]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/auditsc.c
audit: Add generic compat syscall support
[mirror_ubuntu-artful-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
a6c043a8 66#include <linux/tty.h>
473ae30b 67#include <linux/binfmts.h>
a1f8e7f7 68#include <linux/highmem.h>
f46038ff 69#include <linux/syscalls.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
3f1c8250 73#include <linux/ctype.h>
1da177e4 74
fe7752ba 75#include "audit.h"
1da177e4 76
d7e7528b
EP
77/* flags stating the success for a syscall */
78#define AUDITSC_INVALID 0
79#define AUDITSC_SUCCESS 1
80#define AUDITSC_FAILURE 2
81
de6bbd1d
EP
82/* no execve audit message should be longer than this (userspace limits) */
83#define MAX_EXECVE_AUDIT_LEN 7500
84
3f1c8250
WR
85/* max length to print of cmdline/proctitle value during audit */
86#define MAX_PROCTITLE_AUDIT_LEN 128
87
471a5c7c
AV
88/* number of audit rules */
89int audit_n_rules;
90
e54dc243
AG
91/* determines whether we collect data for signals sent */
92int audit_signals;
93
1da177e4
LT
94struct audit_aux_data {
95 struct audit_aux_data *next;
96 int type;
97};
98
99#define AUDIT_AUX_IPCPERM 0
100
e54dc243
AG
101/* Number of target pids per aux struct. */
102#define AUDIT_AUX_PIDS 16
103
e54dc243
AG
104struct audit_aux_data_pids {
105 struct audit_aux_data d;
106 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 107 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 108 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 109 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 110 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 111 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
112 int pid_count;
113};
114
3fc689e9
EP
115struct audit_aux_data_bprm_fcaps {
116 struct audit_aux_data d;
117 struct audit_cap_data fcap;
118 unsigned int fcap_ver;
119 struct audit_cap_data old_pcap;
120 struct audit_cap_data new_pcap;
121};
122
74c3cbe3
AV
123struct audit_tree_refs {
124 struct audit_tree_refs *next;
125 struct audit_chunk *c[31];
126};
127
55669bfa
AV
128static inline int open_arg(int flags, int mask)
129{
130 int n = ACC_MODE(flags);
131 if (flags & (O_TRUNC | O_CREAT))
132 n |= AUDIT_PERM_WRITE;
133 return n & mask;
134}
135
136static int audit_match_perm(struct audit_context *ctx, int mask)
137{
c4bacefb 138 unsigned n;
1a61c88d 139 if (unlikely(!ctx))
140 return 0;
c4bacefb 141 n = ctx->major;
dbda4c0b 142
55669bfa
AV
143 switch (audit_classify_syscall(ctx->arch, n)) {
144 case 0: /* native */
145 if ((mask & AUDIT_PERM_WRITE) &&
146 audit_match_class(AUDIT_CLASS_WRITE, n))
147 return 1;
148 if ((mask & AUDIT_PERM_READ) &&
149 audit_match_class(AUDIT_CLASS_READ, n))
150 return 1;
151 if ((mask & AUDIT_PERM_ATTR) &&
152 audit_match_class(AUDIT_CLASS_CHATTR, n))
153 return 1;
154 return 0;
155 case 1: /* 32bit on biarch */
156 if ((mask & AUDIT_PERM_WRITE) &&
157 audit_match_class(AUDIT_CLASS_WRITE_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_READ) &&
160 audit_match_class(AUDIT_CLASS_READ_32, n))
161 return 1;
162 if ((mask & AUDIT_PERM_ATTR) &&
163 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
164 return 1;
165 return 0;
166 case 2: /* open */
167 return mask & ACC_MODE(ctx->argv[1]);
168 case 3: /* openat */
169 return mask & ACC_MODE(ctx->argv[2]);
170 case 4: /* socketcall */
171 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
172 case 5: /* execve */
173 return mask & AUDIT_PERM_EXEC;
174 default:
175 return 0;
176 }
177}
178
5ef30ee5 179static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 180{
5195d8e2 181 struct audit_names *n;
5ef30ee5 182 umode_t mode = (umode_t)val;
1a61c88d 183
184 if (unlikely(!ctx))
185 return 0;
186
5195d8e2
EP
187 list_for_each_entry(n, &ctx->names_list, list) {
188 if ((n->ino != -1) &&
189 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
190 return 1;
191 }
5195d8e2 192
5ef30ee5 193 return 0;
8b67dca9
AV
194}
195
74c3cbe3
AV
196/*
197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
198 * ->first_trees points to its beginning, ->trees - to the current end of data.
199 * ->tree_count is the number of free entries in array pointed to by ->trees.
200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
202 * it's going to remain 1-element for almost any setup) until we free context itself.
203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
204 */
205
206#ifdef CONFIG_AUDIT_TREE
679173b7
EP
207static void audit_set_auditable(struct audit_context *ctx)
208{
209 if (!ctx->prio) {
210 ctx->prio = 1;
211 ctx->current_state = AUDIT_RECORD_CONTEXT;
212 }
213}
214
74c3cbe3
AV
215static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
216{
217 struct audit_tree_refs *p = ctx->trees;
218 int left = ctx->tree_count;
219 if (likely(left)) {
220 p->c[--left] = chunk;
221 ctx->tree_count = left;
222 return 1;
223 }
224 if (!p)
225 return 0;
226 p = p->next;
227 if (p) {
228 p->c[30] = chunk;
229 ctx->trees = p;
230 ctx->tree_count = 30;
231 return 1;
232 }
233 return 0;
234}
235
236static int grow_tree_refs(struct audit_context *ctx)
237{
238 struct audit_tree_refs *p = ctx->trees;
239 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
240 if (!ctx->trees) {
241 ctx->trees = p;
242 return 0;
243 }
244 if (p)
245 p->next = ctx->trees;
246 else
247 ctx->first_trees = ctx->trees;
248 ctx->tree_count = 31;
249 return 1;
250}
251#endif
252
253static void unroll_tree_refs(struct audit_context *ctx,
254 struct audit_tree_refs *p, int count)
255{
256#ifdef CONFIG_AUDIT_TREE
257 struct audit_tree_refs *q;
258 int n;
259 if (!p) {
260 /* we started with empty chain */
261 p = ctx->first_trees;
262 count = 31;
263 /* if the very first allocation has failed, nothing to do */
264 if (!p)
265 return;
266 }
267 n = count;
268 for (q = p; q != ctx->trees; q = q->next, n = 31) {
269 while (n--) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 }
274 while (n-- > ctx->tree_count) {
275 audit_put_chunk(q->c[n]);
276 q->c[n] = NULL;
277 }
278 ctx->trees = p;
279 ctx->tree_count = count;
280#endif
281}
282
283static void free_tree_refs(struct audit_context *ctx)
284{
285 struct audit_tree_refs *p, *q;
286 for (p = ctx->first_trees; p; p = q) {
287 q = p->next;
288 kfree(p);
289 }
290}
291
292static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
293{
294#ifdef CONFIG_AUDIT_TREE
295 struct audit_tree_refs *p;
296 int n;
297 if (!tree)
298 return 0;
299 /* full ones */
300 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
301 for (n = 0; n < 31; n++)
302 if (audit_tree_match(p->c[n], tree))
303 return 1;
304 }
305 /* partial */
306 if (p) {
307 for (n = ctx->tree_count; n < 31; n++)
308 if (audit_tree_match(p->c[n], tree))
309 return 1;
310 }
311#endif
312 return 0;
313}
314
ca57ec0f
EB
315static int audit_compare_uid(kuid_t uid,
316 struct audit_names *name,
317 struct audit_field *f,
318 struct audit_context *ctx)
b34b0393
EP
319{
320 struct audit_names *n;
b34b0393 321 int rc;
ca57ec0f 322
b34b0393 323 if (name) {
ca57ec0f 324 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
325 if (rc)
326 return rc;
327 }
ca57ec0f 328
b34b0393
EP
329 if (ctx) {
330 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
331 rc = audit_uid_comparator(uid, f->op, n->uid);
332 if (rc)
333 return rc;
334 }
335 }
336 return 0;
337}
b34b0393 338
ca57ec0f
EB
339static int audit_compare_gid(kgid_t gid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343{
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_gid_comparator(gid, f->op, name->gid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361}
362
02d86a56
EP
363static int audit_field_compare(struct task_struct *tsk,
364 const struct cred *cred,
365 struct audit_field *f,
366 struct audit_context *ctx,
367 struct audit_names *name)
368{
02d86a56 369 switch (f->val) {
4a6633ed 370 /* process to file object comparisons */
02d86a56 371 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 372 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 373 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 374 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 375 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 376 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 377 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 378 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 379 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 380 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 381 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 382 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 383 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 384 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 386 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 388 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
389 /* uid comparisons */
390 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 391 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 392 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 393 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 394 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 395 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 396 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 397 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
398 /* auid comparisons */
399 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 401 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
405 /* euid comparisons */
406 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 407 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 408 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 409 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
410 /* suid comparisons */
411 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 412 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
413 /* gid comparisons */
414 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 415 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 416 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
420 /* egid comparisons */
421 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 422 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 423 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 424 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
425 /* sgid comparison */
426 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 427 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
428 default:
429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 return 0;
431 }
432 return 0;
433}
434
f368c07d 435/* Determine if any context name data matches a rule's watch data */
1da177e4 436/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
437 * otherwise.
438 *
439 * If task_creation is true, this is an explicit indication that we are
440 * filtering a task rule at task creation time. This and tsk == current are
441 * the only situations where tsk->cred may be accessed without an rcu read lock.
