]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/auditsc.c
get rid of lustre_dump_dentry()
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
a6c043a8 66#include <linux/tty.h>
473ae30b 67#include <linux/binfmts.h>
a1f8e7f7 68#include <linux/highmem.h>
f46038ff 69#include <linux/syscalls.h>
84db564a 70#include <asm/syscall.h>
851f7ff5 71#include <linux/capability.h>
5ad4e53b 72#include <linux/fs_struct.h>
3dc1c1b2 73#include <linux/compat.h>
3f1c8250 74#include <linux/ctype.h>
fcf22d82
PM
75#include <linux/string.h>
76#include <uapi/linux/limits.h>
1da177e4 77
fe7752ba 78#include "audit.h"
1da177e4 79
d7e7528b
EP
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
de6bbd1d
EP
85/* no execve audit message should be longer than this (userspace limits) */
86#define MAX_EXECVE_AUDIT_LEN 7500
87
3f1c8250
WR
88/* max length to print of cmdline/proctitle value during audit */
89#define MAX_PROCTITLE_AUDIT_LEN 128
90
471a5c7c
AV
91/* number of audit rules */
92int audit_n_rules;
93
e54dc243
AG
94/* determines whether we collect data for signals sent */
95int audit_signals;
96
1da177e4
LT
97struct audit_aux_data {
98 struct audit_aux_data *next;
99 int type;
100};
101
102#define AUDIT_AUX_IPCPERM 0
103
e54dc243
AG
104/* Number of target pids per aux struct. */
105#define AUDIT_AUX_PIDS 16
106
e54dc243
AG
107struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 110 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 111 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 113 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
115 int pid_count;
116};
117
3fc689e9
EP
118struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
124};
125
74c3cbe3
AV
126struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
129};
130
55669bfa
AV
131static int audit_match_perm(struct audit_context *ctx, int mask)
132{
c4bacefb 133 unsigned n;
1a61c88d 134 if (unlikely(!ctx))
135 return 0;
c4bacefb 136 n = ctx->major;
dbda4c0b 137
55669bfa
AV
138 switch (audit_classify_syscall(ctx->arch, n)) {
139 case 0: /* native */
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
142 return 1;
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
145 return 1;
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 return 1;
149 return 0;
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 return 1;
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
156 return 1;
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 return 1;
160 return 0;
161 case 2: /* open */
162 return mask & ACC_MODE(ctx->argv[1]);
163 case 3: /* openat */
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 case 5: /* execve */
168 return mask & AUDIT_PERM_EXEC;
169 default:
170 return 0;
171 }
172}
173
5ef30ee5 174static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 175{
5195d8e2 176 struct audit_names *n;
5ef30ee5 177 umode_t mode = (umode_t)val;
1a61c88d 178
179 if (unlikely(!ctx))
180 return 0;
181
5195d8e2
EP
182 list_for_each_entry(n, &ctx->names_list, list) {
183 if ((n->ino != -1) &&
184 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
185 return 1;
186 }
5195d8e2 187
5ef30ee5 188 return 0;
8b67dca9
AV
189}
190
74c3cbe3
AV
191/*
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 */
200
201#ifdef CONFIG_AUDIT_TREE
679173b7
EP
202static void audit_set_auditable(struct audit_context *ctx)
203{
204 if (!ctx->prio) {
205 ctx->prio = 1;
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
207 }
208}
209
74c3cbe3
AV
210static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211{
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
214 if (likely(left)) {
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
217 return 1;
218 }
219 if (!p)
220 return 0;
221 p = p->next;
222 if (p) {
223 p->c[30] = chunk;
224 ctx->trees = p;
225 ctx->tree_count = 30;
226 return 1;
227 }
228 return 0;
229}
230
231static int grow_tree_refs(struct audit_context *ctx)
232{
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 if (!ctx->trees) {
236 ctx->trees = p;
237 return 0;
238 }
239 if (p)
240 p->next = ctx->trees;
241 else
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
244 return 1;
245}
246#endif
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
251#ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
253 int n;
254 if (!p) {
255 /* we started with empty chain */
256 p = ctx->first_trees;
257 count = 31;
258 /* if the very first allocation has failed, nothing to do */
259 if (!p)
260 return;
261 }
262 n = count;
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 while (n--) {
265 audit_put_chunk(q->c[n]);
266 q->c[n] = NULL;
267 }
268 }
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 ctx->trees = p;
274 ctx->tree_count = count;
275#endif
276}
277
278static void free_tree_refs(struct audit_context *ctx)
279{
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
282 q = p->next;
283 kfree(p);
284 }
285}
286
287static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288{
289#ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
291 int n;
292 if (!tree)
293 return 0;
294 /* full ones */
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
298 return 1;
299 }
300 /* partial */
301 if (p) {
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306#endif
307 return 0;
308}
309
ca57ec0f
EB
310static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
b34b0393
EP
314{
315 struct audit_names *n;
b34b0393 316 int rc;
ca57ec0f 317
b34b0393 318 if (name) {
ca57ec0f 319 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
320 if (rc)
321 return rc;
322 }
ca57ec0f 323
b34b0393
EP
324 if (ctx) {
325 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
326 rc = audit_uid_comparator(uid, f->op, n->uid);
327 if (rc)
328 return rc;
329 }
330 }
331 return 0;
332}
b34b0393 333
ca57ec0f
EB
334static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
338{
339 struct audit_names *n;
340 int rc;
341
342 if (name) {
343 rc = audit_gid_comparator(gid, f->op, name->gid);
344 if (rc)
345 return rc;
346 }
347
348 if (ctx) {
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
351 if (rc)
352 return rc;
353 }
354 }
355 return 0;
356}
357
02d86a56
EP
358static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
363{
02d86a56 364 switch (f->val) {
4a6633ed 365 /* process to file object comparisons */
02d86a56 366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 367 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 369 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 371 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 373 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 377 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 379 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 381 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 383 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 387 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 389 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 391 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 396 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 398 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 411 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 413 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
f368c07d 430/* Determine if any context name data matches a rule's watch data */
1da177e4 431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
1da177e4 438static int audit_filter_rules(struct task_struct *tsk,
93315ed6 439 struct audit_krule *rule,
1da177e4 440 struct audit_context *ctx,
f368c07d 441 struct audit_names *name,
f5629883
TJ
442 enum audit_state *state,
443 bool task_creation)
1da177e4 444{
f5629883 445 const struct cred *cred;
5195d8e2 446 int i, need_sid = 1;
3dc7e315
DG
447 u32 sid;
448
f5629883
TJ
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450
1da177e4 451 for (i = 0; i < rule->field_count; i++) {
93315ed6 452 struct audit_field *f = &rule->fields[i];
5195d8e2 453 struct audit_names *n;
1da177e4 454 int result = 0;
f1dc4867 455 pid_t pid;
1da177e4 456
93315ed6 457 switch (f->type) {
1da177e4 458 case AUDIT_PID:
f1dc4867
RGB
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
1da177e4 461 break;
3c66251e 462 case AUDIT_PPID:
419c58f1
AV
463 if (ctx) {
464 if (!ctx->ppid)
c92cdeb4 465 ctx->ppid = task_ppid_nr(tsk);
3c66251e 466 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 467 }
3c66251e 468 break;
1da177e4 469 case AUDIT_UID:
ca57ec0f 470 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
471 break;
472 case AUDIT_EUID:
ca57ec0f 473 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
474 break;
475 case AUDIT_SUID:
ca57ec0f 476 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_FSUID:
ca57ec0f 479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_GID:
ca57ec0f 482 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
483 if (f->op == Audit_equal) {
484 if (!result)
485 result = in_group_p(f->gid);
486 } else if (f->op == Audit_not_equal) {
487 if (result)
488 result = !in_group_p(f->gid);
489 }
1da177e4
LT
490 break;
491 case AUDIT_EGID:
ca57ec0f 492 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_egroup_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_egroup_p(f->gid);
499 }
1da177e4
LT
500 break;
501 case AUDIT_SGID:
ca57ec0f 502 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
503 break;
504 case AUDIT_FSGID:
ca57ec0f 505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
506 break;
507 case AUDIT_PERS:
93315ed6 508 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 509 break;
2fd6f58b 510 case AUDIT_ARCH:
9f8dbe9c 511 if (ctx)
93315ed6 512 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 513 break;
1da177e4
LT
514
515 case AUDIT_EXIT:
516 if (ctx && ctx->return_valid)
93315ed6 517 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
518 break;
519 case AUDIT_SUCCESS:
b01f2cc1 520 if (ctx && ctx->return_valid) {
93315ed6
AG
521 if (f->val)
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 523 else
93315ed6 524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 525 }
1da177e4
LT
526 break;
527 case AUDIT_DEVMAJOR:
16c174bd
EP
528 if (name) {
529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 ++result;
532 } else if (ctx) {
5195d8e2 533 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
536 ++result;
537 break;
538 }
539 }
540 }
541 break;
542 case AUDIT_DEVMINOR:
16c174bd
EP
543 if (name) {
