cbe3
AV
173struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176};
177
1da177e4
LT
178/* The per-task audit context. */
179struct audit_context {
d51374ad 180 int dummy; /* must be the first element */
1da177e4 181 int in_syscall; /* 1 if task is in a syscall */
0590b933 182 enum audit_state state, current_state;
1da177e4 183 unsigned int serial; /* serial number for record */
1da177e4 184 int major; /* syscall number */
44e51a1b 185 struct timespec ctime; /* time of syscall entry */
1da177e4 186 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 187 long return_code;/* syscall return code */
0590b933 188 u64 prio;
44e51a1b 189 int return_valid; /* return code is valid */
5195d8e2
EP
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 201 char * filterkey; /* key for rule that triggered record */
44707fdf 202 struct path pwd;
1da177e4
LT
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
e54dc243 205 struct audit_aux_data *aux_pids;
4f6b434f
AV
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
1da177e4 208 /* Save things to print about task_struct */
f46038ff 209 pid_t pid, ppid;
1da177e4
LT
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
2fd6f58b 213 int arch;
1da177e4 214
a5cb013d 215 pid_t target_pid;
c2a7780e
EP
216 uid_t target_auid;
217 uid_t target_uid;
4746ec5b 218 unsigned int target_sessionid;
a5cb013d 219 u32 target_sid;
c2a7780e 220 char target_comm[TASK_COMM_LEN];
a5cb013d 221
74c3cbe3 222 struct audit_tree_refs *trees, *first_trees;
916d7576 223 struct list_head killed_trees;
44e51a1b 224 int tree_count;
74c3cbe3 225
f3298dc4
AV
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
a33e6751
AV
232 struct {
233 uid_t uid;
234 gid_t gid;
2570ebbd 235 umode_t mode;
a33e6751 236 u32 osid;
e816f370
AV
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
2570ebbd 240 umode_t perm_mode;
e816f370 241 unsigned long qbytes;
a33e6751 242 } ipc;
7392906e
AV
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
20114f71
AV
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
c32c8af4
AV
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
564f6993
AV
257 struct {
258 int oflag;
df0a4283 259 umode_t mode;
564f6993
AV
260 struct mq_attr attr;
261 } mq_open;
57f71a0a
AV
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
120a795d
AV
266 struct {
267 int fd;
268 int flags;
269 } mmap;
f3298dc4 270 };
157cf649 271 int fds[2];
f3298dc4 272
1da177e4
LT
273#if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276#endif
277};
278
55669bfa
AV
279static inline int open_arg(int flags, int mask)
280{
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285}
286
287static int audit_match_perm(struct audit_context *ctx, int mask)
288{
c4bacefb 289 unsigned n;
1a61c88d 290 if (unlikely(!ctx))
291 return 0;
c4bacefb 292 n = ctx->major;
dbda4c0b 293
55669bfa
AV
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328}
329
5ef30ee5 330static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 331{
5195d8e2 332 struct audit_names *n;
5ef30ee5 333 umode_t mode = (umode_t)val;
1a61c88d 334
335 if (unlikely(!ctx))
336 return 0;
337
5195d8e2
EP
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
341 return 1;
342 }
5195d8e2 343
5ef30ee5 344 return 0;
8b67dca9
AV
345}
346
74c3cbe3
AV
347/*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357#ifdef CONFIG_AUDIT_TREE
679173b7
EP
358static void audit_set_auditable(struct audit_context *ctx)
359{
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364}
365
74c3cbe3
AV
366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367{
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385}
386
387static int grow_tree_refs(struct audit_context *ctx)
388{
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401}
402#endif
403
404static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406{
407#ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431#endif
432}
433
434static void free_tree_refs(struct audit_context *ctx)
435{
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441}
442
443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444{
445#ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462#endif
463 return 0;
464}
465
02d86a56
EP
466static int audit_field_compare(struct task_struct *tsk,
467 const struct cred *cred,
468 struct audit_field *f,
469 struct audit_context *ctx,
470 struct audit_names *name)
471{
472 struct audit_names *n;
473
474 switch (f->val) {
475 case AUDIT_COMPARE_UID_TO_OBJ_UID:
476 if (name) {
477 return audit_comparator(cred->uid, f->op, name->uid);
478 } else if (ctx) {
479 list_for_each_entry(n, &ctx->names_list, list) {
480 if (audit_comparator(cred->uid, f->op, n->uid))
481 return 1;
482 }
483 }
484 break;
485 default:
486 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
487 return 0;
488 }
489 return 0;
490}
491
f368c07d 492/* Determine if any context name data matches a rule's watch data */
1da177e4 493/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
494 * otherwise.
495 *
496 * If task_creation is true, this is an explicit indication that we are
497 * filtering a task rule at task creation time. This and tsk == current are
498 * the only situations where tsk->cred may be accessed without an rcu read lock.
499 */
1da177e4 500static int audit_filter_rules(struct task_struct *tsk,
93315ed6 501 struct audit_krule *rule,
1da177e4 502 struct audit_context *ctx,
f368c07d 503 struct audit_names *name,
f5629883
TJ
504 enum audit_state *state,
505 bool task_creation)
1da177e4 506{
f5629883 507 const struct cred *cred;
5195d8e2 508 int i, need_sid = 1;
3dc7e315
DG
509 u32 sid;
510
f5629883
TJ
511 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
512
1da177e4 513 for (i = 0; i < rule->field_count; i++) {
93315ed6 514 struct audit_field *f = &rule->fields[i];
5195d8e2 515 struct audit_names *n;
1da177e4
LT
516 int result = 0;
517
93315ed6 518 switch (f->type) {
1da177e4 519 case AUDIT_PID:
93315ed6 520 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 521 break;
3c66251e 522 case AUDIT_PPID:
419c58f1
AV
523 if (ctx) {
524 if (!ctx->ppid)
525 ctx->ppid = sys_getppid();
3c66251e 526 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 527 }
3c66251e 528 break;
1da177e4 529 case AUDIT_UID:
b6dff3ec 530 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
531 break;
532 case AUDIT_EUID:
b6dff3ec 533 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
534 break;
535 case AUDIT_SUID:
b6dff3ec 536 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
537 break;
538 case AUDIT_FSUID:
b6dff3ec 539 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
540 break;
541 case AUDIT_GID:
b6dff3ec 542 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
543 break;
544 case AUDIT_EGID:
b6dff3ec 545 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
546 break;
547 case AUDIT_SGID:
b6dff3ec 548 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
549 break;
550 case AUDIT_FSGID:
b6dff3ec 551 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
552 break;
553 case AUDIT_PERS:
93315ed6 554 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 555 break;
2fd6f58b 556 case AUDIT_ARCH:
9f8dbe9c 557 if (ctx)
93315ed6 558 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 559 break;
1da177e4
LT
560
561 case AUDIT_EXIT:
562 if (ctx && ctx->return_valid)
93315ed6 563 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
564 break;
565 case AUDIT_SUCCESS:
b01f2cc1 566 if (ctx && ctx->return_valid) {
93315ed6
AG
567 if (f->val)
568 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 569 else
93315ed6 570 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 571 }
1da177e4
LT
572 break;
573 case AUDIT_DEVMAJOR:
16c174bd
EP
574 if (name) {
575 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
576 audit_comparator(MAJOR(name->rdev), f->op, f->val))
577 ++result;
578 } else if (ctx) {
5195d8e2 579 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
580 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
581 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
582 ++result;
583 break;
584 }
585 }
586 }
587 break;
588 case AUDIT_DEVMINOR:
16c174bd
EP
589 if (name) {
590 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
591 audit_comparator(MINOR(name->rdev), f->op, f->val))
592 ++result;
593 } else if (ctx) {
5195d8e2 594 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
595 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
596 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_INODE:
f368c07d 604 if (name)
9c937dcc 605 result = (name->ino == f->val);
f368c07d 606 else if (ctx) {
5195d8e2
EP
607 list_for_each_entry(n, &ctx->names_list, list) {
608 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
609 ++result;
610 break;
611 }
612 }
613 }
614 break;
efaffd6e
EP
615 case AUDIT_OBJ_UID:
616 if (name) {
617 result = audit_comparator(name->uid, f->op, f->val);
618 } else if (ctx) {
619 list_for_each_entry(n, &ctx->names_list, list) {
620 if (audit_comparator(n->uid, f->op, f->val)) {
621 ++result;
622 break;
623 }
624 }
625 }
626 break;
54d3218b
EP
627 case AUDIT_OBJ_GID:
628 if (name) {
629 result = audit_comparator(name->gid, f->op, f->val);
630 } else if (ctx) {
631 list_for_each_entry(n, &ctx->names_list, list) {
632 if (audit_comparator(n->gid, f->op, f->val)) {
633 ++result;
634 break;
635 }
636 }
637 }
638 break;
f368c07d 639 case AUDIT_WATCH:
ae7b8f41
EP
640 if (name)
641 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 642 break;
74c3cbe3
AV
643 case AUDIT_DIR:
644 if (ctx)
645 result = match_tree_refs(ctx, rule->tree);
646 break;
1da177e4
LT
647 case AUDIT_LOGINUID:
648 result = 0;
649 if (ctx)
bfef93a5 650 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 651 break;
3a6b9f85
DG
652 case AUDIT_SUBJ_USER:
653 case AUDIT_SUBJ_ROLE:
654 case AUDIT_SUBJ_TYPE:
655 case AUDIT_SUBJ_SEN:
656 case AUDIT_SUBJ_CLR:
3dc7e315
DG
657 /* NOTE: this may return negative values indicating
658 a temporary error. We simply treat this as a
659 match for now to avoid losing information that
660 may be wanted. An error message will also be
661 logged upon error */
04305e4a 662 if (f->lsm_rule) {
2ad312d2 663 if (need_sid) {
2a862b32 664 security_task_getsecid(tsk, &sid);
2ad312d2
SG
665 need_sid = 0;
666 }
d7a96f3a 667 result = security_audit_rule_match(sid, f->type,
3dc7e315 668 f->op,
04305e4a 669 f->lsm_rule,
3dc7e315 670 ctx);
2ad312d2 671 }
3dc7e315 672 break;
6e5a2d1d
DG
673 case AUDIT_OBJ_USER:
674 case AUDIT_OBJ_ROLE:
675 case AUDIT_OBJ_TYPE:
676 case AUDIT_OBJ_LEV_LOW:
677 case AUDIT_OBJ_LEV_HIGH:
678 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
679 also applies here */
04305e4a 680 if (f->lsm_rule) {
6e5a2d1d
DG
681 /* Find files that match */
682 if (name) {
d7a96f3a 683 result = security_audit_rule_match(
6e5a2d1d 684 name->osid, f->type, f->op,
04305e4a 685 f->lsm_rule, ctx);
6e5a2d1d 686 } else if (ctx) {
5195d8e2
EP
687 list_for_each_entry(n, &ctx->names_list, list) {
688 if (security_audit_rule_match(n->osid, f->type,
689 f->op, f->lsm_rule,
690 ctx)) {
6e5a2d1d
DG
691 ++result;
692 break;
693 }
694 }
695 }
696 /* Find ipc objects that match */
a33e6751
AV
697 if (!ctx || ctx->type != AUDIT_IPC)
698 break;
699 if (security_audit_rule_match(ctx->ipc.osid,
700 f->type, f->op,
701 f->lsm_rule, ctx))
702 ++result;
6e5a2d1d
DG
703 }
704 break;
1da177e4
LT
705 case AUDIT_ARG0:
706 case AUDIT_ARG1:
707 case AUDIT_ARG2:
708 case AUDIT_ARG3:
709 if (ctx)
93315ed6 710 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 711 break;
5adc8a6a
AG
712 case AUDIT_FILTERKEY:
713 /* ignore this field for filtering */
714 result = 1;
715 break;
55669bfa
AV
716 case AUDIT_PERM:
717 result = audit_match_perm(ctx, f->val);
718 break;
8b67dca9
AV
719 case AUDIT_FILETYPE:
720 result = audit_match_filetype(ctx, f->val);
721 break;
02d86a56
EP
722 case AUDIT_FIELD_COMPARE:
723 result = audit_field_compare(tsk, cred, f, ctx, name);
724 break;
1da177e4 725 }
f5629883 726 if (!result)
1da177e4
LT
727 return 0;
728 }
0590b933
AV
729
730 if (ctx) {
731 if (rule->prio <= ctx->prio)
732 return 0;
733 if (rule->filterkey) {
734 kfree(ctx->filterkey);
735 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
736 }
737 ctx->prio = rule->prio;
738 }
1da177e4
LT
739 switch (rule->action) {
740 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
741 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
742 }
743 return 1;
744}
745
746/* At process creation time, we can determine if system-call auditing is
747 * completely disabled for this task. Since we only have the task
748 * structure at this point, we can only check uid and gid.
749 */
e048e02c 750static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
751{
752 struct audit_entry *e;
753 enum audit_state state;
754
755 rcu_read_lock();
0f45aa18 756 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
757 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
758 &state, true)) {
e048e02c
AV
759 if (state == AUDIT_RECORD_CONTEXT)
760 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
761 rcu_read_unlock();
762 return state;
763 }
764 }
765 rcu_read_unlock();
766 return AUDIT_BUILD_CONTEXT;
767}
768
769/* At syscall entry and exit time, this filter is called if the
770 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 771 * also not high enough that we already know we have to write an audit
b0dd25a8 772 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
773 */
774static enum audit_state audit_filter_syscall(struct task_struct *tsk,
775 struct audit_context *ctx,
776 struct list_head *list)
777{
778 struct audit_entry *e;
c3896495 779 enum audit_state state;
1da177e4 780
351bb722 781 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
782 return AUDIT_DISABLED;
783
1da177e4 784 rcu_read_lock();
c3896495 785 if (!list_empty(list)) {
b63862f4
DK
786 int word = AUDIT_WORD(ctx->major);
787 int bit = AUDIT_BIT(ctx->major);
788
789 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
790 if ((e->rule.mask[word] & bit) == bit &&
791 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 792 &state, false)) {
f368c07d 793 rcu_read_unlock();
0590b933 794 ctx->current_state = state;
f368c07d
AG
795 return state;
796 }
797 }
798 }
799 rcu_read_unlock();
800 return AUDIT_BUILD_CONTEXT;
801}
802
5195d8e2
EP
803/*
804 * Given an audit_name check the inode hash table to see if they match.
805 * Called holding the rcu read lock to protect the use of audit_inode_hash
806 */
807static int audit_filter_inode_name(struct task_struct *tsk,
808 struct audit_names *n,
809 struct audit_context *ctx) {
810 int word, bit;
811 int h = audit_hash_ino((u32)n->ino);
812 struct list_head *list = &audit_inode_hash[h];
813 struct audit_entry *e;
814 enum audit_state state;
815
816 word = AUDIT_WORD(ctx->major);
817 bit = AUDIT_BIT(ctx->major);
818
819 if (list_empty(list))
820 return 0;
821
822 list_for_each_entry_rcu(e, list, list) {
823 if ((e->rule.mask[word] & bit) == bit &&
824 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
825 ctx->current_state = state;
826 return 1;
827 }
828 }
829
830 return 0;
831}
832
833/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 834 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 835 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
836 * Regarding audit_state, same rules apply as for audit_filter_syscall().
837 */
0590b933 838void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 839{
5195d8e2 840 struct audit_names *n;
f368c07d
AG
841
842 if (audit_pid && tsk->tgid == audit_pid)
0590b933 843 return;
f368c07d
AG
844
845 rcu_read_lock();
f368c07d 846
5195d8e2
EP
847 list_for_each_entry(n, &ctx->names_list, list) {
848 if (audit_filter_inode_name(tsk, n, ctx))
849 break;
0f45aa18
DW
850 }
851 rcu_read_unlock();
0f45aa18
DW
852}
853
1da177e4
LT
854static inline struct audit_context *audit_get_context(struct task_struct *tsk,
855 int return_valid,
6d208da8 856 long return_code)
1da177e4
LT
857{
858 struct audit_context *context = tsk->audit_context;
859
56179a6e 860 if (!context)
1da177e4
LT
861 return NULL;
862 context->return_valid = return_valid;
f701b75e
EP
863
864 /*
865 * we need to fix up the return code in the audit logs if the actual
866 * return codes are later going to be fixed up by the arch specific
867 * signal handlers
868 *
869 * This is actually a test for:
870 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
871 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
872 *
873 * but is faster than a bunch of ||
874 */
875 if (unlikely(return_code <= -ERESTARTSYS) &&
876 (return_code >= -ERESTART_RESTARTBLOCK) &&
877 (return_code != -ENOIOCTLCMD))
878 context->return_code = -EINTR;
879 else
880 context->return_code = return_code;
1da177e4 881
0590b933
AV
882 if (context->in_syscall && !context->dummy) {
883 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
884 audit_filter_inodes(tsk, context);
1da177e4
LT
885 }
886
1da177e4
LT
887 tsk->audit_context = NULL;
888 return context;
889}
890
891static inline void audit_free_names(struct audit_context *context)
892{
5195d8e2 893 struct audit_names *n, *next;
1da177e4
LT
894
895#if AUDIT_DEBUG == 2
0590b933 896 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 897 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
898 " name_count=%d put_count=%d"
899 " ino_count=%d [NOT freeing]\n",
73241ccc 900 __FILE__, __LINE__,
1da177e4
LT
901 context->serial, context->major, context->in_syscall,
902 context->name_count, context->put_count,
903 context->ino_count);
5195d8e2 904 list_for_each_entry(n, &context->names_list, list) {
1da177e4 905 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 906 n->name, n->name ?: "(null)");
8c8570fb 907 }
1da177e4
LT
908 dump_stack();
909 return;
910 }
911#endif
912#if AUDIT_DEBUG
913 context->put_count = 0;
914 context->ino_count = 0;
915#endif
916
5195d8e2
EP
917 list_for_each_entry_safe(n, next, &context->names_list, list) {
918 list_del(&n->list);
919 if (n->name && n->name_put)
920 __putname(n->name);
921 if (n->should_free)
922 kfree(n);
8c8570fb 923 }
1da177e4 924 context->name_count = 0;
44707fdf
JB
925 path_put(&context->pwd);
926 context->pwd.dentry = NULL;
927 context->pwd.mnt = NULL;
1da177e4
LT
928}
929
930static inline void audit_free_aux(struct audit_context *context)
931{
932 struct audit_aux_data *aux;
933
934 while ((aux = context->aux)) {
935 context->aux = aux->next;
936 kfree(aux);
937 }
e54dc243
AG
938 while ((aux = context->aux_pids)) {
939 context->aux_pids = aux->next;
940 kfree(aux);
941 }
1da177e4
LT
942}
943
944static inline void audit_zero_context(struct audit_context *context,
945 enum audit_state state)
946{
1da177e4
LT
947 memset(context, 0, sizeof(*context));
948 context->state = state;
0590b933 949 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
950}
951
952static inline struct audit_context *audit_alloc_context(enum audit_state state)
953{
954 struct audit_context *context;
955
956 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
957 return NULL;
958 audit_zero_context(context, state);
916d7576 959 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 960 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
961 return context;
962}
963
b0dd25a8
RD
964/**
965 * audit_alloc - allocate an audit context block for a task
966 * @tsk: task
967 *
968 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
969 * if necessary. Doing so turns on system call auditing for the
970 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
971 * needed.