442 */
1da177e4 443static int audit_filter_rules(struct task_struct *tsk,
93315ed6 444 struct audit_krule *rule,
1da177e4 445 struct audit_context *ctx,
f368c07d 446 struct audit_names *name,
f5629883
TJ
447 enum audit_state *state,
448 bool task_creation)
1da177e4 449{
f5629883 450 const struct cred *cred;
5195d8e2 451 int i, need_sid = 1;
3dc7e315
DG
452 u32 sid;
453
f5629883
TJ
454 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
455
1da177e4 456 for (i = 0; i < rule->field_count; i++) {
93315ed6 457 struct audit_field *f = &rule->fields[i];
5195d8e2 458 struct audit_names *n;
1da177e4
LT
459 int result = 0;
460
93315ed6 461 switch (f->type) {
1da177e4 462 case AUDIT_PID:
93315ed6 463 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 464 break;
3c66251e 465 case AUDIT_PPID:
419c58f1
AV
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = sys_getppid();
3c66251e 469 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 470 }
3c66251e 471 break;
1da177e4 472 case AUDIT_UID:
ca57ec0f 473 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
474 break;
475 case AUDIT_EUID:
ca57ec0f 476 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_SUID:
ca57ec0f 479 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_FSUID:
ca57ec0f 482 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_GID:
ca57ec0f 485 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
486 if (f->op == Audit_equal) {
487 if (!result)
488 result = in_group_p(f->gid);
489 } else if (f->op == Audit_not_equal) {
490 if (result)
491 result = !in_group_p(f->gid);
492 }
1da177e4
LT
493 break;
494 case AUDIT_EGID:
ca57ec0f 495 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
496 if (f->op == Audit_equal) {
497 if (!result)
498 result = in_egroup_p(f->gid);
499 } else if (f->op == Audit_not_equal) {
500 if (result)
501 result = !in_egroup_p(f->gid);
502 }
1da177e4
LT
503 break;
504 case AUDIT_SGID:
ca57ec0f 505 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
506 break;
507 case AUDIT_FSGID:
ca57ec0f 508 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_PERS:
93315ed6 511 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 512 break;
2fd6f58b 513 case AUDIT_ARCH:
9f8dbe9c 514 if (ctx)
93315ed6 515 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 516 break;
1da177e4
LT
517
518 case AUDIT_EXIT:
519 if (ctx && ctx->return_valid)
93315ed6 520 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
521 break;
522 case AUDIT_SUCCESS:
b01f2cc1 523 if (ctx && ctx->return_valid) {
93315ed6
AG
524 if (f->val)
525 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 526 else
93315ed6 527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 528 }
1da177e4
LT
529 break;
530 case AUDIT_DEVMAJOR:
16c174bd
EP
531 if (name) {
532 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
533 audit_comparator(MAJOR(name->rdev), f->op, f->val))
534 ++result;
535 } else if (ctx) {
5195d8e2 536 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
537 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
538 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
539 ++result;
540 break;
541 }
542 }
543 }
544 break;
545 case AUDIT_DEVMINOR:
16c174bd
EP
546 if (name) {
547 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
548 audit_comparator(MINOR(name->rdev), f->op, f->val))
549 ++result;
550 } else if (ctx) {
5195d8e2 551 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
552 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
553 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
554 ++result;
555 break;
556 }
557 }
558 }
559 break;
560 case AUDIT_INODE:
f368c07d 561 if (name)
db510fc5 562 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 563 else if (ctx) {
5195d8e2
EP
564 list_for_each_entry(n, &ctx->names_list, list) {
565 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
566 ++result;
567 break;
568 }
569 }
570 }
571 break;
efaffd6e
EP
572 case AUDIT_OBJ_UID:
573 if (name) {
ca57ec0f 574 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 577 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
578 ++result;
579 break;
580 }
581 }
582 }
583 break;
54d3218b
EP
584 case AUDIT_OBJ_GID:
585 if (name) {
ca57ec0f 586 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
587 } else if (ctx) {
588 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 589 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
f368c07d 596 case AUDIT_WATCH:
ae7b8f41
EP
597 if (name)
598 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 599 break;
74c3cbe3
AV
600 case AUDIT_DIR:
601 if (ctx)
602 result = match_tree_refs(ctx, rule->tree);
603 break;
1da177e4
LT
604 case AUDIT_LOGINUID:
605 result = 0;
606 if (ctx)
ca57ec0f 607 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 608 break;
780a7654
EB
609 case AUDIT_LOGINUID_SET:
610 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
611 break;
3a6b9f85
DG
612 case AUDIT_SUBJ_USER:
613 case AUDIT_SUBJ_ROLE:
614 case AUDIT_SUBJ_TYPE:
615 case AUDIT_SUBJ_SEN:
616 case AUDIT_SUBJ_CLR:
3dc7e315
DG
617 /* NOTE: this may return negative values indicating
618 a temporary error. We simply treat this as a
619 match for now to avoid losing information that
620 may be wanted. An error message will also be
621 logged upon error */
04305e4a 622 if (f->lsm_rule) {
2ad312d2 623 if (need_sid) {
2a862b32 624 security_task_getsecid(tsk, &sid);
2ad312d2
SG
625 need_sid = 0;
626 }
d7a96f3a 627 result = security_audit_rule_match(sid, f->type,
3dc7e315 628 f->op,
04305e4a 629 f->lsm_rule,
3dc7e315 630 ctx);
2ad312d2 631 }
3dc7e315 632 break;
6e5a2d1d
DG
633 case AUDIT_OBJ_USER:
634 case AUDIT_OBJ_ROLE:
635 case AUDIT_OBJ_TYPE:
636 case AUDIT_OBJ_LEV_LOW:
637 case AUDIT_OBJ_LEV_HIGH:
638 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
639 also applies here */
04305e4a 640 if (f->lsm_rule) {
6e5a2d1d
DG
641 /* Find files that match */
642 if (name) {
d7a96f3a 643 result = security_audit_rule_match(
6e5a2d1d 644 name->osid, f->type, f->op,
04305e4a 645 f->lsm_rule, ctx);
6e5a2d1d 646 } else if (ctx) {
5195d8e2
EP
647 list_for_each_entry(n, &ctx->names_list, list) {
648 if (security_audit_rule_match(n->osid, f->type,
649 f->op, f->lsm_rule,
650 ctx)) {
6e5a2d1d
DG
651 ++result;
652 break;
653 }
654 }
655 }
656 /* Find ipc objects that match */
a33e6751
AV
657 if (!ctx || ctx->type != AUDIT_IPC)
658 break;
659 if (security_audit_rule_match(ctx->ipc.osid,
660 f->type, f->op,
661 f->lsm_rule, ctx))
662 ++result;
6e5a2d1d
DG
663 }
664 break;
1da177e4
LT
665 case AUDIT_ARG0:
666 case AUDIT_ARG1:
667 case AUDIT_ARG2:
668 case AUDIT_ARG3:
669 if (ctx)
93315ed6 670 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 671 break;
5adc8a6a
AG
672 case AUDIT_FILTERKEY:
673 /* ignore this field for filtering */
674 result = 1;
675 break;
55669bfa
AV
676 case AUDIT_PERM:
677 result = audit_match_perm(ctx, f->val);
678 break;
8b67dca9
AV
679 case AUDIT_FILETYPE:
680 result = audit_match_filetype(ctx, f->val);
681 break;
02d86a56
EP
682 case AUDIT_FIELD_COMPARE:
683 result = audit_field_compare(tsk, cred, f, ctx, name);
684 break;
1da177e4 685 }
f5629883 686 if (!result)
1da177e4
LT
687 return 0;
688 }
0590b933
AV
689
690 if (ctx) {
691 if (rule->prio <= ctx->prio)
692 return 0;
693 if (rule->filterkey) {
694 kfree(ctx->filterkey);
695 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
696 }
697 ctx->prio = rule->prio;
698 }
1da177e4
LT
699 switch (rule->action) {
700 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
701 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
702 }
703 return 1;
704}
705
706/* At process creation time, we can determine if system-call auditing is
707 * completely disabled for this task. Since we only have the task
708 * structure at this point, we can only check uid and gid.
709 */
e048e02c 710static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
711{
712 struct audit_entry *e;
713 enum audit_state state;
714
715 rcu_read_lock();
0f45aa18 716 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
717 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
718 &state, true)) {
e048e02c
AV
719 if (state == AUDIT_RECORD_CONTEXT)
720 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
721 rcu_read_unlock();
722 return state;
723 }
724 }
725 rcu_read_unlock();
726 return AUDIT_BUILD_CONTEXT;
727}
728
729/* At syscall entry and exit time, this filter is called if the
730 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 731 * also not high enough that we already know we have to write an audit
b0dd25a8 732 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
733 */
734static enum audit_state audit_filter_syscall(struct task_struct *tsk,
735 struct audit_context *ctx,
736 struct list_head *list)
737{
738 struct audit_entry *e;
c3896495 739 enum audit_state state;
1da177e4 740
351bb722 741 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
742 return AUDIT_DISABLED;
743
1da177e4 744 rcu_read_lock();
c3896495 745 if (!list_empty(list)) {
b63862f4
DK
746 int word = AUDIT_WORD(ctx->major);
747 int bit = AUDIT_BIT(ctx->major);
748
749 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
750 if ((e->rule.mask[word] & bit) == bit &&
751 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 752 &state, false)) {
f368c07d 753 rcu_read_unlock();
0590b933 754 ctx->current_state = state;
f368c07d
AG
755 return state;
756 }
757 }
758 }
759 rcu_read_unlock();
760 return AUDIT_BUILD_CONTEXT;
761}
762
5195d8e2
EP
763/*
764 * Given an audit_name check the inode hash table to see if they match.