544 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 audit_comparator(MINOR(name->rdev), f->op, f->val))
546 ++result;
547 } else if (ctx) {
5195d8e2 548 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
549 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
551 ++result;
552 break;
553 }
554 }
555 }
556 break;
557 case AUDIT_INODE:
f368c07d 558 if (name)
db510fc5 559 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 560 else if (ctx) {
5195d8e2
EP
561 list_for_each_entry(n, &ctx->names_list, list) {
562 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
563 ++result;
564 break;
565 }
566 }
567 }
568 break;
efaffd6e
EP
569 case AUDIT_OBJ_UID:
570 if (name) {
ca57ec0f 571 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
572 } else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 574 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
54d3218b
EP
581 case AUDIT_OBJ_GID:
582 if (name) {
ca57ec0f 583 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 586 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
f368c07d 593 case AUDIT_WATCH:
ae7b8f41
EP
594 if (name)
595 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 596 break;
74c3cbe3
AV
597 case AUDIT_DIR:
598 if (ctx)
599 result = match_tree_refs(ctx, rule->tree);
600 break;
1da177e4
LT
601 case AUDIT_LOGINUID:
602 result = 0;
603 if (ctx)
ca57ec0f 604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 605 break;
780a7654
EB
606 case AUDIT_LOGINUID_SET:
607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608 break;
3a6b9f85
DG
609 case AUDIT_SUBJ_USER:
610 case AUDIT_SUBJ_ROLE:
611 case AUDIT_SUBJ_TYPE:
612 case AUDIT_SUBJ_SEN:
613 case AUDIT_SUBJ_CLR:
3dc7e315
DG
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
618 logged upon error */
04305e4a 619 if (f->lsm_rule) {
2ad312d2 620 if (need_sid) {
2a862b32 621 security_task_getsecid(tsk, &sid);
2ad312d2
SG
622 need_sid = 0;
623 }
d7a96f3a 624 result = security_audit_rule_match(sid, f->type,
3dc7e315 625 f->op,
04305e4a 626 f->lsm_rule,
3dc7e315 627 ctx);
2ad312d2 628 }
3dc7e315 629 break;
6e5a2d1d
DG
630 case AUDIT_OBJ_USER:
631 case AUDIT_OBJ_ROLE:
632 case AUDIT_OBJ_TYPE:
633 case AUDIT_OBJ_LEV_LOW:
634 case AUDIT_OBJ_LEV_HIGH:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 also applies here */
04305e4a 637 if (f->lsm_rule) {
6e5a2d1d
DG
638 /* Find files that match */
639 if (name) {
d7a96f3a 640 result = security_audit_rule_match(
6e5a2d1d 641 name->osid, f->type, f->op,
04305e4a 642 f->lsm_rule, ctx);
6e5a2d1d 643 } else if (ctx) {
5195d8e2
EP
644 list_for_each_entry(n, &ctx->names_list, list) {
645 if (security_audit_rule_match(n->osid, f->type,
646 f->op, f->lsm_rule,
647 ctx)) {
6e5a2d1d
DG
648 ++result;
649 break;
650 }
651 }
652 }
653 /* Find ipc objects that match */
a33e6751
AV
654 if (!ctx || ctx->type != AUDIT_IPC)
655 break;
656 if (security_audit_rule_match(ctx->ipc.osid,
657 f->type, f->op,
658 f->lsm_rule, ctx))
659 ++result;
6e5a2d1d
DG
660 }
661 break;
1da177e4
LT
662 case AUDIT_ARG0:
663 case AUDIT_ARG1:
664 case AUDIT_ARG2:
665 case AUDIT_ARG3:
666 if (ctx)
93315ed6 667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 668 break;
5adc8a6a
AG
669 case AUDIT_FILTERKEY:
670 /* ignore this field for filtering */
671 result = 1;
672 break;
55669bfa
AV
673 case AUDIT_PERM:
674 result = audit_match_perm(ctx, f->val);
675 break;
8b67dca9
AV
676 case AUDIT_FILETYPE:
677 result = audit_match_filetype(ctx, f->val);
678 break;
02d86a56
EP
679 case AUDIT_FIELD_COMPARE:
680 result = audit_field_compare(tsk, cred, f, ctx, name);
681 break;
1da177e4 682 }
f5629883 683 if (!result)
1da177e4
LT
684 return 0;
685 }
0590b933
AV
686
687 if (ctx) {
688 if (rule->prio <= ctx->prio)
689 return 0;
690 if (rule->filterkey) {
691 kfree(ctx->filterkey);
692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
693 }
694 ctx->prio = rule->prio;
695 }
1da177e4
LT
696 switch (rule->action) {
697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
699 }
700 return 1;
701}
702
703/* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
706 */
e048e02c 707static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
708{
709 struct audit_entry *e;
710 enum audit_state state;
711
712 rcu_read_lock();
0f45aa18 713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715 &state, true)) {
e048e02c
AV
716 if (state == AUDIT_RECORD_CONTEXT)
717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
718 rcu_read_unlock();
719 return state;
720 }
721 }
722 rcu_read_unlock();
723 return AUDIT_BUILD_CONTEXT;
724}
725
a3c54931
AL
726static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
727{
728 int word, bit;
729
730 if (val > 0xffffffff)
731 return false;
732
733 word = AUDIT_WORD(val);
734 if (word >= AUDIT_BITMASK_SIZE)
735 return false;
736
737 bit = AUDIT_BIT(val);
738
739 return rule->mask[word] & bit;
740}
741
1da177e4
LT
742/* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 744 * also not high enough that we already know we have to write an audit
b0dd25a8 745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
746 */
747static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 struct audit_context *ctx,
749 struct list_head *list)
750{
751 struct audit_entry *e;
c3896495 752 enum audit_state state;
1da177e4 753
351bb722 754 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
755 return AUDIT_DISABLED;
756
1da177e4 757 rcu_read_lock();
c3896495 758 if (!list_empty(list)) {
b63862f4 759 list_for_each_entry_rcu(e, list, list) {
a3c54931 760 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 761 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 762 &state, false)) {
f368c07d 763 rcu_read_unlock();
0590b933 764 ctx->current_state = state;
f368c07d
AG
765 return state;
766 }
767 }
768 }
769 rcu_read_unlock();
770 return AUDIT_BUILD_CONTEXT;
771}
772
5195d8e2
EP
773/*
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
776 */
777static int audit_filter_inode_name(struct task_struct *tsk,
778 struct audit_names *n,
779 struct audit_context *ctx) {
5195d8e2
EP
780 int h = audit_hash_ino((u32)n->ino);
781 struct list_head *list = &audit_inode_hash[h];
782 struct audit_entry *e;
783 enum audit_state state;
784
5195d8e2
EP
785 if (list_empty(list))
786 return 0;
787
788 list_for_each_entry_rcu(e, list, list) {
a3c54931 789 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 ctx->current_state = state;
792 return 1;
793 }
794 }
795
796 return 0;
797}
798
799/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 800 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 801 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
803 */
0590b933 804void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 805{
5195d8e2 806 struct audit_names *n;
f368c07d
AG
807
808 if (audit_pid && tsk->tgid == audit_pid)
0590b933 809 return;
f368c07d
AG
810
811 rcu_read_lock();
f368c07d 812
5195d8e2
EP
813 list_for_each_entry(n, &ctx->names_list, list) {
814 if (audit_filter_inode_name(tsk, n, ctx))
815 break;
0f45aa18
DW
816 }
817 rcu_read_unlock();
0f45aa18
DW
818}
819
4a3eb726
RGB
820/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821static inline struct audit_context *audit_take_context(struct task_struct *tsk,
1da177e4 822 int return_valid,
6d208da8 823 long return_code)
1da177e4
LT
824{
825 struct audit_context *context = tsk->audit_context;
826
56179a6e 827 if (!context)
1da177e4
LT
828 return NULL;
829 context->return_valid = return_valid;
f701b75e
EP
830
831 /*
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
835 *
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 *
840 * but is faster than a bunch of ||
841 */
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
1da177e4 848
0590b933
AV
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
1da177e4
LT
852 }
853
1da177e4
LT
854 tsk->audit_context = NULL;
855 return context;
856}
857
3f1c8250
WR
858static inline void audit_proctitle_free(struct audit_context *context)
859{
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
863}
864
1da177e4
LT
865static inline void audit_free_names(struct audit_context *context)
866{
5195d8e2 867 struct audit_names *n, *next;
1da177e4
LT
868
869#if AUDIT_DEBUG == 2
0590b933 870 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
871 int i = 0;
872
f952d10f
RGB
873 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
874 " name_count=%d put_count=%d ino_count=%d"
875 " [NOT freeing]\n", __FILE__, __LINE__,
1da177e4
LT
876 context->serial, context->major, context->in_syscall,
877 context->name_count, context->put_count,
878 context->ino_count);
5195d8e2 879 list_for_each_entry(n, &context->names_list, list) {
f952d10f
RGB
880 pr_err("names[%d] = %p = %s\n", i++, n->name,
881 n->name->name ?: "(null)");
8c8570fb 882 }
1da177e4
LT
883 dump_stack();
884 return;
885 }
886#endif
887#if AUDIT_DEBUG
888 context->put_count = 0;
889 context->ino_count = 0;
890#endif
891
5195d8e2
EP
892 list_for_each_entry_safe(n, next, &context->names_list, list) {
893 list_del(&n->list);
894 if (n->name && n->name_put)
65ada7bc 895 final_putname(n->name);
5195d8e2
EP
896 if (n->should_free)
897 kfree(n);
8c8570fb 898 }
1da177e4 899 context->name_count = 0;
44707fdf
JB
900 path_put(&context->pwd);
901 context->pwd.dentry = NULL;
902 context->pwd.mnt = NULL;
1da177e4
LT
903}
904
905static inline void audit_free_aux(struct audit_context *context)
906{
907 struct audit_aux_data *aux;
908
909 while ((aux = context->aux)) {
910 context->aux = aux->next;
911 kfree(aux);
912 }
e54dc243
AG
913 while ((aux = context->aux_pids)) {
914 context->aux_pids = aux->next;
915 kfree(aux);
916 }
1da177e4
LT
917}
918
1da177e4
LT
919static inline struct audit_context *audit_alloc_context(enum audit_state state)
920{
921 struct audit_context *context;
922
17c6ee70
RM
923 context = kzalloc(sizeof(*context), GFP_KERNEL);
924 if (!context)
1da177e4 925 return NULL;
e2c5adc8
AM
926 context->state = state;
927 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 928 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 929 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
930 return context;
931}
932
b0dd25a8
RD
933/**
934 * audit_alloc - allocate an audit context block for a task
935 * @tsk: task
936 *
937 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
938 * if necessary. Doing so turns on system call auditing for the
939 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
940 * needed.