972 */
1da177e4
LT
973int audit_alloc(struct task_struct *tsk)
974{
975 struct audit_context *context;
976 enum audit_state state;
e048e02c 977 char *key = NULL;
1da177e4 978
b593d384 979 if (likely(!audit_ever_enabled))
1da177e4
LT
980 return 0; /* Return if not auditing. */
981
e048e02c 982 state = audit_filter_task(tsk, &key);
56179a6e 983 if (state == AUDIT_DISABLED)
1da177e4
LT
984 return 0;
985
986 if (!(context = audit_alloc_context(state))) {
e048e02c 987 kfree(key);
1da177e4
LT
988 audit_log_lost("out of memory in audit_alloc");
989 return -ENOMEM;
990 }
e048e02c 991 context->filterkey = key;
1da177e4 992
1da177e4
LT
993 tsk->audit_context = context;
994 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
995 return 0;
996}
997
998static inline void audit_free_context(struct audit_context *context)
999{
1000 struct audit_context *previous;
1001 int count = 0;
1002
1003 do {
1004 previous = context->previous;
1005 if (previous || (count && count < 10)) {
1006 ++count;
1007 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1008 " freeing multiple contexts (%d)\n",
1009 context->serial, context->major,
1010 context->name_count, count);
1011 }
1012 audit_free_names(context);
74c3cbe3
AV
1013 unroll_tree_refs(context, NULL, 0);
1014 free_tree_refs(context);
1da177e4 1015 audit_free_aux(context);
5adc8a6a 1016 kfree(context->filterkey);
4f6b434f 1017 kfree(context->sockaddr);
1da177e4
LT
1018 kfree(context);
1019 context = previous;
1020 } while (context);
1021 if (count >= 10)
1022 printk(KERN_ERR "audit: freed %d contexts\n", count);
1023}
1024
161a09e7 1025void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1026{
1027 char *ctx = NULL;
c4823bce
AV
1028 unsigned len;
1029 int error;
1030 u32 sid;
1031
2a862b32 1032 security_task_getsecid(current, &sid);
c4823bce
AV
1033 if (!sid)
1034 return;
8c8570fb 1035
2a862b32 1036 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1037 if (error) {
1038 if (error != -EINVAL)
8c8570fb
DK
1039 goto error_path;
1040 return;
1041 }
1042
8c8570fb 1043 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1044 security_release_secctx(ctx, len);
7306a0b9 1045 return;
8c8570fb
DK
1046
1047error_path:
7306a0b9 1048 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1049 return;
1050}
1051
161a09e7
JL
1052EXPORT_SYMBOL(audit_log_task_context);
1053
e495149b 1054static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1055{
45d9bb0e
AV
1056 char name[sizeof(tsk->comm)];
1057 struct mm_struct *mm = tsk->mm;
219f0817
SS
1058 struct vm_area_struct *vma;
1059
e495149b
AV
1060 /* tsk == current */
1061
45d9bb0e 1062 get_task_comm(name, tsk);
99e45eea
DW
1063 audit_log_format(ab, " comm=");
1064 audit_log_untrustedstring(ab, name);
219f0817 1065
e495149b
AV
1066 if (mm) {
1067 down_read(&mm->mmap_sem);
1068 vma = mm->mmap;
1069 while (vma) {
1070 if ((vma->vm_flags & VM_EXECUTABLE) &&
1071 vma->vm_file) {
1072 audit_log_d_path(ab, "exe=",
44707fdf 1073 &vma->vm_file->f_path);
e495149b
AV
1074 break;
1075 }
1076 vma = vma->vm_next;
219f0817 1077 }
e495149b 1078 up_read(&mm->mmap_sem);
219f0817 1079 }
e495149b 1080 audit_log_task_context(ab);
219f0817
SS
1081}
1082
e54dc243 1083static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
1084 uid_t auid, uid_t uid, unsigned int sessionid,
1085 u32 sid, char *comm)
e54dc243
AG
1086{
1087 struct audit_buffer *ab;
2a862b32 1088 char *ctx = NULL;
e54dc243
AG
1089 u32 len;
1090 int rc = 0;
1091
1092 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1093 if (!ab)
6246ccab 1094 return rc;
e54dc243 1095
4746ec5b
EP
1096 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1097 uid, sessionid);
2a862b32 1098 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1099 audit_log_format(ab, " obj=(none)");
e54dc243 1100 rc = 1;
2a862b32
AD
1101 } else {
1102 audit_log_format(ab, " obj=%s", ctx);
1103 security_release_secctx(ctx, len);
1104 }
c2a7780e
EP
1105 audit_log_format(ab, " ocomm=");
1106 audit_log_untrustedstring(ab, comm);
e54dc243 1107 audit_log_end(ab);
e54dc243
AG
1108
1109 return rc;
1110}
1111
de6bbd1d
EP
1112/*
1113 * to_send and len_sent accounting are very loose estimates. We aren't
1114 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1115 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1116 *
1117 * why snprintf? an int is up to 12 digits long. if we just assumed when
1118 * logging that a[%d]= was going to be 16 characters long we would be wasting
1119 * space in every audit message. In one 7500 byte message we can log up to
1120 * about 1000 min size arguments. That comes down to about 50% waste of space
1121 * if we didn't do the snprintf to find out how long arg_num_len was.
1122 */
1123static int audit_log_single_execve_arg(struct audit_context *context,
1124 struct audit_buffer **ab,
1125 int arg_num,
1126 size_t *len_sent,
1127 const char __user *p,
1128 char *buf)
bdf4c48a 1129{
de6bbd1d
EP
1130 char arg_num_len_buf[12];
1131 const char __user *tmp_p = p;
b87ce6e4
EP
1132 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1133 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1134 size_t len, len_left, to_send;
1135 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1136 unsigned int i, has_cntl = 0, too_long = 0;
1137 int ret;
1138
1139 /* strnlen_user includes the null we don't want to send */
1140 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1141
de6bbd1d
EP
1142 /*
1143 * We just created this mm, if we can't find the strings
1144 * we just copied into it something is _very_ wrong. Similar
1145 * for strings that are too long, we should not have created
1146 * any.
1147 */
b0abcfc1 1148 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1149 WARN_ON(1);
1150 send_sig(SIGKILL, current, 0);
b0abcfc1 1151 return -1;
de6bbd1d 1152 }
040b3a2d 1153
de6bbd1d
EP
1154 /* walk the whole argument looking for non-ascii chars */
1155 do {
1156 if (len_left > MAX_EXECVE_AUDIT_LEN)
1157 to_send = MAX_EXECVE_AUDIT_LEN;
1158 else
1159 to_send = len_left;
1160 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1161 /*
de6bbd1d
EP
1162 * There is no reason for this copy to be short. We just
1163 * copied them here, and the mm hasn't been exposed to user-
1164 * space yet.
bdf4c48a 1165 */
de6bbd1d 1166 if (ret) {
bdf4c48a
PZ
1167 WARN_ON(1);
1168 send_sig(SIGKILL, current, 0);
b0abcfc1 1169 return -1;
bdf4c48a 1170 }
de6bbd1d
EP
1171 buf[to_send] = '\0';
1172 has_cntl = audit_string_contains_control(buf, to_send);
1173 if (has_cntl) {
1174 /*
1175 * hex messages get logged as 2 bytes, so we can only
1176 * send half as much in each message
1177 */
1178 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1179 break;
1180 }
de6bbd1d
EP
1181 len_left -= to_send;
1182 tmp_p += to_send;
1183 } while (len_left > 0);
1184
1185 len_left = len;
1186
1187 if (len > max_execve_audit_len)
1188 too_long = 1;
1189
1190 /* rewalk the argument actually logging the message */
1191 for (i = 0; len_left > 0; i++) {
1192 int room_left;
1193
1194 if (len_left > max_execve_audit_len)
1195 to_send = max_execve_audit_len;
1196 else
1197 to_send = len_left;
1198
1199 /* do we have space left to send this argument in this ab? */
1200 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1201 if (has_cntl)
1202 room_left -= (to_send * 2);
1203 else
1204 room_left -= to_send;
1205 if (room_left < 0) {
1206 *len_sent = 0;
1207 audit_log_end(*ab);
1208 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1209 if (!*ab)
1210 return 0;
1211 }
bdf4c48a 1212
bdf4c48a 1213 /*
de6bbd1d
EP
1214 * first record needs to say how long the original string was
1215 * so we can be sure nothing was lost.