765 * Called holding the rcu read lock to protect the use of audit_inode_hash
766 */
767static int audit_filter_inode_name(struct task_struct *tsk,
768 struct audit_names *n,
769 struct audit_context *ctx) {
770 int word, bit;
771 int h = audit_hash_ino((u32)n->ino);
772 struct list_head *list = &audit_inode_hash[h];
773 struct audit_entry *e;
774 enum audit_state state;
775
776 word = AUDIT_WORD(ctx->major);
777 bit = AUDIT_BIT(ctx->major);
778
779 if (list_empty(list))
780 return 0;
781
782 list_for_each_entry_rcu(e, list, list) {
783 if ((e->rule.mask[word] & bit) == bit &&
784 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
785 ctx->current_state = state;
786 return 1;
787 }
788 }
789
790 return 0;
791}
792
793/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 794 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 795 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
796 * Regarding audit_state, same rules apply as for audit_filter_syscall().
797 */
0590b933 798void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 799{
5195d8e2 800 struct audit_names *n;
f368c07d
AG
801
802 if (audit_pid && tsk->tgid == audit_pid)
0590b933 803 return;
f368c07d
AG
804
805 rcu_read_lock();
f368c07d 806
5195d8e2
EP
807 list_for_each_entry(n, &ctx->names_list, list) {
808 if (audit_filter_inode_name(tsk, n, ctx))
809 break;
0f45aa18
DW
810 }
811 rcu_read_unlock();
0f45aa18
DW
812}
813
1da177e4
LT
814static inline struct audit_context *audit_get_context(struct task_struct *tsk,
815 int return_valid,
6d208da8 816 long return_code)
1da177e4
LT
817{
818 struct audit_context *context = tsk->audit_context;
819
56179a6e 820 if (!context)
1da177e4
LT
821 return NULL;
822 context->return_valid = return_valid;
f701b75e
EP
823
824 /*
825 * we need to fix up the return code in the audit logs if the actual
826 * return codes are later going to be fixed up by the arch specific
827 * signal handlers
828 *
829 * This is actually a test for:
830 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
831 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
832 *
833 * but is faster than a bunch of ||
834 */
835 if (unlikely(return_code <= -ERESTARTSYS) &&
836 (return_code >= -ERESTART_RESTARTBLOCK) &&
837 (return_code != -ENOIOCTLCMD))
838 context->return_code = -EINTR;
839 else
840 context->return_code = return_code;
1da177e4 841
0590b933
AV
842 if (context->in_syscall && !context->dummy) {
843 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
844 audit_filter_inodes(tsk, context);
1da177e4
LT
845 }
846
1da177e4
LT
847 tsk->audit_context = NULL;
848 return context;
849}
850
3f1c8250
WR
851static inline void audit_proctitle_free(struct audit_context *context)
852{
853 kfree(context->proctitle.value);
854 context->proctitle.value = NULL;
855 context->proctitle.len = 0;
856}
857
1da177e4
LT
858static inline void audit_free_names(struct audit_context *context)
859{
5195d8e2 860 struct audit_names *n, *next;
1da177e4
LT
861
862#if AUDIT_DEBUG == 2
0590b933 863 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
864 int i = 0;
865
f952d10f
RGB
866 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
867 " name_count=%d put_count=%d ino_count=%d"
868 " [NOT freeing]\n", __FILE__, __LINE__,
1da177e4
LT
869 context->serial, context->major, context->in_syscall,
870 context->name_count, context->put_count,
871 context->ino_count);
5195d8e2 872 list_for_each_entry(n, &context->names_list, list) {
f952d10f
RGB
873 pr_err("names[%d] = %p = %s\n", i++, n->name,
874 n->name->name ?: "(null)");
8c8570fb 875 }
1da177e4
LT
876 dump_stack();
877 return;
878 }
879#endif
880#if AUDIT_DEBUG
881 context->put_count = 0;
882 context->ino_count = 0;
883#endif
884
5195d8e2
EP
885 list_for_each_entry_safe(n, next, &context->names_list, list) {
886 list_del(&n->list);
887 if (n->name && n->name_put)
65ada7bc 888 final_putname(n->name);
5195d8e2
EP
889 if (n->should_free)
890 kfree(n);
8c8570fb 891 }
1da177e4 892 context->name_count = 0;
44707fdf
JB
893 path_put(&context->pwd);
894 context->pwd.dentry = NULL;
895 context->pwd.mnt = NULL;
1da177e4
LT
896}
897
898static inline void audit_free_aux(struct audit_context *context)
899{
900 struct audit_aux_data *aux;
901
902 while ((aux = context->aux)) {
903 context->aux = aux->next;
904 kfree(aux);
905 }
e54dc243
AG
906 while ((aux = context->aux_pids)) {
907 context->aux_pids = aux->next;
908 kfree(aux);
909 }
1da177e4
LT
910}
911
1da177e4
LT
912static inline struct audit_context *audit_alloc_context(enum audit_state state)
913{
914 struct audit_context *context;
915
17c6ee70
RM
916 context = kzalloc(sizeof(*context), GFP_KERNEL);
917 if (!context)
1da177e4 918 return NULL;
e2c5adc8
AM
919 context->state = state;
920 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 921 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 922 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
923 return context;
924}
925
b0dd25a8
RD
926/**
927 * audit_alloc - allocate an audit context block for a task
928 * @tsk: task
929 *
930 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
931 * if necessary. Doing so turns on system call auditing for the
932 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
933 * needed.
934 */
1da177e4
LT
935int audit_alloc(struct task_struct *tsk)
936{
937 struct audit_context *context;
938 enum audit_state state;
e048e02c 939 char *key = NULL;
1da177e4 940
b593d384 941 if (likely(!audit_ever_enabled))
1da177e4
LT
942 return 0; /* Return if not auditing. */
943
e048e02c 944 state = audit_filter_task(tsk, &key);
d48d8051
ON
945 if (state == AUDIT_DISABLED) {
946 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 947 return 0;
d48d8051 948 }
1da177e4
LT
949
950 if (!(context = audit_alloc_context(state))) {
e048e02c 951 kfree(key);
1da177e4
LT
952 audit_log_lost("out of memory in audit_alloc");
953 return -ENOMEM;
954 }
e048e02c 955 context->filterkey = key;
1da177e4 956
1da177e4
LT
957 tsk->audit_context = context;
958 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
959 return 0;
960}
961
962static inline void audit_free_context(struct audit_context *context)
963{
c62d773a
AV
964 audit_free_names(context);
965 unroll_tree_refs(context, NULL, 0);
966 free_tree_refs(context);
967 audit_free_aux(context);
968 kfree(context->filterkey);
969 kfree(context->sockaddr);
3f1c8250 970 audit_proctitle_free(context);
c62d773a 971 kfree(context);
1da177e4
LT
972}
973
e54dc243 974static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 975 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 976 u32 sid, char *comm)
e54dc243
AG
977{
978 struct audit_buffer *ab;
2a862b32 979 char *ctx = NULL;
e54dc243
AG
980 u32 len;
981 int rc = 0;
982
983 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
984 if (!ab)
6246ccab 985 return rc;
e54dc243 986
e1760bd5
EB
987 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
988 from_kuid(&init_user_ns, auid),
cca080d9 989 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
990 if (sid) {
991 if (security_secid_to_secctx(sid, &ctx, &len)) {
992 audit_log_format(ab, " obj=(none)");
993 rc = 1;
994 } else {
995 audit_log_format(ab, " obj=%s", ctx);
996 security_release_secctx(ctx, len);
997 }
2a862b32 998 }
c2a7780e
EP
999 audit_log_format(ab, " ocomm=");
1000 audit_log_untrustedstring(ab, comm);
e54dc243 1001 audit_log_end(ab);
e54dc243
AG
1002
1003 return rc;
1004}
1005
de6bbd1d
EP
1006/*
1007 * to_send and len_sent accounting are very loose estimates. We aren't
1008 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1009 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1010 *
1011 * why snprintf? an int is up to 12 digits long. if we just assumed when
1012 * logging that a[%d]= was going to be 16 characters long we would be wasting
1013 * space in every audit message. In one 7500 byte message we can log up to
1014 * about 1000 min size arguments. That comes down to about 50% waste of space
1015 * if we didn't do the snprintf to find out how long arg_num_len was.
1016 */
1017static int audit_log_single_execve_arg(struct audit_context *context,
1018 struct audit_buffer **ab,
1019 int arg_num,
1020 size_t *len_sent,
1021 const char __user *p,
1022 char *buf)
bdf4c48a 1023{
de6bbd1d
EP
1024 char arg_num_len_buf[12];
1025 const char __user *tmp_p = p;
b87ce6e4
EP
1026 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1027 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1028 size_t len, len_left, to_send;
1029 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1030 unsigned int i, has_cntl = 0, too_long = 0;
1031 int ret;
1032
1033 /* strnlen_user includes the null we don't want to send */
1034 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1035
de6bbd1d
EP
1036 /*
1037 * We just created this mm, if we can't find the strings
1038 * we just copied into it something is _very_ wrong. Similar
1039 * for strings that are too long, we should not have created
1040 * any.