941 */
1da177e4
LT
942int audit_alloc(struct task_struct *tsk)
943{
944 struct audit_context *context;
945 enum audit_state state;
e048e02c 946 char *key = NULL;
1da177e4 947
b593d384 948 if (likely(!audit_ever_enabled))
1da177e4
LT
949 return 0; /* Return if not auditing. */
950
e048e02c 951 state = audit_filter_task(tsk, &key);
d48d8051
ON
952 if (state == AUDIT_DISABLED) {
953 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 954 return 0;
d48d8051 955 }
1da177e4
LT
956
957 if (!(context = audit_alloc_context(state))) {
e048e02c 958 kfree(key);
1da177e4
LT
959 audit_log_lost("out of memory in audit_alloc");
960 return -ENOMEM;
961 }
e048e02c 962 context->filterkey = key;
1da177e4 963
1da177e4
LT
964 tsk->audit_context = context;
965 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
966 return 0;
967}
968
969static inline void audit_free_context(struct audit_context *context)
970{
c62d773a
AV
971 audit_free_names(context);
972 unroll_tree_refs(context, NULL, 0);
973 free_tree_refs(context);
974 audit_free_aux(context);
975 kfree(context->filterkey);
976 kfree(context->sockaddr);
3f1c8250 977 audit_proctitle_free(context);
c62d773a 978 kfree(context);
1da177e4
LT
979}
980
e54dc243 981static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 982 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 983 u32 sid, char *comm)
e54dc243
AG
984{
985 struct audit_buffer *ab;
2a862b32 986 char *ctx = NULL;
e54dc243
AG
987 u32 len;
988 int rc = 0;
989
990 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
991 if (!ab)
6246ccab 992 return rc;
e54dc243 993
e1760bd5
EB
994 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
995 from_kuid(&init_user_ns, auid),
cca080d9 996 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
997 if (sid) {
998 if (security_secid_to_secctx(sid, &ctx, &len)) {
999 audit_log_format(ab, " obj=(none)");
1000 rc = 1;
1001 } else {
1002 audit_log_format(ab, " obj=%s", ctx);
1003 security_release_secctx(ctx, len);
1004 }
2a862b32 1005 }
c2a7780e
EP
1006 audit_log_format(ab, " ocomm=");
1007 audit_log_untrustedstring(ab, comm);
e54dc243 1008 audit_log_end(ab);
e54dc243
AG
1009
1010 return rc;
1011}
1012
de6bbd1d
EP
1013/*
1014 * to_send and len_sent accounting are very loose estimates. We aren't
1015 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1016 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1017 *
1018 * why snprintf? an int is up to 12 digits long. if we just assumed when
1019 * logging that a[%d]= was going to be 16 characters long we would be wasting
1020 * space in every audit message. In one 7500 byte message we can log up to
1021 * about 1000 min size arguments. That comes down to about 50% waste of space
1022 * if we didn't do the snprintf to find out how long arg_num_len was.
1023 */
1024static int audit_log_single_execve_arg(struct audit_context *context,
1025 struct audit_buffer **ab,
1026 int arg_num,
1027 size_t *len_sent,
1028 const char __user *p,
1029 char *buf)
bdf4c48a 1030{
de6bbd1d
EP
1031 char arg_num_len_buf[12];
1032 const char __user *tmp_p = p;
b87ce6e4
EP
1033 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1034 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1035 size_t len, len_left, to_send;
1036 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1037 unsigned int i, has_cntl = 0, too_long = 0;
1038 int ret;
1039
1040 /* strnlen_user includes the null we don't want to send */
1041 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1042
de6bbd1d
EP
1043 /*
1044 * We just created this mm, if we can't find the strings
1045 * we just copied into it something is _very_ wrong. Similar
1046 * for strings that are too long, we should not have created
1047 * any.
1048 */
b0abcfc1 1049 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1050 WARN_ON(1);
1051 send_sig(SIGKILL, current, 0);
b0abcfc1 1052 return -1;
de6bbd1d 1053 }
040b3a2d 1054
de6bbd1d
EP
1055 /* walk the whole argument looking for non-ascii chars */
1056 do {
1057 if (len_left > MAX_EXECVE_AUDIT_LEN)
1058 to_send = MAX_EXECVE_AUDIT_LEN;
1059 else
1060 to_send = len_left;
1061 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1062 /*
de6bbd1d
EP
1063 * There is no reason for this copy to be short. We just
1064 * copied them here, and the mm hasn't been exposed to user-
1065 * space yet.
bdf4c48a 1066 */
de6bbd1d 1067 if (ret) {
bdf4c48a
PZ
1068 WARN_ON(1);
1069 send_sig(SIGKILL, current, 0);
b0abcfc1 1070 return -1;
bdf4c48a 1071 }
de6bbd1d
EP
1072 buf[to_send] = '\0';
1073 has_cntl = audit_string_contains_control(buf, to_send);
1074 if (has_cntl) {
1075 /*
1076 * hex messages get logged as 2 bytes, so we can only
1077 * send half as much in each message
1078 */
1079 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1080 break;
1081 }
de6bbd1d
EP
1082 len_left -= to_send;
1083 tmp_p += to_send;
1084 } while (len_left > 0);
1085
1086 len_left = len;
1087
1088 if (len > max_execve_audit_len)
1089 too_long = 1;
1090
1091 /* rewalk the argument actually logging the message */
1092 for (i = 0; len_left > 0; i++) {
1093 int room_left;
1094
1095 if (len_left > max_execve_audit_len)
1096 to_send = max_execve_audit_len;
1097 else
1098 to_send = len_left;
1099
1100 /* do we have space left to send this argument in this ab? */
1101 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1102 if (has_cntl)
1103 room_left -= (to_send * 2);
1104 else
1105 room_left -= to_send;
1106 if (room_left < 0) {
1107 *len_sent = 0;
1108 audit_log_end(*ab);
1109 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1110 if (!*ab)
1111 return 0;
1112 }
bdf4c48a 1113
bdf4c48a 1114 /*
de6bbd1d
EP
1115 * first record needs to say how long the original string was
1116 * so we can be sure nothing was lost.
1117 */
1118 if ((i == 0) && (too_long))
ca96a895 1119 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1120 has_cntl ? 2*len : len);
1121
1122 /*
1123 * normally arguments are small enough to fit and we already
1124 * filled buf above when we checked for control characters
1125 * so don't bother with another copy_from_user
bdf4c48a 1126 */
de6bbd1d
EP
1127 if (len >= max_execve_audit_len)
1128 ret = copy_from_user(buf, p, to_send);
1129 else
1130 ret = 0;
040b3a2d 1131 if (ret) {
bdf4c48a
PZ
1132 WARN_ON(1);
1133 send_sig(SIGKILL, current, 0);
b0abcfc1 1134 return -1;
bdf4c48a 1135 }
de6bbd1d
EP
1136 buf[to_send] = '\0';
1137
1138 /* actually log it */
ca96a895 1139 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1140 if (too_long)
1141 audit_log_format(*ab, "[%d]", i);
1142 audit_log_format(*ab, "=");
1143 if (has_cntl)
b556f8ad 1144 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1145 else
9d960985 1146 audit_log_string(*ab, buf);
de6bbd1d
EP
1147
1148 p += to_send;
1149 len_left -= to_send;
1150 *len_sent += arg_num_len;
1151 if (has_cntl)
1152 *len_sent += to_send * 2;
1153 else
1154 *len_sent += to_send;
1155 }
1156 /* include the null we didn't log */
1157 return len + 1;
1158}
1159
1160static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1161 struct audit_buffer **ab)
de6bbd1d 1162{
5afb8a3f
XW
1163 int i, len;
1164 size_t len_sent = 0;
de6bbd1d
EP
1165 const char __user *p;
1166 char *buf;
bdf4c48a 1167
d9cfea91 1168 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1169
d9cfea91 1170 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1171
1172 /*
1173 * we need some kernel buffer to hold the userspace args. Just
1174 * allocate one big one rather than allocating one of the right size
1175 * for every single argument inside audit_log_single_execve_arg()
1176 * should be <8k allocation so should be pretty safe.
