]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/auditsc.c
audit: make audit_compare_dname_path use parent_len helper
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
1da177e4 71
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
1da177e4 79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82#define AUDIT_NAMES 5
1da177e4 83
9c937dcc
AG
84/* Indicates that audit should log the full pathname. */
85#define AUDIT_NAME_FULL -1
86
de6bbd1d
EP
87/* no execve audit message should be longer than this (userspace limits) */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
471a5c7c
AV
90/* number of audit rules */
91int audit_n_rules;
92
e54dc243
AG
93/* determines whether we collect data for signals sent */
94int audit_signals;
95
851f7ff5
EP
96struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103};
104
1da177e4
LT
105/* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110struct audit_names {
5195d8e2 111 struct list_head list; /* audit_context->names_list */
1da177e4
LT
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
ca57ec0f
EB
116 kuid_t uid;
117 kgid_t gid;
1da177e4 118 dev_t rdev;
1b50eed9 119 u32 osid;
851f7ff5
EP
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
5195d8e2 122 int name_len; /* number of name's characters to log */
78e2e802 123 unsigned char type; /* record type */
5195d8e2
EP
124 bool name_put; /* call __putname() for this name */
125 /*
126 * This was an allocated audit_names and not from the array of
127 * names allocated in the task audit context. Thus this name
128 * should be freed on syscall exit
129 */
130 bool should_free;
1da177e4
LT
131};
132
133struct audit_aux_data {
134 struct audit_aux_data *next;
135 int type;
136};
137
138#define AUDIT_AUX_IPCPERM 0
139
e54dc243
AG
140/* Number of target pids per aux struct. */
141#define AUDIT_AUX_PIDS 16
142
473ae30b
AV
143struct audit_aux_data_execve {
144 struct audit_aux_data d;
145 int argc;
146 int envc;
bdf4c48a 147 struct mm_struct *mm;
473ae30b
AV
148};
149
e54dc243
AG
150struct audit_aux_data_pids {
151 struct audit_aux_data d;
152 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 153 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 154 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 155 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 156 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 157 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
158 int pid_count;
159};
160
3fc689e9
EP
161struct audit_aux_data_bprm_fcaps {
162 struct audit_aux_data d;
163 struct audit_cap_data fcap;
164 unsigned int fcap_ver;
165 struct audit_cap_data old_pcap;
166 struct audit_cap_data new_pcap;
167};
168
e68b75a0
EP
169struct audit_aux_data_capset {
170 struct audit_aux_data d;
171 pid_t pid;
172 struct audit_cap_data cap;
173};
174
74c3cbe3
AV
175struct audit_tree_refs {
176 struct audit_tree_refs *next;
177 struct audit_chunk *c[31];
178};
179
1da177e4
LT
180/* The per-task audit context. */
181struct audit_context {
d51374ad 182 int dummy; /* must be the first element */
1da177e4 183 int in_syscall; /* 1 if task is in a syscall */
0590b933 184 enum audit_state state, current_state;
1da177e4 185 unsigned int serial; /* serial number for record */
1da177e4 186 int major; /* syscall number */
44e51a1b 187 struct timespec ctime; /* time of syscall entry */
1da177e4 188 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 189 long return_code;/* syscall return code */
0590b933 190 u64 prio;
44e51a1b 191 int return_valid; /* return code is valid */
5195d8e2
EP
192 /*
193 * The names_list is the list of all audit_names collected during this
194 * syscall. The first AUDIT_NAMES entries in the names_list will
195 * actually be from the preallocated_names array for performance
196 * reasons. Except during allocation they should never be referenced
197 * through the preallocated_names array and should only be found/used
198 * by running the names_list.
199 */
200 struct audit_names preallocated_names[AUDIT_NAMES];
201 int name_count; /* total records in names_list */
202 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 203 char * filterkey; /* key for rule that triggered record */
44707fdf 204 struct path pwd;
1da177e4
LT
205 struct audit_context *previous; /* For nested syscalls */
206 struct audit_aux_data *aux;
e54dc243 207 struct audit_aux_data *aux_pids;
4f6b434f
AV
208 struct sockaddr_storage *sockaddr;
209 size_t sockaddr_len;
1da177e4 210 /* Save things to print about task_struct */
f46038ff 211 pid_t pid, ppid;
cca080d9
EB
212 kuid_t uid, euid, suid, fsuid;
213 kgid_t gid, egid, sgid, fsgid;
1da177e4 214 unsigned long personality;
2fd6f58b 215 int arch;
1da177e4 216
a5cb013d 217 pid_t target_pid;
e1760bd5 218 kuid_t target_auid;
cca080d9 219 kuid_t target_uid;
4746ec5b 220 unsigned int target_sessionid;
a5cb013d 221 u32 target_sid;
c2a7780e 222 char target_comm[TASK_COMM_LEN];
a5cb013d 223
74c3cbe3 224 struct audit_tree_refs *trees, *first_trees;
916d7576 225 struct list_head killed_trees;
44e51a1b 226 int tree_count;
74c3cbe3 227
f3298dc4
AV
228 int type;
229 union {
230 struct {
231 int nargs;
232 long args[6];
233 } socketcall;
a33e6751 234 struct {
cca080d9
EB
235 kuid_t uid;
236 kgid_t gid;
2570ebbd 237 umode_t mode;
a33e6751 238 u32 osid;
e816f370
AV
239 int has_perm;
240 uid_t perm_uid;
241 gid_t perm_gid;
2570ebbd 242 umode_t perm_mode;
e816f370 243 unsigned long qbytes;
a33e6751 244 } ipc;
7392906e
AV
245 struct {
246 mqd_t mqdes;
247 struct mq_attr mqstat;
248 } mq_getsetattr;
20114f71
AV
249 struct {
250 mqd_t mqdes;
251 int sigev_signo;
252 } mq_notify;
c32c8af4
AV
253 struct {
254 mqd_t mqdes;
255 size_t msg_len;
256 unsigned int msg_prio;
257 struct timespec abs_timeout;
258 } mq_sendrecv;
564f6993
AV
259 struct {
260 int oflag;
df0a4283 261 umode_t mode;
564f6993
AV
262 struct mq_attr attr;
263 } mq_open;
57f71a0a
AV
264 struct {
265 pid_t pid;
266 struct audit_cap_data cap;
267 } capset;
120a795d
AV
268 struct {
269 int fd;
270 int flags;
271 } mmap;
f3298dc4 272 };
157cf649 273 int fds[2];
f3298dc4 274
1da177e4
LT
275#if AUDIT_DEBUG
276 int put_count;
277 int ino_count;
278#endif
279};
280
55669bfa
AV
281static inline int open_arg(int flags, int mask)
282{
283 int n = ACC_MODE(flags);
284 if (flags & (O_TRUNC | O_CREAT))
285 n |= AUDIT_PERM_WRITE;
286 return n & mask;
287}
288
289static int audit_match_perm(struct audit_context *ctx, int mask)
290{
c4bacefb 291 unsigned n;
1a61c88d 292 if (unlikely(!ctx))
293 return 0;
c4bacefb 294 n = ctx->major;
dbda4c0b 295
55669bfa
AV
296 switch (audit_classify_syscall(ctx->arch, n)) {
297 case 0: /* native */
298 if ((mask & AUDIT_PERM_WRITE) &&
299 audit_match_class(AUDIT_CLASS_WRITE, n))
300 return 1;
301 if ((mask & AUDIT_PERM_READ) &&
302 audit_match_class(AUDIT_CLASS_READ, n))
303 return 1;
304 if ((mask & AUDIT_PERM_ATTR) &&
305 audit_match_class(AUDIT_CLASS_CHATTR, n))
306 return 1;
307 return 0;
308 case 1: /* 32bit on biarch */
309 if ((mask & AUDIT_PERM_WRITE) &&
310 audit_match_class(AUDIT_CLASS_WRITE_32, n))
311 return 1;
312 if ((mask & AUDIT_PERM_READ) &&
313 audit_match_class(AUDIT_CLASS_READ_32, n))
314 return 1;
315 if ((mask & AUDIT_PERM_ATTR) &&
316 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
317 return 1;
318 return 0;
319 case 2: /* open */
320 return mask & ACC_MODE(ctx->argv[1]);
321 case 3: /* openat */
322 return mask & ACC_MODE(ctx->argv[2]);
323 case 4: /* socketcall */
324 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
325 case 5: /* execve */
326 return mask & AUDIT_PERM_EXEC;
327 default:
328 return 0;
329 }
330}
331
5ef30ee5 332static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 333{
5195d8e2 334 struct audit_names *n;
5ef30ee5 335 umode_t mode = (umode_t)val;
1a61c88d 336
337 if (unlikely(!ctx))
338 return 0;
339
5195d8e2
EP
340 list_for_each_entry(n, &ctx->names_list, list) {
341 if ((n->ino != -1) &&
342 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
343 return 1;
344 }
5195d8e2 345
5ef30ee5 346 return 0;
8b67dca9
AV
347}
348
74c3cbe3
AV
349/*
350 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
351 * ->first_trees points to its beginning, ->trees - to the current end of data.
352 * ->tree_count is the number of free entries in array pointed to by ->trees.
353 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
354 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
355 * it's going to remain 1-element for almost any setup) until we free context itself.
356 * References in it _are_ dropped - at the same time we free/drop aux stuff.