1041 */
b0abcfc1 1042 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1043 WARN_ON(1);
1044 send_sig(SIGKILL, current, 0);
b0abcfc1 1045 return -1;
de6bbd1d 1046 }
040b3a2d 1047
de6bbd1d
EP
1048 /* walk the whole argument looking for non-ascii chars */
1049 do {
1050 if (len_left > MAX_EXECVE_AUDIT_LEN)
1051 to_send = MAX_EXECVE_AUDIT_LEN;
1052 else
1053 to_send = len_left;
1054 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1055 /*
de6bbd1d
EP
1056 * There is no reason for this copy to be short. We just
1057 * copied them here, and the mm hasn't been exposed to user-
1058 * space yet.
bdf4c48a 1059 */
de6bbd1d 1060 if (ret) {
bdf4c48a
PZ
1061 WARN_ON(1);
1062 send_sig(SIGKILL, current, 0);
b0abcfc1 1063 return -1;
bdf4c48a 1064 }
de6bbd1d
EP
1065 buf[to_send] = '\0';
1066 has_cntl = audit_string_contains_control(buf, to_send);
1067 if (has_cntl) {
1068 /*
1069 * hex messages get logged as 2 bytes, so we can only
1070 * send half as much in each message
1071 */
1072 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1073 break;
1074 }
de6bbd1d
EP
1075 len_left -= to_send;
1076 tmp_p += to_send;
1077 } while (len_left > 0);
1078
1079 len_left = len;
1080
1081 if (len > max_execve_audit_len)
1082 too_long = 1;
1083
1084 /* rewalk the argument actually logging the message */
1085 for (i = 0; len_left > 0; i++) {
1086 int room_left;
1087
1088 if (len_left > max_execve_audit_len)
1089 to_send = max_execve_audit_len;
1090 else
1091 to_send = len_left;
1092
1093 /* do we have space left to send this argument in this ab? */
1094 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1095 if (has_cntl)
1096 room_left -= (to_send * 2);
1097 else
1098 room_left -= to_send;
1099 if (room_left < 0) {
1100 *len_sent = 0;
1101 audit_log_end(*ab);
1102 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1103 if (!*ab)
1104 return 0;
1105 }
bdf4c48a 1106
bdf4c48a 1107 /*
de6bbd1d
EP
1108 * first record needs to say how long the original string was
1109 * so we can be sure nothing was lost.
1110 */
1111 if ((i == 0) && (too_long))
ca96a895 1112 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1113 has_cntl ? 2*len : len);
1114
1115 /*
1116 * normally arguments are small enough to fit and we already
1117 * filled buf above when we checked for control characters
1118 * so don't bother with another copy_from_user
bdf4c48a 1119 */
de6bbd1d
EP
1120 if (len >= max_execve_audit_len)
1121 ret = copy_from_user(buf, p, to_send);
1122 else
1123 ret = 0;
040b3a2d 1124 if (ret) {
bdf4c48a
PZ
1125 WARN_ON(1);
1126 send_sig(SIGKILL, current, 0);
b0abcfc1 1127 return -1;
bdf4c48a 1128 }
de6bbd1d
EP
1129 buf[to_send] = '\0';
1130
1131 /* actually log it */
ca96a895 1132 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1133 if (too_long)
1134 audit_log_format(*ab, "[%d]", i);
1135 audit_log_format(*ab, "=");
1136 if (has_cntl)
b556f8ad 1137 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1138 else
9d960985 1139 audit_log_string(*ab, buf);
de6bbd1d
EP
1140
1141 p += to_send;
1142 len_left -= to_send;
1143 *len_sent += arg_num_len;
1144 if (has_cntl)
1145 *len_sent += to_send * 2;
1146 else
1147 *len_sent += to_send;
1148 }
1149 /* include the null we didn't log */
1150 return len + 1;
1151}
1152
1153static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1154 struct audit_buffer **ab)
de6bbd1d 1155{
5afb8a3f
XW
1156 int i, len;
1157 size_t len_sent = 0;
de6bbd1d
EP
1158 const char __user *p;
1159 char *buf;
bdf4c48a 1160
d9cfea91 1161 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1162
d9cfea91 1163 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1164
1165 /*
1166 * we need some kernel buffer to hold the userspace args. Just
1167 * allocate one big one rather than allocating one of the right size
1168 * for every single argument inside audit_log_single_execve_arg()
1169 * should be <8k allocation so should be pretty safe.
1170 */
1171 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1172 if (!buf) {
1173 audit_panic("out of memory for argv string\n");
1174 return;
bdf4c48a 1175 }
de6bbd1d 1176
d9cfea91 1177 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1178 len = audit_log_single_execve_arg(context, ab, i,
1179 &len_sent, p, buf);
1180 if (len <= 0)
1181 break;
1182 p += len;
1183 }
1184 kfree(buf);
bdf4c48a
PZ
1185}
1186
a33e6751 1187static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1188{
1189 struct audit_buffer *ab;
1190 int i;
1191
1192 ab = audit_log_start(context, GFP_KERNEL, context->type);
1193 if (!ab)
1194 return;
1195
1196 switch (context->type) {
1197 case AUDIT_SOCKETCALL: {
1198 int nargs = context->socketcall.nargs;
1199 audit_log_format(ab, "nargs=%d", nargs);
1200 for (i = 0; i < nargs; i++)
1201 audit_log_format(ab, " a%d=%lx", i,
1202 context->socketcall.args[i]);
1203 break; }
a33e6751
AV
1204 case AUDIT_IPC: {
1205 u32 osid = context->ipc.osid;
1206
2570ebbd 1207 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1208 from_kuid(&init_user_ns, context->ipc.uid),
1209 from_kgid(&init_user_ns, context->ipc.gid),
1210 context->ipc.mode);
a33e6751
AV
1211 if (osid) {
1212 char *ctx = NULL;
1213 u32 len;
1214 if (security_secid_to_secctx(osid, &ctx, &len)) {
1215 audit_log_format(ab, " osid=%u", osid);
1216 *call_panic = 1;
1217 } else {
1218 audit_log_format(ab, " obj=%s", ctx);
1219 security_release_secctx(ctx, len);
1220 }
1221 }
e816f370
AV
1222 if (context->ipc.has_perm) {
1223 audit_log_end(ab);
1224 ab = audit_log_start(context, GFP_KERNEL,
1225 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1226 if (unlikely(!ab))
1227 return;
e816f370 1228 audit_log_format(ab,
2570ebbd 1229 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1230 context->ipc.qbytes,
1231 context->ipc.perm_uid,
1232 context->ipc.perm_gid,
1233 context->ipc.perm_mode);
e816f370 1234 }
a33e6751 1235 break; }
564f6993
AV
1236 case AUDIT_MQ_OPEN: {
1237 audit_log_format(ab,
df0a4283 1238 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1239 "mq_msgsize=%ld mq_curmsgs=%ld",
1240 context->mq_open.oflag, context->mq_open.mode,
1241 context->mq_open.attr.mq_flags,
1242 context->mq_open.attr.mq_maxmsg,
1243 context->mq_open.attr.mq_msgsize,
1244 context->mq_open.attr.mq_curmsgs);
1245 break; }
c32c8af4
AV
1246 case AUDIT_MQ_SENDRECV: {
1247 audit_log_format(ab,
1248 "mqdes=%d msg_len=%zd msg_prio=%u "
1249 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1250 context->mq_sendrecv.mqdes,
1251 context->mq_sendrecv.msg_len,
1252 context->mq_sendrecv.msg_prio,
1253 context->mq_sendrecv.abs_timeout.tv_sec,
1254 context->mq_sendrecv.abs_timeout.tv_nsec);
1255 break; }
20114f71
AV
1256 case AUDIT_MQ_NOTIFY: {
1257 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1258 context->mq_notify.mqdes,
1259 context->mq_notify.sigev_signo);
1260 break; }
7392906e
AV
1261 case AUDIT_MQ_GETSETATTR: {
1262 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1263 audit_log_format(ab,
1264 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1265 "mq_curmsgs=%ld ",
1266 context->mq_getsetattr.mqdes,
1267 attr->mq_flags, attr->mq_maxmsg,
1268 attr->mq_msgsize, attr->mq_curmsgs);
1269 break; }
57f71a0a
AV
1270 case AUDIT_CAPSET: {
1271 audit_log_format(ab, "pid=%d", context->capset.pid);
1272 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1273 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1274 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1275 break; }
120a795d
AV
1276 case AUDIT_MMAP: {
1277 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1278 context->mmap.flags);
1279 break; }
d9cfea91
RGB
1280 case AUDIT_EXECVE: {
1281 audit_log_execve_info(context, &ab);
1282 break; }
f3298dc4
AV
1283 }
1284 audit_log_end(ab);
1285}
1286
3f1c8250
WR
1287static inline int audit_proctitle_rtrim(char *proctitle, int len)
1288{
1289 char *end = proctitle + len - 1;
1290 while (end > proctitle && !isprint(*end))
1291 end--;
1292
1293 /* catch the case where proctitle is only 1 non-print character */
1294 len = end - proctitle + 1;
1295 len -= isprint(proctitle[len-1]) == 0;
1296 return len;
1297}
1298
1299static void audit_log_proctitle(struct task_struct *tsk,
1300 struct audit_context *context)
1301{
1302 int res;
1303 char *buf;
1304 char *msg = "(null)";
1305 int len = strlen(msg);
1306 struct audit_buffer *ab;
1307
1308 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1309 if (!ab)
1310 return; /* audit_panic or being filtered */
1311
1312 audit_log_format(ab, "proctitle=");
1313
1314 /* Not cached */