1216 */
1217 if ((i == 0) && (too_long))
ca96a895 1218 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1219 has_cntl ? 2*len : len);
1220
1221 /*
1222 * normally arguments are small enough to fit and we already
1223 * filled buf above when we checked for control characters
1224 * so don't bother with another copy_from_user
bdf4c48a 1225 */
de6bbd1d
EP
1226 if (len >= max_execve_audit_len)
1227 ret = copy_from_user(buf, p, to_send);
1228 else
1229 ret = 0;
040b3a2d 1230 if (ret) {
bdf4c48a
PZ
1231 WARN_ON(1);
1232 send_sig(SIGKILL, current, 0);
b0abcfc1 1233 return -1;
bdf4c48a 1234 }
de6bbd1d
EP
1235 buf[to_send] = '\0';
1236
1237 /* actually log it */
ca96a895 1238 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1239 if (too_long)
1240 audit_log_format(*ab, "[%d]", i);
1241 audit_log_format(*ab, "=");
1242 if (has_cntl)
b556f8ad 1243 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1244 else
9d960985 1245 audit_log_string(*ab, buf);
de6bbd1d
EP
1246
1247 p += to_send;
1248 len_left -= to_send;
1249 *len_sent += arg_num_len;
1250 if (has_cntl)
1251 *len_sent += to_send * 2;
1252 else
1253 *len_sent += to_send;
1254 }
1255 /* include the null we didn't log */
1256 return len + 1;
1257}
1258
1259static void audit_log_execve_info(struct audit_context *context,
1260 struct audit_buffer **ab,
1261 struct audit_aux_data_execve *axi)
1262{
1263 int i;
1264 size_t len, len_sent = 0;
1265 const char __user *p;
1266 char *buf;
bdf4c48a 1267
de6bbd1d
EP
1268 if (axi->mm != current->mm)
1269 return; /* execve failed, no additional info */
1270
1271 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1272
ca96a895 1273 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1274
1275 /*
1276 * we need some kernel buffer to hold the userspace args. Just
1277 * allocate one big one rather than allocating one of the right size
1278 * for every single argument inside audit_log_single_execve_arg()
1279 * should be <8k allocation so should be pretty safe.
1280 */
1281 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1282 if (!buf) {
1283 audit_panic("out of memory for argv string\n");
1284 return;
bdf4c48a 1285 }
de6bbd1d
EP
1286
1287 for (i = 0; i < axi->argc; i++) {
1288 len = audit_log_single_execve_arg(context, ab, i,
1289 &len_sent, p, buf);
1290 if (len <= 0)
1291 break;
1292 p += len;
1293 }
1294 kfree(buf);
bdf4c48a
PZ
1295}
1296
851f7ff5
EP
1297static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1298{
1299 int i;
1300
1301 audit_log_format(ab, " %s=", prefix);
1302 CAP_FOR_EACH_U32(i) {
1303 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1304 }
1305}
1306
1307static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1308{
1309 kernel_cap_t *perm = &name->fcap.permitted;
1310 kernel_cap_t *inh = &name->fcap.inheritable;
1311 int log = 0;
1312
1313 if (!cap_isclear(*perm)) {
1314 audit_log_cap(ab, "cap_fp", perm);
1315 log = 1;
1316 }
1317 if (!cap_isclear(*inh)) {
1318 audit_log_cap(ab, "cap_fi", inh);
1319 log = 1;
1320 }
1321
1322 if (log)
1323 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1324}
1325
a33e6751 1326static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1327{
1328 struct audit_buffer *ab;
1329 int i;
1330
1331 ab = audit_log_start(context, GFP_KERNEL, context->type);
1332 if (!ab)
1333 return;
1334
1335 switch (context->type) {
1336 case AUDIT_SOCKETCALL: {
1337 int nargs = context->socketcall.nargs;
1338 audit_log_format(ab, "nargs=%d", nargs);
1339 for (i = 0; i < nargs; i++)
1340 audit_log_format(ab, " a%d=%lx", i,
1341 context->socketcall.args[i]);
1342 break; }
a33e6751
AV
1343 case AUDIT_IPC: {
1344 u32 osid = context->ipc.osid;
1345
2570ebbd 1346 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1347 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1348 if (osid) {
1349 char *ctx = NULL;
1350 u32 len;
1351 if (security_secid_to_secctx(osid, &ctx, &len)) {
1352 audit_log_format(ab, " osid=%u", osid);
1353 *call_panic = 1;
1354 } else {
1355 audit_log_format(ab, " obj=%s", ctx);
1356 security_release_secctx(ctx, len);
1357 }
1358 }
e816f370
AV
1359 if (context->ipc.has_perm) {
1360 audit_log_end(ab);
1361 ab = audit_log_start(context, GFP_KERNEL,
1362 AUDIT_IPC_SET_PERM);
1363 audit_log_format(ab,
2570ebbd 1364 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1365 context->ipc.qbytes,
1366 context->ipc.perm_uid,
1367 context->ipc.perm_gid,
1368 context->ipc.perm_mode);
1369 if (!ab)
1370 return;
1371 }
a33e6751 1372 break; }
564f6993
AV
1373 case AUDIT_MQ_OPEN: {
1374 audit_log_format(ab,
df0a4283 1375 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1376 "mq_msgsize=%ld mq_curmsgs=%ld",
1377 context->mq_open.oflag, context->mq_open.mode,
1378 context->mq_open.attr.mq_flags,
1379 context->mq_open.attr.mq_maxmsg,
1380 context->mq_open.attr.mq_msgsize,
1381 context->mq_open.attr.mq_curmsgs);
1382 break; }
c32c8af4
AV
1383 case AUDIT_MQ_SENDRECV: {
1384 audit_log_format(ab,
1385 "mqdes=%d msg_len=%zd msg_prio=%u "
1386 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1387 context->mq_sendrecv.mqdes,
1388 context->mq_sendrecv.msg_len,
1389 context->mq_sendrecv.msg_prio,
1390 context->mq_sendrecv.abs_timeout.tv_sec,
1391 context->mq_sendrecv.abs_timeout.tv_nsec);
1392 break; }
20114f71
AV
1393 case AUDIT_MQ_NOTIFY: {
1394 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1395 context->mq_notify.mqdes,
1396 context->mq_notify.sigev_signo);
1397 break; }
7392906e
AV
1398 case AUDIT_MQ_GETSETATTR: {
1399 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1400 audit_log_format(ab,
1401 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1402 "mq_curmsgs=%ld ",
1403 context->mq_getsetattr.mqdes,
1404 attr->mq_flags, attr->mq_maxmsg,
1405 attr->mq_msgsize, attr->mq_curmsgs);
1406 break; }
57f71a0a
AV
1407 case AUDIT_CAPSET: {
1408 audit_log_format(ab, "pid=%d", context->capset.pid);
1409 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1410 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1411 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1412 break; }
120a795d
AV
1413 case AUDIT_MMAP: {
1414 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1415 context->mmap.flags);
1416 break; }
f3298dc4
AV
1417 }
1418 audit_log_end(ab);
1419}
1420
5195d8e2
EP
1421static void audit_log_name(struct audit_context *context, struct audit_names *n,
1422 int record_num, int *call_panic)
1423{
1424 struct audit_buffer *ab;
1425 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1426 if (!ab)
1427 return; /* audit_panic has been called */
1428
1429 audit_log_format(ab, "item=%d", record_num);
1430
1431 if (n->name) {
1432 switch (n->name_len) {
1433 case AUDIT_NAME_FULL:
1434 /* log the full path */
1435 audit_log_format(ab, " name=");
1436 audit_log_untrustedstring(ab, n->name);
1437 break;
1438 case 0:
1439 /* name was specified as a relative path and the
1440 * directory component is the cwd */
1441 audit_log_d_path(ab, "name=", &context->pwd);
1442 break;
1443 default:
1444 /* log the name's directory component */
1445 audit_log_format(ab, " name=");
1446 audit_log_n_untrustedstring(ab, n->name,
1447 n->name_len);
1448 }
1449 } else
1450 audit_log_format(ab, " name=(null)");
1451
1452 if (n->ino != (unsigned long)-1) {
1453 audit_log_format(ab, " inode=%lu"
1454 " dev=%02x:%02x mode=%#ho"
1455 " ouid=%u ogid=%u rdev=%02x:%02x",
1456 n->ino,
1457 MAJOR(n->dev),
1458 MINOR(n->dev),
1459 n->mode,
1460 n->uid,
1461 n->gid,
1462 MAJOR(n->rdev),
1463 MINOR(n->rdev));
1464 }
1465 if (n->osid != 0) {
1466 char *ctx = NULL;
1467 u32 len;
1468 if (security_secid_to_secctx(
1469 n->osid, &ctx, &len)) {
1470 audit_log_format(ab, " osid=%u", n->osid);
1471 *call_panic = 2;
1472 } else {
1473 audit_log_format(ab, " obj=%s", ctx);
1474 security_release_secctx(ctx, len);
1475 }
1476 }
1477
1478 audit_log_fcaps(ab, n);
1479
1480 audit_log_end(ab);
1481}
1482
e495149b 1483static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1484{
c69e8d9c 1485 const struct cred *cred;
9c7aa6aa 1486 int i, call_panic = 0;
1da177e4 1487 struct audit_buffer *ab;
7551ced3 1488 struct audit_aux_data *aux;
a6c043a8 1489 const char *tty;
5195d8e2 1490 struct audit_names *n;
1da177e4 1491
e495149b 1492 /* tsk == current */
3f2792ff 1493 context->pid = tsk->pid;
419c58f1
AV
1494 if (!context->ppid)
1495 context->ppid = sys_getppid();
c69e8d9c
DH
1496 cred = current_cred();
1497 context->uid = cred->uid;
1498 context->gid = cred->gid;
1499 context->euid = cred->euid;
1500 context->suid = cred->suid;
b6dff3ec 1501 context->fsuid = cred->fsuid;
c69e8d9c
DH
1502 context->egid = cred->egid;
1503 context->sgid = cred->sgid;
b6dff3ec 1504 context->fsgid = cred->fsgid;
3f2792ff 1505 context->personality = tsk->personality;
e495149b
AV
1506
1507 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1508 if (!ab)
1509 return; /* audit_panic has been called */
bccf6ae0
DW
1510 audit_log_format(ab, "arch=%x syscall=%d",
1511 context->arch, context->major);
1da177e4
LT
1512 if (context->personality != PER_LINUX)
1513 audit_log_format(ab, " per=%lx", context->personality);
1514 if (context->return_valid)