357 */
358
359#ifdef CONFIG_AUDIT_TREE
679173b7
EP
360static void audit_set_auditable(struct audit_context *ctx)
361{
362 if (!ctx->prio) {
363 ctx->prio = 1;
364 ctx->current_state = AUDIT_RECORD_CONTEXT;
365 }
366}
367
74c3cbe3
AV
368static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
369{
370 struct audit_tree_refs *p = ctx->trees;
371 int left = ctx->tree_count;
372 if (likely(left)) {
373 p->c[--left] = chunk;
374 ctx->tree_count = left;
375 return 1;
376 }
377 if (!p)
378 return 0;
379 p = p->next;
380 if (p) {
381 p->c[30] = chunk;
382 ctx->trees = p;
383 ctx->tree_count = 30;
384 return 1;
385 }
386 return 0;
387}
388
389static int grow_tree_refs(struct audit_context *ctx)
390{
391 struct audit_tree_refs *p = ctx->trees;
392 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
393 if (!ctx->trees) {
394 ctx->trees = p;
395 return 0;
396 }
397 if (p)
398 p->next = ctx->trees;
399 else
400 ctx->first_trees = ctx->trees;
401 ctx->tree_count = 31;
402 return 1;
403}
404#endif
405
406static void unroll_tree_refs(struct audit_context *ctx,
407 struct audit_tree_refs *p, int count)
408{
409#ifdef CONFIG_AUDIT_TREE
410 struct audit_tree_refs *q;
411 int n;
412 if (!p) {
413 /* we started with empty chain */
414 p = ctx->first_trees;
415 count = 31;
416 /* if the very first allocation has failed, nothing to do */
417 if (!p)
418 return;
419 }
420 n = count;
421 for (q = p; q != ctx->trees; q = q->next, n = 31) {
422 while (n--) {
423 audit_put_chunk(q->c[n]);
424 q->c[n] = NULL;
425 }
426 }
427 while (n-- > ctx->tree_count) {
428 audit_put_chunk(q->c[n]);
429 q->c[n] = NULL;
430 }
431 ctx->trees = p;
432 ctx->tree_count = count;
433#endif
434}
435
436static void free_tree_refs(struct audit_context *ctx)
437{
438 struct audit_tree_refs *p, *q;
439 for (p = ctx->first_trees; p; p = q) {
440 q = p->next;
441 kfree(p);
442 }
443}
444
445static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
446{
447#ifdef CONFIG_AUDIT_TREE
448 struct audit_tree_refs *p;
449 int n;
450 if (!tree)
451 return 0;
452 /* full ones */
453 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
454 for (n = 0; n < 31; n++)
455 if (audit_tree_match(p->c[n], tree))
456 return 1;
457 }
458 /* partial */
459 if (p) {
460 for (n = ctx->tree_count; n < 31; n++)
461 if (audit_tree_match(p->c[n], tree))
462 return 1;
463 }
464#endif
465 return 0;
466}
467
ca57ec0f
EB
468static int audit_compare_uid(kuid_t uid,
469 struct audit_names *name,
470 struct audit_field *f,
471 struct audit_context *ctx)
b34b0393
EP
472{
473 struct audit_names *n;
b34b0393 474 int rc;
ca57ec0f 475
b34b0393 476 if (name) {
ca57ec0f 477 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
478 if (rc)
479 return rc;
480 }
ca57ec0f 481
b34b0393
EP
482 if (ctx) {
483 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
484 rc = audit_uid_comparator(uid, f->op, n->uid);
485 if (rc)
486 return rc;
487 }
488 }
489 return 0;
490}
b34b0393 491
ca57ec0f
EB
492static int audit_compare_gid(kgid_t gid,
493 struct audit_names *name,
494 struct audit_field *f,
495 struct audit_context *ctx)
496{
497 struct audit_names *n;
498 int rc;
499
500 if (name) {
501 rc = audit_gid_comparator(gid, f->op, name->gid);
502 if (rc)
503 return rc;
504 }
505
506 if (ctx) {
507 list_for_each_entry(n, &ctx->names_list, list) {
508 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
509 if (rc)
510 return rc;
511 }
512 }
513 return 0;
514}
515
02d86a56
EP
516static int audit_field_compare(struct task_struct *tsk,
517 const struct cred *cred,
518 struct audit_field *f,
519 struct audit_context *ctx,
520 struct audit_names *name)
521{
02d86a56 522 switch (f->val) {
4a6633ed 523 /* process to file object comparisons */
02d86a56 524 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 525 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 526 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 527 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 528 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 529 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 530 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 531 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 532 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 533 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 534 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 535 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 536 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 537 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 538 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 539 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 540 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 541 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
542 /* uid comparisons */
543 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 544 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 545 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 546 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 547 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 548 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 549 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 550 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
551 /* auid comparisons */
552 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 553 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 554 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 555 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 556 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 557 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
558 /* euid comparisons */
559 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 560 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 561 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 562 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
563 /* suid comparisons */
564 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 565 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
566 /* gid comparisons */
567 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 568 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 569 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 570 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 571 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 572 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
573 /* egid comparisons */
574 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 575 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 576 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 577 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
578 /* sgid comparison */
579 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 580 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
581 default:
582 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
583 return 0;
584 }
585 return 0;
586}
587
f368c07d 588/* Determine if any context name data matches a rule's watch data */
1da177e4 589/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
590 * otherwise.
591 *
592 * If task_creation is true, this is an explicit indication that we are
593 * filtering a task rule at task creation time. This and tsk == current are
594 * the only situations where tsk->cred may be accessed without an rcu read lock.
595 */
1da177e4 596static int audit_filter_rules(struct task_struct *tsk,
93315ed6 597 struct audit_krule *rule,
1da177e4 598 struct audit_context *ctx,
f368c07d 599 struct audit_names *name,
f5629883
TJ
600 enum audit_state *state,
601 bool task_creation)
1da177e4 602{
f5629883 603 const struct cred *cred;
5195d8e2 604 int i, need_sid = 1;
3dc7e315
DG
605 u32 sid;
606
f5629883
TJ
607 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
608
1da177e4 609 for (i = 0; i < rule->field_count; i++) {
93315ed6 610 struct audit_field *f = &rule->fields[i];
5195d8e2 611 struct audit_names *n;
1da177e4
LT
612 int result = 0;
613
93315ed6 614 switch (f->type) {
1da177e4 615 case AUDIT_PID:
93315ed6 616 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 617 break;
3c66251e 618 case AUDIT_PPID:
419c58f1
AV
619 if (ctx) {
620 if (!ctx->ppid)
621 ctx->ppid = sys_getppid();
3c66251e 622 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 623 }
3c66251e 624 break;
1da177e4 625 case AUDIT_UID:
ca57ec0f 626 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
627 break;
628 case AUDIT_EUID:
ca57ec0f 629 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
630 break;
631 case AUDIT_SUID:
ca57ec0f 632 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
633 break;
634 case AUDIT_FSUID:
ca57ec0f 635 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
636 break;
637 case AUDIT_GID:
ca57ec0f 638 result = audit_gid_comparator(cred->gid, f->op, f->gid);
1da177e4
LT
639 break;
640 case AUDIT_EGID:
ca57ec0f 641 result = audit_gid_comparator(cred->egid, f->op, f->gid);
1da177e4
LT
642 break;
643 case AUDIT_SGID:
ca57ec0f 644 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
645 break;
646 case AUDIT_FSGID:
ca57ec0f 647 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
648 break;
649 case AUDIT_PERS:
93315ed6 650 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 651 break;
2fd6f58b 652 case AUDIT_ARCH:
9f8dbe9c 653 if (ctx)
93315ed6 654 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 655 break;
1da177e4
LT
656
657 case AUDIT_EXIT:
658 if (ctx && ctx->return_valid)
93315ed6 659 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
660 break;
661 case AUDIT_SUCCESS:
b01f2cc1 662 if (ctx && ctx->return_valid) {
93315ed6
AG
663 if (f->val)
664 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 665 else
93315ed6 666 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 667 }
1da177e4
LT
668 break;
669 case AUDIT_DEVMAJOR:
16c174bd
EP
670 if (name) {
671 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
672 audit_comparator(MAJOR(name->rdev), f->op, f->val))
673 ++result;
674 } else if (ctx) {
5195d8e2 675 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
676 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
677 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
678 ++result;
679 break;
680 }
681 }
682 }
683 break;
684 case AUDIT_DEVMINOR:
16c174bd
EP
685 if (name) {
686 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
687 audit_comparator(MINOR(name->rdev), f->op, f->val))
688 ++result;
689 } else if (ctx) {
5195d8e2 690 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
691 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
692 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
693 ++result;
694 break;
695 }
696 }
697 }
698 break;
699 case AUDIT_INODE:
f368c07d 700 if (name)
9c937dcc 701 result = (name->ino == f->val);
f368c07d 702 else if (ctx) {
5195d8e2
EP
703 list_for_each_entry(n, &ctx->names_list, list) {
704 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
705 ++result;
706 break;
707 }
708 }
709 }
710 break;
efaffd6e
EP
711 case AUDIT_OBJ_UID:
712 if (name) {
ca57ec0f 713 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
714 } else if (ctx) {
715 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 716 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
717 ++result;
718 break;
719 }
720 }
721 }
722 break;
54d3218b
EP
723 case AUDIT_OBJ_GID:
724 if (name) {
ca57ec0f 725 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
726 } else if (ctx) {
727 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 728 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
729 ++result;
730 break;
731 }
732 }
733 }
734 break;
f368c07d 735 case AUDIT_WATCH:
ae7b8f41
EP
736 if (name)
737 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 738 break;
74c3cbe3
AV
739 case AUDIT_DIR:
740 if (ctx)
741 result = match_tree_refs(ctx, rule->tree);
742 break;
1da177e4
LT
743 case AUDIT_LOGINUID:
744 result = 0;
745 if (ctx)
ca57ec0f 746 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 747 break;
3a6b9f85
DG
748 case AUDIT_SUBJ_USER:
749 case AUDIT_SUBJ_ROLE:
750 case AUDIT_SUBJ_TYPE:
751 case AUDIT_SUBJ_SEN:
752 case AUDIT_SUBJ_CLR:
3dc7e315
DG
753 /* NOTE: this may return negative values indicating
754 a temporary error. We simply treat this as a
755 match for now to avoid losing information that
756 may be wanted. An error message will also be
757 logged upon error */
04305e4a 758 if (f->lsm_rule) {
2ad312d2 759 if (need_sid) {
2a862b32 760 security_task_getsecid(tsk, &sid);
2ad312d2
SG
761 need_sid = 0;
762 }
d7a96f3a 763 result = security_audit_rule_match(sid, f->type,
3dc7e315 764 f->op,
04305e4a 765 f->lsm_rule,
3dc7e315 766 ctx);
2ad312d2 767 }
3dc7e315 768 break;
6e5a2d1d
DG
769 case AUDIT_OBJ_USER:
770 case AUDIT_OBJ_ROLE:
771 case AUDIT_OBJ_TYPE:
772 case AUDIT_OBJ_LEV_LOW:
773 case AUDIT_OBJ_LEV_HIGH:
774 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
775 also applies here */
04305e4a 776 if (f->lsm_rule) {
6e5a2d1d
DG
777 /* Find files that match */
778 if (name) {
d7a96f3a 779 result = security_audit_rule_match(
6e5a2d1d 780 name->osid, f->type, f->op,
04305e4a 781 f->lsm_rule, ctx);
6e5a2d1d 782 } else if (ctx) {
5195d8e2
EP
783 list_for_each_entry(n, &ctx->names_list, list) {
784 if (security_audit_rule_match(n->osid, f->type,
785 f->op, f->lsm_rule,
786 ctx)) {
6e5a2d1d
DG
787 ++result;
788 break;
789 }
790 }
791 }
792 /* Find ipc objects that match */
a33e6751
AV
793 if (!ctx || ctx->type != AUDIT_IPC)
794 break;
795 if (security_audit_rule_match(ctx->ipc.osid,
796 f->type, f->op,
797 f->lsm_rule, ctx))
798 ++result;
6e5a2d1d
DG
799 }
800 break;
1da177e4
LT
801 case AUDIT_ARG0:
802 case AUDIT_ARG1:
803 case AUDIT_ARG2:
804 case AUDIT_ARG3:
805 if (ctx)
93315ed6 806 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 807 break;
5adc8a6a
AG
808 case AUDIT_FILTERKEY:
809 /* ignore this field for filtering */
810 result = 1;
811 break;
55669bfa
AV
812 case AUDIT_PERM:
813 result = audit_match_perm(ctx, f->val);
814 break;
8b67dca9
AV
815 case AUDIT_FILETYPE:
816 result = audit_match_filetype(ctx, f->val);
817 break;
02d86a56
EP
818 case AUDIT_FIELD_COMPARE:
819 result = audit_field_compare(tsk, cred, f, ctx, name);
820 break;
1da177e4 821 }
f5629883 822 if (!result)
1da177e4
LT
823 return 0;
824 }
0590b933
AV
825
826 if (ctx) {
827 if (rule->prio <= ctx->prio)
828 return 0;
829 if (rule->filterkey) {
830 kfree(ctx->filterkey);
831 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
832 }
833 ctx->prio = rule->prio;
834 }
1da177e4
LT
835 switch (rule->action) {
836 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
837 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
838 }
839 return 1;
840}
841
842/* At process creation time, we can determine if system-call auditing is
843 * completely disabled for this task. Since we only have the task
844 * structure at this point, we can only check uid and gid.
