]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/auditsc.c
audit: add fields to exclude filter by reusing user filter
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
a6c043a8 66#include <linux/tty.h>
473ae30b 67#include <linux/binfmts.h>
a1f8e7f7 68#include <linux/highmem.h>
f46038ff 69#include <linux/syscalls.h>
84db564a 70#include <asm/syscall.h>
851f7ff5 71#include <linux/capability.h>
5ad4e53b 72#include <linux/fs_struct.h>
3dc1c1b2 73#include <linux/compat.h>
3f1c8250 74#include <linux/ctype.h>
fcf22d82
PM
75#include <linux/string.h>
76#include <uapi/linux/limits.h>
1da177e4 77
fe7752ba 78#include "audit.h"
1da177e4 79
d7e7528b
EP
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
de6bbd1d
EP
85/* no execve audit message should be longer than this (userspace limits) */
86#define MAX_EXECVE_AUDIT_LEN 7500
87
3f1c8250
WR
88/* max length to print of cmdline/proctitle value during audit */
89#define MAX_PROCTITLE_AUDIT_LEN 128
90
471a5c7c
AV
91/* number of audit rules */
92int audit_n_rules;
93
e54dc243
AG
94/* determines whether we collect data for signals sent */
95int audit_signals;
96
1da177e4
LT
97struct audit_aux_data {
98 struct audit_aux_data *next;
99 int type;
100};
101
102#define AUDIT_AUX_IPCPERM 0
103
e54dc243
AG
104/* Number of target pids per aux struct. */
105#define AUDIT_AUX_PIDS 16
106
e54dc243
AG
107struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 110 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 111 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 113 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
115 int pid_count;
116};
117
3fc689e9
EP
118struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
124};
125
74c3cbe3
AV
126struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
129};
130
55669bfa
AV
131static int audit_match_perm(struct audit_context *ctx, int mask)
132{
c4bacefb 133 unsigned n;
1a61c88d 134 if (unlikely(!ctx))
135 return 0;
c4bacefb 136 n = ctx->major;
dbda4c0b 137
55669bfa
AV
138 switch (audit_classify_syscall(ctx->arch, n)) {
139 case 0: /* native */
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
142 return 1;
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
145 return 1;
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 return 1;
149 return 0;
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 return 1;
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
156 return 1;
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 return 1;
160 return 0;
161 case 2: /* open */
162 return mask & ACC_MODE(ctx->argv[1]);
163 case 3: /* openat */
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 case 5: /* execve */
168 return mask & AUDIT_PERM_EXEC;
169 default:
170 return 0;
171 }
172}
173
5ef30ee5 174static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 175{
5195d8e2 176 struct audit_names *n;
5ef30ee5 177 umode_t mode = (umode_t)val;
1a61c88d 178
179 if (unlikely(!ctx))
180 return 0;
181
5195d8e2 182 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 183 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 184 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
185 return 1;
186 }
5195d8e2 187
5ef30ee5 188 return 0;
8b67dca9
AV
189}
190
74c3cbe3
AV
191/*
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 */
200
201#ifdef CONFIG_AUDIT_TREE
679173b7
EP
202static void audit_set_auditable(struct audit_context *ctx)
203{
204 if (!ctx->prio) {
205 ctx->prio = 1;
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
207 }
208}
209
74c3cbe3
AV
210static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211{
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
214 if (likely(left)) {
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
217 return 1;
218 }
219 if (!p)
220 return 0;
221 p = p->next;
222 if (p) {
223 p->c[30] = chunk;
224 ctx->trees = p;
225 ctx->tree_count = 30;
226 return 1;
227 }
228 return 0;
229}
230
231static int grow_tree_refs(struct audit_context *ctx)
232{
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 if (!ctx->trees) {
236 ctx->trees = p;
237 return 0;
238 }
239 if (p)
240 p->next = ctx->trees;
241 else
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
244 return 1;
245}
246#endif
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
251#ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
253 int n;
254 if (!p) {
255 /* we started with empty chain */
256 p = ctx->first_trees;
257 count = 31;
258 /* if the very first allocation has failed, nothing to do */
259 if (!p)
260 return;
261 }
262 n = count;
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 while (n--) {
265 audit_put_chunk(q->c[n]);
266 q->c[n] = NULL;
267 }
268 }
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 ctx->trees = p;
274 ctx->tree_count = count;
275#endif
276}
277
278static void free_tree_refs(struct audit_context *ctx)
279{
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
282 q = p->next;
283 kfree(p);
284 }
285}
286
287static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288{
289#ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
291 int n;
292 if (!tree)
293 return 0;
294 /* full ones */
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
298 return 1;
299 }
300 /* partial */
301 if (p) {
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306#endif
307 return 0;
308}
309
ca57ec0f
EB
310static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
b34b0393
EP
314{
315 struct audit_names *n;
b34b0393 316 int rc;
ca57ec0f 317
b34b0393 318 if (name) {
ca57ec0f 319 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
320 if (rc)
321 return rc;
322 }
ca57ec0f 323
b34b0393
EP
324 if (ctx) {
325 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
326 rc = audit_uid_comparator(uid, f->op, n->uid);
327 if (rc)
328 return rc;
329 }
330 }
331 return 0;
332}
b34b0393 333
ca57ec0f
EB
334static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
338{
339 struct audit_names *n;
340 int rc;
341
342 if (name) {
343 rc = audit_gid_comparator(gid, f->op, name->gid);
344 if (rc)
345 return rc;
346 }
347
348 if (ctx) {
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
351 if (rc)
352 return rc;
353 }
354 }
355 return 0;
356}
357
02d86a56
EP
358static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
363{
02d86a56 364 switch (f->val) {
4a6633ed 365 /* process to file object comparisons */
02d86a56 366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 367 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 369 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 371 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 373 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 377 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 379 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 381 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 383 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 387 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 389 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 391 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 396 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 398 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 411 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 413 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
f368c07d 430/* Determine if any context name data matches a rule's watch data */
1da177e4 431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
1da177e4 438static int audit_filter_rules(struct task_struct *tsk,
93315ed6 439 struct audit_krule *rule,
1da177e4 440 struct audit_context *ctx,
f368c07d 441 struct audit_names *name,
f5629883
TJ
442 enum audit_state *state,
443 bool task_creation)
1da177e4 444{
f5629883 445 const struct cred *cred;
5195d8e2 446 int i, need_sid = 1;
3dc7e315
DG
447 u32 sid;
448
f5629883
TJ
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450
1da177e4 451 for (i = 0; i < rule->field_count; i++) {
93315ed6 452 struct audit_field *f = &rule->fields[i];
5195d8e2 453 struct audit_names *n;
1da177e4 454 int result = 0;
f1dc4867 455 pid_t pid;
1da177e4 456
93315ed6 457 switch (f->type) {
1da177e4 458 case AUDIT_PID:
f1dc4867
RGB
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
1da177e4 461 break;
3c66251e 462 case AUDIT_PPID:
419c58f1
AV
463 if (ctx) {
464 if (!ctx->ppid)
c92cdeb4 465 ctx->ppid = task_ppid_nr(tsk);
3c66251e 466 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 467 }
3c66251e 468 break;
34d99af5
RGB
469 case AUDIT_EXE:
470 result = audit_exe_compare(tsk, rule->exe);
471 break;
1da177e4 472 case AUDIT_UID:
ca57ec0f 473 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
474 break;
475 case AUDIT_EUID:
ca57ec0f 476 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_SUID:
ca57ec0f 479 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_FSUID:
ca57ec0f 482 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_GID:
ca57ec0f 485 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
486 if (f->op == Audit_equal) {
487 if (!result)
488 result = in_group_p(f->gid);
489 } else if (f->op == Audit_not_equal) {
490 if (result)
491 result = !in_group_p(f->gid);
492 }
1da177e4
LT
493 break;