9f8dbe9c 1515 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1516 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1517 context->return_code);
eb84a20e 1518
dbda4c0b 1519 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1520 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1521 tty = tsk->signal->tty->name;
a6c043a8
SG
1522 else
1523 tty = "(none)";
dbda4c0b
AC
1524 spin_unlock_irq(&tsk->sighand->siglock);
1525
1da177e4
LT
1526 audit_log_format(ab,
1527 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1528 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1529 " euid=%u suid=%u fsuid=%u"
4746ec5b 1530 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1531 context->argv[0],
1532 context->argv[1],
1533 context->argv[2],
1534 context->argv[3],
1535 context->name_count,
f46038ff 1536 context->ppid,
1da177e4 1537 context->pid,
bfef93a5 1538 tsk->loginuid,
1da177e4
LT
1539 context->uid,
1540 context->gid,
1541 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1542 context->egid, context->sgid, context->fsgid, tty,
1543 tsk->sessionid);
eb84a20e 1544
eb84a20e 1545
e495149b 1546 audit_log_task_info(ab, tsk);
9d960985 1547 audit_log_key(ab, context->filterkey);
1da177e4 1548 audit_log_end(ab);
1da177e4 1549
7551ced3 1550 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1551
e495149b 1552 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1553 if (!ab)
1554 continue; /* audit_panic has been called */
1555
1da177e4 1556 switch (aux->type) {
20ca73bc 1557
473ae30b
AV
1558 case AUDIT_EXECVE: {
1559 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1560 audit_log_execve_info(context, &ab, axi);
473ae30b 1561 break; }
073115d6 1562
3fc689e9
EP
1563 case AUDIT_BPRM_FCAPS: {
1564 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1565 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1566 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1567 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1568 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1569 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1570 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1571 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1572 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1573 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1574 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1575 break; }
1576
1da177e4
LT
1577 }
1578 audit_log_end(ab);
1da177e4
LT
1579 }
1580
f3298dc4 1581 if (context->type)
a33e6751 1582 show_special(context, &call_panic);
f3298dc4 1583
157cf649
AV
1584 if (context->fds[0] >= 0) {
1585 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1586 if (ab) {
1587 audit_log_format(ab, "fd0=%d fd1=%d",
1588 context->fds[0], context->fds[1]);
1589 audit_log_end(ab);
1590 }
1591 }
1592
4f6b434f
AV
1593 if (context->sockaddr_len) {
1594 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1595 if (ab) {
1596 audit_log_format(ab, "saddr=");
1597 audit_log_n_hex(ab, (void *)context->sockaddr,
1598 context->sockaddr_len);
1599 audit_log_end(ab);
1600 }
1601 }
1602
e54dc243
AG
1603 for (aux = context->aux_pids; aux; aux = aux->next) {
1604 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1605
1606 for (i = 0; i < axs->pid_count; i++)
1607 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1608 axs->target_auid[i],
1609 axs->target_uid[i],
4746ec5b 1610 axs->target_sessionid[i],
c2a7780e
EP
1611 axs->target_sid[i],
1612 axs->target_comm[i]))
e54dc243 1613 call_panic = 1;
a5cb013d
AV
1614 }
1615
e54dc243
AG
1616 if (context->target_pid &&
1617 audit_log_pid_context(context, context->target_pid,
c2a7780e 1618 context->target_auid, context->target_uid,
4746ec5b 1619 context->target_sessionid,
c2a7780e 1620 context->target_sid, context->target_comm))
e54dc243
AG
1621 call_panic = 1;
1622
44707fdf 1623 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1624 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1625 if (ab) {
44707fdf 1626 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1627 audit_log_end(ab);
1628 }
1629 }
73241ccc 1630
5195d8e2
EP
1631 i = 0;
1632 list_for_each_entry(n, &context->names_list, list)
1633 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1634
1635 /* Send end of event record to help user space know we are finished */
1636 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1637 if (ab)
1638 audit_log_end(ab);
9c7aa6aa
SG
1639 if (call_panic)
1640 audit_panic("error converting sid to string");
1da177e4
LT
1641}
1642
b0dd25a8
RD
1643/**
1644 * audit_free - free a per-task audit context
1645 * @tsk: task whose audit context block to free
1646 *
fa84cb93 1647 * Called from copy_process and do_exit
b0dd25a8 1648 */
a4ff8dba 1649void __audit_free(struct task_struct *tsk)
1da177e4
LT
1650{
1651 struct audit_context *context;
1652
1da177e4 1653 context = audit_get_context(tsk, 0, 0);
56179a6e 1654 if (!context)
1da177e4
LT
1655 return;
1656
1657 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1658 * function (e.g., exit_group), then free context block.
1659 * We use GFP_ATOMIC here because we might be doing this
f5561964 1660 * in the context of the idle thread */
e495149b 1661 /* that can happen only if we are called from do_exit() */
0590b933 1662 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1663 audit_log_exit(context, tsk);
916d7576
AV
1664 if (!list_empty(&context->killed_trees))
1665 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1666
1667 audit_free_context(context);
1668}
1669
b0dd25a8
RD
1670/**
1671 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1672 * @arch: architecture type
1673 * @major: major syscall type (function)
1674 * @a1: additional syscall register 1
1675 * @a2: additional syscall register 2
1676 * @a3: additional syscall register 3
1677 * @a4: additional syscall register 4
1678 *
1679 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1680 * audit context was created when the task was created and the state or
1681 * filters demand the audit context be built. If the state from the
1682 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1683 * then the record will be written at syscall exit time (otherwise, it
1684 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1685 * be written).
1686 */
b05d8447 1687void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1688 unsigned long a1, unsigned long a2,
1689 unsigned long a3, unsigned long a4)
1690{
5411be59 1691 struct task_struct *tsk = current;
1da177e4
LT
1692 struct audit_context *context = tsk->audit_context;
1693 enum audit_state state;
1694
56179a6e 1695 if (!context)
86a1c34a 1696 return;
1da177e4 1697
b0dd25a8
RD
1698 /*
1699 * This happens only on certain architectures that make system
1da177e4
LT
1700 * calls in kernel_thread via the entry.S interface, instead of
1701 * with direct calls. (If you are porting to a new
1702 * architecture, hitting this condition can indicate that you
1703 * got the _exit/_leave calls backward in entry.S.)
1704 *
1705 * i386 no
1706 * x86_64 no
2ef9481e 1707 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1708 *
1709 * This also happens with vm86 emulation in a non-nested manner
1710 * (entries without exits), so this case must be caught.
1711 */
1712 if (context->in_syscall) {
1713 struct audit_context *newctx;
1714
1da177e4
LT
1715#if AUDIT_DEBUG
1716 printk(KERN_ERR
1717 "audit(:%d) pid=%d in syscall=%d;"
1718 " entering syscall=%d\n",
1719 context->serial, tsk->pid, context->major, major);
1720#endif
1721 newctx = audit_alloc_context(context->state);
1722 if (newctx) {
1723 newctx->previous = context;
1724 context = newctx;
1725 tsk->audit_context = newctx;
1726 } else {
1727 /* If we can't alloc a new context, the best we
1728 * can do is to leak memory (any pending putname
1729 * will be lost). The only other alternative is
1730 * to abandon auditing. */
1731 audit_zero_context(context, context->state);
1732 }
1733 }
1734 BUG_ON(context->in_syscall || context->name_count);
1735
1736 if (!audit_enabled)
1737 return;
1738
2fd6f58b 1739 context->arch = arch;
1da177e4
LT
1740 context->major = major;
1741 context->argv[0] = a1;
1742 context->argv[1] = a2;
1743 context->argv[2] = a3;
1744 context->argv[3] = a4;
1745
1746 state = context->state;
d51374ad 1747 context->dummy = !audit_n_rules;
0590b933
AV
1748 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1749 context->prio = 0;
0f45aa18 1750 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1751 }
56179a6e 1752 if (state == AUDIT_DISABLED)
1da177e4
LT
1753 return;
1754
ce625a80 1755 context->serial = 0;
1da177e4
LT
1756 context->ctime = CURRENT_TIME;
1757 context->in_syscall = 1;
0590b933 1758 context->current_state = state;
419c58f1 1759 context->ppid = 0;
1da177e4
LT
1760}
1761
b0dd25a8
RD
1762/**
1763 * audit_syscall_exit - deallocate audit context after a system call
d7e7528b 1764 * @pt_regs: syscall registers
b0dd25a8
RD
1765 *
1766 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1767 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1768 * filtering, or because some other part of the kernel write an audit
1769 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1770 * free the names stored from getname().