845 */
e048e02c 846static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
847{
848 struct audit_entry *e;
849 enum audit_state state;
850
851 rcu_read_lock();
0f45aa18 852 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
853 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
854 &state, true)) {
e048e02c
AV
855 if (state == AUDIT_RECORD_CONTEXT)
856 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
857 rcu_read_unlock();
858 return state;
859 }
860 }
861 rcu_read_unlock();
862 return AUDIT_BUILD_CONTEXT;
863}
864
865/* At syscall entry and exit time, this filter is called if the
866 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 867 * also not high enough that we already know we have to write an audit
b0dd25a8 868 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
869 */
870static enum audit_state audit_filter_syscall(struct task_struct *tsk,
871 struct audit_context *ctx,
872 struct list_head *list)
873{
874 struct audit_entry *e;
c3896495 875 enum audit_state state;
1da177e4 876
351bb722 877 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
878 return AUDIT_DISABLED;
879
1da177e4 880 rcu_read_lock();
c3896495 881 if (!list_empty(list)) {
b63862f4
DK
882 int word = AUDIT_WORD(ctx->major);
883 int bit = AUDIT_BIT(ctx->major);
884
885 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
886 if ((e->rule.mask[word] & bit) == bit &&
887 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 888 &state, false)) {
f368c07d 889 rcu_read_unlock();
0590b933 890 ctx->current_state = state;
f368c07d
AG
891 return state;
892 }
893 }
894 }
895 rcu_read_unlock();
896 return AUDIT_BUILD_CONTEXT;
897}
898
5195d8e2
EP
899/*
900 * Given an audit_name check the inode hash table to see if they match.
901 * Called holding the rcu read lock to protect the use of audit_inode_hash
902 */
903static int audit_filter_inode_name(struct task_struct *tsk,
904 struct audit_names *n,
905 struct audit_context *ctx) {
906 int word, bit;
907 int h = audit_hash_ino((u32)n->ino);
908 struct list_head *list = &audit_inode_hash[h];
909 struct audit_entry *e;
910 enum audit_state state;
911
912 word = AUDIT_WORD(ctx->major);
913 bit = AUDIT_BIT(ctx->major);
914
915 if (list_empty(list))
916 return 0;
917
918 list_for_each_entry_rcu(e, list, list) {
919 if ((e->rule.mask[word] & bit) == bit &&
920 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
921 ctx->current_state = state;
922 return 1;
923 }
924 }
925
926 return 0;
927}
928
929/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 930 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 931 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
932 * Regarding audit_state, same rules apply as for audit_filter_syscall().
933 */
0590b933 934void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 935{
5195d8e2 936 struct audit_names *n;
f368c07d
AG
937
938 if (audit_pid && tsk->tgid == audit_pid)
0590b933 939 return;
f368c07d
AG
940
941 rcu_read_lock();
f368c07d 942
5195d8e2
EP
943 list_for_each_entry(n, &ctx->names_list, list) {
944 if (audit_filter_inode_name(tsk, n, ctx))
945 break;
0f45aa18
DW
946 }
947 rcu_read_unlock();
0f45aa18
DW
948}
949
1da177e4
LT
950static inline struct audit_context *audit_get_context(struct task_struct *tsk,
951 int return_valid,
6d208da8 952 long return_code)
1da177e4
LT
953{
954 struct audit_context *context = tsk->audit_context;
955
56179a6e 956 if (!context)
1da177e4
LT
957 return NULL;
958 context->return_valid = return_valid;
f701b75e
EP
959
960 /*
961 * we need to fix up the return code in the audit logs if the actual
962 * return codes are later going to be fixed up by the arch specific
963 * signal handlers
964 *
965 * This is actually a test for:
966 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
967 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
968 *
969 * but is faster than a bunch of ||
970 */
971 if (unlikely(return_code <= -ERESTARTSYS) &&
972 (return_code >= -ERESTART_RESTARTBLOCK) &&
973 (return_code != -ENOIOCTLCMD))
974 context->return_code = -EINTR;
975 else
976 context->return_code = return_code;
1da177e4 977
0590b933
AV
978 if (context->in_syscall && !context->dummy) {
979 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
980 audit_filter_inodes(tsk, context);
1da177e4
LT
981 }
982
1da177e4
LT
983 tsk->audit_context = NULL;
984 return context;
985}
986
987static inline void audit_free_names(struct audit_context *context)
988{
5195d8e2 989 struct audit_names *n, *next;
1da177e4
LT
990
991#if AUDIT_DEBUG == 2
0590b933 992 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 993 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
994 " name_count=%d put_count=%d"
995 " ino_count=%d [NOT freeing]\n",
73241ccc 996 __FILE__, __LINE__,
1da177e4
LT
997 context->serial, context->major, context->in_syscall,
998 context->name_count, context->put_count,
999 context->ino_count);
5195d8e2 1000 list_for_each_entry(n, &context->names_list, list) {
1da177e4 1001 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 1002 n->name, n->name ?: "(null)");
8c8570fb 1003 }
1da177e4
LT
1004 dump_stack();
1005 return;
1006 }
1007#endif
1008#if AUDIT_DEBUG
1009 context->put_count = 0;
1010 context->ino_count = 0;
1011#endif
1012
5195d8e2
EP
1013 list_for_each_entry_safe(n, next, &context->names_list, list) {
1014 list_del(&n->list);
1015 if (n->name && n->name_put)
1016 __putname(n->name);
1017 if (n->should_free)
1018 kfree(n);
8c8570fb 1019 }
1da177e4 1020 context->name_count = 0;
44707fdf
JB
1021 path_put(&context->pwd);
1022 context->pwd.dentry = NULL;
1023 context->pwd.mnt = NULL;
1da177e4
LT
1024}
1025
1026static inline void audit_free_aux(struct audit_context *context)
1027{
1028 struct audit_aux_data *aux;
1029
1030 while ((aux = context->aux)) {
1031 context->aux = aux->next;
1032 kfree(aux);
1033 }
e54dc243
AG
1034 while ((aux = context->aux_pids)) {
1035 context->aux_pids = aux->next;
1036 kfree(aux);
1037 }
1da177e4
LT
1038}
1039
1040static inline void audit_zero_context(struct audit_context *context,
1041 enum audit_state state)
1042{
1da177e4
LT
1043 memset(context, 0, sizeof(*context));
1044 context->state = state;
0590b933 1045 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
1046}
1047
1048static inline struct audit_context *audit_alloc_context(enum audit_state state)
1049{
1050 struct audit_context *context;
1051
1052 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1053 return NULL;
1054 audit_zero_context(context, state);
916d7576 1055 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1056 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
1057 return context;
1058}
1059
b0dd25a8
RD
1060/**
1061 * audit_alloc - allocate an audit context block for a task
1062 * @tsk: task
1063 *
1064 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1065 * if necessary. Doing so turns on system call auditing for the
1066 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1067 * needed.
1068 */
1da177e4
LT
1069int audit_alloc(struct task_struct *tsk)
1070{
1071 struct audit_context *context;
1072 enum audit_state state;
e048e02c 1073 char *key = NULL;
1da177e4 1074
b593d384 1075 if (likely(!audit_ever_enabled))
1da177e4
LT
1076 return 0; /* Return if not auditing. */
1077
e048e02c 1078 state = audit_filter_task(tsk, &key);
56179a6e 1079 if (state == AUDIT_DISABLED)
1da177e4
LT
1080 return 0;
1081
1082 if (!(context = audit_alloc_context(state))) {
e048e02c 1083 kfree(key);
1da177e4
LT
1084 audit_log_lost("out of memory in audit_alloc");
1085 return -ENOMEM;
1086 }
e048e02c 1087 context->filterkey = key;
1da177e4 1088
1da177e4
LT
1089 tsk->audit_context = context;
1090 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1091 return 0;
1092}
1093
1094static inline void audit_free_context(struct audit_context *context)
1095{
1096 struct audit_context *previous;
1097 int count = 0;
1098
1099 do {
1100 previous = context->previous;
1101 if (previous || (count && count < 10)) {
1102 ++count;
1103 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1104 " freeing multiple contexts (%d)\n",
1105 context->serial, context->major,
1106 context->name_count, count);
1107 }
1108 audit_free_names(context);
74c3cbe3
AV
1109 unroll_tree_refs(context, NULL, 0);
1110 free_tree_refs(context);
1da177e4 1111 audit_free_aux(context);
5adc8a6a 1112 kfree(context->filterkey);
4f6b434f 1113 kfree(context->sockaddr);
1da177e4
LT
1114 kfree(context);
1115 context = previous;
1116 } while (context);
1117 if (count >= 10)
1118 printk(KERN_ERR "audit: freed %d contexts\n", count);
1119}
1120
161a09e7 1121void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1122{
1123 char *ctx = NULL;
c4823bce
AV
1124 unsigned len;
1125 int error;
1126 u32 sid;
1127
2a862b32 1128 security_task_getsecid(current, &sid);
c4823bce
AV
1129 if (!sid)
1130 return;
8c8570fb 1131
2a862b32 1132 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1133 if (error) {
1134 if (error != -EINVAL)
8c8570fb
DK
1135 goto error_path;
1136 return;
1137 }
1138
8c8570fb 1139 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1140 security_release_secctx(ctx, len);
7306a0b9 1141 return;
8c8570fb
DK
1142
1143error_path:
7306a0b9 1144 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1145 return;
1146}
1147
161a09e7
JL
1148EXPORT_SYMBOL(audit_log_task_context);
1149
e23eb920 1150void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1151{
e23eb920 1152 const struct cred *cred;
45d9bb0e
AV
1153 char name[sizeof(tsk->comm)];
1154 struct mm_struct *mm = tsk->mm;
e23eb920
PM
1155 char *tty;
1156
1157 if (!ab)
1158 return;
219f0817 1159
e495149b 1160 /* tsk == current */
e23eb920
PM
1161 cred = current_cred();
1162
1163 spin_lock_irq(&tsk->sighand->siglock);
1164 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1165 tty = tsk->signal->tty->name;
1166 else
1167 tty = "(none)";
1168 spin_unlock_irq(&tsk->sighand->siglock);
1169
1170
1171 audit_log_format(ab,
1172 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1173 " euid=%u suid=%u fsuid=%u"
1174 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1175 sys_getppid(),
1176 tsk->pid,
88265322
LT
1177 from_kuid(&init_user_ns, tsk->loginuid),
1178 from_kuid(&init_user_ns, cred->uid),
1179 from_kgid(&init_user_ns, cred->gid),
1180 from_kuid(&init_user_ns, cred->euid),
1181 from_kuid(&init_user_ns, cred->suid),
1182 from_kuid(&init_user_ns, cred->fsuid),
1183 from_kgid(&init_user_ns, cred->egid),
1184 from_kgid(&init_user_ns, cred->sgid),
1185 from_kgid(&init_user_ns, cred->fsgid),
e23eb920 1186 tsk->sessionid, tty);
e495149b 1187
45d9bb0e 1188 get_task_comm(name, tsk);
99e45eea
DW
1189 audit_log_format(ab, " comm=");
1190 audit_log_untrustedstring(ab, name);
219f0817 1191
e495149b
AV
1192 if (mm) {
1193 down_read(&mm->mmap_sem);
2dd8ad81
KK
1194 if (mm->exe_file)
1195 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
e495149b 1196 up_read(&mm->mmap_sem);
219f0817 1197 }
e495149b 1198 audit_log_task_context(ab);
219f0817
SS
1199}
1200
e23eb920
PM
1201EXPORT_SYMBOL(audit_log_task_info);
1202
e54dc243 1203static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 1204 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 1205 u32 sid, char *comm)
e54dc243
AG
1206{
1207 struct audit_buffer *ab;
2a862b32 1208 char *ctx = NULL;
e54dc243
AG
1209 u32 len;
1210 int rc = 0;
1211
1212 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1213 if (!ab)
6246ccab 1214 return rc;
e54dc243 1215
e1760bd5
EB
1216 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1217 from_kuid(&init_user_ns, auid),
cca080d9 1218 from_kuid(&init_user_ns, uid), sessionid);
2a862b32 1219 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1220 audit_log_format(ab, " obj=(none)");
e54dc243 1221 rc = 1;
2a862b32
AD
1222 } else {
1223 audit_log_format(ab, " obj=%s", ctx);
1224 security_release_secctx(ctx, len);
1225 }
c2a7780e
EP
1226 audit_log_format(ab, " ocomm=");
1227 audit_log_untrustedstring(ab, comm);
e54dc243 1228 audit_log_end(ab);
e54dc243
AG
1229
1230 return rc;
1231}
1232
de6bbd1d
EP
1233/*
1234 * to_send and len_sent accounting are very loose estimates. We aren't
1235 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1236 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1237 *
1238 * why snprintf? an int is up to 12 digits long. if we just assumed when
1239 * logging that a[%d]= was going to be 16 characters long we would be wasting
1240 * space in every audit message. In one 7500 byte message we can log up to
1241 * about 1000 min size arguments. That comes down to about 50% waste of space
1242 * if we didn't do the snprintf to find out how long arg_num_len was.