1177 */
1178 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179 if (!buf) {
b7550787 1180 audit_panic("out of memory for argv string");
de6bbd1d 1181 return;
bdf4c48a 1182 }
de6bbd1d 1183
d9cfea91 1184 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1185 len = audit_log_single_execve_arg(context, ab, i,
1186 &len_sent, p, buf);
1187 if (len <= 0)
1188 break;
1189 p += len;
1190 }
1191 kfree(buf);
bdf4c48a
PZ
1192}
1193
a33e6751 1194static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1195{
1196 struct audit_buffer *ab;
1197 int i;
1198
1199 ab = audit_log_start(context, GFP_KERNEL, context->type);
1200 if (!ab)
1201 return;
1202
1203 switch (context->type) {
1204 case AUDIT_SOCKETCALL: {
1205 int nargs = context->socketcall.nargs;
1206 audit_log_format(ab, "nargs=%d", nargs);
1207 for (i = 0; i < nargs; i++)
1208 audit_log_format(ab, " a%d=%lx", i,
1209 context->socketcall.args[i]);
1210 break; }
a33e6751
AV
1211 case AUDIT_IPC: {
1212 u32 osid = context->ipc.osid;
1213
2570ebbd 1214 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1215 from_kuid(&init_user_ns, context->ipc.uid),
1216 from_kgid(&init_user_ns, context->ipc.gid),
1217 context->ipc.mode);
a33e6751
AV
1218 if (osid) {
1219 char *ctx = NULL;
1220 u32 len;
1221 if (security_secid_to_secctx(osid, &ctx, &len)) {
1222 audit_log_format(ab, " osid=%u", osid);
1223 *call_panic = 1;
1224 } else {
1225 audit_log_format(ab, " obj=%s", ctx);
1226 security_release_secctx(ctx, len);
1227 }
1228 }
e816f370
AV
1229 if (context->ipc.has_perm) {
1230 audit_log_end(ab);
1231 ab = audit_log_start(context, GFP_KERNEL,
1232 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1233 if (unlikely(!ab))
1234 return;
e816f370 1235 audit_log_format(ab,
2570ebbd 1236 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1237 context->ipc.qbytes,
1238 context->ipc.perm_uid,
1239 context->ipc.perm_gid,
1240 context->ipc.perm_mode);
e816f370 1241 }
a33e6751 1242 break; }
564f6993
AV
1243 case AUDIT_MQ_OPEN: {
1244 audit_log_format(ab,
df0a4283 1245 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1246 "mq_msgsize=%ld mq_curmsgs=%ld",
1247 context->mq_open.oflag, context->mq_open.mode,
1248 context->mq_open.attr.mq_flags,
1249 context->mq_open.attr.mq_maxmsg,
1250 context->mq_open.attr.mq_msgsize,
1251 context->mq_open.attr.mq_curmsgs);
1252 break; }
c32c8af4
AV
1253 case AUDIT_MQ_SENDRECV: {
1254 audit_log_format(ab,
1255 "mqdes=%d msg_len=%zd msg_prio=%u "
1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 context->mq_sendrecv.mqdes,
1258 context->mq_sendrecv.msg_len,
1259 context->mq_sendrecv.msg_prio,
1260 context->mq_sendrecv.abs_timeout.tv_sec,
1261 context->mq_sendrecv.abs_timeout.tv_nsec);
1262 break; }
20114f71
AV
1263 case AUDIT_MQ_NOTIFY: {
1264 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1265 context->mq_notify.mqdes,
1266 context->mq_notify.sigev_signo);
1267 break; }
7392906e
AV
1268 case AUDIT_MQ_GETSETATTR: {
1269 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1270 audit_log_format(ab,
1271 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1272 "mq_curmsgs=%ld ",
1273 context->mq_getsetattr.mqdes,
1274 attr->mq_flags, attr->mq_maxmsg,
1275 attr->mq_msgsize, attr->mq_curmsgs);
1276 break; }
57f71a0a
AV
1277 case AUDIT_CAPSET: {
1278 audit_log_format(ab, "pid=%d", context->capset.pid);
1279 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1280 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1281 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1282 break; }
120a795d
AV
1283 case AUDIT_MMAP: {
1284 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1285 context->mmap.flags);
1286 break; }
d9cfea91
RGB
1287 case AUDIT_EXECVE: {
1288 audit_log_execve_info(context, &ab);
1289 break; }
f3298dc4
AV
1290 }
1291 audit_log_end(ab);
1292}
1293
3f1c8250
WR
1294static inline int audit_proctitle_rtrim(char *proctitle, int len)
1295{
1296 char *end = proctitle + len - 1;
1297 while (end > proctitle && !isprint(*end))
1298 end--;
1299
1300 /* catch the case where proctitle is only 1 non-print character */
1301 len = end - proctitle + 1;
1302 len -= isprint(proctitle[len-1]) == 0;
1303 return len;
1304}
1305
1306static void audit_log_proctitle(struct task_struct *tsk,
1307 struct audit_context *context)
1308{
1309 int res;
1310 char *buf;
1311 char *msg = "(null)";
1312 int len = strlen(msg);
1313 struct audit_buffer *ab;
1314
1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1316 if (!ab)
1317 return; /* audit_panic or being filtered */
1318
1319 audit_log_format(ab, "proctitle=");
1320
1321 /* Not cached */
1322 if (!context->proctitle.value) {
1323 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1324 if (!buf)
1325 goto out;
1326 /* Historically called this from procfs naming */
1327 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1328 if (res == 0) {
1329 kfree(buf);
1330 goto out;
1331 }
1332 res = audit_proctitle_rtrim(buf, res);
1333 if (res == 0) {
1334 kfree(buf);
1335 goto out;
1336 }
1337 context->proctitle.value = buf;
1338 context->proctitle.len = res;
1339 }
1340 msg = context->proctitle.value;
1341 len = context->proctitle.len;
1342out:
1343 audit_log_n_untrustedstring(ab, msg, len);
1344 audit_log_end(ab);
1345}
1346
e495149b 1347static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1348{
9c7aa6aa 1349 int i, call_panic = 0;
1da177e4 1350 struct audit_buffer *ab;
7551ced3 1351 struct audit_aux_data *aux;
5195d8e2 1352 struct audit_names *n;
1da177e4 1353
e495149b 1354 /* tsk == current */
3f2792ff 1355 context->personality = tsk->personality;
e495149b
AV
1356
1357 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1358 if (!ab)
1359 return; /* audit_panic has been called */
bccf6ae0
DW
1360 audit_log_format(ab, "arch=%x syscall=%d",
1361 context->arch, context->major);
1da177e4
LT
1362 if (context->personality != PER_LINUX)
1363 audit_log_format(ab, " per=%lx", context->personality);
1364 if (context->return_valid)
9f8dbe9c 1365 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1366 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1367 context->return_code);
eb84a20e 1368
1da177e4 1369 audit_log_format(ab,
e23eb920
PM
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1371 context->argv[0],
1372 context->argv[1],
1373 context->argv[2],
1374 context->argv[3],
1375 context->name_count);
eb84a20e 1376
e495149b 1377 audit_log_task_info(ab, tsk);
9d960985 1378 audit_log_key(ab, context->filterkey);
1da177e4 1379 audit_log_end(ab);
1da177e4 1380
7551ced3 1381 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1382
e495149b 1383 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1384 if (!ab)
1385 continue; /* audit_panic has been called */
1386
1da177e4 1387 switch (aux->type) {
20ca73bc 1388
3fc689e9
EP
1389 case AUDIT_BPRM_FCAPS: {
1390 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1391 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1392 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1393 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1394 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1395 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1396 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1397 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1398 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1399 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1400 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1401 break; }
1402
1da177e4
LT
1403 }
1404 audit_log_end(ab);
1da177e4
LT
1405 }
1406
f3298dc4 1407 if (context->type)
a33e6751 1408 show_special(context, &call_panic);
f3298dc4 1409
157cf649
AV
1410 if (context->fds[0] >= 0) {
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1412 if (ab) {
1413 audit_log_format(ab, "fd0=%d fd1=%d",
1414 context->fds[0], context->fds[1]);
1415 audit_log_end(ab);
1416 }
1417 }
1418
4f6b434f
AV
1419 if (context->sockaddr_len) {
1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1421 if (ab) {
1422 audit_log_format(ab, "saddr=");
1423 audit_log_n_hex(ab, (void *)context->sockaddr,
1424 context->sockaddr_len);
1425 audit_log_end(ab);
1426 }
1427 }
1428
e54dc243
AG
1429 for (aux = context->aux_pids; aux; aux = aux->next) {
1430 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1431
1432 for (i = 0; i < axs->pid_count; i++)
1433 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1434 axs->target_auid[i],
1435 axs->target_uid[i],
4746ec5b 1436 axs->target_sessionid[i],
c2a7780e
EP
1437 axs->target_sid[i],
1438 axs->target_comm[i]))
e54dc243 1439 call_panic = 1;
a5cb013d
AV
1440 }
1441
e54dc243
AG
1442 if (context->target_pid &&
1443 audit_log_pid_context(context, context->target_pid,
c2a7780e 1444 context->target_auid, context->target_uid,
4746ec5b 1445 context->target_sessionid,
c2a7780e 1446 context->target_sid, context->target_comm))
e54dc243
AG
1447 call_panic = 1;
1448
44707fdf 1449 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1451 if (ab) {
c158a35c 1452 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1453 audit_log_end(ab);
1454 }
1455 }
73241ccc 1456
5195d8e2 1457 i = 0;
79f6530c
JL
1458 list_for_each_entry(n, &context->names_list, list) {
1459 if (n->hidden)
1460 continue;
b24a30a7 1461 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1462 }
c0641f28 1463
3f1c8250
WR
1464 audit_log_proctitle(tsk, context);
1465
c0641f28
EP
1466 /* Send end of event record to help user space know we are finished */
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1468 if (ab)
1469 audit_log_end(ab);
9c7aa6aa
SG
1470 if (call_panic)
1471 audit_panic("error converting sid to string");
1da177e4
LT
1472}
1473
b0dd25a8
RD
1474/**
1475 * audit_free - free a per-task audit context
1476 * @tsk: task whose audit context block to free
1477 *
fa84cb93 1478 * Called from copy_process and do_exit
b0dd25a8 1479 */
a4ff8dba 1480void __audit_free(struct task_struct *tsk)
1da177e4
LT
1481{
1482 struct audit_context *context;
1483
4a3eb726 1484 context = audit_take_context(tsk, 0, 0);
56179a6e 1485 if (!context)
1da177e4
LT
1486 return;
1487
1488 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1489 * function (e.g., exit_group), then free context block.