1771 */
d7e7528b 1772void __audit_syscall_exit(int success, long return_code)
1da177e4 1773{
5411be59 1774 struct task_struct *tsk = current;
1da177e4
LT
1775 struct audit_context *context;
1776
d7e7528b
EP
1777 if (success)
1778 success = AUDITSC_SUCCESS;
1779 else
1780 success = AUDITSC_FAILURE;
1da177e4 1781
d7e7528b 1782 context = audit_get_context(tsk, success, return_code);
56179a6e 1783 if (!context)
97e94c45 1784 return;
1da177e4 1785
0590b933 1786 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1787 audit_log_exit(context, tsk);
1da177e4
LT
1788
1789 context->in_syscall = 0;
0590b933 1790 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1791
916d7576
AV
1792 if (!list_empty(&context->killed_trees))
1793 audit_kill_trees(&context->killed_trees);
1794
1da177e4
LT
1795 if (context->previous) {
1796 struct audit_context *new_context = context->previous;
1797 context->previous = NULL;
1798 audit_free_context(context);
1799 tsk->audit_context = new_context;
1800 } else {
1801 audit_free_names(context);
74c3cbe3 1802 unroll_tree_refs(context, NULL, 0);
1da177e4 1803 audit_free_aux(context);
e54dc243
AG
1804 context->aux = NULL;
1805 context->aux_pids = NULL;
a5cb013d 1806 context->target_pid = 0;
e54dc243 1807 context->target_sid = 0;
4f6b434f 1808 context->sockaddr_len = 0;
f3298dc4 1809 context->type = 0;
157cf649 1810 context->fds[0] = -1;
e048e02c
AV
1811 if (context->state != AUDIT_RECORD_CONTEXT) {
1812 kfree(context->filterkey);
1813 context->filterkey = NULL;
1814 }
1da177e4
LT
1815 tsk->audit_context = context;
1816 }
1da177e4
LT
1817}
1818
74c3cbe3
AV
1819static inline void handle_one(const struct inode *inode)
1820{
1821#ifdef CONFIG_AUDIT_TREE
1822 struct audit_context *context;
1823 struct audit_tree_refs *p;
1824 struct audit_chunk *chunk;
1825 int count;
e61ce867 1826 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1827 return;
1828 context = current->audit_context;
1829 p = context->trees;
1830 count = context->tree_count;
1831 rcu_read_lock();
1832 chunk = audit_tree_lookup(inode);
1833 rcu_read_unlock();
1834 if (!chunk)
1835 return;
1836 if (likely(put_tree_ref(context, chunk)))
1837 return;
1838 if (unlikely(!grow_tree_refs(context))) {
436c405c 1839 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1840 audit_set_auditable(context);
1841 audit_put_chunk(chunk);
1842 unroll_tree_refs(context, p, count);
1843 return;
1844 }
1845 put_tree_ref(context, chunk);
1846#endif
1847}
1848
1849static void handle_path(const struct dentry *dentry)
1850{
1851#ifdef CONFIG_AUDIT_TREE
1852 struct audit_context *context;
1853 struct audit_tree_refs *p;
1854 const struct dentry *d, *parent;
1855 struct audit_chunk *drop;
1856 unsigned long seq;
1857 int count;
1858
1859 context = current->audit_context;
1860 p = context->trees;
1861 count = context->tree_count;
1862retry:
1863 drop = NULL;
1864 d = dentry;
1865 rcu_read_lock();
1866 seq = read_seqbegin(&rename_lock);
1867 for(;;) {
1868 struct inode *inode = d->d_inode;
e61ce867 1869 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1870 struct audit_chunk *chunk;
1871 chunk = audit_tree_lookup(inode);
1872 if (chunk) {
1873 if (unlikely(!put_tree_ref(context, chunk))) {
1874 drop = chunk;
1875 break;
1876 }
1877 }
1878 }
1879 parent = d->d_parent;
1880 if (parent == d)
1881 break;
1882 d = parent;
1883 }
1884 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1885 rcu_read_unlock();
1886 if (!drop) {
1887 /* just a race with rename */
1888 unroll_tree_refs(context, p, count);
1889 goto retry;
1890 }
1891 audit_put_chunk(drop);
1892 if (grow_tree_refs(context)) {
1893 /* OK, got more space */
1894 unroll_tree_refs(context, p, count);
1895 goto retry;
1896 }
1897 /* too bad */
1898 printk(KERN_WARNING
436c405c 1899 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1900 unroll_tree_refs(context, p, count);
1901 audit_set_auditable(context);
1902 return;
1903 }
1904 rcu_read_unlock();
1905#endif
1906}
1907
5195d8e2
EP
1908static struct audit_names *audit_alloc_name(struct audit_context *context)
1909{
1910 struct audit_names *aname;
1911
1912 if (context->name_count < AUDIT_NAMES) {
1913 aname = &context->preallocated_names[context->name_count];
1914 memset(aname, 0, sizeof(*aname));
1915 } else {
1916 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1917 if (!aname)
1918 return NULL;
1919 aname->should_free = true;
1920 }
1921
1922 aname->ino = (unsigned long)-1;
1923 list_add_tail(&aname->list, &context->names_list);
1924
1925 context->name_count++;
1926#if AUDIT_DEBUG
1927 context->ino_count++;
1928#endif
1929 return aname;
1930}
1931
b0dd25a8
RD
1932/**
1933 * audit_getname - add a name to the list
1934 * @name: name to add
1935 *
1936 * Add a name to the list of audit names for this context.
1937 * Called from fs/namei.c:getname().
1938 */
d8945bb5 1939void __audit_getname(const char *name)
1da177e4
LT
1940{
1941 struct audit_context *context = current->audit_context;
5195d8e2 1942 struct audit_names *n;
1da177e4 1943
1da177e4
LT
1944 if (!context->in_syscall) {
1945#if AUDIT_DEBUG == 2
1946 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1947 __FILE__, __LINE__, context->serial, name);
1948 dump_stack();
1949#endif
1950 return;
1951 }
5195d8e2
EP
1952
1953 n = audit_alloc_name(context);
1954 if (!n)
1955 return;
1956
1957 n->name = name;
1958 n->name_len = AUDIT_NAME_FULL;
1959 n->name_put = true;
1960
f7ad3c6b
MS
1961 if (!context->pwd.dentry)
1962 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1963}
1964
b0dd25a8
RD
1965/* audit_putname - intercept a putname request
1966 * @name: name to intercept and delay for putname
1967 *
1968 * If we have stored the name from getname in the audit context,
1969 * then we delay the putname until syscall exit.
1970 * Called from include/linux/fs.h:putname().
1971 */
1da177e4
LT
1972void audit_putname(const char *name)
1973{
1974 struct audit_context *context = current->audit_context;
1975
1976 BUG_ON(!context);
1977 if (!context->in_syscall) {
1978#if AUDIT_DEBUG == 2
1979 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1980 __FILE__, __LINE__, context->serial, name);
1981 if (context->name_count) {
5195d8e2 1982 struct audit_names *n;
1da177e4 1983 int i;
5195d8e2
EP
1984
1985 list_for_each_entry(n, &context->names_list, list)
1da177e4 1986 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
1987 n->name, n->name ?: "(null)");
1988 }
1da177e4
LT
1989#endif
1990 __putname(name);
1991 }
1992#if AUDIT_DEBUG
1993 else {
1994 ++context->put_count;
1995 if (context->put_count > context->name_count) {
1996 printk(KERN_ERR "%s:%d(:%d): major=%d"
1997 " in_syscall=%d putname(%p) name_count=%d"
1998 " put_count=%d\n",
1999 __FILE__, __LINE__,
2000 context->serial, context->major,
2001 context->in_syscall, name, context->name_count,
2002 context->put_count);
2003 dump_stack();
2004 }
2005 }
2006#endif
2007}
2008
851f7ff5
EP
2009static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2010{
2011 struct cpu_vfs_cap_data caps;
2012 int rc;
2013
851f7ff5
EP
2014 if (!dentry)
2015 return 0;
2016
2017 rc = get_vfs_caps_from_disk(dentry, &caps);
2018 if (rc)
2019 return rc;
2020
2021 name->fcap.permitted = caps.permitted;
2022 name->fcap.inheritable = caps.inheritable;
2023 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2024 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2025
2026 return 0;
2027}
2028
2029
3e2efce0 2030/* Copy inode data into an audit_names. */
851f7ff5
EP
2031static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2032 const struct inode *inode)
8c8570fb 2033{
3e2efce0
AG
2034 name->ino = inode->i_ino;
2035 name->dev = inode->i_sb->s_dev;
2036 name->mode = inode->i_mode;
2037 name->uid = inode->i_uid;
2038 name->gid = inode->i_gid;
2039 name->rdev = inode->i_rdev;
2a862b32 2040 security_inode_getsecid(inode, &name->osid);
851f7ff5 2041 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2042}
2043
b0dd25a8
RD
2044/**
2045 * audit_inode - store the inode and device from a lookup
2046 * @name: name being audited
481968f4 2047 * @dentry: dentry being audited
b0dd25a8
RD
2048 *
2049 * Called from fs/namei.c:path_lookup().
2050 */
5a190ae6 2051void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2052{
1da177e4 2053 struct audit_context *context = current->audit_context;
74c3cbe3 2054 const struct inode *inode = dentry->d_inode;
5195d8e2 2055 struct audit_names *n;
1da177e4
LT
2056
2057 if (!context->in_syscall)
2058 return;
5195d8e2
EP
2059
2060 list_for_each_entry_reverse(n, &context->names_list, list) {
2061 if (n->name && (n->name == name))
2062 goto out;
1da177e4 2063 }
5195d8e2
EP
2064
2065 /* unable to find the name from a previous getname() */
2066 n = audit_alloc_name(context);
2067 if (!n)
2068 return;
2069out:
74c3cbe3 2070 handle_path(dentry);
5195d8e2 2071 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2072}
2073
2074/**
2075 * audit_inode_child - collect inode info for created/removed objects
481968f4 2076 * @dentry: dentry being audited
73d3ec5a 2077 * @parent: inode of dentry parent
73241ccc
AG
2078 *
2079 * For syscalls that create or remove filesystem objects, audit_inode
2080 * can only collect information for the filesystem object's parent.