1243 */
1244static int audit_log_single_execve_arg(struct audit_context *context,
1245 struct audit_buffer **ab,
1246 int arg_num,
1247 size_t *len_sent,
1248 const char __user *p,
1249 char *buf)
bdf4c48a 1250{
de6bbd1d
EP
1251 char arg_num_len_buf[12];
1252 const char __user *tmp_p = p;
b87ce6e4
EP
1253 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1254 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1255 size_t len, len_left, to_send;
1256 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1257 unsigned int i, has_cntl = 0, too_long = 0;
1258 int ret;
1259
1260 /* strnlen_user includes the null we don't want to send */
1261 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1262
de6bbd1d
EP
1263 /*
1264 * We just created this mm, if we can't find the strings
1265 * we just copied into it something is _very_ wrong. Similar
1266 * for strings that are too long, we should not have created
1267 * any.
1268 */
b0abcfc1 1269 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1270 WARN_ON(1);
1271 send_sig(SIGKILL, current, 0);
b0abcfc1 1272 return -1;
de6bbd1d 1273 }
040b3a2d 1274
de6bbd1d
EP
1275 /* walk the whole argument looking for non-ascii chars */
1276 do {
1277 if (len_left > MAX_EXECVE_AUDIT_LEN)
1278 to_send = MAX_EXECVE_AUDIT_LEN;
1279 else
1280 to_send = len_left;
1281 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1282 /*
de6bbd1d
EP
1283 * There is no reason for this copy to be short. We just
1284 * copied them here, and the mm hasn't been exposed to user-
1285 * space yet.
bdf4c48a 1286 */
de6bbd1d 1287 if (ret) {
bdf4c48a
PZ
1288 WARN_ON(1);
1289 send_sig(SIGKILL, current, 0);
b0abcfc1 1290 return -1;
bdf4c48a 1291 }
de6bbd1d
EP
1292 buf[to_send] = '\0';
1293 has_cntl = audit_string_contains_control(buf, to_send);
1294 if (has_cntl) {
1295 /*
1296 * hex messages get logged as 2 bytes, so we can only
1297 * send half as much in each message
1298 */
1299 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1300 break;
1301 }
de6bbd1d
EP
1302 len_left -= to_send;
1303 tmp_p += to_send;
1304 } while (len_left > 0);
1305
1306 len_left = len;
1307
1308 if (len > max_execve_audit_len)
1309 too_long = 1;
1310
1311 /* rewalk the argument actually logging the message */
1312 for (i = 0; len_left > 0; i++) {
1313 int room_left;
1314
1315 if (len_left > max_execve_audit_len)
1316 to_send = max_execve_audit_len;
1317 else
1318 to_send = len_left;
1319
1320 /* do we have space left to send this argument in this ab? */
1321 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1322 if (has_cntl)
1323 room_left -= (to_send * 2);
1324 else
1325 room_left -= to_send;
1326 if (room_left < 0) {
1327 *len_sent = 0;
1328 audit_log_end(*ab);
1329 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1330 if (!*ab)
1331 return 0;
1332 }
bdf4c48a 1333
bdf4c48a 1334 /*
de6bbd1d
EP
1335 * first record needs to say how long the original string was
1336 * so we can be sure nothing was lost.
1337 */
1338 if ((i == 0) && (too_long))
ca96a895 1339 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1340 has_cntl ? 2*len : len);
1341
1342 /*
1343 * normally arguments are small enough to fit and we already
1344 * filled buf above when we checked for control characters
1345 * so don't bother with another copy_from_user
bdf4c48a 1346 */
de6bbd1d
EP
1347 if (len >= max_execve_audit_len)
1348 ret = copy_from_user(buf, p, to_send);
1349 else
1350 ret = 0;
040b3a2d 1351 if (ret) {
bdf4c48a
PZ
1352 WARN_ON(1);
1353 send_sig(SIGKILL, current, 0);
b0abcfc1 1354 return -1;
bdf4c48a 1355 }
de6bbd1d
EP
1356 buf[to_send] = '\0';
1357
1358 /* actually log it */
ca96a895 1359 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1360 if (too_long)
1361 audit_log_format(*ab, "[%d]", i);
1362 audit_log_format(*ab, "=");
1363 if (has_cntl)
b556f8ad 1364 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1365 else
9d960985 1366 audit_log_string(*ab, buf);
de6bbd1d
EP
1367
1368 p += to_send;
1369 len_left -= to_send;
1370 *len_sent += arg_num_len;
1371 if (has_cntl)
1372 *len_sent += to_send * 2;
1373 else
1374 *len_sent += to_send;
1375 }
1376 /* include the null we didn't log */
1377 return len + 1;
1378}
1379
1380static void audit_log_execve_info(struct audit_context *context,
1381 struct audit_buffer **ab,
1382 struct audit_aux_data_execve *axi)
1383{
5afb8a3f
XW
1384 int i, len;
1385 size_t len_sent = 0;
de6bbd1d
EP
1386 const char __user *p;
1387 char *buf;
bdf4c48a 1388
de6bbd1d
EP
1389 if (axi->mm != current->mm)
1390 return; /* execve failed, no additional info */
1391
1392 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1393
ca96a895 1394 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1395
1396 /*
1397 * we need some kernel buffer to hold the userspace args. Just
1398 * allocate one big one rather than allocating one of the right size
1399 * for every single argument inside audit_log_single_execve_arg()
1400 * should be <8k allocation so should be pretty safe.