494 case AUDIT_EGID:
ca57ec0f 495 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
496 if (f->op == Audit_equal) {
497 if (!result)
498 result = in_egroup_p(f->gid);
499 } else if (f->op == Audit_not_equal) {
500 if (result)
501 result = !in_egroup_p(f->gid);
502 }
1da177e4
LT
503 break;
504 case AUDIT_SGID:
ca57ec0f 505 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
506 break;
507 case AUDIT_FSGID:
ca57ec0f 508 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_PERS:
93315ed6 511 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 512 break;
2fd6f58b 513 case AUDIT_ARCH:
9f8dbe9c 514 if (ctx)
93315ed6 515 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 516 break;
1da177e4
LT
517
518 case AUDIT_EXIT:
519 if (ctx && ctx->return_valid)
93315ed6 520 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
521 break;
522 case AUDIT_SUCCESS:
b01f2cc1 523 if (ctx && ctx->return_valid) {
93315ed6
AG
524 if (f->val)
525 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 526 else
93315ed6 527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 528 }
1da177e4
LT
529 break;
530 case AUDIT_DEVMAJOR:
16c174bd
EP
531 if (name) {
532 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
533 audit_comparator(MAJOR(name->rdev), f->op, f->val))
534 ++result;
535 } else if (ctx) {
5195d8e2 536 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
537 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
538 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
539 ++result;
540 break;
541 }
542 }
543 }
544 break;
545 case AUDIT_DEVMINOR:
16c174bd
EP
546 if (name) {
547 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
548 audit_comparator(MINOR(name->rdev), f->op, f->val))
549 ++result;
550 } else if (ctx) {
5195d8e2 551 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
552 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
553 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
554 ++result;
555 break;
556 }
557 }
558 }
559 break;
560 case AUDIT_INODE:
f368c07d 561 if (name)
db510fc5 562 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 563 else if (ctx) {
5195d8e2
EP
564 list_for_each_entry(n, &ctx->names_list, list) {
565 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
566 ++result;
567 break;
568 }
569 }
570 }
571 break;
efaffd6e
EP
572 case AUDIT_OBJ_UID:
573 if (name) {
ca57ec0f 574 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
575 } else if (ctx) {
576 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 577 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
578 ++result;
579 break;
580 }
581 }
582 }
583 break;
54d3218b
EP
584 case AUDIT_OBJ_GID:
585 if (name) {
ca57ec0f 586 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
587 } else if (ctx) {
588 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 589 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
f368c07d 596 case AUDIT_WATCH:
ae7b8f41
EP
597 if (name)
598 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 599 break;
74c3cbe3
AV
600 case AUDIT_DIR:
601 if (ctx)
602 result = match_tree_refs(ctx, rule->tree);
603 break;
1da177e4 604 case AUDIT_LOGINUID:
5c1390c9 605 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 606 break;
780a7654
EB
607 case AUDIT_LOGINUID_SET:
608 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
609 break;
3a6b9f85
DG
610 case AUDIT_SUBJ_USER:
611 case AUDIT_SUBJ_ROLE:
612 case AUDIT_SUBJ_TYPE:
613 case AUDIT_SUBJ_SEN:
614 case AUDIT_SUBJ_CLR:
3dc7e315
DG
615 /* NOTE: this may return negative values indicating
616 a temporary error. We simply treat this as a
617 match for now to avoid losing information that
618 may be wanted. An error message will also be
619 logged upon error */
04305e4a 620 if (f->lsm_rule) {
2ad312d2 621 if (need_sid) {
2a862b32 622 security_task_getsecid(tsk, &sid);
2ad312d2
SG
623 need_sid = 0;
624 }
d7a96f3a 625 result = security_audit_rule_match(sid, f->type,
3dc7e315 626 f->op,
04305e4a 627 f->lsm_rule,
3dc7e315 628 ctx);
2ad312d2 629 }
3dc7e315 630 break;
6e5a2d1d
DG
631 case AUDIT_OBJ_USER:
632 case AUDIT_OBJ_ROLE:
633 case AUDIT_OBJ_TYPE:
634 case AUDIT_OBJ_LEV_LOW:
635 case AUDIT_OBJ_LEV_HIGH:
636 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
637 also applies here */
04305e4a 638 if (f->lsm_rule) {
6e5a2d1d
DG
639 /* Find files that match */
640 if (name) {
d7a96f3a 641 result = security_audit_rule_match(
6e5a2d1d 642 name->osid, f->type, f->op,
04305e4a 643 f->lsm_rule, ctx);
6e5a2d1d 644 } else if (ctx) {
5195d8e2
EP
645 list_for_each_entry(n, &ctx->names_list, list) {
646 if (security_audit_rule_match(n->osid, f->type,
647 f->op, f->lsm_rule,
648 ctx)) {
6e5a2d1d
DG
649 ++result;
650 break;
651 }
652 }
653 }
654 /* Find ipc objects that match */
a33e6751
AV
655 if (!ctx || ctx->type != AUDIT_IPC)
656 break;
657 if (security_audit_rule_match(ctx->ipc.osid,
658 f->type, f->op,
659 f->lsm_rule, ctx))
660 ++result;
6e5a2d1d
DG
661 }
662 break;
1da177e4
LT
663 case AUDIT_ARG0:
664 case AUDIT_ARG1:
665 case AUDIT_ARG2:
666 case AUDIT_ARG3:
667 if (ctx)
93315ed6 668 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 669 break;
5adc8a6a
AG
670 case AUDIT_FILTERKEY:
671 /* ignore this field for filtering */
672 result = 1;
673 break;
55669bfa
AV
674 case AUDIT_PERM:
675 result = audit_match_perm(ctx, f->val);
676 break;
8b67dca9
AV
677 case AUDIT_FILETYPE:
678 result = audit_match_filetype(ctx, f->val);
679 break;
02d86a56
EP
680 case AUDIT_FIELD_COMPARE:
681 result = audit_field_compare(tsk, cred, f, ctx, name);
682 break;
1da177e4 683 }
f5629883 684 if (!result)
1da177e4
LT
685 return 0;
686 }
0590b933
AV
687
688 if (ctx) {
689 if (rule->prio <= ctx->prio)
690 return 0;
691 if (rule->filterkey) {
692 kfree(ctx->filterkey);
693 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
694 }
695 ctx->prio = rule->prio;
696 }
1da177e4 697 switch (rule->action) {
66b12abc
PM
698 case AUDIT_NEVER:
699 *state = AUDIT_DISABLED;
700 break;
701 case AUDIT_ALWAYS:
702 *state = AUDIT_RECORD_CONTEXT;
703 break;
1da177e4
LT
704 }
705 return 1;
706}
707
708/* At process creation time, we can determine if system-call auditing is
709 * completely disabled for this task. Since we only have the task
710 * structure at this point, we can only check uid and gid.
711 */
e048e02c 712static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
713{
714 struct audit_entry *e;
715 enum audit_state state;
716
717 rcu_read_lock();
0f45aa18 718 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
719 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
720 &state, true)) {
e048e02c
AV
721 if (state == AUDIT_RECORD_CONTEXT)
722 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
723 rcu_read_unlock();
724 return state;
725 }
726 }
727 rcu_read_unlock();
728 return AUDIT_BUILD_CONTEXT;
729}
730
a3c54931
AL
731static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
732{
733 int word, bit;
734
735 if (val > 0xffffffff)
736 return false;
737
738 word = AUDIT_WORD(val);
739 if (word >= AUDIT_BITMASK_SIZE)
740 return false;
741
742 bit = AUDIT_BIT(val);
743
744 return rule->mask[word] & bit;
745}
746
1da177e4
LT
747/* At syscall entry and exit time, this filter is called if the
748 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 749 * also not high enough that we already know we have to write an audit
b0dd25a8 750 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
751 */
752static enum audit_state audit_filter_syscall(struct task_struct *tsk,
753 struct audit_context *ctx,
754 struct list_head *list)
755{
756 struct audit_entry *e;
c3896495 757 enum audit_state state;
1da177e4 758
351bb722 759 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
760 return AUDIT_DISABLED;
761
1da177e4 762 rcu_read_lock();
c3896495 763 if (!list_empty(list)) {
b63862f4 764 list_for_each_entry_rcu(e, list, list) {
a3c54931 765 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 766 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 767 &state, false)) {
f368c07d 768 rcu_read_unlock();
0590b933 769 ctx->current_state = state;
f368c07d
AG
770 return state;
771 }
772 }
773 }
774 rcu_read_unlock();
775 return AUDIT_BUILD_CONTEXT;
776}
777
5195d8e2
EP
778/*
779 * Given an audit_name check the inode hash table to see if they match.
780 * Called holding the rcu read lock to protect the use of audit_inode_hash
781 */
782static int audit_filter_inode_name(struct task_struct *tsk,
783 struct audit_names *n,
784 struct audit_context *ctx) {
5195d8e2
EP
785 int h = audit_hash_ino((u32)n->ino);
786 struct list_head *list = &audit_inode_hash[h];
787 struct audit_entry *e;
788 enum audit_state state;
789
5195d8e2
EP
790 if (list_empty(list))
791 return 0;
792
793 list_for_each_entry_rcu(e, list, list) {
a3c54931 794 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
795 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
796 ctx->current_state = state;
797 return 1;
798 }
799 }
800
801 return 0;
802}
803
804/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 805 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 806 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
807 * Regarding audit_state, same rules apply as for audit_filter_syscall().