2081 * This call updates the audit context with the child's information.
2082 * Syscalls that create a new filesystem object must be hooked after
2083 * the object is created. Syscalls that remove a filesystem object
2084 * must be hooked prior, in order to capture the target inode during
2085 * unsuccessful attempts.
2086 */
cccc6bba 2087void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2088 const struct inode *parent)
73241ccc 2089{
73241ccc 2090 struct audit_context *context = current->audit_context;
5712e88f 2091 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2092 const struct inode *inode = dentry->d_inode;
cccc6bba 2093 const char *dname = dentry->d_name.name;
5195d8e2 2094 struct audit_names *n;
9c937dcc 2095 int dirlen = 0;
73241ccc
AG
2096
2097 if (!context->in_syscall)
2098 return;
2099
74c3cbe3
AV
2100 if (inode)
2101 handle_one(inode);
73241ccc 2102
5712e88f 2103 /* parent is more likely, look for it first */
5195d8e2 2104 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2105 if (!n->name)
2106 continue;
2107
2108 if (n->ino == parent->i_ino &&
2109 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2110 n->name_len = dirlen; /* update parent data in place */
2111 found_parent = n->name;
2112 goto add_names;
f368c07d 2113 }
5712e88f 2114 }
73241ccc 2115
5712e88f 2116 /* no matching parent, look for matching child */
5195d8e2 2117 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2118 if (!n->name)
2119 continue;
2120
2121 /* strcmp() is the more likely scenario */
2122 if (!strcmp(dname, n->name) ||
2123 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2124 if (inode)
851f7ff5 2125 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2126 else
2127 n->ino = (unsigned long)-1;
2128 found_child = n->name;
2129 goto add_names;
2130 }
ac9910ce 2131 }
5712e88f
AG
2132
2133add_names:
2134 if (!found_parent) {
5195d8e2
EP
2135 n = audit_alloc_name(context);
2136 if (!n)
ac9910ce 2137 return;
5195d8e2 2138 audit_copy_inode(n, NULL, parent);
73d3ec5a 2139 }
5712e88f
AG
2140
2141 if (!found_child) {
5195d8e2
EP
2142 n = audit_alloc_name(context);
2143 if (!n)
5712e88f 2144 return;
5712e88f
AG
2145
2146 /* Re-use the name belonging to the slot for a matching parent
2147 * directory. All names for this context are relinquished in
2148 * audit_free_names() */
2149 if (found_parent) {
5195d8e2
EP
2150 n->name = found_parent;
2151 n->name_len = AUDIT_NAME_FULL;
5712e88f 2152 /* don't call __putname() */
5195d8e2 2153 n->name_put = false;
5712e88f
AG
2154 }
2155
2156 if (inode)
5195d8e2 2157 audit_copy_inode(n, NULL, inode);
5712e88f 2158 }
3e2efce0 2159}
50e437d5 2160EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2161
b0dd25a8
RD
2162/**
2163 * auditsc_get_stamp - get local copies of audit_context values
2164 * @ctx: audit_context for the task
2165 * @t: timespec to store time recorded in the audit_context
2166 * @serial: serial value that is recorded in the audit_context
2167 *
2168 * Also sets the context as auditable.
2169 */
48887e63 2170int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2171 struct timespec *t, unsigned int *serial)
1da177e4 2172{
48887e63
AV
2173 if (!ctx->in_syscall)
2174 return 0;
ce625a80
DW
2175 if (!ctx->serial)
2176 ctx->serial = audit_serial();
bfb4496e
DW
2177 t->tv_sec = ctx->ctime.tv_sec;
2178 t->tv_nsec = ctx->ctime.tv_nsec;
2179 *serial = ctx->serial;
0590b933
AV
2180 if (!ctx->prio) {
2181 ctx->prio = 1;
2182 ctx->current_state = AUDIT_RECORD_CONTEXT;
2183 }
48887e63 2184 return 1;
1da177e4
LT
2185}
2186
4746ec5b
EP
2187/* global counter which is incremented every time something logs in */
2188static atomic_t session_id = ATOMIC_INIT(0);
2189
b0dd25a8 2190/**
0a300be6 2191 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2192 * @loginuid: loginuid value
2193 *
2194 * Returns 0.
2195 *
2196 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2197 */
0a300be6 2198int audit_set_loginuid(uid_t loginuid)
1da177e4 2199{
0a300be6 2200 struct task_struct *task = current;
41757106 2201 struct audit_context *context = task->audit_context;
633b4545 2202 unsigned int sessionid;
41757106 2203
633b4545
EP
2204#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2205 if (task->loginuid != -1)
2206 return -EPERM;
2207#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2208 if (!capable(CAP_AUDIT_CONTROL))
2209 return -EPERM;
2210#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2211
2212 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2213 if (context && context->in_syscall) {
2214 struct audit_buffer *ab;
2215
2216 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2217 if (ab) {
2218 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2219 "old auid=%u new auid=%u"
2220 " old ses=%u new ses=%u",
c69e8d9c 2221 task->pid, task_uid(task),
4746ec5b
EP
2222 task->loginuid, loginuid,
2223 task->sessionid, sessionid);
bfef93a5 2224 audit_log_end(ab);
c0404993 2225 }
1da177e4 2226 }
4746ec5b 2227 task->sessionid = sessionid;
bfef93a5 2228 task->loginuid = loginuid;
1da177e4
LT
2229 return 0;
2230}
2231
20ca73bc
GW
2232/**
2233 * __audit_mq_open - record audit data for a POSIX MQ open
2234 * @oflag: open flag
2235 * @mode: mode bits
6b962559 2236 * @attr: queue attributes
20ca73bc 2237 *
20ca73bc 2238 */
df0a4283 2239void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2240{
20ca73bc
GW
2241 struct audit_context *context = current->audit_context;
2242
564f6993
AV
2243 if (attr)
2244 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2245 else
2246 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2247
564f6993
AV
2248 context->mq_open.oflag = oflag;
2249 context->mq_open.mode = mode;
20ca73bc 2250
564f6993 2251 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2252}
2253
2254/**
c32c8af4 2255 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2256 * @mqdes: MQ descriptor
2257 * @msg_len: Message length
2258 * @msg_prio: Message priority
c32c8af4 2259 * @abs_timeout: Message timeout in absolute time
20ca73bc 2260 *
20ca73bc 2261 */
c32c8af4
AV
2262void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2263 const struct timespec *abs_timeout)
20ca73bc 2264{
20ca73bc 2265 struct audit_context *context = current->audit_context;
c32c8af4 2266 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2267
c32c8af4
AV
2268 if (abs_timeout)
2269 memcpy(p, abs_timeout, sizeof(struct timespec));
2270 else
2271 memset(p, 0, sizeof(struct timespec));
20ca73bc 2272
c32c8af4
AV
2273 context->mq_sendrecv.mqdes = mqdes;
2274 context->mq_sendrecv.msg_len = msg_len;
2275 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2276
c32c8af4 2277 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2278}
2279
2280/**
2281 * __audit_mq_notify - record audit data for a POSIX MQ notify
2282 * @mqdes: MQ descriptor
6b962559 2283 * @notification: Notification event
20ca73bc 2284 *
20ca73bc
GW
2285 */
2286
20114f71 2287void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2288{
20ca73bc
GW
2289 struct audit_context *context = current->audit_context;
2290
20114f71
AV
2291 if (notification)
2292 context->mq_notify.sigev_signo = notification->sigev_signo;
2293 else
2294 context->mq_notify.sigev_signo = 0;
20ca73bc 2295
20114f71
AV
2296 context->mq_notify.mqdes = mqdes;
2297 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2298}
2299
2300/**
2301 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2302 * @mqdes: MQ descriptor
2303 * @mqstat: MQ flags
2304 *
20ca73bc 2305 */
7392906e 2306void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2307{
20ca73bc 2308 struct audit_context *context = current->audit_context;
7392906e
AV
2309 context->mq_getsetattr.mqdes = mqdes;
2310 context->mq_getsetattr.mqstat = *mqstat;
2311 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2312}
2313
b0dd25a8 2314/**
073115d6
SG
2315 * audit_ipc_obj - record audit data for ipc object
2316 * @ipcp: ipc permissions
2317 *
073115d6 2318 */
a33e6751 2319void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2320{
073115d6 2321 struct audit_context *context = current->audit_context;
a33e6751
AV
2322 context->ipc.uid = ipcp->uid;
2323 context->ipc.gid = ipcp->gid;
2324 context->ipc.mode = ipcp->mode;
e816f370 2325 context->ipc.has_perm = 0;
a33e6751
AV
2326 security_ipc_getsecid(ipcp, &context->ipc.osid);
2327 context->type = AUDIT_IPC;
073115d6
SG
2328}
2329
2330/**
2331 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2332 * @qbytes: msgq bytes
2333 * @uid: msgq user id
2334 * @gid: msgq group id
2335 * @mode: msgq mode (permissions)
2336 *
e816f370 2337 * Called only after audit_ipc_obj().