1401 */
1402 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1403 if (!buf) {
1404 audit_panic("out of memory for argv string\n");
1405 return;
bdf4c48a 1406 }
de6bbd1d
EP
1407
1408 for (i = 0; i < axi->argc; i++) {
1409 len = audit_log_single_execve_arg(context, ab, i,
1410 &len_sent, p, buf);
1411 if (len <= 0)
1412 break;
1413 p += len;
1414 }
1415 kfree(buf);
bdf4c48a
PZ
1416}
1417
851f7ff5
EP
1418static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1419{
1420 int i;
1421
1422 audit_log_format(ab, " %s=", prefix);
1423 CAP_FOR_EACH_U32(i) {
1424 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1425 }
1426}
1427
1428static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1429{
1430 kernel_cap_t *perm = &name->fcap.permitted;
1431 kernel_cap_t *inh = &name->fcap.inheritable;
1432 int log = 0;
1433
1434 if (!cap_isclear(*perm)) {
1435 audit_log_cap(ab, "cap_fp", perm);
1436 log = 1;
1437 }
1438 if (!cap_isclear(*inh)) {
1439 audit_log_cap(ab, "cap_fi", inh);
1440 log = 1;
1441 }
1442
1443 if (log)
1444 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1445}
1446
a33e6751 1447static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1448{
1449 struct audit_buffer *ab;
1450 int i;
1451
1452 ab = audit_log_start(context, GFP_KERNEL, context->type);
1453 if (!ab)
1454 return;
1455
1456 switch (context->type) {
1457 case AUDIT_SOCKETCALL: {
1458 int nargs = context->socketcall.nargs;
1459 audit_log_format(ab, "nargs=%d", nargs);
1460 for (i = 0; i < nargs; i++)
1461 audit_log_format(ab, " a%d=%lx", i,
1462 context->socketcall.args[i]);
1463 break; }
a33e6751
AV
1464 case AUDIT_IPC: {
1465 u32 osid = context->ipc.osid;
1466
2570ebbd 1467 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1468 from_kuid(&init_user_ns, context->ipc.uid),
1469 from_kgid(&init_user_ns, context->ipc.gid),
1470 context->ipc.mode);
a33e6751
AV
1471 if (osid) {
1472 char *ctx = NULL;
1473 u32 len;
1474 if (security_secid_to_secctx(osid, &ctx, &len)) {
1475 audit_log_format(ab, " osid=%u", osid);
1476 *call_panic = 1;
1477 } else {
1478 audit_log_format(ab, " obj=%s", ctx);
1479 security_release_secctx(ctx, len);
1480 }
1481 }
e816f370
AV
1482 if (context->ipc.has_perm) {
1483 audit_log_end(ab);
1484 ab = audit_log_start(context, GFP_KERNEL,
1485 AUDIT_IPC_SET_PERM);
1486 audit_log_format(ab,
2570ebbd 1487 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1488 context->ipc.qbytes,
1489 context->ipc.perm_uid,
1490 context->ipc.perm_gid,
1491 context->ipc.perm_mode);
1492 if (!ab)
1493 return;
1494 }
a33e6751 1495 break; }
564f6993
AV
1496 case AUDIT_MQ_OPEN: {
1497 audit_log_format(ab,
df0a4283 1498 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1499 "mq_msgsize=%ld mq_curmsgs=%ld",
1500 context->mq_open.oflag, context->mq_open.mode,
1501 context->mq_open.attr.mq_flags,
1502 context->mq_open.attr.mq_maxmsg,
1503 context->mq_open.attr.mq_msgsize,
1504 context->mq_open.attr.mq_curmsgs);
1505 break; }
c32c8af4
AV
1506 case AUDIT_MQ_SENDRECV: {
1507 audit_log_format(ab,
1508 "mqdes=%d msg_len=%zd msg_prio=%u "
1509 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1510 context->mq_sendrecv.mqdes,
1511 context->mq_sendrecv.msg_len,
1512 context->mq_sendrecv.msg_prio,
1513 context->mq_sendrecv.abs_timeout.tv_sec,
1514 context->mq_sendrecv.abs_timeout.tv_nsec);
1515 break; }
20114f71
AV
1516 case AUDIT_MQ_NOTIFY: {
1517 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1518 context->mq_notify.mqdes,
1519 context->mq_notify.sigev_signo);
1520 break; }
7392906e
AV
1521 case AUDIT_MQ_GETSETATTR: {
1522 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1523 audit_log_format(ab,
1524 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1525 "mq_curmsgs=%ld ",
1526 context->mq_getsetattr.mqdes,
1527 attr->mq_flags, attr->mq_maxmsg,
1528 attr->mq_msgsize, attr->mq_curmsgs);
1529 break; }
57f71a0a
AV
1530 case AUDIT_CAPSET: {
1531 audit_log_format(ab, "pid=%d", context->capset.pid);
1532 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1533 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1534 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1535 break; }
120a795d
AV
1536 case AUDIT_MMAP: {
1537 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1538 context->mmap.flags);
1539 break; }
f3298dc4
AV
1540 }
1541 audit_log_end(ab);
1542}
1543
5195d8e2
EP
1544static void audit_log_name(struct audit_context *context, struct audit_names *n,
1545 int record_num, int *call_panic)
1546{
1547 struct audit_buffer *ab;
1548 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1549 if (!ab)
1550 return; /* audit_panic has been called */
1551
1552 audit_log_format(ab, "item=%d", record_num);
1553
1554 if (n->name) {
1555 switch (n->name_len) {
1556 case AUDIT_NAME_FULL:
1557 /* log the full path */
1558 audit_log_format(ab, " name=");
1559 audit_log_untrustedstring(ab, n->name);
1560 break;
1561 case 0:
1562 /* name was specified as a relative path and the
1563 * directory component is the cwd */
c158a35c 1564 audit_log_d_path(ab, " name=", &context->pwd);
5195d8e2
EP
1565 break;
1566 default:
1567 /* log the name's directory component */
1568 audit_log_format(ab, " name=");
1569 audit_log_n_untrustedstring(ab, n->name,
1570 n->name_len);
1571 }
1572 } else
1573 audit_log_format(ab, " name=(null)");
1574
1575 if (n->ino != (unsigned long)-1) {
1576 audit_log_format(ab, " inode=%lu"
1577 " dev=%02x:%02x mode=%#ho"
1578 " ouid=%u ogid=%u rdev=%02x:%02x",
1579 n->ino,
1580 MAJOR(n->dev),
1581 MINOR(n->dev),
1582 n->mode,
cca080d9
EB
1583 from_kuid(&init_user_ns, n->uid),
1584 from_kgid(&init_user_ns, n->gid),
5195d8e2
EP
1585 MAJOR(n->rdev),
1586 MINOR(n->rdev));
1587 }
1588 if (n->osid != 0) {
1589 char *ctx = NULL;
1590 u32 len;
1591 if (security_secid_to_secctx(
1592 n->osid, &ctx, &len)) {
1593 audit_log_format(ab, " osid=%u", n->osid);
1594 *call_panic = 2;
1595 } else {
1596 audit_log_format(ab, " obj=%s", ctx);
1597 security_release_secctx(ctx, len);
1598 }
1599 }
1600
1601 audit_log_fcaps(ab, n);
1602
1603 audit_log_end(ab);
1604}
1605
e495149b 1606static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1607{
9c7aa6aa 1608 int i, call_panic = 0;
1da177e4 1609 struct audit_buffer *ab;
7551ced3 1610 struct audit_aux_data *aux;
5195d8e2 1611 struct audit_names *n;
1da177e4 1612
e495149b 1613 /* tsk == current */
3f2792ff 1614 context->personality = tsk->personality;
e495149b
AV
1615
1616 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1617 if (!ab)
1618 return; /* audit_panic has been called */
bccf6ae0
DW
1619 audit_log_format(ab, "arch=%x syscall=%d",
1620 context->arch, context->major);
1da177e4
LT
1621 if (context->personality != PER_LINUX)
1622 audit_log_format(ab, " per=%lx", context->personality);
1623 if (context->return_valid)
9f8dbe9c 1624 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1625 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1626 context->return_code);
eb84a20e 1627
1da177e4 1628 audit_log_format(ab,
e23eb920
PM
1629 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1630 context->argv[0],
1631 context->argv[1],
1632 context->argv[2],
1633 context->argv[3],
1634 context->name_count);
eb84a20e 1635
e495149b 1636 audit_log_task_info(ab, tsk);
9d960985 1637 audit_log_key(ab, context->filterkey);
1da177e4 1638 audit_log_end(ab);
1da177e4 1639
7551ced3 1640 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1641
e495149b 1642 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1643 if (!ab)
1644 continue; /* audit_panic has been called */
1645
1da177e4 1646 switch (aux->type) {
20ca73bc 1647
473ae30b
AV
1648 case AUDIT_EXECVE: {
1649 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1650 audit_log_execve_info(context, &ab, axi);
473ae30b 1651 break; }
073115d6 1652
3fc689e9
EP
1653 case AUDIT_BPRM_FCAPS: {
1654 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1655 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1656 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1657 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1658 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1659 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1660 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1661 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1662 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1663 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1664 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1665 break; }
1666
1da177e4
LT
1667 }
1668 audit_log_end(ab);
1da177e4
LT
1669 }
1670
f3298dc4 1671 if (context->type)
a33e6751 1672 show_special(context, &call_panic);
f3298dc4 1673
157cf649
AV
1674 if (context->fds[0] >= 0) {
1675 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1676 if (ab) {
1677 audit_log_format(ab, "fd0=%d fd1=%d",
1678 context->fds[0], context->fds[1]);
1679 audit_log_end(ab);
1680 }
1681 }
1682
4f6b434f
AV
1683 if (context->sockaddr_len) {
1684 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1685 if (ab) {
1686 audit_log_format(ab, "saddr=");
1687 audit_log_n_hex(ab, (void *)context->sockaddr,
1688 context->sockaddr_len);
1689 audit_log_end(ab);
1690 }
1691 }
1692
e54dc243
AG
1693 for (aux = context->aux_pids; aux; aux = aux->next) {
1694 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1695
1696 for (i = 0; i < axs->pid_count; i++)
1697 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1698 axs->target_auid[i],
1699 axs->target_uid[i],
4746ec5b 1700 axs->target_sessionid[i],
c2a7780e
EP
1701 axs->target_sid[i],
1702 axs->target_comm[i]))
e54dc243 1703 call_panic = 1;
a5cb013d
AV
1704 }
1705
e54dc243
AG
1706 if (context->target_pid &&
1707 audit_log_pid_context(context, context->target_pid,
c2a7780e 1708 context->target_auid, context->target_uid,
4746ec5b 1709 context->target_sessionid,
c2a7780e 1710 context->target_sid, context->target_comm))
e54dc243
AG
1711 call_panic = 1;
1712
44707fdf 1713 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1714 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1715 if (ab) {
c158a35c 1716 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1717 audit_log_end(ab);
1718 }
1719 }
73241ccc 1720
5195d8e2
EP
1721 i = 0;
1722 list_for_each_entry(n, &context->names_list, list)
1723 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1724
1725 /* Send end of event record to help user space know we are finished */
1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1727 if (ab)
1728 audit_log_end(ab);
9c7aa6aa
SG
1729 if (call_panic)
1730 audit_panic("error converting sid to string");
1da177e4
LT
1731}
1732
b0dd25a8
RD
1733/**
1734 * audit_free - free a per-task audit context
1735 * @tsk: task whose audit context block to free
1736 *
fa84cb93 1737 * Called from copy_process and do_exit
b0dd25a8 1738 */
a4ff8dba 1739void __audit_free(struct task_struct *tsk)
1da177e4
LT
1740{
1741 struct audit_context *context;
1742
1da177e4 1743 context = audit_get_context(tsk, 0, 0);
56179a6e 1744 if (!context)
1da177e4
LT
1745 return;
1746
1747 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1748 * function (e.g., exit_group), then free context block.
1749 * We use GFP_ATOMIC here because we might be doing this
f5561964 1750 * in the context of the idle thread */
e495149b 1751 /* that can happen only if we are called from do_exit() */
0590b933 1752 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1753 audit_log_exit(context, tsk);
916d7576
AV
1754 if (!list_empty(&context->killed_trees))
1755 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1756
1757 audit_free_context(context);
1758}
1759
b0dd25a8
RD
1760/**
1761 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1762 * @arch: architecture type
1763 * @major: major syscall type (function)
1764 * @a1: additional syscall register 1
1765 * @a2: additional syscall register 2
1766 * @a3: additional syscall register 3
1767 * @a4: additional syscall register 4
1768 *
1769 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1770 * audit context was created when the task was created and the state or
1771 * filters demand the audit context be built. If the state from the
1772 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1773 * then the record will be written at syscall exit time (otherwise, it
1774 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1775 * be written).
1776 */
b05d8447 1777void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1778 unsigned long a1, unsigned long a2,
1779 unsigned long a3, unsigned long a4)
1780{
5411be59 1781 struct task_struct *tsk = current;
1da177e4
LT
1782 struct audit_context *context = tsk->audit_context;
1783 enum audit_state state;
1784
56179a6e 1785 if (!context)
86a1c34a 1786 return;
1da177e4 1787
b0dd25a8
RD
1788 /*
1789 * This happens only on certain architectures that make system
1da177e4
LT
1790 * calls in kernel_thread via the entry.S interface, instead of
1791 * with direct calls. (If you are porting to a new
1792 * architecture, hitting this condition can indicate that you
1793 * got the _exit/_leave calls backward in entry.S.)