808 */
0590b933 809void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 810{
5195d8e2 811 struct audit_names *n;
f368c07d
AG
812
813 if (audit_pid && tsk->tgid == audit_pid)
0590b933 814 return;
f368c07d
AG
815
816 rcu_read_lock();
f368c07d 817
5195d8e2
EP
818 list_for_each_entry(n, &ctx->names_list, list) {
819 if (audit_filter_inode_name(tsk, n, ctx))
820 break;
0f45aa18
DW
821 }
822 rcu_read_unlock();
0f45aa18
DW
823}
824
4a3eb726
RGB
825/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
826static inline struct audit_context *audit_take_context(struct task_struct *tsk,
1da177e4 827 int return_valid,
6d208da8 828 long return_code)
1da177e4
LT
829{
830 struct audit_context *context = tsk->audit_context;
831
56179a6e 832 if (!context)
1da177e4
LT
833 return NULL;
834 context->return_valid = return_valid;
f701b75e
EP
835
836 /*
837 * we need to fix up the return code in the audit logs if the actual
838 * return codes are later going to be fixed up by the arch specific
839 * signal handlers
840 *
841 * This is actually a test for:
842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
844 *
845 * but is faster than a bunch of ||
846 */
847 if (unlikely(return_code <= -ERESTARTSYS) &&
848 (return_code >= -ERESTART_RESTARTBLOCK) &&
849 (return_code != -ENOIOCTLCMD))
850 context->return_code = -EINTR;
851 else
852 context->return_code = return_code;
1da177e4 853
0590b933
AV
854 if (context->in_syscall && !context->dummy) {
855 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
856 audit_filter_inodes(tsk, context);
1da177e4
LT
857 }
858
1da177e4
LT
859 tsk->audit_context = NULL;
860 return context;
861}
862
3f1c8250
WR
863static inline void audit_proctitle_free(struct audit_context *context)
864{
865 kfree(context->proctitle.value);
866 context->proctitle.value = NULL;
867 context->proctitle.len = 0;
868}
869
1da177e4
LT
870static inline void audit_free_names(struct audit_context *context)
871{
5195d8e2 872 struct audit_names *n, *next;
1da177e4 873
5195d8e2
EP
874 list_for_each_entry_safe(n, next, &context->names_list, list) {
875 list_del(&n->list);
55422d0b
PM
876 if (n->name)
877 putname(n->name);
5195d8e2
EP
878 if (n->should_free)
879 kfree(n);
8c8570fb 880 }
1da177e4 881 context->name_count = 0;
44707fdf
JB
882 path_put(&context->pwd);
883 context->pwd.dentry = NULL;
884 context->pwd.mnt = NULL;
1da177e4
LT
885}
886
887static inline void audit_free_aux(struct audit_context *context)
888{
889 struct audit_aux_data *aux;
890
891 while ((aux = context->aux)) {
892 context->aux = aux->next;
893 kfree(aux);
894 }
e54dc243
AG
895 while ((aux = context->aux_pids)) {
896 context->aux_pids = aux->next;
897 kfree(aux);
898 }
1da177e4
LT
899}
900
1da177e4
LT
901static inline struct audit_context *audit_alloc_context(enum audit_state state)
902{
903 struct audit_context *context;
904
17c6ee70
RM
905 context = kzalloc(sizeof(*context), GFP_KERNEL);
906 if (!context)
1da177e4 907 return NULL;
e2c5adc8
AM
908 context->state = state;
909 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 910 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 911 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
912 return context;
913}
914
b0dd25a8
RD
915/**
916 * audit_alloc - allocate an audit context block for a task
917 * @tsk: task
918 *
919 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
920 * if necessary. Doing so turns on system call auditing for the
921 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
922 * needed.
923 */
1da177e4
LT
924int audit_alloc(struct task_struct *tsk)
925{
926 struct audit_context *context;
927 enum audit_state state;
e048e02c 928 char *key = NULL;
1da177e4 929
b593d384 930 if (likely(!audit_ever_enabled))
1da177e4
LT
931 return 0; /* Return if not auditing. */
932
e048e02c 933 state = audit_filter_task(tsk, &key);
d48d8051
ON
934 if (state == AUDIT_DISABLED) {
935 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 936 return 0;
d48d8051 937 }
1da177e4
LT
938
939 if (!(context = audit_alloc_context(state))) {
e048e02c 940 kfree(key);
1da177e4
LT
941 audit_log_lost("out of memory in audit_alloc");
942 return -ENOMEM;
943 }
e048e02c 944 context->filterkey = key;
1da177e4 945
1da177e4
LT
946 tsk->audit_context = context;
947 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
948 return 0;
949}
950
951static inline void audit_free_context(struct audit_context *context)
952{
c62d773a
AV
953 audit_free_names(context);
954 unroll_tree_refs(context, NULL, 0);
955 free_tree_refs(context);
956 audit_free_aux(context);
957 kfree(context->filterkey);
958 kfree(context->sockaddr);
3f1c8250 959 audit_proctitle_free(context);
c62d773a 960 kfree(context);
1da177e4
LT
961}
962
e54dc243 963static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 964 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 965 u32 sid, char *comm)
e54dc243
AG
966{
967 struct audit_buffer *ab;
2a862b32 968 char *ctx = NULL;
e54dc243
AG
969 u32 len;
970 int rc = 0;
971
972 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
973 if (!ab)
6246ccab 974 return rc;
e54dc243 975
e1760bd5
EB
976 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
977 from_kuid(&init_user_ns, auid),
cca080d9 978 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
979 if (sid) {
980 if (security_secid_to_secctx(sid, &ctx, &len)) {
981 audit_log_format(ab, " obj=(none)");
982 rc = 1;
983 } else {
984 audit_log_format(ab, " obj=%s", ctx);
985 security_release_secctx(ctx, len);
986 }
2a862b32 987 }
c2a7780e
EP
988 audit_log_format(ab, " ocomm=");
989 audit_log_untrustedstring(ab, comm);
e54dc243 990 audit_log_end(ab);
e54dc243
AG
991
992 return rc;
993}
994
de6bbd1d
EP
995/*
996 * to_send and len_sent accounting are very loose estimates. We aren't
997 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 998 * within about 500 bytes (next page boundary)
de6bbd1d
EP
999 *
1000 * why snprintf? an int is up to 12 digits long. if we just assumed when
1001 * logging that a[%d]= was going to be 16 characters long we would be wasting
1002 * space in every audit message. In one 7500 byte message we can log up to
1003 * about 1000 min size arguments. That comes down to about 50% waste of space
1004 * if we didn't do the snprintf to find out how long arg_num_len was.
1005 */
1006static int audit_log_single_execve_arg(struct audit_context *context,
1007 struct audit_buffer **ab,
1008 int arg_num,
1009 size_t *len_sent,
1010 const char __user *p,
1011 char *buf)
bdf4c48a 1012{
de6bbd1d
EP
1013 char arg_num_len_buf[12];
1014 const char __user *tmp_p = p;
b87ce6e4
EP
1015 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1016 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1017 size_t len, len_left, to_send;
1018 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1019 unsigned int i, has_cntl = 0, too_long = 0;
1020 int ret;
1021
1022 /* strnlen_user includes the null we don't want to send */
1023 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1024
de6bbd1d
EP
1025 /*
1026 * We just created this mm, if we can't find the strings
1027 * we just copied into it something is _very_ wrong. Similar
1028 * for strings that are too long, we should not have created
1029 * any.
1030 */
45820c29 1031 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d 1032 send_sig(SIGKILL, current, 0);
b0abcfc1 1033 return -1;
de6bbd1d 1034 }
040b3a2d 1035
de6bbd1d
EP
1036 /* walk the whole argument looking for non-ascii chars */
1037 do {
1038 if (len_left > MAX_EXECVE_AUDIT_LEN)
1039 to_send = MAX_EXECVE_AUDIT_LEN;
1040 else
1041 to_send = len_left;
1042 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1043 /*
de6bbd1d
EP
1044 * There is no reason for this copy to be short. We just
1045 * copied them here, and the mm hasn't been exposed to user-
1046 * space yet.
bdf4c48a 1047 */
de6bbd1d 1048 if (ret) {
bdf4c48a
PZ
1049 WARN_ON(1);
1050 send_sig(SIGKILL, current, 0);
b0abcfc1 1051 return -1;
bdf4c48a 1052 }
de6bbd1d
EP
1053 buf[to_send] = '\0';
1054 has_cntl = audit_string_contains_control(buf, to_send);
1055 if (has_cntl) {
1056 /*
1057 * hex messages get logged as 2 bytes, so we can only
1058 * send half as much in each message
1059 */
1060 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1061 break;
1062 }
de6bbd1d
EP
1063 len_left -= to_send;
1064 tmp_p += to_send;
1065 } while (len_left > 0);
1066
1067 len_left = len;
1068
1069 if (len > max_execve_audit_len)
1070 too_long = 1;
1071
1072 /* rewalk the argument actually logging the message */
1073 for (i = 0; len_left > 0; i++) {
1074 int room_left;
1075
1076 if (len_left > max_execve_audit_len)
1077 to_send = max_execve_audit_len;
1078 else
1079 to_send = len_left;
1080
1081 /* do we have space left to send this argument in this ab? */
1082 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1083 if (has_cntl)
1084 room_left -= (to_send * 2);
1085 else
1086 room_left -= to_send;
1087 if (room_left < 0) {
1088 *len_sent = 0;
1089 audit_log_end(*ab);
1090 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1091 if (!*ab)
1092 return 0;
1093 }
bdf4c48a 1094
bdf4c48a 1095 /*
de6bbd1d
EP
1096 * first record needs to say how long the original string was
1097 * so we can be sure nothing was lost.