1315 if (!context->proctitle.value) {
1316 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1317 if (!buf)
1318 goto out;
1319 /* Historically called this from procfs naming */
1320 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1321 if (res == 0) {
1322 kfree(buf);
1323 goto out;
1324 }
1325 res = audit_proctitle_rtrim(buf, res);
1326 if (res == 0) {
1327 kfree(buf);
1328 goto out;
1329 }
1330 context->proctitle.value = buf;
1331 context->proctitle.len = res;
1332 }
1333 msg = context->proctitle.value;
1334 len = context->proctitle.len;
1335out:
1336 audit_log_n_untrustedstring(ab, msg, len);
1337 audit_log_end(ab);
1338}
1339
e495149b 1340static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1341{
9c7aa6aa 1342 int i, call_panic = 0;
1da177e4 1343 struct audit_buffer *ab;
7551ced3 1344 struct audit_aux_data *aux;
5195d8e2 1345 struct audit_names *n;
1da177e4 1346
e495149b 1347 /* tsk == current */
3f2792ff 1348 context->personality = tsk->personality;
e495149b
AV
1349
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1351 if (!ab)
1352 return; /* audit_panic has been called */
bccf6ae0
DW
1353 audit_log_format(ab, "arch=%x syscall=%d",
1354 context->arch, context->major);
1da177e4
LT
1355 if (context->personality != PER_LINUX)
1356 audit_log_format(ab, " per=%lx", context->personality);
1357 if (context->return_valid)
9f8dbe9c 1358 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 context->return_code);
eb84a20e 1361
1da177e4 1362 audit_log_format(ab,
e23eb920
PM
1363 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1364 context->argv[0],
1365 context->argv[1],
1366 context->argv[2],
1367 context->argv[3],
1368 context->name_count);
eb84a20e 1369
e495149b 1370 audit_log_task_info(ab, tsk);
9d960985 1371 audit_log_key(ab, context->filterkey);
1da177e4 1372 audit_log_end(ab);
1da177e4 1373
7551ced3 1374 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1375
e495149b 1376 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1377 if (!ab)
1378 continue; /* audit_panic has been called */
1379
1da177e4 1380 switch (aux->type) {
20ca73bc 1381
3fc689e9
EP
1382 case AUDIT_BPRM_FCAPS: {
1383 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1384 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1385 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1386 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1387 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1388 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1389 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1390 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1391 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1392 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1393 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1394 break; }
1395
1da177e4
LT
1396 }
1397 audit_log_end(ab);
1da177e4
LT
1398 }
1399
f3298dc4 1400 if (context->type)
a33e6751 1401 show_special(context, &call_panic);
f3298dc4 1402
157cf649
AV
1403 if (context->fds[0] >= 0) {
1404 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1405 if (ab) {
1406 audit_log_format(ab, "fd0=%d fd1=%d",
1407 context->fds[0], context->fds[1]);
1408 audit_log_end(ab);
1409 }
1410 }
1411
4f6b434f
AV
1412 if (context->sockaddr_len) {
1413 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1414 if (ab) {
1415 audit_log_format(ab, "saddr=");
1416 audit_log_n_hex(ab, (void *)context->sockaddr,
1417 context->sockaddr_len);
1418 audit_log_end(ab);
1419 }
1420 }
1421
e54dc243
AG
1422 for (aux = context->aux_pids; aux; aux = aux->next) {
1423 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1424
1425 for (i = 0; i < axs->pid_count; i++)
1426 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1427 axs->target_auid[i],
1428 axs->target_uid[i],
4746ec5b 1429 axs->target_sessionid[i],
c2a7780e
EP
1430 axs->target_sid[i],
1431 axs->target_comm[i]))
e54dc243 1432 call_panic = 1;
a5cb013d
AV
1433 }
1434
e54dc243
AG
1435 if (context->target_pid &&
1436 audit_log_pid_context(context, context->target_pid,
c2a7780e 1437 context->target_auid, context->target_uid,
4746ec5b 1438 context->target_sessionid,
c2a7780e 1439 context->target_sid, context->target_comm))
e54dc243
AG
1440 call_panic = 1;
1441
44707fdf 1442 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1443 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1444 if (ab) {
c158a35c 1445 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1446 audit_log_end(ab);
1447 }
1448 }
73241ccc 1449
5195d8e2 1450 i = 0;
79f6530c
JL
1451 list_for_each_entry(n, &context->names_list, list) {
1452 if (n->hidden)
1453 continue;
b24a30a7 1454 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1455 }
c0641f28 1456
3f1c8250
WR
1457 audit_log_proctitle(tsk, context);
1458
c0641f28
EP
1459 /* Send end of event record to help user space know we are finished */
1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1461 if (ab)
1462 audit_log_end(ab);
9c7aa6aa
SG
1463 if (call_panic)
1464 audit_panic("error converting sid to string");
1da177e4
LT
1465}
1466
b0dd25a8
RD
1467/**
1468 * audit_free - free a per-task audit context
1469 * @tsk: task whose audit context block to free
1470 *
fa84cb93 1471 * Called from copy_process and do_exit
b0dd25a8 1472 */
a4ff8dba 1473void __audit_free(struct task_struct *tsk)
1da177e4
LT
1474{
1475 struct audit_context *context;
1476
1da177e4 1477 context = audit_get_context(tsk, 0, 0);
56179a6e 1478 if (!context)
1da177e4
LT
1479 return;
1480
1481 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1482 * function (e.g., exit_group), then free context block.
1483 * We use GFP_ATOMIC here because we might be doing this
f5561964 1484 * in the context of the idle thread */
e495149b 1485 /* that can happen only if we are called from do_exit() */
0590b933 1486 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1487 audit_log_exit(context, tsk);
916d7576
AV
1488 if (!list_empty(&context->killed_trees))
1489 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1490
1491 audit_free_context(context);
1492}
1493
b0dd25a8
RD
1494/**
1495 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1496 * @arch: architecture type
1497 * @major: major syscall type (function)
1498 * @a1: additional syscall register 1
1499 * @a2: additional syscall register 2
1500 * @a3: additional syscall register 3
1501 * @a4: additional syscall register 4
1502 *
1503 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1504 * audit context was created when the task was created and the state or
1505 * filters demand the audit context be built. If the state from the
1506 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1507 * then the record will be written at syscall exit time (otherwise, it
1508 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1509 * be written).
1510 */
b05d8447 1511void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1512 unsigned long a1, unsigned long a2,
1513 unsigned long a3, unsigned long a4)
1514{
5411be59 1515 struct task_struct *tsk = current;
1da177e4
LT
1516 struct audit_context *context = tsk->audit_context;
1517 enum audit_state state;
1518
56179a6e 1519 if (!context)
86a1c34a 1520 return;
1da177e4 1521
1da177e4
LT
1522 BUG_ON(context->in_syscall || context->name_count);
1523
1524 if (!audit_enabled)
1525 return;
1526
2fd6f58b 1527 context->arch = arch;
1da177e4
LT
1528 context->major = major;
1529 context->argv[0] = a1;
1530 context->argv[1] = a2;
1531 context->argv[2] = a3;
1532 context->argv[3] = a4;
1533
1534 state = context->state;
d51374ad 1535 context->dummy = !audit_n_rules;
0590b933
AV
1536 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1537 context->prio = 0;
0f45aa18 1538 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1539 }
56179a6e 1540 if (state == AUDIT_DISABLED)
1da177e4
LT
1541 return;
1542
ce625a80 1543 context->serial = 0;
1da177e4
LT
1544 context->ctime = CURRENT_TIME;
1545 context->in_syscall = 1;
0590b933 1546 context->current_state = state;
419c58f1 1547 context->ppid = 0;
1da177e4
LT
1548}
1549
b0dd25a8
RD
1550/**
1551 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1552 * @success: success value of the syscall
1553 * @return_code: return value of the syscall
b0dd25a8
RD
1554 *
1555 * Tear down after system call. If the audit context has been marked as
1da177e4 1556 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1557 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1558 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1559 * free the names stored from getname().