1794 *
1795 * i386 no
1796 * x86_64 no
2ef9481e 1797 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1798 *
1799 * This also happens with vm86 emulation in a non-nested manner
1800 * (entries without exits), so this case must be caught.
1801 */
1802 if (context->in_syscall) {
1803 struct audit_context *newctx;
1804
1da177e4
LT
1805#if AUDIT_DEBUG
1806 printk(KERN_ERR
1807 "audit(:%d) pid=%d in syscall=%d;"
1808 " entering syscall=%d\n",
1809 context->serial, tsk->pid, context->major, major);
1810#endif
1811 newctx = audit_alloc_context(context->state);
1812 if (newctx) {
1813 newctx->previous = context;
1814 context = newctx;
1815 tsk->audit_context = newctx;
1816 } else {
1817 /* If we can't alloc a new context, the best we
1818 * can do is to leak memory (any pending putname
1819 * will be lost). The only other alternative is
1820 * to abandon auditing. */
1821 audit_zero_context(context, context->state);
1822 }
1823 }
1824 BUG_ON(context->in_syscall || context->name_count);
1825
1826 if (!audit_enabled)
1827 return;
1828
2fd6f58b 1829 context->arch = arch;
1da177e4
LT
1830 context->major = major;
1831 context->argv[0] = a1;
1832 context->argv[1] = a2;
1833 context->argv[2] = a3;
1834 context->argv[3] = a4;
1835
1836 state = context->state;
d51374ad 1837 context->dummy = !audit_n_rules;
0590b933
AV
1838 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1839 context->prio = 0;
0f45aa18 1840 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1841 }
56179a6e 1842 if (state == AUDIT_DISABLED)
1da177e4
LT
1843 return;
1844
ce625a80 1845 context->serial = 0;
1da177e4
LT
1846 context->ctime = CURRENT_TIME;
1847 context->in_syscall = 1;
0590b933 1848 context->current_state = state;
419c58f1 1849 context->ppid = 0;
1da177e4
LT
1850}
1851
b0dd25a8
RD
1852/**
1853 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1854 * @success: success value of the syscall
1855 * @return_code: return value of the syscall
b0dd25a8
RD
1856 *
1857 * Tear down after system call. If the audit context has been marked as
1da177e4 1858 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1859 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1860 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1861 * free the names stored from getname().
1862 */
d7e7528b 1863void __audit_syscall_exit(int success, long return_code)
1da177e4 1864{
5411be59 1865 struct task_struct *tsk = current;
1da177e4
LT
1866 struct audit_context *context;
1867
d7e7528b
EP
1868 if (success)
1869 success = AUDITSC_SUCCESS;
1870 else
1871 success = AUDITSC_FAILURE;
1da177e4 1872
d7e7528b 1873 context = audit_get_context(tsk, success, return_code);
56179a6e 1874 if (!context)
97e94c45 1875 return;
1da177e4 1876
0590b933 1877 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1878 audit_log_exit(context, tsk);
1da177e4
LT
1879
1880 context->in_syscall = 0;
0590b933 1881 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1882
916d7576
AV
1883 if (!list_empty(&context->killed_trees))
1884 audit_kill_trees(&context->killed_trees);
1885
1da177e4
LT
1886 if (context->previous) {
1887 struct audit_context *new_context = context->previous;
1888 context->previous = NULL;
1889 audit_free_context(context);
1890 tsk->audit_context = new_context;
1891 } else {
1892 audit_free_names(context);
74c3cbe3 1893 unroll_tree_refs(context, NULL, 0);
1da177e4 1894 audit_free_aux(context);
e54dc243
AG
1895 context->aux = NULL;
1896 context->aux_pids = NULL;
a5cb013d 1897 context->target_pid = 0;
e54dc243 1898 context->target_sid = 0;
4f6b434f 1899 context->sockaddr_len = 0;
f3298dc4 1900 context->type = 0;
157cf649 1901 context->fds[0] = -1;
e048e02c
AV
1902 if (context->state != AUDIT_RECORD_CONTEXT) {
1903 kfree(context->filterkey);
1904 context->filterkey = NULL;
1905 }
1da177e4
LT
1906 tsk->audit_context = context;
1907 }
1da177e4
LT
1908}
1909
74c3cbe3
AV
1910static inline void handle_one(const struct inode *inode)
1911{
1912#ifdef CONFIG_AUDIT_TREE
1913 struct audit_context *context;
1914 struct audit_tree_refs *p;
1915 struct audit_chunk *chunk;
1916 int count;
e61ce867 1917 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1918 return;
1919 context = current->audit_context;
1920 p = context->trees;
1921 count = context->tree_count;
1922 rcu_read_lock();
1923 chunk = audit_tree_lookup(inode);
1924 rcu_read_unlock();
1925 if (!chunk)
1926 return;
1927 if (likely(put_tree_ref(context, chunk)))
1928 return;
1929 if (unlikely(!grow_tree_refs(context))) {
436c405c 1930 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1931 audit_set_auditable(context);
1932 audit_put_chunk(chunk);
1933 unroll_tree_refs(context, p, count);
1934 return;
1935 }
1936 put_tree_ref(context, chunk);
1937#endif
1938}
1939
1940static void handle_path(const struct dentry *dentry)
1941{
1942#ifdef CONFIG_AUDIT_TREE
1943 struct audit_context *context;
1944 struct audit_tree_refs *p;
1945 const struct dentry *d, *parent;
1946 struct audit_chunk *drop;
1947 unsigned long seq;
1948 int count;
1949
1950 context = current->audit_context;
1951 p = context->trees;
1952 count = context->tree_count;
1953retry:
1954 drop = NULL;
1955 d = dentry;
1956 rcu_read_lock();
1957 seq = read_seqbegin(&rename_lock);
1958 for(;;) {
1959 struct inode *inode = d->d_inode;
e61ce867 1960 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1961 struct audit_chunk *chunk;
1962 chunk = audit_tree_lookup(inode);
1963 if (chunk) {
1964 if (unlikely(!put_tree_ref(context, chunk))) {
1965 drop = chunk;
1966 break;
1967 }
1968 }
1969 }
1970 parent = d->d_parent;
1971 if (parent == d)
1972 break;
1973 d = parent;
1974 }
1975 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1976 rcu_read_unlock();
1977 if (!drop) {
1978 /* just a race with rename */
1979 unroll_tree_refs(context, p, count);
1980 goto retry;
1981 }
1982 audit_put_chunk(drop);
1983 if (grow_tree_refs(context)) {
1984 /* OK, got more space */
1985 unroll_tree_refs(context, p, count);
1986 goto retry;
1987 }
1988 /* too bad */
1989 printk(KERN_WARNING
436c405c 1990 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1991 unroll_tree_refs(context, p, count);
1992 audit_set_auditable(context);
1993 return;
1994 }
1995 rcu_read_unlock();
1996#endif
1997}
1998
78e2e802
JL
1999static struct audit_names *audit_alloc_name(struct audit_context *context,
2000 unsigned char type)
5195d8e2
EP
2001{
2002 struct audit_names *aname;
2003
2004 if (context->name_count < AUDIT_NAMES) {
2005 aname = &context->preallocated_names[context->name_count];
2006 memset(aname, 0, sizeof(*aname));
2007 } else {
2008 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2009 if (!aname)
2010 return NULL;
2011 aname->should_free = true;
2012 }
2013
2014 aname->ino = (unsigned long)-1;
78e2e802 2015 aname->type = type;
5195d8e2
EP
2016 list_add_tail(&aname->list, &context->names_list);
2017
2018 context->name_count++;
2019#if AUDIT_DEBUG
2020 context->ino_count++;
2021#endif
2022 return aname;
2023}
2024
b0dd25a8
RD
2025/**
2026 * audit_getname - add a name to the list
2027 * @name: name to add
2028 *
2029 * Add a name to the list of audit names for this context.
2030 * Called from fs/namei.c:getname().
2031 */
d8945bb5 2032void __audit_getname(const char *name)
1da177e4
LT
2033{
2034 struct audit_context *context = current->audit_context;
5195d8e2 2035 struct audit_names *n;
1da177e4 2036
1da177e4
LT
2037 if (!context->in_syscall) {
2038#if AUDIT_DEBUG == 2
2039 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2040 __FILE__, __LINE__, context->serial, name);
2041 dump_stack();
2042#endif
2043 return;
2044 }
5195d8e2 2045
78e2e802 2046 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2047 if (!n)
2048 return;
2049
2050 n->name = name;
2051 n->name_len = AUDIT_NAME_FULL;
2052 n->name_put = true;
2053
f7ad3c6b
MS
2054 if (!context->pwd.dentry)
2055 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
2056}
2057
b0dd25a8
RD
2058/* audit_putname - intercept a putname request
2059 * @name: name to intercept and delay for putname
2060 *
2061 * If we have stored the name from getname in the audit context,
2062 * then we delay the putname until syscall exit.
2063 * Called from include/linux/fs.h:putname().
2064 */
1da177e4
LT
2065void audit_putname(const char *name)
2066{
2067 struct audit_context *context = current->audit_context;
2068
2069 BUG_ON(!context);
2070 if (!context->in_syscall) {
2071#if AUDIT_DEBUG == 2
2072 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2073 __FILE__, __LINE__, context->serial, name);
2074 if (context->name_count) {
5195d8e2 2075 struct audit_names *n;
1da177e4 2076 int i;
5195d8e2
EP
2077
2078 list_for_each_entry(n, &context->names_list, list)
1da177e4 2079 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
2080 n->name, n->name ?: "(null)");
2081 }
1da177e4
LT
2082#endif
2083 __putname(name);
2084 }
2085#if AUDIT_DEBUG
2086 else {
2087 ++context->put_count;
2088 if (context->put_count > context->name_count) {
2089 printk(KERN_ERR "%s:%d(:%d): major=%d"
2090 " in_syscall=%d putname(%p) name_count=%d"
2091 " put_count=%d\n",
2092 __FILE__, __LINE__,
2093 context->serial, context->major,
2094 context->in_syscall, name, context->name_count,
2095 context->put_count);
2096 dump_stack();
2097 }
2098 }
2099#endif
2100}
2101
851f7ff5
EP
2102static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2103{
2104 struct cpu_vfs_cap_data caps;
2105 int rc;
2106
851f7ff5
EP
2107 if (!dentry)
2108 return 0;
2109
2110 rc = get_vfs_caps_from_disk(dentry, &caps);
2111 if (rc)
2112 return rc;
2113
2114 name->fcap.permitted = caps.permitted;
2115 name->fcap.inheritable = caps.inheritable;
2116 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2117 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2118
2119 return 0;
2120}
2121
2122
3e2efce0 2123/* Copy inode data into an audit_names. */
851f7ff5
EP
2124static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2125 const struct inode *inode)
8c8570fb 2126{
3e2efce0
AG
2127 name->ino = inode->i_ino;
2128 name->dev = inode->i_sb->s_dev;
2129 name->mode = inode->i_mode;
2130 name->uid = inode->i_uid;
2131 name->gid = inode->i_gid;
2132 name->rdev = inode->i_rdev;
2a862b32 2133 security_inode_getsecid(inode, &name->osid);
851f7ff5 2134 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2135}
2136
b0dd25a8 2137/**
bfcec708 2138 * __audit_inode - store the inode and device from a lookup
b0dd25a8 2139 * @name: name being audited
481968f4 2140 * @dentry: dentry being audited
bfcec708 2141 * @parent: does this dentry represent the parent?