1098 */
1099 if ((i == 0) && (too_long))
ca96a895 1100 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1101 has_cntl ? 2*len : len);
1102
1103 /*
1104 * normally arguments are small enough to fit and we already
1105 * filled buf above when we checked for control characters
1106 * so don't bother with another copy_from_user
bdf4c48a 1107 */
de6bbd1d
EP
1108 if (len >= max_execve_audit_len)
1109 ret = copy_from_user(buf, p, to_send);
1110 else
1111 ret = 0;
040b3a2d 1112 if (ret) {
bdf4c48a
PZ
1113 WARN_ON(1);
1114 send_sig(SIGKILL, current, 0);
b0abcfc1 1115 return -1;
bdf4c48a 1116 }
de6bbd1d
EP
1117 buf[to_send] = '\0';
1118
1119 /* actually log it */
ca96a895 1120 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1121 if (too_long)
1122 audit_log_format(*ab, "[%d]", i);
1123 audit_log_format(*ab, "=");
1124 if (has_cntl)
b556f8ad 1125 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1126 else
9d960985 1127 audit_log_string(*ab, buf);
de6bbd1d
EP
1128
1129 p += to_send;
1130 len_left -= to_send;
1131 *len_sent += arg_num_len;
1132 if (has_cntl)
1133 *len_sent += to_send * 2;
1134 else
1135 *len_sent += to_send;
1136 }
1137 /* include the null we didn't log */
1138 return len + 1;
1139}
1140
1141static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1142 struct audit_buffer **ab)
de6bbd1d 1143{
5afb8a3f
XW
1144 int i, len;
1145 size_t len_sent = 0;
de6bbd1d
EP
1146 const char __user *p;
1147 char *buf;
bdf4c48a 1148
d9cfea91 1149 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1150
d9cfea91 1151 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1152
1153 /*
1154 * we need some kernel buffer to hold the userspace args. Just
1155 * allocate one big one rather than allocating one of the right size
1156 * for every single argument inside audit_log_single_execve_arg()
1157 * should be <8k allocation so should be pretty safe.
1158 */
1159 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1160 if (!buf) {
b7550787 1161 audit_panic("out of memory for argv string");
de6bbd1d 1162 return;
bdf4c48a 1163 }
de6bbd1d 1164
d9cfea91 1165 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1166 len = audit_log_single_execve_arg(context, ab, i,
1167 &len_sent, p, buf);
1168 if (len <= 0)
1169 break;
1170 p += len;
1171 }
1172 kfree(buf);
bdf4c48a
PZ
1173}
1174
a33e6751 1175static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1176{
1177 struct audit_buffer *ab;
1178 int i;
1179
1180 ab = audit_log_start(context, GFP_KERNEL, context->type);
1181 if (!ab)
1182 return;
1183
1184 switch (context->type) {
1185 case AUDIT_SOCKETCALL: {
1186 int nargs = context->socketcall.nargs;
1187 audit_log_format(ab, "nargs=%d", nargs);
1188 for (i = 0; i < nargs; i++)
1189 audit_log_format(ab, " a%d=%lx", i,
1190 context->socketcall.args[i]);
1191 break; }
a33e6751
AV
1192 case AUDIT_IPC: {
1193 u32 osid = context->ipc.osid;
1194
2570ebbd 1195 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1196 from_kuid(&init_user_ns, context->ipc.uid),
1197 from_kgid(&init_user_ns, context->ipc.gid),
1198 context->ipc.mode);
a33e6751
AV
1199 if (osid) {
1200 char *ctx = NULL;
1201 u32 len;
1202 if (security_secid_to_secctx(osid, &ctx, &len)) {
1203 audit_log_format(ab, " osid=%u", osid);
1204 *call_panic = 1;
1205 } else {
1206 audit_log_format(ab, " obj=%s", ctx);
1207 security_release_secctx(ctx, len);
1208 }
1209 }
e816f370
AV
1210 if (context->ipc.has_perm) {
1211 audit_log_end(ab);
1212 ab = audit_log_start(context, GFP_KERNEL,
1213 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1214 if (unlikely(!ab))
1215 return;
e816f370 1216 audit_log_format(ab,
2570ebbd 1217 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1218 context->ipc.qbytes,
1219 context->ipc.perm_uid,
1220 context->ipc.perm_gid,
1221 context->ipc.perm_mode);
e816f370 1222 }
a33e6751 1223 break; }
564f6993
AV
1224 case AUDIT_MQ_OPEN: {
1225 audit_log_format(ab,
df0a4283 1226 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1227 "mq_msgsize=%ld mq_curmsgs=%ld",
1228 context->mq_open.oflag, context->mq_open.mode,
1229 context->mq_open.attr.mq_flags,
1230 context->mq_open.attr.mq_maxmsg,
1231 context->mq_open.attr.mq_msgsize,
1232 context->mq_open.attr.mq_curmsgs);
1233 break; }
c32c8af4
AV
1234 case AUDIT_MQ_SENDRECV: {
1235 audit_log_format(ab,
1236 "mqdes=%d msg_len=%zd msg_prio=%u "
1237 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238 context->mq_sendrecv.mqdes,
1239 context->mq_sendrecv.msg_len,
1240 context->mq_sendrecv.msg_prio,
1241 context->mq_sendrecv.abs_timeout.tv_sec,
1242 context->mq_sendrecv.abs_timeout.tv_nsec);
1243 break; }
20114f71
AV
1244 case AUDIT_MQ_NOTIFY: {
1245 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246 context->mq_notify.mqdes,
1247 context->mq_notify.sigev_signo);
1248 break; }
7392906e
AV
1249 case AUDIT_MQ_GETSETATTR: {
1250 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1251 audit_log_format(ab,
1252 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253 "mq_curmsgs=%ld ",
1254 context->mq_getsetattr.mqdes,
1255 attr->mq_flags, attr->mq_maxmsg,
1256 attr->mq_msgsize, attr->mq_curmsgs);
1257 break; }
57f71a0a
AV
1258 case AUDIT_CAPSET: {
1259 audit_log_format(ab, "pid=%d", context->capset.pid);
1260 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263 break; }
120a795d
AV
1264 case AUDIT_MMAP: {
1265 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266 context->mmap.flags);
1267 break; }
d9cfea91
RGB
1268 case AUDIT_EXECVE: {
1269 audit_log_execve_info(context, &ab);
1270 break; }
f3298dc4
AV
1271 }
1272 audit_log_end(ab);
1273}
1274
3f1c8250
WR
1275static inline int audit_proctitle_rtrim(char *proctitle, int len)
1276{
1277 char *end = proctitle + len - 1;
1278 while (end > proctitle && !isprint(*end))
1279 end--;
1280
1281 /* catch the case where proctitle is only 1 non-print character */
1282 len = end - proctitle + 1;
1283 len -= isprint(proctitle[len-1]) == 0;
1284 return len;
1285}
1286
1287static void audit_log_proctitle(struct task_struct *tsk,
1288 struct audit_context *context)
1289{
1290 int res;
1291 char *buf;
1292 char *msg = "(null)";
1293 int len = strlen(msg);
1294 struct audit_buffer *ab;
1295
1296 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1297 if (!ab)
1298 return; /* audit_panic or being filtered */
1299
1300 audit_log_format(ab, "proctitle=");
1301
1302 /* Not cached */
1303 if (!context->proctitle.value) {
1304 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1305 if (!buf)
1306 goto out;
1307 /* Historically called this from procfs naming */
1308 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1309 if (res == 0) {
1310 kfree(buf);
1311 goto out;
1312 }
1313 res = audit_proctitle_rtrim(buf, res);
1314 if (res == 0) {
1315 kfree(buf);
1316 goto out;
1317 }
1318 context->proctitle.value = buf;
1319 context->proctitle.len = res;
1320 }
1321 msg = context->proctitle.value;
1322 len = context->proctitle.len;
1323out:
1324 audit_log_n_untrustedstring(ab, msg, len);
1325 audit_log_end(ab);
1326}
1327
e495149b 1328static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1329{
9c7aa6aa 1330 int i, call_panic = 0;
1da177e4 1331 struct audit_buffer *ab;
7551ced3 1332 struct audit_aux_data *aux;
5195d8e2 1333 struct audit_names *n;
1da177e4 1334
e495149b 1335 /* tsk == current */
3f2792ff 1336 context->personality = tsk->personality;
e495149b
AV
1337
1338 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1339 if (!ab)