1560 */
d7e7528b 1561void __audit_syscall_exit(int success, long return_code)
1da177e4 1562{
5411be59 1563 struct task_struct *tsk = current;
1da177e4
LT
1564 struct audit_context *context;
1565
d7e7528b
EP
1566 if (success)
1567 success = AUDITSC_SUCCESS;
1568 else
1569 success = AUDITSC_FAILURE;
1da177e4 1570
d7e7528b 1571 context = audit_get_context(tsk, success, return_code);
56179a6e 1572 if (!context)
97e94c45 1573 return;
1da177e4 1574
0590b933 1575 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1576 audit_log_exit(context, tsk);
1da177e4
LT
1577
1578 context->in_syscall = 0;
0590b933 1579 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1580
916d7576
AV
1581 if (!list_empty(&context->killed_trees))
1582 audit_kill_trees(&context->killed_trees);
1583
c62d773a
AV
1584 audit_free_names(context);
1585 unroll_tree_refs(context, NULL, 0);
1586 audit_free_aux(context);
1587 context->aux = NULL;
1588 context->aux_pids = NULL;
1589 context->target_pid = 0;
1590 context->target_sid = 0;
1591 context->sockaddr_len = 0;
1592 context->type = 0;
1593 context->fds[0] = -1;
1594 if (context->state != AUDIT_RECORD_CONTEXT) {
1595 kfree(context->filterkey);
1596 context->filterkey = NULL;
1da177e4 1597 }
c62d773a 1598 tsk->audit_context = context;
1da177e4
LT
1599}
1600
74c3cbe3
AV
1601static inline void handle_one(const struct inode *inode)
1602{
1603#ifdef CONFIG_AUDIT_TREE
1604 struct audit_context *context;
1605 struct audit_tree_refs *p;
1606 struct audit_chunk *chunk;
1607 int count;
e61ce867 1608 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1609 return;
1610 context = current->audit_context;
1611 p = context->trees;
1612 count = context->tree_count;
1613 rcu_read_lock();
1614 chunk = audit_tree_lookup(inode);
1615 rcu_read_unlock();
1616 if (!chunk)
1617 return;
1618 if (likely(put_tree_ref(context, chunk)))
1619 return;
1620 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1621 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1622 audit_set_auditable(context);
1623 audit_put_chunk(chunk);
1624 unroll_tree_refs(context, p, count);
1625 return;
1626 }
1627 put_tree_ref(context, chunk);
1628#endif
1629}
1630
1631static void handle_path(const struct dentry *dentry)
1632{
1633#ifdef CONFIG_AUDIT_TREE
1634 struct audit_context *context;
1635 struct audit_tree_refs *p;
1636 const struct dentry *d, *parent;
1637 struct audit_chunk *drop;
1638 unsigned long seq;
1639 int count;
1640
1641 context = current->audit_context;
1642 p = context->trees;
1643 count = context->tree_count;
1644retry:
1645 drop = NULL;
1646 d = dentry;
1647 rcu_read_lock();
1648 seq = read_seqbegin(&rename_lock);
1649 for(;;) {
1650 struct inode *inode = d->d_inode;
e61ce867 1651 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1652 struct audit_chunk *chunk;
1653 chunk = audit_tree_lookup(inode);
1654 if (chunk) {
1655 if (unlikely(!put_tree_ref(context, chunk))) {
1656 drop = chunk;
1657 break;
1658 }
1659 }
1660 }
1661 parent = d->d_parent;
1662 if (parent == d)
1663 break;
1664 d = parent;
1665 }
1666 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1667 rcu_read_unlock();
1668 if (!drop) {
1669 /* just a race with rename */
1670 unroll_tree_refs(context, p, count);
1671 goto retry;
1672 }
1673 audit_put_chunk(drop);
1674 if (grow_tree_refs(context)) {
1675 /* OK, got more space */
1676 unroll_tree_refs(context, p, count);
1677 goto retry;
1678 }
1679 /* too bad */
f952d10f 1680 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1681 unroll_tree_refs(context, p, count);
1682 audit_set_auditable(context);
1683 return;
1684 }
1685 rcu_read_unlock();
1686#endif
1687}
1688
78e2e802
JL
1689static struct audit_names *audit_alloc_name(struct audit_context *context,
1690 unsigned char type)
5195d8e2
EP
1691{
1692 struct audit_names *aname;
1693
1694 if (context->name_count < AUDIT_NAMES) {
1695 aname = &context->preallocated_names[context->name_count];
1696 memset(aname, 0, sizeof(*aname));
1697 } else {
1698 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1699 if (!aname)
1700 return NULL;
1701 aname->should_free = true;
1702 }
1703
1704 aname->ino = (unsigned long)-1;
78e2e802 1705 aname->type = type;
5195d8e2
EP
1706 list_add_tail(&aname->list, &context->names_list);
1707
1708 context->name_count++;
1709#if AUDIT_DEBUG
1710 context->ino_count++;
1711#endif
1712 return aname;
1713}
1714
7ac86265
JL
1715/**
1716 * audit_reusename - fill out filename with info from existing entry
1717 * @uptr: userland ptr to pathname
1718 *
1719 * Search the audit_names list for the current audit context. If there is an
1720 * existing entry with a matching "uptr" then return the filename
1721 * associated with that audit_name. If not, return NULL.
1722 */
1723struct filename *
1724__audit_reusename(const __user char *uptr)
1725{
1726 struct audit_context *context = current->audit_context;
1727 struct audit_names *n;
1728
1729 list_for_each_entry(n, &context->names_list, list) {
1730 if (!n->name)
1731 continue;
1732 if (n->name->uptr == uptr)
1733 return n->name;
1734 }
1735 return NULL;
1736}
1737
b0dd25a8
RD
1738/**
1739 * audit_getname - add a name to the list
1740 * @name: name to add
1741 *
1742 * Add a name to the list of audit names for this context.
1743 * Called from fs/namei.c:getname().
1744 */
91a27b2a 1745void __audit_getname(struct filename *name)
1da177e4
LT
1746{
1747 struct audit_context *context = current->audit_context;
5195d8e2 1748 struct audit_names *n;
1da177e4 1749
1da177e4
LT
1750 if (!context->in_syscall) {
1751#if AUDIT_DEBUG == 2
f952d10f 1752 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1da177e4
LT
1753 __FILE__, __LINE__, context->serial, name);
1754 dump_stack();
1755#endif
1756 return;
1757 }
5195d8e2 1758
91a27b2a
JL
1759#if AUDIT_DEBUG
1760 /* The filename _must_ have a populated ->name */
1761 BUG_ON(!name->name);
1762#endif
1763
78e2e802 1764 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1765 if (!n)
1766 return;
1767
1768 n->name = name;
1769 n->name_len = AUDIT_NAME_FULL;
1770 n->name_put = true;
adb5c247 1771 name->aname = n;
5195d8e2 1772
f7ad3c6b
MS
1773 if (!context->pwd.dentry)
1774 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1775}
1776
b0dd25a8
RD
1777/* audit_putname - intercept a putname request
1778 * @name: name to intercept and delay for putname
1779 *
1780 * If we have stored the name from getname in the audit context,
1781 * then we delay the putname until syscall exit.
1782 * Called from include/linux/fs.h:putname().
1783 */
91a27b2a 1784void audit_putname(struct filename *name)
1da177e4
LT
1785{
1786 struct audit_context *context = current->audit_context;
1787
1788 BUG_ON(!context);
1789 if (!context->in_syscall) {
1790#if AUDIT_DEBUG == 2
f952d10f 1791 pr_err("%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1792 __FILE__, __LINE__, context->serial, name);
1793 if (context->name_count) {
5195d8e2 1794 struct audit_names *n;
34c474de 1795 int i = 0;
5195d8e2
EP
1796
1797 list_for_each_entry(n, &context->names_list, list)
f952d10f
RGB
1798 pr_err("name[%d] = %p = %s\n", i++, n->name,
1799 n->name->name ?: "(null)");
5195d8e2 1800 }
1da177e4 1801#endif
65ada7bc 1802 final_putname(name);
1da177e4
LT
1803 }
1804#if AUDIT_DEBUG
1805 else {
1806 ++context->put_count;
1807 if (context->put_count > context->name_count) {
f952d10f
RGB
1808 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1809 " name_count=%d put_count=%d\n",
1da177e4
LT
1810 __FILE__, __LINE__,
1811 context->serial, context->major,
91a27b2a
JL
1812 context->in_syscall, name->name,
1813 context->name_count, context->put_count);
1da177e4
LT
1814 dump_stack();
1815 }
1816 }
1817#endif
1818}
1819
b0dd25a8 1820/**
bfcec708 1821 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1822 * @name: name being audited
481968f4 1823 * @dentry: dentry being audited
79f6530c 1824 * @flags: attributes for this particular entry
b0dd25a8 1825 */
adb5c247 1826void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1827 unsigned int flags)
1da177e4 1828{
1da177e4 1829 struct audit_context *context = current->audit_context;
74c3cbe3 1830 const struct inode *inode = dentry->d_inode;
5195d8e2 1831 struct audit_names *n;
79f6530c 1832 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1833
1834 if (!context->in_syscall)
1835 return;
5195d8e2 1836
9cec9d68
JL
1837 if (!name)
1838 goto out_alloc;
1839
adb5c247
JL
1840#if AUDIT_DEBUG
1841 /* The struct filename _must_ have a populated ->name */
1842 BUG_ON(!name->name);
1843#endif
1844 /*
1845 * If we have a pointer to an audit_names entry already, then we can
1846 * just use it directly if the type is correct.
1847 */
1848 n = name->aname;
1849 if (n) {
1850 if (parent) {
1851 if (n->type == AUDIT_TYPE_PARENT ||
1852 n->type == AUDIT_TYPE_UNKNOWN)
1853 goto out;
1854 } else {
1855 if (n->type != AUDIT_TYPE_PARENT)
1856 goto out;
1857 }
1858 }
1859
5195d8e2 1860 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1861 /* does the name pointer match? */
adb5c247 1862 if (!n->name || n->name->name != name->name)
bfcec708
JL
1863 continue;
1864
1865 /* match the correct record type */
1866 if (parent) {
1867 if (n->type == AUDIT_TYPE_PARENT ||
1868 n->type == AUDIT_TYPE_UNKNOWN)
1869 goto out;
1870 } else {
1871 if (n->type != AUDIT_TYPE_PARENT)
1872 goto out;
1873 }
1da177e4 1874 }
5195d8e2 1875
9cec9d68 1876out_alloc:
bfcec708
JL
1877 /* unable to find the name from a previous getname(). Allocate a new
1878 * anonymous entry.
1879 */
78e2e802 1880 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1881 if (!n)
1882 return;
1883out:
bfcec708 1884 if (parent) {
91a27b2a 1885 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1886 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1887 if (flags & AUDIT_INODE_HIDDEN)
1888 n->hidden = true;
bfcec708
JL
1889 } else {
1890 n->name_len = AUDIT_NAME_FULL;
1891 n->type = AUDIT_TYPE_NORMAL;
1892 }
74c3cbe3 1893 handle_path(dentry);
5195d8e2 1894 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1895}
1896
1897/**
c43a25ab 1898 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1899 * @parent: inode of dentry parent
c43a25ab 1900 * @dentry: dentry being audited
4fa6b5ec 1901 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1902 *
1903 * For syscalls that create or remove filesystem objects, audit_inode
1904 * can only collect information for the filesystem object's parent.
1905 * This call updates the audit context with the child's information.
1906 * Syscalls that create a new filesystem object must be hooked after
1907 * the object is created. Syscalls that remove a filesystem object
1908 * must be hooked prior, in order to capture the target inode during
1909 * unsuccessful attempts.