b0dd25a8 2338 */
2570ebbd 2339void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2340{
1da177e4
LT
2341 struct audit_context *context = current->audit_context;
2342
e816f370
AV
2343 context->ipc.qbytes = qbytes;
2344 context->ipc.perm_uid = uid;
2345 context->ipc.perm_gid = gid;
2346 context->ipc.perm_mode = mode;
2347 context->ipc.has_perm = 1;
1da177e4 2348}
c2f0c7c3 2349
07c49417 2350int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2351{
2352 struct audit_aux_data_execve *ax;
2353 struct audit_context *context = current->audit_context;
473ae30b 2354
bdf4c48a 2355 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2356 if (!ax)
2357 return -ENOMEM;
2358
2359 ax->argc = bprm->argc;
2360 ax->envc = bprm->envc;
bdf4c48a 2361 ax->mm = bprm->mm;
473ae30b
AV
2362 ax->d.type = AUDIT_EXECVE;
2363 ax->d.next = context->aux;
2364 context->aux = (void *)ax;
2365 return 0;
2366}
2367
2368
b0dd25a8
RD
2369/**
2370 * audit_socketcall - record audit data for sys_socketcall
2371 * @nargs: number of args
2372 * @args: args array
2373 *
b0dd25a8 2374 */
07c49417 2375void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2376{
3ec3b2fb
DW
2377 struct audit_context *context = current->audit_context;
2378
f3298dc4
AV
2379 context->type = AUDIT_SOCKETCALL;
2380 context->socketcall.nargs = nargs;
2381 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2382}
2383
db349509
AV
2384/**
2385 * __audit_fd_pair - record audit data for pipe and socketpair
2386 * @fd1: the first file descriptor
2387 * @fd2: the second file descriptor
2388 *
db349509 2389 */
157cf649 2390void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2391{
2392 struct audit_context *context = current->audit_context;
157cf649
AV
2393 context->fds[0] = fd1;
2394 context->fds[1] = fd2;
db349509
AV
2395}
2396
b0dd25a8
RD
2397/**
2398 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2399 * @len: data length in user space
2400 * @a: data address in kernel space
2401 *
2402 * Returns 0 for success or NULL context or < 0 on error.
2403 */
07c49417 2404int __audit_sockaddr(int len, void *a)
3ec3b2fb 2405{
3ec3b2fb
DW
2406 struct audit_context *context = current->audit_context;
2407
4f6b434f
AV
2408 if (!context->sockaddr) {
2409 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2410 if (!p)
2411 return -ENOMEM;
2412 context->sockaddr = p;
2413 }
3ec3b2fb 2414
4f6b434f
AV
2415 context->sockaddr_len = len;
2416 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2417 return 0;
2418}
2419
a5cb013d
AV
2420void __audit_ptrace(struct task_struct *t)
2421{
2422 struct audit_context *context = current->audit_context;
2423
2424 context->target_pid = t->pid;
c2a7780e 2425 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2426 context->target_uid = task_uid(t);
4746ec5b 2427 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2428 security_task_getsecid(t, &context->target_sid);
c2a7780e 2429 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2430}
2431
b0dd25a8
RD
2432/**
2433 * audit_signal_info - record signal info for shutting down audit subsystem
2434 * @sig: signal value
2435 * @t: task being signaled
2436 *
2437 * If the audit subsystem is being terminated, record the task (pid)
2438 * and uid that is doing that.
2439 */
e54dc243 2440int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2441{
e54dc243
AG
2442 struct audit_aux_data_pids *axp;
2443 struct task_struct *tsk = current;
2444 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2445 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2446
175fc484 2447 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2448 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2449 audit_sig_pid = tsk->pid;
bfef93a5
AV
2450 if (tsk->loginuid != -1)
2451 audit_sig_uid = tsk->loginuid;
175fc484 2452 else
c69e8d9c 2453 audit_sig_uid = uid;
2a862b32 2454 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2455 }
2456 if (!audit_signals || audit_dummy_context())
2457 return 0;
c2f0c7c3 2458 }
e54dc243 2459
e54dc243
AG
2460 /* optimize the common case by putting first signal recipient directly
2461 * in audit_context */
2462 if (!ctx->target_pid) {
2463 ctx->target_pid = t->tgid;
c2a7780e 2464 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2465 ctx->target_uid = t_uid;
4746ec5b 2466 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2467 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2468 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2469 return 0;
2470 }
2471
2472 axp = (void *)ctx->aux_pids;
2473 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2474 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2475 if (!axp)
2476 return -ENOMEM;
2477
2478 axp->d.type = AUDIT_OBJ_PID;
2479 axp->d.next = ctx->aux_pids;
2480 ctx->aux_pids = (void *)axp;
2481 }
88ae704c 2482 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2483
2484 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2485 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2486 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2487 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2488 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2489 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2490 axp->pid_count++;
2491
2492 return 0;
c2f0c7c3 2493}
0a4ff8c2 2494
3fc689e9
EP
2495/**
2496 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2497 * @bprm: pointer to the bprm being processed
2498 * @new: the proposed new credentials
2499 * @old: the old credentials
3fc689e9
EP
2500 *
2501 * Simply check if the proc already has the caps given by the file and if not
2502 * store the priv escalation info for later auditing at the end of the syscall
2503 *
3fc689e9
EP
2504 * -Eric
2505 */
d84f4f99
DH
2506int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2507 const struct cred *new, const struct cred *old)
3fc689e9
EP
2508{
2509 struct audit_aux_data_bprm_fcaps *ax;
2510 struct audit_context *context = current->audit_context;
2511 struct cpu_vfs_cap_data vcaps;
2512 struct dentry *dentry;
2513
2514 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2515 if (!ax)
d84f4f99 2516 return -ENOMEM;
3fc689e9
EP
2517
2518 ax->d.type = AUDIT_BPRM_FCAPS;
2519 ax->d.next = context->aux;
2520 context->aux = (void *)ax;
2521
2522 dentry = dget(bprm->file->f_dentry);
2523 get_vfs_caps_from_disk(dentry, &vcaps);
2524 dput(dentry);
2525
2526 ax->fcap.permitted = vcaps.permitted;
2527 ax->fcap.inheritable = vcaps.inheritable;
2528 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2529 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2530
d84f4f99
DH
2531 ax->old_pcap.permitted = old->cap_permitted;
2532 ax->old_pcap.inheritable = old->cap_inheritable;
2533 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2534
d84f4f99
DH
2535 ax->new_pcap.permitted = new->cap_permitted;
2536 ax->new_pcap.inheritable = new->cap_inheritable;
2537 ax->new_pcap.effective = new->cap_effective;
2538 return 0;
3fc689e9
EP
2539}
2540
e68b75a0
EP
2541/**
2542 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2543 * @pid: target pid of the capset call
2544 * @new: the new credentials
2545 * @old: the old (current) credentials
e68b75a0
EP
2546 *
2547 * Record the aguments userspace sent to sys_capset for later printing by the
2548 * audit system if applicable
2549 */
57f71a0a 2550void __audit_log_capset(pid_t pid,
d84f4f99 2551 const struct cred *new, const struct cred *old)
e68b75a0 2552{
e68b75a0 2553 struct audit_context *context = current->audit_context;
57f71a0a
AV
2554 context->capset.pid = pid;
2555 context->capset.cap.effective = new->cap_effective;
2556 context->capset.cap.inheritable = new->cap_effective;
2557 context->capset.cap.permitted = new->cap_permitted;
2558 context->type = AUDIT_CAPSET;
e68b75a0
EP
2559}
2560
120a795d
AV
2561void __audit_mmap_fd(int fd, int flags)
2562{
2563 struct audit_context *context = current->audit_context;
2564 context->mmap.fd = fd;
2565 context->mmap.flags = flags;
2566 context->type = AUDIT_MMAP;
2567}
2568
85e7bac3
EP
2569static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2570{
2571 uid_t auid, uid;
2572 gid_t gid;
2573 unsigned int sessionid;
2574
2575 auid = audit_get_loginuid(current);
2576 sessionid = audit_get_sessionid(current);
2577 current_uid_gid(&uid, &gid);
2578
2579 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2580 auid, uid, gid, sessionid);
2581 audit_log_task_context(ab);
2582 audit_log_format(ab, " pid=%d comm=", current->pid);
2583 audit_log_untrustedstring(ab, current->comm);
2584 audit_log_format(ab, " reason=");
2585 audit_log_string(ab, reason);
2586 audit_log_format(ab, " sig=%ld", signr);
2587}
0a4ff8c2
SG
2588/**
2589 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2590 * @signr: signal value
0a4ff8c2
SG
2591 *
2592 * If a process ends with a core dump, something fishy is going on and we
2593 * should record the event for investigation.
2594 */
2595void audit_core_dumps(long signr)
2596{
2597 struct audit_buffer *ab;
0a4ff8c2
SG
2598
2599 if (!audit_enabled)
2600 return;
2601
2602 if (signr == SIGQUIT) /* don't care for those */
2603 return;
2604
2605 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2606 audit_log_abend(ab, "memory violation", signr);
2607 audit_log_end(ab);
2608}
0a4ff8c2 2609
85e7bac3
EP
2610void __audit_seccomp(unsigned long syscall)
2611{
2612 struct audit_buffer *ab;
2613
2614 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2615 audit_log_abend(ab, "seccomp", SIGKILL);
2616 audit_log_format(ab, " syscall=%ld", syscall);
0a4ff8c2
SG
2617 audit_log_end(ab);
2618}
916d7576
AV
2619
2620struct list_head *audit_killed_trees(void)
2621{
2622 struct audit_context *ctx = current->audit_context;
2623 if (likely(!ctx || !ctx->in_syscall))
2624 return NULL;
2625 return &ctx->killed_trees;
2626}