1340 return; /* audit_panic has been called */
bccf6ae0
DW
1341 audit_log_format(ab, "arch=%x syscall=%d",
1342 context->arch, context->major);
1da177e4
LT
1343 if (context->personality != PER_LINUX)
1344 audit_log_format(ab, " per=%lx", context->personality);
1345 if (context->return_valid)
9f8dbe9c 1346 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1347 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1348 context->return_code);
eb84a20e 1349
1da177e4 1350 audit_log_format(ab,
e23eb920
PM
1351 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352 context->argv[0],
1353 context->argv[1],
1354 context->argv[2],
1355 context->argv[3],
1356 context->name_count);
eb84a20e 1357
e495149b 1358 audit_log_task_info(ab, tsk);
9d960985 1359 audit_log_key(ab, context->filterkey);
1da177e4 1360 audit_log_end(ab);
1da177e4 1361
7551ced3 1362 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1363
e495149b 1364 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1365 if (!ab)
1366 continue; /* audit_panic has been called */
1367
1da177e4 1368 switch (aux->type) {
20ca73bc 1369
3fc689e9
EP
1370 case AUDIT_BPRM_FCAPS: {
1371 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1372 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1373 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1374 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1375 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1376 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1377 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1378 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1379 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1380 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1381 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1382 break; }
1383
1da177e4
LT
1384 }
1385 audit_log_end(ab);
1da177e4
LT
1386 }
1387
f3298dc4 1388 if (context->type)
a33e6751 1389 show_special(context, &call_panic);
f3298dc4 1390
157cf649
AV
1391 if (context->fds[0] >= 0) {
1392 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1393 if (ab) {
1394 audit_log_format(ab, "fd0=%d fd1=%d",
1395 context->fds[0], context->fds[1]);
1396 audit_log_end(ab);
1397 }
1398 }
1399
4f6b434f
AV
1400 if (context->sockaddr_len) {
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1402 if (ab) {
1403 audit_log_format(ab, "saddr=");
1404 audit_log_n_hex(ab, (void *)context->sockaddr,
1405 context->sockaddr_len);
1406 audit_log_end(ab);
1407 }
1408 }
1409
e54dc243
AG
1410 for (aux = context->aux_pids; aux; aux = aux->next) {
1411 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1412
1413 for (i = 0; i < axs->pid_count; i++)
1414 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1415 axs->target_auid[i],
1416 axs->target_uid[i],
4746ec5b 1417 axs->target_sessionid[i],
c2a7780e
EP
1418 axs->target_sid[i],
1419 axs->target_comm[i]))
e54dc243 1420 call_panic = 1;
a5cb013d
AV
1421 }
1422
e54dc243
AG
1423 if (context->target_pid &&
1424 audit_log_pid_context(context, context->target_pid,
c2a7780e 1425 context->target_auid, context->target_uid,
4746ec5b 1426 context->target_sessionid,
c2a7780e 1427 context->target_sid, context->target_comm))
e54dc243
AG
1428 call_panic = 1;
1429
44707fdf 1430 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1431 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1432 if (ab) {
c158a35c 1433 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1434 audit_log_end(ab);
1435 }
1436 }
73241ccc 1437
5195d8e2 1438 i = 0;
79f6530c
JL
1439 list_for_each_entry(n, &context->names_list, list) {
1440 if (n->hidden)
1441 continue;
b24a30a7 1442 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1443 }
c0641f28 1444
3f1c8250
WR
1445 audit_log_proctitle(tsk, context);
1446
c0641f28
EP
1447 /* Send end of event record to help user space know we are finished */
1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1449 if (ab)
1450 audit_log_end(ab);
9c7aa6aa
SG
1451 if (call_panic)
1452 audit_panic("error converting sid to string");
1da177e4
LT
1453}
1454
b0dd25a8
RD
1455/**
1456 * audit_free - free a per-task audit context
1457 * @tsk: task whose audit context block to free
1458 *
fa84cb93 1459 * Called from copy_process and do_exit
b0dd25a8 1460 */
a4ff8dba 1461void __audit_free(struct task_struct *tsk)
1da177e4
LT
1462{
1463 struct audit_context *context;
1464
4a3eb726 1465 context = audit_take_context(tsk, 0, 0);
56179a6e 1466 if (!context)
1da177e4
LT
1467 return;
1468
1469 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1470 * function (e.g., exit_group), then free context block.
1471 * We use GFP_ATOMIC here because we might be doing this
f5561964 1472 * in the context of the idle thread */
e495149b 1473 /* that can happen only if we are called from do_exit() */
0590b933 1474 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1475 audit_log_exit(context, tsk);
916d7576
AV
1476 if (!list_empty(&context->killed_trees))
1477 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1478
1479 audit_free_context(context);
1480}
1481
b0dd25a8
RD
1482/**
1483 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1484 * @major: major syscall type (function)
1485 * @a1: additional syscall register 1
1486 * @a2: additional syscall register 2
1487 * @a3: additional syscall register 3
1488 * @a4: additional syscall register 4
1489 *
1490 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1491 * audit context was created when the task was created and the state or
1492 * filters demand the audit context be built. If the state from the
1493 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1494 * then the record will be written at syscall exit time (otherwise, it
1495 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1496 * be written).
1497 */
b4f0d375
RGB
1498void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1499 unsigned long a3, unsigned long a4)
1da177e4 1500{
5411be59 1501 struct task_struct *tsk = current;
1da177e4
LT
1502 struct audit_context *context = tsk->audit_context;
1503 enum audit_state state;
1504
56179a6e 1505 if (!context)
86a1c34a 1506 return;
1da177e4 1507
1da177e4
LT
1508 BUG_ON(context->in_syscall || context->name_count);
1509
1510 if (!audit_enabled)
1511 return;
1512
4a99854c 1513 context->arch = syscall_get_arch();
1da177e4
LT
1514 context->major = major;
1515 context->argv[0] = a1;
1516 context->argv[1] = a2;
1517 context->argv[2] = a3;
1518 context->argv[3] = a4;
1519
1520 state = context->state;
d51374ad 1521 context->dummy = !audit_n_rules;
0590b933
AV
1522 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1523 context->prio = 0;
0f45aa18 1524 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1525 }
56179a6e 1526 if (state == AUDIT_DISABLED)
1da177e4
LT
1527 return;
1528
ce625a80 1529 context->serial = 0;
1da177e4
LT
1530 context->ctime = CURRENT_TIME;
1531 context->in_syscall = 1;
0590b933 1532 context->current_state = state;
419c58f1 1533 context->ppid = 0;
1da177e4
LT
1534}
1535
b0dd25a8
RD
1536/**
1537 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1538 * @success: success value of the syscall
1539 * @return_code: return value of the syscall
b0dd25a8
RD
1540 *
1541 * Tear down after system call. If the audit context has been marked as
1da177e4 1542 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1543 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1544 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1545 * free the names stored from getname().