1910 */
c43a25ab 1911void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1912 const struct dentry *dentry,
1913 const unsigned char type)
73241ccc 1914{
73241ccc 1915 struct audit_context *context = current->audit_context;
5a190ae6 1916 const struct inode *inode = dentry->d_inode;
cccc6bba 1917 const char *dname = dentry->d_name.name;
4fa6b5ec 1918 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1919
1920 if (!context->in_syscall)
1921 return;
1922
74c3cbe3
AV
1923 if (inode)
1924 handle_one(inode);
73241ccc 1925
4fa6b5ec 1926 /* look for a parent entry first */
5195d8e2 1927 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1928 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1929 continue;
1930
1931 if (n->ino == parent->i_ino &&
91a27b2a 1932 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1933 found_parent = n;
1934 break;
f368c07d 1935 }
5712e88f 1936 }
73241ccc 1937
4fa6b5ec 1938 /* is there a matching child entry? */
5195d8e2 1939 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1940 /* can only match entries that have a name */
1941 if (!n->name || n->type != type)
1942 continue;
1943
1944 /* if we found a parent, make sure this one is a child of it */
1945 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1946 continue;
1947
91a27b2a
JL
1948 if (!strcmp(dname, n->name->name) ||
1949 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1950 found_parent ?
1951 found_parent->name_len :
e3d6b07b 1952 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1953 found_child = n;
1954 break;
5712e88f 1955 }
ac9910ce 1956 }
5712e88f 1957
5712e88f 1958 if (!found_parent) {
4fa6b5ec
JL
1959 /* create a new, "anonymous" parent record */
1960 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1961 if (!n)
ac9910ce 1962 return;
5195d8e2 1963 audit_copy_inode(n, NULL, parent);
73d3ec5a 1964 }
5712e88f
AG
1965
1966 if (!found_child) {
4fa6b5ec
JL
1967 found_child = audit_alloc_name(context, type);
1968 if (!found_child)
5712e88f 1969 return;
5712e88f
AG
1970
1971 /* Re-use the name belonging to the slot for a matching parent
1972 * directory. All names for this context are relinquished in
1973 * audit_free_names() */
1974 if (found_parent) {
4fa6b5ec
JL
1975 found_child->name = found_parent->name;
1976 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1977 /* don't call __putname() */
4fa6b5ec 1978 found_child->name_put = false;
5712e88f 1979 }
5712e88f 1980 }
4fa6b5ec
JL
1981 if (inode)
1982 audit_copy_inode(found_child, dentry, inode);
1983 else
1984 found_child->ino = (unsigned long)-1;
3e2efce0 1985}
50e437d5 1986EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1987
b0dd25a8
RD
1988/**
1989 * auditsc_get_stamp - get local copies of audit_context values
1990 * @ctx: audit_context for the task
1991 * @t: timespec to store time recorded in the audit_context
1992 * @serial: serial value that is recorded in the audit_context
1993 *
1994 * Also sets the context as auditable.
1995 */
48887e63 1996int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1997 struct timespec *t, unsigned int *serial)
1da177e4 1998{
48887e63
AV
1999 if (!ctx->in_syscall)
2000 return 0;
ce625a80
DW
2001 if (!ctx->serial)
2002 ctx->serial = audit_serial();
bfb4496e
DW
2003 t->tv_sec = ctx->ctime.tv_sec;
2004 t->tv_nsec = ctx->ctime.tv_nsec;
2005 *serial = ctx->serial;
0590b933
AV
2006 if (!ctx->prio) {
2007 ctx->prio = 1;
2008 ctx->current_state = AUDIT_RECORD_CONTEXT;
2009 }
48887e63 2010 return 1;
1da177e4
LT
2011}
2012
4746ec5b
EP
2013/* global counter which is incremented every time something logs in */
2014static atomic_t session_id = ATOMIC_INIT(0);
2015
da0a6104
EP
2016static int audit_set_loginuid_perm(kuid_t loginuid)
2017{
da0a6104
EP
2018 /* if we are unset, we don't need privs */
2019 if (!audit_loginuid_set(current))
2020 return 0;
21b85c31
EP
2021 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2022 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2023 return -EPERM;
83fa6bbe
EP
2024 /* it is set, you need permission */
2025 if (!capable(CAP_AUDIT_CONTROL))
2026 return -EPERM;
d040e5af
EP
2027 /* reject if this is not an unset and we don't allow that */
2028 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2029 return -EPERM;
83fa6bbe 2030 return 0;
da0a6104
EP
2031}
2032
2033static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2034 unsigned int oldsessionid, unsigned int sessionid,
2035 int rc)
2036{
2037 struct audit_buffer *ab;
5ee9a75c 2038 uid_t uid, oldloginuid, loginuid;
da0a6104 2039
c2412d91
G
2040 if (!audit_enabled)
2041 return;
2042
da0a6104 2043 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
2044 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2045 loginuid = from_kuid(&init_user_ns, kloginuid),
da0a6104
EP
2046
2047 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2048 if (!ab)
2049 return;
5ee9a75c
RGB
2050 audit_log_format(ab, "pid=%d uid=%u"
2051 " old-auid=%u new-auid=%u old-ses=%u new-ses=%u"
2052 " res=%d",
2053 current->pid, uid,
2054 oldloginuid, loginuid, oldsessionid, sessionid,
2055 !rc);
da0a6104
EP
2056 audit_log_end(ab);
2057}
2058
b0dd25a8 2059/**
0a300be6 2060 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2061 * @loginuid: loginuid value
2062 *
2063 * Returns 0.
2064 *
2065 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2066 */
e1760bd5 2067int audit_set_loginuid(kuid_t loginuid)
1da177e4 2068{
0a300be6 2069 struct task_struct *task = current;
9175c9d2
EP
2070 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2071 kuid_t oldloginuid;
da0a6104 2072 int rc;
41757106 2073
da0a6104
EP
2074 oldloginuid = audit_get_loginuid(current);
2075 oldsessionid = audit_get_sessionid(current);
2076
2077 rc = audit_set_loginuid_perm(loginuid);
2078 if (rc)
2079 goto out;
633b4545 2080
81407c84
EP
2081 /* are we setting or clearing? */
2082 if (uid_valid(loginuid))
4440e854 2083 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2084
4746ec5b 2085 task->sessionid = sessionid;
bfef93a5 2086 task->loginuid = loginuid;
da0a6104
EP
2087out:
2088 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2089 return rc;
1da177e4
LT
2090}
2091
20ca73bc
GW
2092/**
2093 * __audit_mq_open - record audit data for a POSIX MQ open
2094 * @oflag: open flag
2095 * @mode: mode bits
6b962559 2096 * @attr: queue attributes
20ca73bc 2097 *
20ca73bc 2098 */
df0a4283 2099void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2100{
20ca73bc
GW
2101 struct audit_context *context = current->audit_context;
2102
564f6993
AV
2103 if (attr)
2104 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2105 else
2106 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2107
564f6993
AV
2108 context->mq_open.oflag = oflag;
2109 context->mq_open.mode = mode;
20ca73bc 2110
564f6993 2111 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2112}
2113
2114/**
c32c8af4 2115 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2116 * @mqdes: MQ descriptor
2117 * @msg_len: Message length
2118 * @msg_prio: Message priority
c32c8af4 2119 * @abs_timeout: Message timeout in absolute time
20ca73bc 2120 *
20ca73bc 2121 */
c32c8af4
AV
2122void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2123 const struct timespec *abs_timeout)
20ca73bc 2124{
20ca73bc 2125 struct audit_context *context = current->audit_context;
c32c8af4 2126 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2127
c32c8af4
AV
2128 if (abs_timeout)
2129 memcpy(p, abs_timeout, sizeof(struct timespec));
2130 else
2131 memset(p, 0, sizeof(struct timespec));
20ca73bc 2132
c32c8af4
AV
2133 context->mq_sendrecv.mqdes = mqdes;
2134 context->mq_sendrecv.msg_len = msg_len;
2135 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2136
c32c8af4 2137 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2138}
2139
2140/**
2141 * __audit_mq_notify - record audit data for a POSIX MQ notify
2142 * @mqdes: MQ descriptor
6b962559 2143 * @notification: Notification event
20ca73bc 2144 *
20ca73bc
GW
2145 */
2146
20114f71 2147void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2148{
20ca73bc
GW
2149 struct audit_context *context = current->audit_context;
2150
20114f71
AV
2151 if (notification)
2152 context->mq_notify.sigev_signo = notification->sigev_signo;
2153 else
2154 context->mq_notify.sigev_signo = 0;
20ca73bc 2155
20114f71
AV
2156 context->mq_notify.mqdes = mqdes;
2157 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2158}
2159
2160/**
2161 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2162 * @mqdes: MQ descriptor
2163 * @mqstat: MQ flags
2164 *
20ca73bc 2165 */
7392906e 2166void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2167{
20ca73bc 2168 struct audit_context *context = current->audit_context;
7392906e
AV
2169 context->mq_getsetattr.mqdes = mqdes;
2170 context->mq_getsetattr.mqstat = *mqstat;
2171 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2172}
2173
b0dd25a8 2174/**
073115d6
SG
2175 * audit_ipc_obj - record audit data for ipc object
2176 * @ipcp: ipc permissions
2177 *
073115d6 2178 */
a33e6751 2179void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2180{
073115d6 2181 struct audit_context *context = current->audit_context;
a33e6751
AV
2182 context->ipc.uid = ipcp->uid;
2183 context->ipc.gid = ipcp->gid;
2184 context->ipc.mode = ipcp->mode;
e816f370 2185 context->ipc.has_perm = 0;
a33e6751
AV
2186 security_ipc_getsecid(ipcp, &context->ipc.osid);
2187 context->type = AUDIT_IPC;
073115d6
SG
2188}
2189
2190/**
2191 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2192 * @qbytes: msgq bytes
2193 * @uid: msgq user id
2194 * @gid: msgq group id
2195 * @mode: msgq mode (permissions)
2196 *
e816f370 2197 * Called only after audit_ipc_obj().