b0dd25a8 2142 */
bfcec708
JL
2143void __audit_inode(const char *name, const struct dentry *dentry,
2144 unsigned int parent)
1da177e4 2145{
1da177e4 2146 struct audit_context *context = current->audit_context;
74c3cbe3 2147 const struct inode *inode = dentry->d_inode;
5195d8e2 2148 struct audit_names *n;
1da177e4
LT
2149
2150 if (!context->in_syscall)
2151 return;
5195d8e2 2152
9cec9d68
JL
2153 if (!name)
2154 goto out_alloc;
2155
5195d8e2 2156 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708
JL
2157 /* does the name pointer match? */
2158 if (n->name != name)
2159 continue;
2160
2161 /* match the correct record type */
2162 if (parent) {
2163 if (n->type == AUDIT_TYPE_PARENT ||
2164 n->type == AUDIT_TYPE_UNKNOWN)
2165 goto out;
2166 } else {
2167 if (n->type != AUDIT_TYPE_PARENT)
2168 goto out;
2169 }
1da177e4 2170 }
5195d8e2 2171
9cec9d68 2172out_alloc:
bfcec708
JL
2173 /* unable to find the name from a previous getname(). Allocate a new
2174 * anonymous entry.
2175 */
78e2e802 2176 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
2177 if (!n)
2178 return;
2179out:
bfcec708
JL
2180 if (parent) {
2181 n->name_len = n->name ? parent_len(n->name) : AUDIT_NAME_FULL;
2182 n->type = AUDIT_TYPE_PARENT;
2183 } else {
2184 n->name_len = AUDIT_NAME_FULL;
2185 n->type = AUDIT_TYPE_NORMAL;
2186 }
74c3cbe3 2187 handle_path(dentry);
5195d8e2 2188 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2189}
2190
2191/**
c43a25ab 2192 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2193 * @parent: inode of dentry parent
c43a25ab 2194 * @dentry: dentry being audited
73241ccc
AG
2195 *
2196 * For syscalls that create or remove filesystem objects, audit_inode
2197 * can only collect information for the filesystem object's parent.
2198 * This call updates the audit context with the child's information.
2199 * Syscalls that create a new filesystem object must be hooked after
2200 * the object is created. Syscalls that remove a filesystem object
2201 * must be hooked prior, in order to capture the target inode during
2202 * unsuccessful attempts.
2203 */
c43a25ab
JL
2204void __audit_inode_child(const struct inode *parent,
2205 const struct dentry *dentry)
73241ccc 2206{
73241ccc 2207 struct audit_context *context = current->audit_context;
5712e88f 2208 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2209 const struct inode *inode = dentry->d_inode;
cccc6bba 2210 const char *dname = dentry->d_name.name;
5195d8e2 2211 struct audit_names *n;
73241ccc
AG
2212
2213 if (!context->in_syscall)
2214 return;
2215
74c3cbe3
AV
2216 if (inode)
2217 handle_one(inode);
73241ccc 2218
5712e88f 2219 /* parent is more likely, look for it first */
5195d8e2 2220 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2221 if (!n->name)
2222 continue;
2223
2224 if (n->ino == parent->i_ino &&
563a0d12 2225 !audit_compare_dname_path(dname, n->name)) {
5712e88f
AG
2226 found_parent = n->name;
2227 goto add_names;
f368c07d 2228 }
5712e88f 2229 }
73241ccc 2230
5712e88f 2231 /* no matching parent, look for matching child */
5195d8e2 2232 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2233 if (!n->name)
2234 continue;
2235
2236 /* strcmp() is the more likely scenario */
2237 if (!strcmp(dname, n->name) ||
563a0d12 2238 !audit_compare_dname_path(dname, n->name)) {
5712e88f 2239 if (inode)
1c2e51e8 2240 audit_copy_inode(n, dentry, inode);
5712e88f
AG
2241 else
2242 n->ino = (unsigned long)-1;
78e2e802 2243 n->type = AUDIT_TYPE_NORMAL;
5712e88f
AG
2244 found_child = n->name;
2245 goto add_names;
2246 }
ac9910ce 2247 }
5712e88f
AG
2248
2249add_names:
2250 if (!found_parent) {
78e2e802 2251 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2 2252 if (!n)
ac9910ce 2253 return;
5195d8e2 2254 audit_copy_inode(n, NULL, parent);
73d3ec5a 2255 }
5712e88f
AG
2256
2257 if (!found_child) {
78e2e802 2258 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2 2259 if (!n)
5712e88f 2260 return;
5712e88f
AG
2261
2262 /* Re-use the name belonging to the slot for a matching parent
2263 * directory. All names for this context are relinquished in
2264 * audit_free_names() */
2265 if (found_parent) {
5195d8e2
EP
2266 n->name = found_parent;
2267 n->name_len = AUDIT_NAME_FULL;
5712e88f 2268 /* don't call __putname() */
5195d8e2 2269 n->name_put = false;
5712e88f
AG
2270 }
2271
2272 if (inode)
1c2e51e8 2273 audit_copy_inode(n, dentry, inode);
5712e88f 2274 }
3e2efce0 2275}
50e437d5 2276EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2277
b0dd25a8
RD
2278/**
2279 * auditsc_get_stamp - get local copies of audit_context values
2280 * @ctx: audit_context for the task
2281 * @t: timespec to store time recorded in the audit_context
2282 * @serial: serial value that is recorded in the audit_context
2283 *
2284 * Also sets the context as auditable.
2285 */
48887e63 2286int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2287 struct timespec *t, unsigned int *serial)
1da177e4 2288{
48887e63
AV
2289 if (!ctx->in_syscall)
2290 return 0;
ce625a80
DW
2291 if (!ctx->serial)
2292 ctx->serial = audit_serial();
bfb4496e
DW
2293 t->tv_sec = ctx->ctime.tv_sec;
2294 t->tv_nsec = ctx->ctime.tv_nsec;
2295 *serial = ctx->serial;
0590b933
AV
2296 if (!ctx->prio) {
2297 ctx->prio = 1;
2298 ctx->current_state = AUDIT_RECORD_CONTEXT;
2299 }
48887e63 2300 return 1;
1da177e4
LT
2301}
2302
4746ec5b
EP
2303/* global counter which is incremented every time something logs in */
2304static atomic_t session_id = ATOMIC_INIT(0);
2305
b0dd25a8 2306/**
0a300be6 2307 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2308 * @loginuid: loginuid value
2309 *
2310 * Returns 0.
2311 *
2312 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2313 */
e1760bd5 2314int audit_set_loginuid(kuid_t loginuid)
1da177e4 2315{
0a300be6 2316 struct task_struct *task = current;
41757106 2317 struct audit_context *context = task->audit_context;
633b4545 2318 unsigned int sessionid;
41757106 2319
633b4545 2320#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
e1760bd5 2321 if (uid_valid(task->loginuid))
633b4545
EP
2322 return -EPERM;
2323#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2324 if (!capable(CAP_AUDIT_CONTROL))
2325 return -EPERM;
2326#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2327
2328 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2329 if (context && context->in_syscall) {
2330 struct audit_buffer *ab;
2331
2332 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2333 if (ab) {
2334 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2335 "old auid=%u new auid=%u"
2336 " old ses=%u new ses=%u",
cca080d9
EB
2337 task->pid,
2338 from_kuid(&init_user_ns, task_uid(task)),
e1760bd5
EB
2339 from_kuid(&init_user_ns, task->loginuid),
2340 from_kuid(&init_user_ns, loginuid),
4746ec5b 2341 task->sessionid, sessionid);
bfef93a5 2342 audit_log_end(ab);
c0404993 2343 }
1da177e4 2344 }
4746ec5b 2345 task->sessionid = sessionid;
bfef93a5 2346 task->loginuid = loginuid;
1da177e4
LT
2347 return 0;
2348}
2349
20ca73bc
GW
2350/**
2351 * __audit_mq_open - record audit data for a POSIX MQ open
2352 * @oflag: open flag
2353 * @mode: mode bits
6b962559 2354 * @attr: queue attributes
20ca73bc 2355 *
20ca73bc 2356 */
df0a4283 2357void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2358{
20ca73bc
GW
2359 struct audit_context *context = current->audit_context;
2360
564f6993
AV
2361 if (attr)
2362 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2363 else
2364 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2365
564f6993
AV
2366 context->mq_open.oflag = oflag;
2367 context->mq_open.mode = mode;
20ca73bc 2368
564f6993 2369 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2370}
2371
2372/**
c32c8af4 2373 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2374 * @mqdes: MQ descriptor
2375 * @msg_len: Message length
2376 * @msg_prio: Message priority
c32c8af4 2377 * @abs_timeout: Message timeout in absolute time
20ca73bc 2378 *
20ca73bc 2379 */
c32c8af4
AV
2380void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2381 const struct timespec *abs_timeout)
20ca73bc 2382{
20ca73bc 2383 struct audit_context *context = current->audit_context;
c32c8af4 2384 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2385
c32c8af4
AV
2386 if (abs_timeout)
2387 memcpy(p, abs_timeout, sizeof(struct timespec));
2388 else
2389 memset(p, 0, sizeof(struct timespec));
20ca73bc 2390
c32c8af4
AV
2391 context->mq_sendrecv.mqdes = mqdes;
2392 context->mq_sendrecv.msg_len = msg_len;
2393 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2394
c32c8af4 2395 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2396}
2397
2398/**
2399 * __audit_mq_notify - record audit data for a POSIX MQ notify
2400 * @mqdes: MQ descriptor
6b962559 2401 * @notification: Notification event
20ca73bc 2402 *
20ca73bc
GW
2403 */
2404
20114f71 2405void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2406{
20ca73bc
GW
2407 struct audit_context *context = current->audit_context;
2408
20114f71
AV
2409 if (notification)
2410 context->mq_notify.sigev_signo = notification->sigev_signo;
2411 else
2412 context->mq_notify.sigev_signo = 0;
20ca73bc 2413
20114f71
AV
2414 context->mq_notify.mqdes = mqdes;
2415 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2416}
2417
2418/**
2419 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2420 * @mqdes: MQ descriptor
2421 * @mqstat: MQ flags
2422 *
20ca73bc 2423 */
7392906e 2424void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2425{
20ca73bc 2426 struct audit_context *context = current->audit_context;
7392906e
AV
2427 context->mq_getsetattr.mqdes = mqdes;
2428 context->mq_getsetattr.mqstat = *mqstat;
2429 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2430}
2431
b0dd25a8 2432/**
073115d6
SG
2433 * audit_ipc_obj - record audit data for ipc object
2434 * @ipcp: ipc permissions
2435 *
073115d6 2436 */
a33e6751 2437void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2438{
073115d6 2439 struct audit_context *context = current->audit_context;
a33e6751
AV
2440 context->ipc.uid = ipcp->uid;
2441 context->ipc.gid = ipcp->gid;
2442 context->ipc.mode = ipcp->mode;
e816f370 2443 context->ipc.has_perm = 0;
a33e6751
AV
2444 security_ipc_getsecid(ipcp, &context->ipc.osid);
2445 context->type = AUDIT_IPC;
073115d6
SG
2446}
2447
2448/**
2449 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2450 * @qbytes: msgq bytes
2451 * @uid: msgq user id
2452 * @gid: msgq group id
2453 * @mode: msgq mode (permissions)
2454 *
e816f370 2455 * Called only after audit_ipc_obj().