1546 */
d7e7528b 1547void __audit_syscall_exit(int success, long return_code)
1da177e4 1548{
5411be59 1549 struct task_struct *tsk = current;
1da177e4
LT
1550 struct audit_context *context;
1551
d7e7528b
EP
1552 if (success)
1553 success = AUDITSC_SUCCESS;
1554 else
1555 success = AUDITSC_FAILURE;
1da177e4 1556
4a3eb726 1557 context = audit_take_context(tsk, success, return_code);
56179a6e 1558 if (!context)
97e94c45 1559 return;
1da177e4 1560
0590b933 1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1562 audit_log_exit(context, tsk);
1da177e4
LT
1563
1564 context->in_syscall = 0;
0590b933 1565 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1566
916d7576
AV
1567 if (!list_empty(&context->killed_trees))
1568 audit_kill_trees(&context->killed_trees);
1569
c62d773a
AV
1570 audit_free_names(context);
1571 unroll_tree_refs(context, NULL, 0);
1572 audit_free_aux(context);
1573 context->aux = NULL;
1574 context->aux_pids = NULL;
1575 context->target_pid = 0;
1576 context->target_sid = 0;
1577 context->sockaddr_len = 0;
1578 context->type = 0;
1579 context->fds[0] = -1;
1580 if (context->state != AUDIT_RECORD_CONTEXT) {
1581 kfree(context->filterkey);
1582 context->filterkey = NULL;
1da177e4 1583 }
c62d773a 1584 tsk->audit_context = context;
1da177e4
LT
1585}
1586
74c3cbe3
AV
1587static inline void handle_one(const struct inode *inode)
1588{
1589#ifdef CONFIG_AUDIT_TREE
1590 struct audit_context *context;
1591 struct audit_tree_refs *p;
1592 struct audit_chunk *chunk;
1593 int count;
e61ce867 1594 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1595 return;
1596 context = current->audit_context;
1597 p = context->trees;
1598 count = context->tree_count;
1599 rcu_read_lock();
1600 chunk = audit_tree_lookup(inode);
1601 rcu_read_unlock();
1602 if (!chunk)
1603 return;
1604 if (likely(put_tree_ref(context, chunk)))
1605 return;
1606 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1607 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1608 audit_set_auditable(context);
1609 audit_put_chunk(chunk);
1610 unroll_tree_refs(context, p, count);
1611 return;
1612 }
1613 put_tree_ref(context, chunk);
1614#endif
1615}
1616
1617static void handle_path(const struct dentry *dentry)
1618{
1619#ifdef CONFIG_AUDIT_TREE
1620 struct audit_context *context;
1621 struct audit_tree_refs *p;
1622 const struct dentry *d, *parent;
1623 struct audit_chunk *drop;
1624 unsigned long seq;
1625 int count;
1626
1627 context = current->audit_context;
1628 p = context->trees;
1629 count = context->tree_count;
1630retry:
1631 drop = NULL;
1632 d = dentry;
1633 rcu_read_lock();
1634 seq = read_seqbegin(&rename_lock);
1635 for(;;) {
3b362157 1636 struct inode *inode = d_backing_inode(d);
e61ce867 1637 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1638 struct audit_chunk *chunk;
1639 chunk = audit_tree_lookup(inode);
1640 if (chunk) {
1641 if (unlikely(!put_tree_ref(context, chunk))) {
1642 drop = chunk;
1643 break;
1644 }
1645 }
1646 }
1647 parent = d->d_parent;
1648 if (parent == d)
1649 break;
1650 d = parent;
1651 }
1652 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1653 rcu_read_unlock();
1654 if (!drop) {
1655 /* just a race with rename */
1656 unroll_tree_refs(context, p, count);
1657 goto retry;
1658 }
1659 audit_put_chunk(drop);
1660 if (grow_tree_refs(context)) {
1661 /* OK, got more space */
1662 unroll_tree_refs(context, p, count);
1663 goto retry;
1664 }
1665 /* too bad */
f952d10f 1666 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1667 unroll_tree_refs(context, p, count);
1668 audit_set_auditable(context);
1669 return;
1670 }
1671 rcu_read_unlock();
1672#endif
1673}
1674
78e2e802
JL
1675static struct audit_names *audit_alloc_name(struct audit_context *context,
1676 unsigned char type)
5195d8e2
EP
1677{
1678 struct audit_names *aname;
1679
1680 if (context->name_count < AUDIT_NAMES) {
1681 aname = &context->preallocated_names[context->name_count];
1682 memset(aname, 0, sizeof(*aname));
1683 } else {
1684 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1685 if (!aname)
1686 return NULL;
1687 aname->should_free = true;
1688 }
1689
84cb777e 1690 aname->ino = AUDIT_INO_UNSET;
78e2e802 1691 aname->type = type;
5195d8e2
EP
1692 list_add_tail(&aname->list, &context->names_list);
1693
1694 context->name_count++;
5195d8e2
EP
1695 return aname;
1696}
1697
7ac86265
JL
1698/**
1699 * audit_reusename - fill out filename with info from existing entry
1700 * @uptr: userland ptr to pathname
1701 *
1702 * Search the audit_names list for the current audit context. If there is an
1703 * existing entry with a matching "uptr" then return the filename
1704 * associated with that audit_name. If not, return NULL.
1705 */
1706struct filename *
1707__audit_reusename(const __user char *uptr)
1708{
1709 struct audit_context *context = current->audit_context;
1710 struct audit_names *n;
1711
1712 list_for_each_entry(n, &context->names_list, list) {
1713 if (!n->name)
1714 continue;
55422d0b
PM
1715 if (n->name->uptr == uptr) {
1716 n->name->refcnt++;
7ac86265 1717 return n->name;
55422d0b 1718 }
7ac86265
JL
1719 }
1720 return NULL;
1721}
1722
b0dd25a8
RD
1723/**
1724 * audit_getname - add a name to the list
1725 * @name: name to add
1726 *
1727 * Add a name to the list of audit names for this context.
1728 * Called from fs/namei.c:getname().
1729 */
91a27b2a 1730void __audit_getname(struct filename *name)
1da177e4
LT
1731{
1732 struct audit_context *context = current->audit_context;
5195d8e2 1733 struct audit_names *n;
1da177e4 1734
55422d0b 1735 if (!context->in_syscall)
1da177e4 1736 return;
91a27b2a 1737
78e2e802 1738 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1739 if (!n)
1740 return;
1741
1742 n->name = name;
1743 n->name_len = AUDIT_NAME_FULL;
adb5c247 1744 name->aname = n;
55422d0b 1745 name->refcnt++;
5195d8e2 1746
f7ad3c6b
MS
1747 if (!context->pwd.dentry)
1748 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1749}
1750
b0dd25a8 1751/**
bfcec708 1752 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1753 * @name: name being audited
481968f4 1754 * @dentry: dentry being audited
79f6530c 1755 * @flags: attributes for this particular entry
b0dd25a8 1756 */
adb5c247 1757void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1758 unsigned int flags)
1da177e4 1759{
1da177e4 1760 struct audit_context *context = current->audit_context;
d6335d77 1761 struct inode *inode = d_backing_inode(dentry);
5195d8e2 1762 struct audit_names *n;
79f6530c 1763 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1764
1765 if (!context->in_syscall)
1766 return;
5195d8e2 1767
9cec9d68
JL
1768 if (!name)
1769 goto out_alloc;
1770
adb5c247
JL
1771 /*
1772 * If we have a pointer to an audit_names entry already, then we can
1773 * just use it directly if the type is correct.
1774 */
1775 n = name->aname;
1776 if (n) {
1777 if (parent) {
1778 if (n->type == AUDIT_TYPE_PARENT ||
1779 n->type == AUDIT_TYPE_UNKNOWN)
1780 goto out;
1781 } else {
1782 if (n->type != AUDIT_TYPE_PARENT)
1783 goto out;
1784 }
1785 }
1786
5195d8e2 1787 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
1788 if (n->ino) {
1789 /* valid inode number, use that for the comparison */
1790 if (n->ino != inode->i_ino ||
1791 n->dev != inode->i_sb->s_dev)
1792 continue;
1793 } else if (n->name) {
1794 /* inode number has not been set, check the name */
1795 if (strcmp(n->name->name, name->name))
1796 continue;
1797 } else
1798 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
1799 continue;
1800
1801 /* match the correct record type */
1802 if (parent) {
1803 if (n->type == AUDIT_TYPE_PARENT ||
1804 n->type == AUDIT_TYPE_UNKNOWN)
1805 goto out;
1806 } else {
1807 if (n->type != AUDIT_TYPE_PARENT)
1808 goto out;
1809 }
1da177e4 1810 }
5195d8e2 1811
9cec9d68 1812out_alloc:
4a928436
PM
1813 /* unable to find an entry with both a matching name and type */
1814 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1815 if (!n)
1816 return;
fcf22d82 1817 if (name) {
fd3522fd 1818 n->name = name;
55422d0b 1819 name->refcnt++;
fcf22d82 1820 }
4a928436 1821
5195d8e2 1822out:
bfcec708 1823 if (parent) {
91a27b2a 1824 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1825 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1826 if (flags & AUDIT_INODE_HIDDEN)
1827 n->hidden = true;
bfcec708
JL
1828 } else {
1829 n->name_len = AUDIT_NAME_FULL;
1830 n->type = AUDIT_TYPE_NORMAL;
1831 }
74c3cbe3 1832 handle_path(dentry);
5195d8e2 1833 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1834}
1835
9f45f5bf
AV
1836void __audit_file(const struct file *file)
1837{
1838 __audit_inode(NULL, file->f_path.dentry, 0);
1839}
1840
73241ccc 1841/**
c43a25ab 1842 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1843 * @parent: inode of dentry parent
c43a25ab 1844 * @dentry: dentry being audited
4fa6b5ec 1845 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1846 *
1847 * For syscalls that create or remove filesystem objects, audit_inode
1848 * can only collect information for the filesystem object's parent.
1849 * This call updates the audit context with the child's information.
1850 * Syscalls that create a new filesystem object must be hooked after
1851 * the object is created. Syscalls that remove a filesystem object
1852 * must be hooked prior, in order to capture the target inode during
1853 * unsuccessful attempts.
1854 */
d6335d77 1855void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
1856 const struct dentry *dentry,
1857 const unsigned char type)
73241ccc 1858{
73241ccc 1859 struct audit_context *context = current->audit_context;
d6335d77 1860 struct inode *inode = d_backing_inode(dentry);
cccc6bba 1861 const char *dname = dentry->d_name.name;
4fa6b5ec 1862 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1863
1864 if (!context->in_syscall)
1865 return;
1866
74c3cbe3
AV
1867 if (inode)
1868 handle_one(inode);
73241ccc 1869
4fa6b5ec 1870 /* look for a parent entry first */
5195d8e2 1871 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
1872 if (!n->name ||
1873 (n->type != AUDIT_TYPE_PARENT &&
1874 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1875 continue;
1876
57c59f58
PM
1877 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1878 !audit_compare_dname_path(dname,
1879 n->name->name, n->name_len)) {
1880 if (n->type == AUDIT_TYPE_UNKNOWN)
1881 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
1882 found_parent = n;
1883 break;
f368c07d 1884 }
5712e88f 1885 }
73241ccc 1886
4fa6b5ec 1887 /* is there a matching child entry? */
5195d8e2 1888 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1889 /* can only match entries that have a name */
57c59f58
PM
1890 if (!n->name ||
1891 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1892 continue;
1893
91a27b2a
JL
1894 if (!strcmp(dname, n->name->name) ||
1895 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1896 found_parent ?