1490 * We use GFP_ATOMIC here because we might be doing this
f5561964 1491 * in the context of the idle thread */
e495149b 1492 /* that can happen only if we are called from do_exit() */
0590b933 1493 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1494 audit_log_exit(context, tsk);
916d7576
AV
1495 if (!list_empty(&context->killed_trees))
1496 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1497
1498 audit_free_context(context);
1499}
1500
b0dd25a8
RD
1501/**
1502 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1503 * @major: major syscall type (function)
1504 * @a1: additional syscall register 1
1505 * @a2: additional syscall register 2
1506 * @a3: additional syscall register 3
1507 * @a4: additional syscall register 4
1508 *
1509 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1510 * audit context was created when the task was created and the state or
1511 * filters demand the audit context be built. If the state from the
1512 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1513 * then the record will be written at syscall exit time (otherwise, it
1514 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1515 * be written).
1516 */
b4f0d375
RGB
1517void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1518 unsigned long a3, unsigned long a4)
1da177e4 1519{
5411be59 1520 struct task_struct *tsk = current;
1da177e4
LT
1521 struct audit_context *context = tsk->audit_context;
1522 enum audit_state state;
1523
56179a6e 1524 if (!context)
86a1c34a 1525 return;
1da177e4 1526
1da177e4
LT
1527 BUG_ON(context->in_syscall || context->name_count);
1528
1529 if (!audit_enabled)
1530 return;
1531
4a99854c 1532 context->arch = syscall_get_arch();
1da177e4
LT
1533 context->major = major;
1534 context->argv[0] = a1;
1535 context->argv[1] = a2;
1536 context->argv[2] = a3;
1537 context->argv[3] = a4;
1538
1539 state = context->state;
d51374ad 1540 context->dummy = !audit_n_rules;
0590b933
AV
1541 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1542 context->prio = 0;
0f45aa18 1543 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1544 }
56179a6e 1545 if (state == AUDIT_DISABLED)
1da177e4
LT
1546 return;
1547
ce625a80 1548 context->serial = 0;
1da177e4
LT
1549 context->ctime = CURRENT_TIME;
1550 context->in_syscall = 1;
0590b933 1551 context->current_state = state;
419c58f1 1552 context->ppid = 0;
1da177e4
LT
1553}
1554
b0dd25a8
RD
1555/**
1556 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1557 * @success: success value of the syscall
1558 * @return_code: return value of the syscall
b0dd25a8
RD
1559 *
1560 * Tear down after system call. If the audit context has been marked as
1da177e4 1561 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1562 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1563 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1564 * free the names stored from getname().
1565 */
d7e7528b 1566void __audit_syscall_exit(int success, long return_code)
1da177e4 1567{
5411be59 1568 struct task_struct *tsk = current;
1da177e4
LT
1569 struct audit_context *context;
1570
d7e7528b
EP
1571 if (success)
1572 success = AUDITSC_SUCCESS;
1573 else
1574 success = AUDITSC_FAILURE;
1da177e4 1575
4a3eb726 1576 context = audit_take_context(tsk, success, return_code);
56179a6e 1577 if (!context)
97e94c45 1578 return;
1da177e4 1579
0590b933 1580 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1581 audit_log_exit(context, tsk);
1da177e4
LT
1582
1583 context->in_syscall = 0;
0590b933 1584 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1585
916d7576
AV
1586 if (!list_empty(&context->killed_trees))
1587 audit_kill_trees(&context->killed_trees);
1588
c62d773a
AV
1589 audit_free_names(context);
1590 unroll_tree_refs(context, NULL, 0);
1591 audit_free_aux(context);
1592 context->aux = NULL;
1593 context->aux_pids = NULL;
1594 context->target_pid = 0;
1595 context->target_sid = 0;
1596 context->sockaddr_len = 0;
1597 context->type = 0;
1598 context->fds[0] = -1;
1599 if (context->state != AUDIT_RECORD_CONTEXT) {
1600 kfree(context->filterkey);
1601 context->filterkey = NULL;
1da177e4 1602 }
c62d773a 1603 tsk->audit_context = context;
1da177e4
LT
1604}
1605
74c3cbe3
AV
1606static inline void handle_one(const struct inode *inode)
1607{
1608#ifdef CONFIG_AUDIT_TREE
1609 struct audit_context *context;
1610 struct audit_tree_refs *p;
1611 struct audit_chunk *chunk;
1612 int count;
e61ce867 1613 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1614 return;
1615 context = current->audit_context;
1616 p = context->trees;
1617 count = context->tree_count;
1618 rcu_read_lock();
1619 chunk = audit_tree_lookup(inode);
1620 rcu_read_unlock();
1621 if (!chunk)
1622 return;
1623 if (likely(put_tree_ref(context, chunk)))
1624 return;
1625 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1626 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1627 audit_set_auditable(context);
1628 audit_put_chunk(chunk);
1629 unroll_tree_refs(context, p, count);
1630 return;
1631 }
1632 put_tree_ref(context, chunk);
1633#endif
1634}
1635
1636static void handle_path(const struct dentry *dentry)
1637{
1638#ifdef CONFIG_AUDIT_TREE
1639 struct audit_context *context;
1640 struct audit_tree_refs *p;
1641 const struct dentry *d, *parent;
1642 struct audit_chunk *drop;
1643 unsigned long seq;
1644 int count;
1645
1646 context = current->audit_context;
1647 p = context->trees;
1648 count = context->tree_count;
1649retry:
1650 drop = NULL;
1651 d = dentry;
1652 rcu_read_lock();
1653 seq = read_seqbegin(&rename_lock);
1654 for(;;) {
1655 struct inode *inode = d->d_inode;
e61ce867 1656 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1657 struct audit_chunk *chunk;
1658 chunk = audit_tree_lookup(inode);
1659 if (chunk) {
1660 if (unlikely(!put_tree_ref(context, chunk))) {
1661 drop = chunk;
1662 break;
1663 }
1664 }
1665 }
1666 parent = d->d_parent;
1667 if (parent == d)
1668 break;
1669 d = parent;
1670 }
1671 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1672 rcu_read_unlock();
1673 if (!drop) {
1674 /* just a race with rename */
1675 unroll_tree_refs(context, p, count);
1676 goto retry;
1677 }
1678 audit_put_chunk(drop);
1679 if (grow_tree_refs(context)) {
1680 /* OK, got more space */
1681 unroll_tree_refs(context, p, count);
1682 goto retry;
1683 }
1684 /* too bad */
f952d10f 1685 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1686 unroll_tree_refs(context, p, count);
1687 audit_set_auditable(context);
1688 return;
1689 }
1690 rcu_read_unlock();
1691#endif
1692}
1693
78e2e802
JL
1694static struct audit_names *audit_alloc_name(struct audit_context *context,
1695 unsigned char type)
5195d8e2
EP
1696{
1697 struct audit_names *aname;
1698
1699 if (context->name_count < AUDIT_NAMES) {
1700 aname = &context->preallocated_names[context->name_count];
1701 memset(aname, 0, sizeof(*aname));
1702 } else {
1703 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1704 if (!aname)
1705 return NULL;
1706 aname->should_free = true;
1707 }
1708
1709 aname->ino = (unsigned long)-1;
78e2e802 1710 aname->type = type;
5195d8e2
EP
1711 list_add_tail(&aname->list, &context->names_list);
1712
1713 context->name_count++;
1714#if AUDIT_DEBUG
1715 context->ino_count++;
1716#endif
1717 return aname;
1718}
1719
7ac86265
JL
1720/**
1721 * audit_reusename - fill out filename with info from existing entry
1722 * @uptr: userland ptr to pathname
1723 *
1724 * Search the audit_names list for the current audit context. If there is an
1725 * existing entry with a matching "uptr" then return the filename
1726 * associated with that audit_name. If not, return NULL.