b0dd25a8 2456 */
2570ebbd 2457void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2458{
1da177e4
LT
2459 struct audit_context *context = current->audit_context;
2460
e816f370
AV
2461 context->ipc.qbytes = qbytes;
2462 context->ipc.perm_uid = uid;
2463 context->ipc.perm_gid = gid;
2464 context->ipc.perm_mode = mode;
2465 context->ipc.has_perm = 1;
1da177e4 2466}
c2f0c7c3 2467
07c49417 2468int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2469{
2470 struct audit_aux_data_execve *ax;
2471 struct audit_context *context = current->audit_context;
473ae30b 2472
bdf4c48a 2473 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2474 if (!ax)
2475 return -ENOMEM;
2476
2477 ax->argc = bprm->argc;
2478 ax->envc = bprm->envc;
bdf4c48a 2479 ax->mm = bprm->mm;
473ae30b
AV
2480 ax->d.type = AUDIT_EXECVE;
2481 ax->d.next = context->aux;
2482 context->aux = (void *)ax;
2483 return 0;
2484}
2485
2486
b0dd25a8
RD
2487/**
2488 * audit_socketcall - record audit data for sys_socketcall
2489 * @nargs: number of args
2490 * @args: args array
2491 *
b0dd25a8 2492 */
07c49417 2493void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2494{
3ec3b2fb
DW
2495 struct audit_context *context = current->audit_context;
2496
f3298dc4
AV
2497 context->type = AUDIT_SOCKETCALL;
2498 context->socketcall.nargs = nargs;
2499 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2500}
2501
db349509
AV
2502/**
2503 * __audit_fd_pair - record audit data for pipe and socketpair
2504 * @fd1: the first file descriptor
2505 * @fd2: the second file descriptor
2506 *
db349509 2507 */
157cf649 2508void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2509{
2510 struct audit_context *context = current->audit_context;
157cf649
AV
2511 context->fds[0] = fd1;
2512 context->fds[1] = fd2;
db349509
AV
2513}
2514
b0dd25a8
RD
2515/**
2516 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2517 * @len: data length in user space
2518 * @a: data address in kernel space
2519 *
2520 * Returns 0 for success or NULL context or < 0 on error.
2521 */
07c49417 2522int __audit_sockaddr(int len, void *a)
3ec3b2fb 2523{
3ec3b2fb
DW
2524 struct audit_context *context = current->audit_context;
2525
4f6b434f
AV
2526 if (!context->sockaddr) {
2527 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2528 if (!p)
2529 return -ENOMEM;
2530 context->sockaddr = p;
2531 }
3ec3b2fb 2532
4f6b434f
AV
2533 context->sockaddr_len = len;
2534 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2535 return 0;
2536}
2537
a5cb013d
AV
2538void __audit_ptrace(struct task_struct *t)
2539{
2540 struct audit_context *context = current->audit_context;
2541
2542 context->target_pid = t->pid;
c2a7780e 2543 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2544 context->target_uid = task_uid(t);
4746ec5b 2545 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2546 security_task_getsecid(t, &context->target_sid);
c2a7780e 2547 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2548}
2549
b0dd25a8
RD
2550/**
2551 * audit_signal_info - record signal info for shutting down audit subsystem
2552 * @sig: signal value
2553 * @t: task being signaled
2554 *
2555 * If the audit subsystem is being terminated, record the task (pid)
2556 * and uid that is doing that.
2557 */
e54dc243 2558int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2559{
e54dc243
AG
2560 struct audit_aux_data_pids *axp;
2561 struct task_struct *tsk = current;
2562 struct audit_context *ctx = tsk->audit_context;
cca080d9 2563 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2564
175fc484 2565 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2566 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2567 audit_sig_pid = tsk->pid;
e1760bd5 2568 if (uid_valid(tsk->loginuid))
bfef93a5 2569 audit_sig_uid = tsk->loginuid;
175fc484 2570 else
c69e8d9c 2571 audit_sig_uid = uid;
2a862b32 2572 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2573 }
2574 if (!audit_signals || audit_dummy_context())
2575 return 0;
c2f0c7c3 2576 }
e54dc243 2577
e54dc243
AG
2578 /* optimize the common case by putting first signal recipient directly
2579 * in audit_context */
2580 if (!ctx->target_pid) {
2581 ctx->target_pid = t->tgid;
c2a7780e 2582 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2583 ctx->target_uid = t_uid;
4746ec5b 2584 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2585 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2586 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2587 return 0;
2588 }
2589
2590 axp = (void *)ctx->aux_pids;
2591 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2592 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2593 if (!axp)
2594 return -ENOMEM;
2595
2596 axp->d.type = AUDIT_OBJ_PID;
2597 axp->d.next = ctx->aux_pids;
2598 ctx->aux_pids = (void *)axp;
2599 }
88ae704c 2600 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2601
2602 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2603 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2604 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2605 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2606 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2607 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2608 axp->pid_count++;
2609
2610 return 0;
c2f0c7c3 2611}
0a4ff8c2 2612
3fc689e9
EP
2613/**
2614 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2615 * @bprm: pointer to the bprm being processed
2616 * @new: the proposed new credentials
2617 * @old: the old credentials
3fc689e9
EP
2618 *
2619 * Simply check if the proc already has the caps given by the file and if not
2620 * store the priv escalation info for later auditing at the end of the syscall
2621 *
3fc689e9
EP
2622 * -Eric
2623 */
d84f4f99
DH
2624int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2625 const struct cred *new, const struct cred *old)
3fc689e9
EP
2626{
2627 struct audit_aux_data_bprm_fcaps *ax;
2628 struct audit_context *context = current->audit_context;
2629 struct cpu_vfs_cap_data vcaps;
2630 struct dentry *dentry;
2631
2632 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2633 if (!ax)
d84f4f99 2634 return -ENOMEM;
3fc689e9
EP
2635
2636 ax->d.type = AUDIT_BPRM_FCAPS;
2637 ax->d.next = context->aux;
2638 context->aux = (void *)ax;
2639
2640 dentry = dget(bprm->file->f_dentry);
2641 get_vfs_caps_from_disk(dentry, &vcaps);
2642 dput(dentry);
2643
2644 ax->fcap.permitted = vcaps.permitted;
2645 ax->fcap.inheritable = vcaps.inheritable;
2646 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2647 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2648
d84f4f99
DH
2649 ax->old_pcap.permitted = old->cap_permitted;
2650 ax->old_pcap.inheritable = old->cap_inheritable;
2651 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2652
d84f4f99
DH
2653 ax->new_pcap.permitted = new->cap_permitted;
2654 ax->new_pcap.inheritable = new->cap_inheritable;
2655 ax->new_pcap.effective = new->cap_effective;
2656 return 0;
3fc689e9
EP
2657}
2658
e68b75a0
EP
2659/**
2660 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2661 * @pid: target pid of the capset call
2662 * @new: the new credentials
2663 * @old: the old (current) credentials
e68b75a0
EP
2664 *
2665 * Record the aguments userspace sent to sys_capset for later printing by the
2666 * audit system if applicable
2667 */
57f71a0a 2668void __audit_log_capset(pid_t pid,
d84f4f99 2669 const struct cred *new, const struct cred *old)
e68b75a0 2670{
e68b75a0 2671 struct audit_context *context = current->audit_context;
57f71a0a
AV
2672 context->capset.pid = pid;
2673 context->capset.cap.effective = new->cap_effective;
2674 context->capset.cap.inheritable = new->cap_effective;
2675 context->capset.cap.permitted = new->cap_permitted;
2676 context->type = AUDIT_CAPSET;
e68b75a0
EP
2677}
2678
120a795d
AV
2679void __audit_mmap_fd(int fd, int flags)
2680{
2681 struct audit_context *context = current->audit_context;
2682 context->mmap.fd = fd;
2683 context->mmap.flags = flags;
2684 context->type = AUDIT_MMAP;
2685}
2686
85e7bac3
EP
2687static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2688{
cca080d9
EB
2689 kuid_t auid, uid;
2690 kgid_t gid;
85e7bac3
EP
2691 unsigned int sessionid;
2692
2693 auid = audit_get_loginuid(current);
2694 sessionid = audit_get_sessionid(current);
2695 current_uid_gid(&uid, &gid);
2696
2697 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2698 from_kuid(&init_user_ns, auid),
2699 from_kuid(&init_user_ns, uid),
2700 from_kgid(&init_user_ns, gid),
2701 sessionid);
85e7bac3
EP
2702 audit_log_task_context(ab);
2703 audit_log_format(ab, " pid=%d comm=", current->pid);
2704 audit_log_untrustedstring(ab, current->comm);
2705 audit_log_format(ab, " reason=");
2706 audit_log_string(ab, reason);
2707 audit_log_format(ab, " sig=%ld", signr);
2708}
0a4ff8c2
SG
2709/**
2710 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2711 * @signr: signal value
0a4ff8c2
SG
2712 *
2713 * If a process ends with a core dump, something fishy is going on and we
2714 * should record the event for investigation.
2715 */
2716void audit_core_dumps(long signr)
2717{
2718 struct audit_buffer *ab;
0a4ff8c2
SG
2719
2720 if (!audit_enabled)
2721 return;
2722
2723 if (signr == SIGQUIT) /* don't care for those */
2724 return;
2725
2726 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2727 audit_log_abend(ab, "memory violation", signr);
2728 audit_log_end(ab);
2729}
0a4ff8c2 2730
3dc1c1b2 2731void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2732{
2733 struct audit_buffer *ab;
2734
2735 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
3dc1c1b2 2736 audit_log_abend(ab, "seccomp", signr);
85e7bac3 2737 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2738 audit_log_format(ab, " compat=%d", is_compat_task());
2739 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2740 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2741 audit_log_end(ab);
2742}
916d7576
AV
2743
2744struct list_head *audit_killed_trees(void)
2745{
2746 struct audit_context *ctx = current->audit_context;
2747 if (likely(!ctx || !ctx->in_syscall))
2748 return NULL;
2749 return &ctx->killed_trees;
2750}