b0dd25a8 2198 */
2570ebbd 2199void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2200{
1da177e4
LT
2201 struct audit_context *context = current->audit_context;
2202
e816f370
AV
2203 context->ipc.qbytes = qbytes;
2204 context->ipc.perm_uid = uid;
2205 context->ipc.perm_gid = gid;
2206 context->ipc.perm_mode = mode;
2207 context->ipc.has_perm = 1;
1da177e4 2208}
c2f0c7c3 2209
d9cfea91 2210void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2211{
473ae30b 2212 struct audit_context *context = current->audit_context;
473ae30b 2213
d9cfea91
RGB
2214 context->type = AUDIT_EXECVE;
2215 context->execve.argc = bprm->argc;
473ae30b
AV
2216}
2217
2218
b0dd25a8
RD
2219/**
2220 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2221 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2222 * @args: args array
2223 *
b0dd25a8 2224 */
2950fa9d 2225int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2226{
3ec3b2fb
DW
2227 struct audit_context *context = current->audit_context;
2228
2950fa9d
CG
2229 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2230 return -EINVAL;
f3298dc4
AV
2231 context->type = AUDIT_SOCKETCALL;
2232 context->socketcall.nargs = nargs;
2233 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2234 return 0;
3ec3b2fb
DW
2235}
2236
db349509
AV
2237/**
2238 * __audit_fd_pair - record audit data for pipe and socketpair
2239 * @fd1: the first file descriptor
2240 * @fd2: the second file descriptor
2241 *
db349509 2242 */
157cf649 2243void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2244{
2245 struct audit_context *context = current->audit_context;
157cf649
AV
2246 context->fds[0] = fd1;
2247 context->fds[1] = fd2;
db349509
AV
2248}
2249
b0dd25a8
RD
2250/**
2251 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2252 * @len: data length in user space
2253 * @a: data address in kernel space
2254 *
2255 * Returns 0 for success or NULL context or < 0 on error.
2256 */
07c49417 2257int __audit_sockaddr(int len, void *a)
3ec3b2fb 2258{
3ec3b2fb
DW
2259 struct audit_context *context = current->audit_context;
2260
4f6b434f
AV
2261 if (!context->sockaddr) {
2262 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2263 if (!p)
2264 return -ENOMEM;
2265 context->sockaddr = p;
2266 }
3ec3b2fb 2267
4f6b434f
AV
2268 context->sockaddr_len = len;
2269 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2270 return 0;
2271}
2272
a5cb013d
AV
2273void __audit_ptrace(struct task_struct *t)
2274{
2275 struct audit_context *context = current->audit_context;
2276
2277 context->target_pid = t->pid;
c2a7780e 2278 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2279 context->target_uid = task_uid(t);
4746ec5b 2280 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2281 security_task_getsecid(t, &context->target_sid);
c2a7780e 2282 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2283}
2284
b0dd25a8
RD
2285/**
2286 * audit_signal_info - record signal info for shutting down audit subsystem
2287 * @sig: signal value
2288 * @t: task being signaled
2289 *
2290 * If the audit subsystem is being terminated, record the task (pid)
2291 * and uid that is doing that.
2292 */
e54dc243 2293int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2294{
e54dc243
AG
2295 struct audit_aux_data_pids *axp;
2296 struct task_struct *tsk = current;
2297 struct audit_context *ctx = tsk->audit_context;
cca080d9 2298 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2299
175fc484 2300 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2301 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2302 audit_sig_pid = tsk->pid;
e1760bd5 2303 if (uid_valid(tsk->loginuid))
bfef93a5 2304 audit_sig_uid = tsk->loginuid;
175fc484 2305 else
c69e8d9c 2306 audit_sig_uid = uid;
2a862b32 2307 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2308 }
2309 if (!audit_signals || audit_dummy_context())
2310 return 0;
c2f0c7c3 2311 }
e54dc243 2312
e54dc243
AG
2313 /* optimize the common case by putting first signal recipient directly
2314 * in audit_context */
2315 if (!ctx->target_pid) {
2316 ctx->target_pid = t->tgid;
c2a7780e 2317 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2318 ctx->target_uid = t_uid;
4746ec5b 2319 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2320 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2321 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2322 return 0;
2323 }
2324
2325 axp = (void *)ctx->aux_pids;
2326 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2327 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2328 if (!axp)
2329 return -ENOMEM;
2330
2331 axp->d.type = AUDIT_OBJ_PID;
2332 axp->d.next = ctx->aux_pids;
2333 ctx->aux_pids = (void *)axp;
2334 }
88ae704c 2335 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2336
2337 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2338 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2339 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2340 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2341 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2342 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2343 axp->pid_count++;
2344
2345 return 0;
c2f0c7c3 2346}
0a4ff8c2 2347
3fc689e9
EP
2348/**
2349 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2350 * @bprm: pointer to the bprm being processed
2351 * @new: the proposed new credentials
2352 * @old: the old credentials
3fc689e9
EP
2353 *
2354 * Simply check if the proc already has the caps given by the file and if not
2355 * store the priv escalation info for later auditing at the end of the syscall
2356 *
3fc689e9
EP
2357 * -Eric
2358 */
d84f4f99
DH
2359int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2360 const struct cred *new, const struct cred *old)
3fc689e9
EP
2361{
2362 struct audit_aux_data_bprm_fcaps *ax;
2363 struct audit_context *context = current->audit_context;
2364 struct cpu_vfs_cap_data vcaps;
2365 struct dentry *dentry;
2366
2367 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2368 if (!ax)
d84f4f99 2369 return -ENOMEM;
3fc689e9
EP
2370
2371 ax->d.type = AUDIT_BPRM_FCAPS;
2372 ax->d.next = context->aux;
2373 context->aux = (void *)ax;
2374
2375 dentry = dget(bprm->file->f_dentry);
2376 get_vfs_caps_from_disk(dentry, &vcaps);
2377 dput(dentry);
2378
2379 ax->fcap.permitted = vcaps.permitted;
2380 ax->fcap.inheritable = vcaps.inheritable;
2381 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2382 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2383
d84f4f99
DH
2384 ax->old_pcap.permitted = old->cap_permitted;
2385 ax->old_pcap.inheritable = old->cap_inheritable;
2386 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2387
d84f4f99
DH
2388 ax->new_pcap.permitted = new->cap_permitted;
2389 ax->new_pcap.inheritable = new->cap_inheritable;
2390 ax->new_pcap.effective = new->cap_effective;
2391 return 0;
3fc689e9
EP
2392}
2393
e68b75a0
EP
2394/**
2395 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2396 * @new: the new credentials
2397 * @old: the old (current) credentials
e68b75a0
EP
2398 *
2399 * Record the aguments userspace sent to sys_capset for later printing by the
2400 * audit system if applicable
2401 */
ca24a23e 2402void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2403{
e68b75a0 2404 struct audit_context *context = current->audit_context;
ca24a23e 2405 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2406 context->capset.cap.effective = new->cap_effective;
2407 context->capset.cap.inheritable = new->cap_effective;
2408 context->capset.cap.permitted = new->cap_permitted;
2409 context->type = AUDIT_CAPSET;
e68b75a0
EP
2410}
2411
120a795d
AV
2412void __audit_mmap_fd(int fd, int flags)
2413{
2414 struct audit_context *context = current->audit_context;
2415 context->mmap.fd = fd;
2416 context->mmap.flags = flags;
2417 context->type = AUDIT_MMAP;
2418}
2419
7b9205bd 2420static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2421{
cca080d9
EB
2422 kuid_t auid, uid;
2423 kgid_t gid;
85e7bac3 2424 unsigned int sessionid;
ff235f51 2425 struct mm_struct *mm = current->mm;
85e7bac3
EP
2426
2427 auid = audit_get_loginuid(current);
2428 sessionid = audit_get_sessionid(current);
2429 current_uid_gid(&uid, &gid);
2430
2431 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2432 from_kuid(&init_user_ns, auid),
2433 from_kuid(&init_user_ns, uid),
2434 from_kgid(&init_user_ns, gid),
2435 sessionid);
85e7bac3
EP
2436 audit_log_task_context(ab);
2437 audit_log_format(ab, " pid=%d comm=", current->pid);
2438 audit_log_untrustedstring(ab, current->comm);
ff235f51
PD
2439 if (mm) {
2440 down_read(&mm->mmap_sem);
2441 if (mm->exe_file)
2442 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2443 up_read(&mm->mmap_sem);
2444 } else
2445 audit_log_format(ab, " exe=(null)");
7b9205bd
KC
2446}
2447
0a4ff8c2
SG
2448/**
2449 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2450 * @signr: signal value
0a4ff8c2
SG
2451 *
2452 * If a process ends with a core dump, something fishy is going on and we
2453 * should record the event for investigation.
2454 */
2455void audit_core_dumps(long signr)
2456{
2457 struct audit_buffer *ab;
0a4ff8c2
SG
2458
2459 if (!audit_enabled)
2460 return;
2461
2462 if (signr == SIGQUIT) /* don't care for those */
2463 return;
2464
2465 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2466 if (unlikely(!ab))
2467 return;
61c0ee87
PD
2468 audit_log_task(ab);
2469 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2470 audit_log_end(ab);
2471}
0a4ff8c2 2472
3dc1c1b2 2473void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2474{
2475 struct audit_buffer *ab;
2476
7b9205bd
KC
2477 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2478 if (unlikely(!ab))
2479 return;
2480 audit_log_task(ab);
2481 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2482 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2483 audit_log_format(ab, " compat=%d", is_compat_task());
2484 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2485 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2486 audit_log_end(ab);
2487}
916d7576
AV
2488
2489struct list_head *audit_killed_trees(void)
2490{
2491 struct audit_context *ctx = current->audit_context;
2492 if (likely(!ctx || !ctx->in_syscall))
2493 return NULL;
2494 return &ctx->killed_trees;
2495}