1727 */
1728struct filename *
1729__audit_reusename(const __user char *uptr)
1730{
1731 struct audit_context *context = current->audit_context;
1732 struct audit_names *n;
1733
1734 list_for_each_entry(n, &context->names_list, list) {
1735 if (!n->name)
1736 continue;
1737 if (n->name->uptr == uptr)
1738 return n->name;
1739 }
1740 return NULL;
1741}
1742
b0dd25a8
RD
1743/**
1744 * audit_getname - add a name to the list
1745 * @name: name to add
1746 *
1747 * Add a name to the list of audit names for this context.
1748 * Called from fs/namei.c:getname().
1749 */
91a27b2a 1750void __audit_getname(struct filename *name)
1da177e4
LT
1751{
1752 struct audit_context *context = current->audit_context;
5195d8e2 1753 struct audit_names *n;
1da177e4 1754
1da177e4
LT
1755 if (!context->in_syscall) {
1756#if AUDIT_DEBUG == 2
f952d10f 1757 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1da177e4
LT
1758 __FILE__, __LINE__, context->serial, name);
1759 dump_stack();
1760#endif
1761 return;
1762 }
5195d8e2 1763
91a27b2a
JL
1764#if AUDIT_DEBUG
1765 /* The filename _must_ have a populated ->name */
1766 BUG_ON(!name->name);
1767#endif
1768
78e2e802 1769 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1770 if (!n)
1771 return;
1772
1773 n->name = name;
1774 n->name_len = AUDIT_NAME_FULL;
1775 n->name_put = true;
adb5c247 1776 name->aname = n;
5195d8e2 1777
f7ad3c6b
MS
1778 if (!context->pwd.dentry)
1779 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1780}
1781
b0dd25a8
RD
1782/* audit_putname - intercept a putname request
1783 * @name: name to intercept and delay for putname
1784 *
1785 * If we have stored the name from getname in the audit context,
1786 * then we delay the putname until syscall exit.
1787 * Called from include/linux/fs.h:putname().
1788 */
91a27b2a 1789void audit_putname(struct filename *name)
1da177e4
LT
1790{
1791 struct audit_context *context = current->audit_context;
1792
1793 BUG_ON(!context);
c4ad8f98 1794 if (!name->aname || !context->in_syscall) {
1da177e4 1795#if AUDIT_DEBUG == 2
f952d10f 1796 pr_err("%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1797 __FILE__, __LINE__, context->serial, name);
1798 if (context->name_count) {
5195d8e2 1799 struct audit_names *n;
34c474de 1800 int i = 0;
5195d8e2
EP
1801
1802 list_for_each_entry(n, &context->names_list, list)
f952d10f
RGB
1803 pr_err("name[%d] = %p = %s\n", i++, n->name,
1804 n->name->name ?: "(null)");
5195d8e2 1805 }
1da177e4 1806#endif
65ada7bc 1807 final_putname(name);
1da177e4
LT
1808 }
1809#if AUDIT_DEBUG
1810 else {
1811 ++context->put_count;
1812 if (context->put_count > context->name_count) {
f952d10f
RGB
1813 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1814 " name_count=%d put_count=%d\n",
1da177e4
LT
1815 __FILE__, __LINE__,
1816 context->serial, context->major,
91a27b2a
JL
1817 context->in_syscall, name->name,
1818 context->name_count, context->put_count);
1da177e4
LT
1819 dump_stack();
1820 }
1821 }
1822#endif
1823}
1824
b0dd25a8 1825/**
bfcec708 1826 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1827 * @name: name being audited
481968f4 1828 * @dentry: dentry being audited
79f6530c 1829 * @flags: attributes for this particular entry
b0dd25a8 1830 */
adb5c247 1831void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1832 unsigned int flags)
1da177e4 1833{
1da177e4 1834 struct audit_context *context = current->audit_context;
74c3cbe3 1835 const struct inode *inode = dentry->d_inode;
5195d8e2 1836 struct audit_names *n;
79f6530c 1837 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1838
1839 if (!context->in_syscall)
1840 return;
5195d8e2 1841
9cec9d68
JL
1842 if (!name)
1843 goto out_alloc;
1844
adb5c247
JL
1845#if AUDIT_DEBUG
1846 /* The struct filename _must_ have a populated ->name */
1847 BUG_ON(!name->name);
1848#endif
1849 /*
1850 * If we have a pointer to an audit_names entry already, then we can
1851 * just use it directly if the type is correct.
1852 */
1853 n = name->aname;
1854 if (n) {
1855 if (parent) {
1856 if (n->type == AUDIT_TYPE_PARENT ||
1857 n->type == AUDIT_TYPE_UNKNOWN)
1858 goto out;
1859 } else {
1860 if (n->type != AUDIT_TYPE_PARENT)
1861 goto out;
1862 }
1863 }
1864
5195d8e2 1865 list_for_each_entry_reverse(n, &context->names_list, list) {
fcf22d82 1866 if (!n->name || strcmp(n->name->name, name->name))
bfcec708
JL
1867 continue;
1868
1869 /* match the correct record type */
1870 if (parent) {
1871 if (n->type == AUDIT_TYPE_PARENT ||
1872 n->type == AUDIT_TYPE_UNKNOWN)
1873 goto out;
1874 } else {
1875 if (n->type != AUDIT_TYPE_PARENT)
1876 goto out;
1877 }
1da177e4 1878 }
5195d8e2 1879
9cec9d68 1880out_alloc:
4a928436
PM
1881 /* unable to find an entry with both a matching name and type */
1882 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1883 if (!n)
1884 return;
fcf22d82
PM
1885 /* unfortunately, while we may have a path name to record with the
1886 * inode, we can't always rely on the string lasting until the end of
1887 * the syscall so we need to create our own copy, it may fail due to
1888 * memory allocation issues, but we do our best */
1889 if (name) {
1890 /* we can't use getname_kernel() due to size limits */
1891 size_t len = strlen(name->name) + 1;
1892 struct filename *new = __getname();
1893
1894 if (unlikely(!new))
1895 goto out;
4a928436 1896
fcf22d82
PM
1897 if (len <= (PATH_MAX - sizeof(*new))) {
1898 new->name = (char *)(new) + sizeof(*new);
1899 new->separate = false;
1900 } else if (len <= PATH_MAX) {
1901 /* this looks odd, but is due to final_putname() */
1902 struct filename *new2;
1903
1904 new2 = kmalloc(sizeof(*new2), GFP_KERNEL);
1905 if (unlikely(!new2)) {
1906 __putname(new);
1907 goto out;
1908 }
1909 new2->name = (char *)new;
1910 new2->separate = true;
1911 new = new2;
1912 } else {
1913 /* we should never get here, but let's be safe */
1914 __putname(new);
1915 goto out;
1916 }
1917 strlcpy((char *)new->name, name->name, len);
1918 new->uptr = NULL;
1919 new->aname = n;
1920 n->name = new;
1921 n->name_put = true;
1922 }
5195d8e2 1923out:
bfcec708 1924 if (parent) {
91a27b2a 1925 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1926 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1927 if (flags & AUDIT_INODE_HIDDEN)
1928 n->hidden = true;
bfcec708
JL
1929 } else {
1930 n->name_len = AUDIT_NAME_FULL;
1931 n->type = AUDIT_TYPE_NORMAL;
1932 }
74c3cbe3 1933 handle_path(dentry);
5195d8e2 1934 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1935}
1936
9f45f5bf
AV
1937void __audit_file(const struct file *file)
1938{
1939 __audit_inode(NULL, file->f_path.dentry, 0);
1940}
1941
73241ccc 1942/**
c43a25ab 1943 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1944 * @parent: inode of dentry parent
c43a25ab 1945 * @dentry: dentry being audited
4fa6b5ec 1946 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1947 *
1948 * For syscalls that create or remove filesystem objects, audit_inode
1949 * can only collect information for the filesystem object's parent.
1950 * This call updates the audit context with the child's information.
1951 * Syscalls that create a new filesystem object must be hooked after
1952 * the object is created. Syscalls that remove a filesystem object
1953 * must be hooked prior, in order to capture the target inode during
1954 * unsuccessful attempts.
1955 */
c43a25ab 1956void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1957 const struct dentry *dentry,
1958 const unsigned char type)
73241ccc 1959{
73241ccc 1960 struct audit_context *context = current->audit_context;
5a190ae6 1961 const struct inode *inode = dentry->d_inode;
cccc6bba 1962 const char *dname = dentry->d_name.name;
4fa6b5ec 1963 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1964
1965 if (!context->in_syscall)
1966 return;
1967
74c3cbe3
AV
1968 if (inode)
1969 handle_one(inode);
73241ccc 1970
4fa6b5ec 1971 /* look for a parent entry first */
5195d8e2 1972 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1973 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1974 continue;
1975
1976 if (n->ino == parent->i_ino &&
91a27b2a 1977 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1978 found_parent = n;
1979 break;
f368c07d 1980 }
5712e88f 1981 }
73241ccc 1982
4fa6b5ec 1983 /* is there a matching child entry? */
5195d8e2 1984 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1985 /* can only match entries that have a name */
1986 if (!n->name || n->type != type)
1987 continue;
1988
1989 /* if we found a parent, make sure this one is a child of it */
1990 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1991 continue;
1992
91a27b2a
JL
1993 if (!strcmp(dname, n->name->name) ||
1994 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1995 found_parent ?