1897 found_parent->name_len :
e3d6b07b 1898 AUDIT_NAME_FULL)) {
57c59f58
PM
1899 if (n->type == AUDIT_TYPE_UNKNOWN)
1900 n->type = type;
4fa6b5ec
JL
1901 found_child = n;
1902 break;
5712e88f 1903 }
ac9910ce 1904 }
5712e88f 1905
5712e88f 1906 if (!found_parent) {
4fa6b5ec
JL
1907 /* create a new, "anonymous" parent record */
1908 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1909 if (!n)
ac9910ce 1910 return;
5195d8e2 1911 audit_copy_inode(n, NULL, parent);
73d3ec5a 1912 }
5712e88f
AG
1913
1914 if (!found_child) {
4fa6b5ec
JL
1915 found_child = audit_alloc_name(context, type);
1916 if (!found_child)
5712e88f 1917 return;
5712e88f
AG
1918
1919 /* Re-use the name belonging to the slot for a matching parent
1920 * directory. All names for this context are relinquished in
1921 * audit_free_names() */
1922 if (found_parent) {
4fa6b5ec
JL
1923 found_child->name = found_parent->name;
1924 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 1925 found_child->name->refcnt++;
5712e88f 1926 }
5712e88f 1927 }
57c59f58 1928
4fa6b5ec
JL
1929 if (inode)
1930 audit_copy_inode(found_child, dentry, inode);
1931 else
84cb777e 1932 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 1933}
50e437d5 1934EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1935
b0dd25a8
RD
1936/**
1937 * auditsc_get_stamp - get local copies of audit_context values
1938 * @ctx: audit_context for the task
1939 * @t: timespec to store time recorded in the audit_context
1940 * @serial: serial value that is recorded in the audit_context
1941 *
1942 * Also sets the context as auditable.
1943 */
48887e63 1944int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1945 struct timespec *t, unsigned int *serial)
1da177e4 1946{
48887e63
AV
1947 if (!ctx->in_syscall)
1948 return 0;
ce625a80
DW
1949 if (!ctx->serial)
1950 ctx->serial = audit_serial();
bfb4496e
DW
1951 t->tv_sec = ctx->ctime.tv_sec;
1952 t->tv_nsec = ctx->ctime.tv_nsec;
1953 *serial = ctx->serial;
0590b933
AV
1954 if (!ctx->prio) {
1955 ctx->prio = 1;
1956 ctx->current_state = AUDIT_RECORD_CONTEXT;
1957 }
48887e63 1958 return 1;
1da177e4
LT
1959}
1960
4746ec5b
EP
1961/* global counter which is incremented every time something logs in */
1962static atomic_t session_id = ATOMIC_INIT(0);
1963
da0a6104
EP
1964static int audit_set_loginuid_perm(kuid_t loginuid)
1965{
da0a6104
EP
1966 /* if we are unset, we don't need privs */
1967 if (!audit_loginuid_set(current))
1968 return 0;
21b85c31
EP
1969 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1970 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1971 return -EPERM;
83fa6bbe
EP
1972 /* it is set, you need permission */
1973 if (!capable(CAP_AUDIT_CONTROL))
1974 return -EPERM;
d040e5af
EP
1975 /* reject if this is not an unset and we don't allow that */
1976 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1977 return -EPERM;
83fa6bbe 1978 return 0;
da0a6104
EP
1979}
1980
1981static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1982 unsigned int oldsessionid, unsigned int sessionid,
1983 int rc)
1984{
1985 struct audit_buffer *ab;
5ee9a75c 1986 uid_t uid, oldloginuid, loginuid;
da0a6104 1987
c2412d91
G
1988 if (!audit_enabled)
1989 return;
1990
da0a6104 1991 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
1992 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1993 loginuid = from_kuid(&init_user_ns, kloginuid),
da0a6104
EP
1994
1995 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1996 if (!ab)
1997 return;
ddfad8af
EP
1998 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1999 audit_log_task_context(ab);
2000 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2001 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
da0a6104
EP
2002 audit_log_end(ab);
2003}
2004
b0dd25a8 2005/**
0a300be6 2006 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2007 * @loginuid: loginuid value
2008 *
2009 * Returns 0.
2010 *
2011 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2012 */
e1760bd5 2013int audit_set_loginuid(kuid_t loginuid)
1da177e4 2014{
0a300be6 2015 struct task_struct *task = current;
9175c9d2
EP
2016 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2017 kuid_t oldloginuid;
da0a6104 2018 int rc;
41757106 2019
da0a6104
EP
2020 oldloginuid = audit_get_loginuid(current);
2021 oldsessionid = audit_get_sessionid(current);
2022
2023 rc = audit_set_loginuid_perm(loginuid);
2024 if (rc)
2025 goto out;
633b4545 2026
81407c84
EP
2027 /* are we setting or clearing? */
2028 if (uid_valid(loginuid))
4440e854 2029 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2030
4746ec5b 2031 task->sessionid = sessionid;
bfef93a5 2032 task->loginuid = loginuid;
da0a6104
EP
2033out:
2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2035 return rc;
1da177e4
LT
2036}
2037
20ca73bc
GW
2038/**
2039 * __audit_mq_open - record audit data for a POSIX MQ open
2040 * @oflag: open flag
2041 * @mode: mode bits
6b962559 2042 * @attr: queue attributes
20ca73bc 2043 *
20ca73bc 2044 */
df0a4283 2045void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2046{
20ca73bc
GW
2047 struct audit_context *context = current->audit_context;
2048
564f6993
AV
2049 if (attr)
2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2051 else
2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2053
564f6993
AV
2054 context->mq_open.oflag = oflag;
2055 context->mq_open.mode = mode;
20ca73bc 2056
564f6993 2057 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2058}
2059
2060/**
c32c8af4 2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2062 * @mqdes: MQ descriptor
2063 * @msg_len: Message length
2064 * @msg_prio: Message priority
c32c8af4 2065 * @abs_timeout: Message timeout in absolute time
20ca73bc 2066 *
20ca73bc 2067 */
c32c8af4
AV
2068void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2069 const struct timespec *abs_timeout)
20ca73bc 2070{
20ca73bc 2071 struct audit_context *context = current->audit_context;
c32c8af4 2072 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2073
c32c8af4
AV
2074 if (abs_timeout)
2075 memcpy(p, abs_timeout, sizeof(struct timespec));
2076 else
2077 memset(p, 0, sizeof(struct timespec));
20ca73bc 2078
c32c8af4
AV
2079 context->mq_sendrecv.mqdes = mqdes;
2080 context->mq_sendrecv.msg_len = msg_len;
2081 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2082
c32c8af4 2083 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2084}
2085
2086/**
2087 * __audit_mq_notify - record audit data for a POSIX MQ notify
2088 * @mqdes: MQ descriptor
6b962559 2089 * @notification: Notification event
20ca73bc 2090 *
20ca73bc
GW
2091 */
2092
20114f71 2093void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2094{
20ca73bc
GW
2095 struct audit_context *context = current->audit_context;
2096
20114f71
AV
2097 if (notification)
2098 context->mq_notify.sigev_signo = notification->sigev_signo;
2099 else
2100 context->mq_notify.sigev_signo = 0;
20ca73bc 2101
20114f71
AV
2102 context->mq_notify.mqdes = mqdes;
2103 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2104}
2105
2106/**
2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2108 * @mqdes: MQ descriptor
2109 * @mqstat: MQ flags
2110 *
20ca73bc 2111 */
7392906e 2112void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2113{
20ca73bc 2114 struct audit_context *context = current->audit_context;
7392906e
AV
2115 context->mq_getsetattr.mqdes = mqdes;
2116 context->mq_getsetattr.mqstat = *mqstat;
2117 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2118}
2119
b0dd25a8 2120/**
073115d6
SG
2121 * audit_ipc_obj - record audit data for ipc object
2122 * @ipcp: ipc permissions
2123 *
073115d6 2124 */
a33e6751 2125void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2126{
073115d6 2127 struct audit_context *context = current->audit_context;
a33e6751
AV
2128 context->ipc.uid = ipcp->uid;
2129 context->ipc.gid = ipcp->gid;
2130 context->ipc.mode = ipcp->mode;
e816f370 2131 context->ipc.has_perm = 0;
a33e6751
AV
2132 security_ipc_getsecid(ipcp, &context->ipc.osid);
2133 context->type = AUDIT_IPC;
073115d6
SG
2134}
2135
2136/**
2137 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2138 * @qbytes: msgq bytes
2139 * @uid: msgq user id
2140 * @gid: msgq group id
2141 * @mode: msgq mode (permissions)
2142 *
e816f370 2143 * Called only after audit_ipc_obj().