1996 found_parent->name_len :
e3d6b07b 1997 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1998 found_child = n;
1999 break;
5712e88f 2000 }
ac9910ce 2001 }
5712e88f 2002
5712e88f 2003 if (!found_parent) {
4fa6b5ec
JL
2004 /* create a new, "anonymous" parent record */
2005 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2006 if (!n)
ac9910ce 2007 return;
5195d8e2 2008 audit_copy_inode(n, NULL, parent);
73d3ec5a 2009 }
5712e88f
AG
2010
2011 if (!found_child) {
4fa6b5ec
JL
2012 found_child = audit_alloc_name(context, type);
2013 if (!found_child)
5712e88f 2014 return;
5712e88f
AG
2015
2016 /* Re-use the name belonging to the slot for a matching parent
2017 * directory. All names for this context are relinquished in
2018 * audit_free_names() */
2019 if (found_parent) {
4fa6b5ec
JL
2020 found_child->name = found_parent->name;
2021 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 2022 /* don't call __putname() */
4fa6b5ec 2023 found_child->name_put = false;
5712e88f 2024 }
5712e88f 2025 }
4fa6b5ec
JL
2026 if (inode)
2027 audit_copy_inode(found_child, dentry, inode);
2028 else
2029 found_child->ino = (unsigned long)-1;
3e2efce0 2030}
50e437d5 2031EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2032
b0dd25a8
RD
2033/**
2034 * auditsc_get_stamp - get local copies of audit_context values
2035 * @ctx: audit_context for the task
2036 * @t: timespec to store time recorded in the audit_context
2037 * @serial: serial value that is recorded in the audit_context
2038 *
2039 * Also sets the context as auditable.
2040 */
48887e63 2041int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2042 struct timespec *t, unsigned int *serial)
1da177e4 2043{
48887e63
AV
2044 if (!ctx->in_syscall)
2045 return 0;
ce625a80
DW
2046 if (!ctx->serial)
2047 ctx->serial = audit_serial();
bfb4496e
DW
2048 t->tv_sec = ctx->ctime.tv_sec;
2049 t->tv_nsec = ctx->ctime.tv_nsec;
2050 *serial = ctx->serial;
0590b933
AV
2051 if (!ctx->prio) {
2052 ctx->prio = 1;
2053 ctx->current_state = AUDIT_RECORD_CONTEXT;
2054 }
48887e63 2055 return 1;
1da177e4
LT
2056}
2057
4746ec5b
EP
2058/* global counter which is incremented every time something logs in */
2059static atomic_t session_id = ATOMIC_INIT(0);
2060
da0a6104
EP
2061static int audit_set_loginuid_perm(kuid_t loginuid)
2062{
da0a6104
EP
2063 /* if we are unset, we don't need privs */
2064 if (!audit_loginuid_set(current))
2065 return 0;
21b85c31
EP
2066 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2067 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2068 return -EPERM;
83fa6bbe
EP
2069 /* it is set, you need permission */
2070 if (!capable(CAP_AUDIT_CONTROL))
2071 return -EPERM;
d040e5af
EP
2072 /* reject if this is not an unset and we don't allow that */
2073 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2074 return -EPERM;
83fa6bbe 2075 return 0;
da0a6104
EP
2076}
2077
2078static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2079 unsigned int oldsessionid, unsigned int sessionid,
2080 int rc)
2081{
2082 struct audit_buffer *ab;
5ee9a75c 2083 uid_t uid, oldloginuid, loginuid;
da0a6104 2084
c2412d91
G
2085 if (!audit_enabled)
2086 return;
2087
da0a6104 2088 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
2089 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2090 loginuid = from_kuid(&init_user_ns, kloginuid),
da0a6104
EP
2091
2092 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2093 if (!ab)
2094 return;
ddfad8af
EP
2095 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2096 audit_log_task_context(ab);
2097 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2098 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
da0a6104
EP
2099 audit_log_end(ab);
2100}
2101
b0dd25a8 2102/**
0a300be6 2103 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2104 * @loginuid: loginuid value
2105 *
2106 * Returns 0.
2107 *
2108 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2109 */
e1760bd5 2110int audit_set_loginuid(kuid_t loginuid)
1da177e4 2111{
0a300be6 2112 struct task_struct *task = current;
9175c9d2
EP
2113 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2114 kuid_t oldloginuid;
da0a6104 2115 int rc;
41757106 2116
da0a6104
EP
2117 oldloginuid = audit_get_loginuid(current);
2118 oldsessionid = audit_get_sessionid(current);
2119
2120 rc = audit_set_loginuid_perm(loginuid);
2121 if (rc)
2122 goto out;
633b4545 2123
81407c84
EP
2124 /* are we setting or clearing? */
2125 if (uid_valid(loginuid))
4440e854 2126 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2127
4746ec5b 2128 task->sessionid = sessionid;
bfef93a5 2129 task->loginuid = loginuid;
da0a6104
EP
2130out:
2131 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2132 return rc;
1da177e4
LT
2133}
2134
20ca73bc
GW
2135/**
2136 * __audit_mq_open - record audit data for a POSIX MQ open
2137 * @oflag: open flag
2138 * @mode: mode bits
6b962559 2139 * @attr: queue attributes
20ca73bc 2140 *
20ca73bc 2141 */
df0a4283 2142void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2143{
20ca73bc
GW
2144 struct audit_context *context = current->audit_context;
2145
564f6993
AV
2146 if (attr)
2147 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2148 else
2149 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2150
564f6993
AV
2151 context->mq_open.oflag = oflag;
2152 context->mq_open.mode = mode;
20ca73bc 2153
564f6993 2154 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2155}
2156
2157/**
c32c8af4 2158 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2159 * @mqdes: MQ descriptor
2160 * @msg_len: Message length
2161 * @msg_prio: Message priority
c32c8af4 2162 * @abs_timeout: Message timeout in absolute time
20ca73bc 2163 *
20ca73bc 2164 */
c32c8af4
AV
2165void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2166 const struct timespec *abs_timeout)
20ca73bc 2167{
20ca73bc 2168 struct audit_context *context = current->audit_context;
c32c8af4 2169 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2170
c32c8af4
AV
2171 if (abs_timeout)
2172 memcpy(p, abs_timeout, sizeof(struct timespec));
2173 else
2174 memset(p, 0, sizeof(struct timespec));
20ca73bc 2175
c32c8af4
AV
2176 context->mq_sendrecv.mqdes = mqdes;
2177 context->mq_sendrecv.msg_len = msg_len;
2178 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2179
c32c8af4 2180 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2181}
2182
2183/**
2184 * __audit_mq_notify - record audit data for a POSIX MQ notify
2185 * @mqdes: MQ descriptor
6b962559 2186 * @notification: Notification event
20ca73bc 2187 *
20ca73bc
GW
2188 */
2189
20114f71 2190void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2191{
20ca73bc
GW
2192 struct audit_context *context = current->audit_context;
2193
20114f71
AV
2194 if (notification)
2195 context->mq_notify.sigev_signo = notification->sigev_signo;
2196 else
2197 context->mq_notify.sigev_signo = 0;
20ca73bc 2198
20114f71
AV
2199 context->mq_notify.mqdes = mqdes;
2200 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2201}
2202
2203/**
2204 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2205 * @mqdes: MQ descriptor
2206 * @mqstat: MQ flags
2207 *
20ca73bc 2208 */
7392906e 2209void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2210{
20ca73bc 2211 struct audit_context *context = current->audit_context;
7392906e
AV
2212 context->mq_getsetattr.mqdes = mqdes;
2213 context->mq_getsetattr.mqstat = *mqstat;
2214 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2215}
2216
b0dd25a8 2217/**
073115d6
SG
2218 * audit_ipc_obj - record audit data for ipc object
2219 * @ipcp: ipc permissions
2220 *
073115d6 2221 */
a33e6751 2222void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2223{
073115d6 2224 struct audit_context *context = current->audit_context;
a33e6751
AV
2225 context->ipc.uid = ipcp->uid;
2226 context->ipc.gid = ipcp->gid;
2227 context->ipc.mode = ipcp->mode;
e816f370 2228 context->ipc.has_perm = 0;
a33e6751
AV
2229 security_ipc_getsecid(ipcp, &context->ipc.osid);
2230 context->type = AUDIT_IPC;
073115d6
SG
2231}
2232
2233/**
2234 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2235 * @qbytes: msgq bytes
2236 * @uid: msgq user id
2237 * @gid: msgq group id
2238 * @mode: msgq mode (permissions)
2239 *
e816f370 2240 * Called only after audit_ipc_obj().
b0dd25a8 2241 */
2570ebbd 2242void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2243{
1da177e4
LT
2244 struct audit_context *context = current->audit_context;
2245
e816f370
AV
2246 context->ipc.qbytes = qbytes;
2247 context->ipc.perm_uid = uid;
2248 context->ipc.perm_gid = gid;
2249 context->ipc.perm_mode = mode;
2250 context->ipc.has_perm = 1;
1da177e4 2251}
c2f0c7c3 2252
d9cfea91 2253void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2254{
473ae30b 2255 struct audit_context *context = current->audit_context;
473ae30b 2256
d9cfea91
RGB
2257 context->type = AUDIT_EXECVE;
2258 context->execve.argc = bprm->argc;
473ae30b
AV
2259}
2260
2261
b0dd25a8
RD
2262/**
2263 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2264 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2265 * @args: args array
2266 *
b0dd25a8 2267 */
2950fa9d 2268int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2269{
3ec3b2fb
DW
2270 struct audit_context *context = current->audit_context;
2271
2950fa9d
CG
2272 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2273 return -EINVAL;
f3298dc4
AV
2274 context->type = AUDIT_SOCKETCALL;
2275 context->socketcall.nargs = nargs;
2276 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2277 return 0;
3ec3b2fb
DW
2278}
2279
db349509
AV
2280/**
2281 * __audit_fd_pair - record audit data for pipe and socketpair
2282 * @fd1: the first file descriptor
2283 * @fd2: the second file descriptor
2284 *
db349509 2285 */
157cf649 2286void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2287{
2288 struct audit_context *context = current->audit_context;
157cf649
AV
2289 context->fds[0] = fd1;
2290 context->fds[1] = fd2;
db349509
AV
2291}
2292
b0dd25a8
RD
2293/**
2294 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2295 * @len: data length in user space
2296 * @a: data address in kernel space
2297 *
2298 * Returns 0 for success or NULL context or < 0 on error.
2299 */
07c49417 2300int __audit_sockaddr(int len, void *a)
3ec3b2fb 2301{
3ec3b2fb
DW
2302 struct audit_context *context = current->audit_context;
2303
4f6b434f
AV
2304 if (!context->sockaddr) {
2305 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2306 if (!p)
2307 return -ENOMEM;
2308 context->sockaddr = p;
2309 }
3ec3b2fb 2310
4f6b434f
AV
2311 context->sockaddr_len = len;
2312 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2313 return 0;
2314}
2315
a5cb013d
AV
2316void __audit_ptrace(struct task_struct *t)
2317{
2318 struct audit_context *context = current->audit_context;
2319
f1dc4867 2320 context->target_pid = task_pid_nr(t);
c2a7780e 2321 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2322 context->target_uid = task_uid(t);
4746ec5b 2323 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2324 security_task_getsecid(t, &context->target_sid);
c2a7780e 2325 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2326}
2327
b0dd25a8
RD
2328/**
2329 * audit_signal_info - record signal info for shutting down audit subsystem
2330 * @sig: signal value
2331 * @t: task being signaled
2332 *
2333 * If the audit subsystem is being terminated, record the task (pid)
2334 * and uid that is doing that.
2335 */
e54dc243 2336int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2337{
e54dc243
AG
2338 struct audit_aux_data_pids *axp;
2339 struct task_struct *tsk = current;
2340 struct audit_context *ctx = tsk->audit_context;
cca080d9 2341 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2342
175fc484 2343 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2344 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
f1dc4867 2345 audit_sig_pid = task_pid_nr(tsk);
e1760bd5 2346 if (uid_valid(tsk->loginuid))
bfef93a5 2347 audit_sig_uid = tsk->loginuid;
175fc484 2348 else
c69e8d9c 2349 audit_sig_uid = uid;
2a862b32 2350 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2351 }
2352 if (!audit_signals || audit_dummy_context())
2353 return 0;
c2f0c7c3 2354 }
e54dc243 2355
e54dc243
AG
2356 /* optimize the common case by putting first signal recipient directly
2357 * in audit_context */
2358 if (!ctx->target_pid) {
f1dc4867 2359 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2360 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2361 ctx->target_uid = t_uid;
4746ec5b 2362 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2363 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2364 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2365 return 0;
2366 }
2367
2368 axp = (void *)ctx->aux_pids;
2369 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2370 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2371 if (!axp)
2372 return -ENOMEM;
2373
2374 axp->d.type = AUDIT_OBJ_PID;
2375 axp->d.next = ctx->aux_pids;
2376 ctx->aux_pids = (void *)axp;
2377 }
88ae704c 2378 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2379
f1dc4867 2380 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2381 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2382 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2383 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2384 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2385 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2386 axp->pid_count++;
2387
2388 return 0;
c2f0c7c3 2389}
0a4ff8c2 2390
3fc689e9
EP
2391/**
2392 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2393 * @bprm: pointer to the bprm being processed
2394 * @new: the proposed new credentials
2395 * @old: the old credentials
3fc689e9
EP
2396 *
2397 * Simply check if the proc already has the caps given by the file and if not
2398 * store the priv escalation info for later auditing at the end of the syscall
2399 *
3fc689e9
EP
2400 * -Eric
2401 */
d84f4f99
DH
2402int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2403 const struct cred *new, const struct cred *old)
3fc689e9
EP
2404{
2405 struct audit_aux_data_bprm_fcaps *ax;
2406 struct audit_context *context = current->audit_context;
2407 struct cpu_vfs_cap_data vcaps;
2408 struct dentry *dentry;
2409
2410 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2411 if (!ax)
d84f4f99 2412 return -ENOMEM;
3fc689e9
EP
2413
2414 ax->d.type = AUDIT_BPRM_FCAPS;
2415 ax->d.next = context->aux;
2416 context->aux = (void *)ax;
2417
b583043e 2418 dentry = dget(bprm->file->f_path.dentry);
3fc689e9
EP
2419 get_vfs_caps_from_disk(dentry, &vcaps);
2420 dput(dentry);
2421
2422 ax->fcap.permitted = vcaps.permitted;
2423 ax->fcap.inheritable = vcaps.inheritable;
2424 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2425 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2426
d84f4f99
DH
2427 ax->old_pcap.permitted = old->cap_permitted;
2428 ax->old_pcap.inheritable = old->cap_inheritable;
2429 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2430
d84f4f99
DH
2431 ax->new_pcap.permitted = new->cap_permitted;
2432 ax->new_pcap.inheritable = new->cap_inheritable;
2433 ax->new_pcap.effective = new->cap_effective;
2434 return 0;
3fc689e9
EP
2435}
2436
e68b75a0
EP
2437/**
2438 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2439 * @new: the new credentials
2440 * @old: the old (current) credentials
e68b75a0 2441 *
da3dae54 2442 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2443 * audit system if applicable
2444 */
ca24a23e 2445void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2446{
e68b75a0 2447 struct audit_context *context = current->audit_context;
ca24a23e 2448 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2449 context->capset.cap.effective = new->cap_effective;
2450 context->capset.cap.inheritable = new->cap_effective;
2451 context->capset.cap.permitted = new->cap_permitted;
2452 context->type = AUDIT_CAPSET;
e68b75a0
EP
2453}
2454
120a795d
AV
2455void __audit_mmap_fd(int fd, int flags)
2456{
2457 struct audit_context *context = current->audit_context;
2458 context->mmap.fd = fd;
2459 context->mmap.flags = flags;
2460 context->type = AUDIT_MMAP;
2461}
2462
7b9205bd 2463static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2464{
cca080d9
EB
2465 kuid_t auid, uid;
2466 kgid_t gid;
85e7bac3 2467 unsigned int sessionid;
ff235f51 2468 struct mm_struct *mm = current->mm;
9eab339b 2469 char comm[sizeof(current->comm)];
85e7bac3
EP
2470
2471 auid = audit_get_loginuid(current);
2472 sessionid = audit_get_sessionid(current);
2473 current_uid_gid(&uid, &gid);
2474
2475 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2476 from_kuid(&init_user_ns, auid),
2477 from_kuid(&init_user_ns, uid),
2478 from_kgid(&init_user_ns, gid),
2479 sessionid);
85e7bac3 2480 audit_log_task_context(ab);
f1dc4867 2481 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
9eab339b 2482 audit_log_untrustedstring(ab, get_task_comm(comm, current));
ff235f51
PD
2483 if (mm) {
2484 down_read(&mm->mmap_sem);
2485 if (mm->exe_file)
2486 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2487 up_read(&mm->mmap_sem);
2488 } else
2489 audit_log_format(ab, " exe=(null)");
7b9205bd
KC
2490}
2491
0a4ff8c2
SG
2492/**
2493 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2494 * @signr: signal value
0a4ff8c2
SG
2495 *
2496 * If a process ends with a core dump, something fishy is going on and we
2497 * should record the event for investigation.
2498 */
2499void audit_core_dumps(long signr)
2500{
2501 struct audit_buffer *ab;
0a4ff8c2
SG
2502
2503 if (!audit_enabled)
2504 return;
2505
2506 if (signr == SIGQUIT) /* don't care for those */
2507 return;
2508
2509 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2510 if (unlikely(!ab))
2511 return;
61c0ee87
PD
2512 audit_log_task(ab);
2513 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2514 audit_log_end(ab);
2515}
0a4ff8c2 2516
3dc1c1b2 2517void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2518{
2519 struct audit_buffer *ab;
2520
7b9205bd
KC
2521 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2522 if (unlikely(!ab))
2523 return;
2524 audit_log_task(ab);
84db564a
RGB
2525 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2526 signr, syscall_get_arch(), syscall, is_compat_task(),
2527 KSTK_EIP(current), code);
0a4ff8c2
SG
2528 audit_log_end(ab);
2529}
916d7576
AV
2530
2531struct list_head *audit_killed_trees(void)
2532{
2533 struct audit_context *ctx = current->audit_context;
2534 if (likely(!ctx || !ctx->in_syscall))
2535 return NULL;
2536 return &ctx->killed_trees;
2537}