b0dd25a8 2144 */
2570ebbd 2145void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2146{
1da177e4
LT
2147 struct audit_context *context = current->audit_context;
2148
e816f370
AV
2149 context->ipc.qbytes = qbytes;
2150 context->ipc.perm_uid = uid;
2151 context->ipc.perm_gid = gid;
2152 context->ipc.perm_mode = mode;
2153 context->ipc.has_perm = 1;
1da177e4 2154}
c2f0c7c3 2155
d9cfea91 2156void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2157{
473ae30b 2158 struct audit_context *context = current->audit_context;
473ae30b 2159
d9cfea91
RGB
2160 context->type = AUDIT_EXECVE;
2161 context->execve.argc = bprm->argc;
473ae30b
AV
2162}
2163
2164
b0dd25a8
RD
2165/**
2166 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2168 * @args: args array
2169 *
b0dd25a8 2170 */
2950fa9d 2171int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2172{
3ec3b2fb
DW
2173 struct audit_context *context = current->audit_context;
2174
2950fa9d
CG
2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2176 return -EINVAL;
f3298dc4
AV
2177 context->type = AUDIT_SOCKETCALL;
2178 context->socketcall.nargs = nargs;
2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2180 return 0;
3ec3b2fb
DW
2181}
2182
db349509
AV
2183/**
2184 * __audit_fd_pair - record audit data for pipe and socketpair
2185 * @fd1: the first file descriptor
2186 * @fd2: the second file descriptor
2187 *
db349509 2188 */
157cf649 2189void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2190{
2191 struct audit_context *context = current->audit_context;
157cf649
AV
2192 context->fds[0] = fd1;
2193 context->fds[1] = fd2;
db349509
AV
2194}
2195
b0dd25a8
RD
2196/**
2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2198 * @len: data length in user space
2199 * @a: data address in kernel space
2200 *
2201 * Returns 0 for success or NULL context or < 0 on error.
2202 */
07c49417 2203int __audit_sockaddr(int len, void *a)
3ec3b2fb 2204{
3ec3b2fb
DW
2205 struct audit_context *context = current->audit_context;
2206
4f6b434f
AV
2207 if (!context->sockaddr) {
2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2209 if (!p)
2210 return -ENOMEM;
2211 context->sockaddr = p;
2212 }
3ec3b2fb 2213
4f6b434f
AV
2214 context->sockaddr_len = len;
2215 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2216 return 0;
2217}
2218
a5cb013d
AV
2219void __audit_ptrace(struct task_struct *t)
2220{
2221 struct audit_context *context = current->audit_context;
2222
f1dc4867 2223 context->target_pid = task_pid_nr(t);
c2a7780e 2224 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2225 context->target_uid = task_uid(t);
4746ec5b 2226 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2227 security_task_getsecid(t, &context->target_sid);
c2a7780e 2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2229}
2230
b0dd25a8
RD
2231/**
2232 * audit_signal_info - record signal info for shutting down audit subsystem
2233 * @sig: signal value
2234 * @t: task being signaled
2235 *
2236 * If the audit subsystem is being terminated, record the task (pid)
2237 * and uid that is doing that.
2238 */
e54dc243 2239int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2240{
e54dc243
AG
2241 struct audit_aux_data_pids *axp;
2242 struct task_struct *tsk = current;
2243 struct audit_context *ctx = tsk->audit_context;
cca080d9 2244 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2245
175fc484 2246 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
f1dc4867 2248 audit_sig_pid = task_pid_nr(tsk);
e1760bd5 2249 if (uid_valid(tsk->loginuid))
bfef93a5 2250 audit_sig_uid = tsk->loginuid;
175fc484 2251 else
c69e8d9c 2252 audit_sig_uid = uid;
2a862b32 2253 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2254 }
2255 if (!audit_signals || audit_dummy_context())
2256 return 0;
c2f0c7c3 2257 }
e54dc243 2258
e54dc243
AG
2259 /* optimize the common case by putting first signal recipient directly
2260 * in audit_context */
2261 if (!ctx->target_pid) {
f1dc4867 2262 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2263 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2264 ctx->target_uid = t_uid;
4746ec5b 2265 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2266 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2268 return 0;
2269 }
2270
2271 axp = (void *)ctx->aux_pids;
2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2274 if (!axp)
2275 return -ENOMEM;
2276
2277 axp->d.type = AUDIT_OBJ_PID;
2278 axp->d.next = ctx->aux_pids;
2279 ctx->aux_pids = (void *)axp;
2280 }
88ae704c 2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2282
f1dc4867 2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2285 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2289 axp->pid_count++;
2290
2291 return 0;
c2f0c7c3 2292}
0a4ff8c2 2293
3fc689e9
EP
2294/**
2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2296 * @bprm: pointer to the bprm being processed
2297 * @new: the proposed new credentials
2298 * @old: the old credentials
3fc689e9
EP
2299 *
2300 * Simply check if the proc already has the caps given by the file and if not
2301 * store the priv escalation info for later auditing at the end of the syscall
2302 *
3fc689e9
EP
2303 * -Eric
2304 */
d84f4f99
DH
2305int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2306 const struct cred *new, const struct cred *old)
3fc689e9
EP
2307{
2308 struct audit_aux_data_bprm_fcaps *ax;
2309 struct audit_context *context = current->audit_context;
2310 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2311
2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2313 if (!ax)
d84f4f99 2314 return -ENOMEM;
3fc689e9
EP
2315
2316 ax->d.type = AUDIT_BPRM_FCAPS;
2317 ax->d.next = context->aux;
2318 context->aux = (void *)ax;
2319
f4a4a8b1 2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2321
2322 ax->fcap.permitted = vcaps.permitted;
2323 ax->fcap.inheritable = vcaps.inheritable;
2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2326
d84f4f99
DH
2327 ax->old_pcap.permitted = old->cap_permitted;
2328 ax->old_pcap.inheritable = old->cap_inheritable;
2329 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2330
d84f4f99
DH
2331 ax->new_pcap.permitted = new->cap_permitted;
2332 ax->new_pcap.inheritable = new->cap_inheritable;
2333 ax->new_pcap.effective = new->cap_effective;
2334 return 0;
3fc689e9
EP
2335}
2336
e68b75a0
EP
2337/**
2338 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2339 * @new: the new credentials
2340 * @old: the old (current) credentials
e68b75a0 2341 *
da3dae54 2342 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2343 * audit system if applicable
2344 */
ca24a23e 2345void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2346{
e68b75a0 2347 struct audit_context *context = current->audit_context;
ca24a23e 2348 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2349 context->capset.cap.effective = new->cap_effective;
2350 context->capset.cap.inheritable = new->cap_effective;
2351 context->capset.cap.permitted = new->cap_permitted;
2352 context->type = AUDIT_CAPSET;
e68b75a0
EP
2353}
2354
120a795d
AV
2355void __audit_mmap_fd(int fd, int flags)
2356{
2357 struct audit_context *context = current->audit_context;
2358 context->mmap.fd = fd;
2359 context->mmap.flags = flags;
2360 context->type = AUDIT_MMAP;
2361}
2362
7b9205bd 2363static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2364{
cca080d9
EB
2365 kuid_t auid, uid;
2366 kgid_t gid;
85e7bac3 2367 unsigned int sessionid;
9eab339b 2368 char comm[sizeof(current->comm)];
85e7bac3
EP
2369
2370 auid = audit_get_loginuid(current);
2371 sessionid = audit_get_sessionid(current);
2372 current_uid_gid(&uid, &gid);
2373
2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2375 from_kuid(&init_user_ns, auid),
2376 from_kuid(&init_user_ns, uid),
2377 from_kgid(&init_user_ns, gid),
2378 sessionid);
85e7bac3 2379 audit_log_task_context(ab);
f1dc4867 2380 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
9eab339b 2381 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2382 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2383}
2384
0a4ff8c2
SG
2385/**
2386 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2387 * @signr: signal value
0a4ff8c2
SG
2388 *
2389 * If a process ends with a core dump, something fishy is going on and we
2390 * should record the event for investigation.
2391 */
2392void audit_core_dumps(long signr)
2393{
2394 struct audit_buffer *ab;
0a4ff8c2
SG
2395
2396 if (!audit_enabled)
2397 return;
2398
2399 if (signr == SIGQUIT) /* don't care for those */
2400 return;
2401
2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2403 if (unlikely(!ab))
2404 return;
61c0ee87
PD
2405 audit_log_task(ab);
2406 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2407 audit_log_end(ab);
2408}
0a4ff8c2 2409
3dc1c1b2 2410void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2411{
2412 struct audit_buffer *ab;
2413
7b9205bd
KC
2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2415 if (unlikely(!ab))
2416 return;
2417 audit_log_task(ab);
84db564a 2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
efbc0fbf
AL
2419 signr, syscall_get_arch(), syscall,
2420 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
2421 audit_log_end(ab);
2422}
916d7576
AV
2423
2424struct list_head *audit_killed_trees(void)
2425{
2426 struct audit_context *ctx = current->audit_context;
2427 if (likely(!ctx || !ctx->in_syscall))
2428 return NULL;
2429 return &ctx->killed_trees;
2430}